

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

BMJ Open

Referral patterns, disease progression and impact of the Kidney Failure Risk Equation (KFRE) in a Queensland chronic kidney disease Registry (CKD.QLD) cohort: a study protocol

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-052790
Article Type:	Protocol
Date Submitted by the Author:	27-Apr-2021
Complete List of Authors:	Mutatiri, Clyson; The University of Queensland Faculty of Medicine, Renal Medicine Ratsch, Angela; Wide Bay Hospital and Health Service McGrail, Matthew R.; The University of Queensland Faculty of Medicine Venuthurupalli, Sree ; West Moreton Hospital and Health Service, Medicine KondalsamyChennakesavan, Srinivas; The University of Queensland Faculty of Medicine, Discipline of Medicine
Keywords:	Chronic renal failure < NEPHROLOGY, Dialysis < NEPHROLOGY, End stage renal failure < NEPHROLOGY

Referral patterns, disease progression and impact of the Kidney Failure Risk Equation (KFRE) in a Queensland chronic kidney disease Registry (CKD.QLD) cohort: a study protocol

Clyson Mutatiri^{1,2*}, Angela Ratsch^{3,4}, Matthew McGrail², Sree Krishna Venuthurupalli⁵, and Srinivas Kondalsamy Chennakesavan²

ABSTRACT:

Introduction: Chronic kidney disease (CKD) is a rapidly increasing and global phenomenon which carries high morbidity and mortality. Although timely referral from primary care to secondary care confers favourable outcomes, it is not possible for every patient with CKD to be managed at secondary care. With 1 in 10 Australians currently living with markers of CKD against a workforce of about 600 nephrology specialists, a risk stratification strategy is required that will reliably identify individuals whose kidney disease is likely to progress.

Methods and Analysis: This study will undertake a retrospective secondary analysis of the Chronic Kidney Disease Queensland Registry (CKD.QLD) data of consented adults to examine the referral patterns to specialist nephrology services from primary care providers and map the patient trajectory and outcomes to inform the optimal referral timing for disease mitigation. Patient data over a 5-year period will be examined to determine the impact of the kidney failure risk equation (KFRE)-based risk stratification on the referral patterns, disease progression and patient outcomes. The results will inform considerations of a risk stratification strategy that will ensure adequate predialysis management and add to the discussion of the time interval between referral and initiation of kidney replacement therapy or development of cardiovascular events.

Ethics and dissemination: This protocol was approved by the Ethics Committee of the Royal Brisbane and Women's Hospital in January 2021 (LNR/2020/QRBW/69707 14/01/2021). The HREC waived the requirement for patient consent as all patients had consented for the use of their data for the purpose of research on recruitment into CKD.QLD Registry. The results will be presented as a component of a PhD study with The University of Queensland. It is anticipated that the results will be presented at health-related conferences (local, national and possibly international) and via publication in peer-reviewed academic journals.

Keywords: chronic kidney disease; referral pattern; chronic kidney disease progression; eGFR slope; kidney failure risk equation

clyson.mutatiri@health.qld.gov.

To Cite: Mutatiri, C.; Ratsch, A.;

McGrail, M, et.al. Referral patterns,

disease progression and impact of

the Kidney Failure Risk Equation

(KFRE) in a Queensland chronic

cohort: a study protocol

Received: date

Accepted: date

Published: date

Correspondence:

_au

Dr Clyson Mutatiri;

kidney disease Registry (CKD.QLD)

Strengths and limitations of this study

- The study will involve secondary analysis of registry participant data examining CKD progression under specialist nephrology services over a 5-year period and has potential to identify opportunities for improving quality of care for CKD at both state and national level.
- The clinical outcomes will include progression of CKD as well as major adverse cardiac events or mortality, in contrast to previous studies which have focused on outcomes following commencement of kidney replacement therapy.
- An easily applicable risk stratification strategy will enable the coordination of primary care and secondary care providers to optimize value by providing clinically indicated services at the appropriate time and reducing rates of referrals of low-risk participants who could be safely managed in primary care.
- The participants in the CKD.QLD registry represent a fraction of individuals with CKD in QLD as the registry data represents 60% to 70% of the estimated target population and is limited to individuals with CKD referred to renal services in the public hospital system.
- Given the retrospective nature of the study, the availability of information on variables of interest will rely on the completeness of medical records and on whether tests were ever done or measured.

1. Introduction

Most individuals with chronic kidney disease (CKD) can be safely managed in primary care [1]. A successful model of primary care should incorporate early detection of the disease through proactive screening of high-risk individuals, together with timely specialist referral of individuals who are at high risk of progressing to end-stage kidney disease (ESKD) [2]. Nevertheless, whilst the literature suggests that early referral confers favourable outcomes at both individual and system level [3], the benefits can be eroded by the negative impact of high rates of premature referrals on the health care system [4,5].

Optimal timing for referral of individuals with CKD from primary care to specialist nephrology services has been the subject of debate for several decades [6] and there continues to be a lack of consensus on what constitutes a late (or early) referral. This ambiguity impacts the timing of referral to achieve optimum patient outcomes, which continues to pose an ongoing challenge for patients, policymakers and service providers.

The increase in the burden of diabetes and hypertension, considered as the two leading drivers of CKD [7] has led to an increase in individuals diagnosed with CKD in primary care, which in turn has translated into a surge in referrals to specialist nephrology services [8]. Notably, a significant proportion of these are related to individuals who are at low risk of progressing to ESKD or developing cardiovascular (CV) events [9]. Compounding the volume rise is the dearth in nephrology specialists in Australia, creating a mismatch between service demand and service providers. A workforce review committee of the Australian and New Zealand Society of Nephrology (ANZSN) identified 598 practicing nephrologists in Australia in 2017 [10]. Currently there are approximately 1.7 million Australians aged > 18 years with clinical evidence of CKD; specialist referral of all patients with CKD would see an average of > 2800 patients per nephrologist [11]. Although the number of Australian nephrology trainees has been expanding at a faster pace in recent years [12], the shortage of nephrologists persists outside metropolitan areas in regional, rural and remote areas [10]. This maldistribution of nephrology workforce is compounded by a higher prevalence of CKD and other chronic conditions in rural and remote areas, where a larger proportion of Aboriginal and Torres Strait Islander peoples reside [13].

With mounting referrals comes service overload, leading to long wait times and inefficient utilisation of the available nephrologist's time for higher need patients. Moreover, the absense of a precise and easily accessible guide to optimal referral timing escalates the risk that individuals could remain in primary care for too long, resulting in unwanted outcomes for both the affected individual and the health care system. To mitigate this

situation arising, substantial work has been invested in the development of risk stratification strategies that predict the risk of progression to ESKD as well as CV events, and therefore the likely need for (more urgent) referral to nephrology services. One such prediction strategy is the kidney failure risk equation (KFRE) which was developed in 2011 to quantify the risk of progression to ESKD [14]. Despite its validation in North America and Europe [15,16], the KFRE has not yet been widely adopted in Australian clinical practice.

In this project we will conduct a retrospective analysis of an existing Registry, examining participant data and outcomes from the time of the participant's enrolment into the Registry up to and including the end of the 5th year of their follow-up after enrolment. Referral patterns and disease progression will be described, and the KFRE-based risk stratification tool will be evaluated against the clinical outcomes.

1.1. Chronic Kidney Disease: Epidemiology

The prevalence of diagnosed CKD has increased worldwide since the adoption of the Kidney Disease Outcomes Quality Initiative (KDOQI) classification for CKD, and the implementation of automated reporting of creatininebased estimated glomerular filtration rate (eGFR) by many laboratories [17]. Currently, there are nearly 700 million people living with diagnosed CKD across the world, representing a global prevalence of 9.1% [18] and it is estimated that by 2040, CKD will catapult from its current ranking of twelfth to fifth as the leading cause of mortality around the world [19]. In Australia, population studies have estimated that every year, at least 16,000 Australian adults will be added to the over 1.7 million Australian adults (1 in 10) currently living with biomedical markers of CKD such as a reduced eGFR or protein in their urine [11].

Given this rise, CKD poses a major challenge to all world health care systems and has motivated investments in research and the development of potential strategies to delay or slow progression [20]. Previous reports by the Australian Institute of Health and Welfare (AIHW) have highlighted that the impact of CKD is not distributed evenly across the population (identifying "CKD Hot Spots"), with people living in remote areas experiencing substantially higher rates than those living in urban areas [21].

1.2. Chronic Kidney Disease: Identification

The timely involvement of specialist nephrology services has been shown to improve health outcomes after commencement of kidney replacement therapy (KRT) and can also reduce overall costs of caring for individuals with CKD [22-24]. In a systematic review of clinical and cost effectiveness modelling for management of individuals with CKD, the data suggested that early referral strategies may have the potential to offer an efficient use of resources [3]. Public health campaigns have therefore focussed on early detection of CKD in high risk individuals and also on strategies to reduce the rates of late referrals to nephrology services [25,26]. Nevertheless, determination of the optimal timing of referral to specialist care is complicated by several factors including: the heterogeneity of CKD, the recognised imprecision of estimates of progression based on eGFR trajectories, and the non-linear nature of eGFR decline due to intercurrent events such as acute kidney injury (AKI) or CV events [23,27].

Knowledge of the trajectory of any disease can form the basis of clinical decision-making by shaping the goals of care and anticipating when interventions might be required [28,29]. The role of kidney disease trajectories was initially used in clinical practice to predict CKD progression by plotting the reciprocal of serial serum creatinine concentration measurements against time [30]. Lately, acknowledgement of the substantial heterogeneity of kidney disease trajectories has prompted studies to examine the clinical implications of eGFR slopes and their links with subsequent outcomes, and whether past decline in eGFR adds information to the assessment of individuals with kidney disease beyond eGFR at a single time point [31-33]. In an international meta-analysis of

22 diverse cohorts consisting of more than a million participants, lower levels of eGFR and a higher decline in eGFR (described as an eGFR slope of <-5 ml/min per 1.73 m² per year) were both found to demonstrate a significant and independent association with higher subsequent risk of ESKD in the CKD cohorts[34]. A less than average negative eGFR slope and a positive eGFR slope have previously been found to be associated with increased risks of death and CV events by some investigators [32,35-37], while a more recent study found no associated risks with eGFR rise or less than average decline in eGFR slopes, suggesting that an improving eGFR might not be associated with adverse outcomes [38].

1.3. Chronic Kidney Disease: Prediction and referral

Risk prediction models of progression of CKD have been developed to aid treatment decisions and prognostication in clinical practice, hence informing the decision on when to refer from primary care, and on when to refer for access planning in preparation for KRT or transplantation [39]. With the use of such models, most individuals with lower risk CKD (e.g., Stage 3) can potentially be treated solely by their primary care provider, whereas those at high risk of progression to ESKD should be referred for specialized care by nephrology services [40].

Many different risk prediction equations have been developed and a few of them, including the KFRE, have been validated in different CKD cohorts[14,41]. The accuracy of these equations for predicting risk of kidney failure was evaluated by Tangri et al. in a meta-analysis involving thirty-one cohorts, including 721,357 participants with CKD stages 3 to 5 in more than 30 countries spanning 4 continents. From the meta-analysis, three ESKD prediction equations were derived and assessed, based on 4, 6, or 8 variables and the performance of the 4-variable KFRE was found to be similar to that of the other 2 equations [42]. In another study which undertook external validation of 11 existing models of kidney failure, the 4- and 8-variable 2-year KFREs were found to be most suitable for short-term prediction of risk of kidney failure. However, for prediction of kidney failure over a longer time frame, the 5-year KFRE overestimated the actual risk of KRT by 10 - 18% due to the competing risk of death [43]. Furthermore, the application of the KFRE was explored more recently by Naranjo et al. Using electronic medical records to estimate the risk of kidney failure, the 4-variable KFRE (with albuminuria) resulted in consistent improvement in risk discrimination when compared to the three-variable KFRE (without albumin-creatinine ratio (ACR) was imputed from protein-creatinine ratio (PCR) or urine dipstick protein measurements [44]. These findings were consistent with previous studies that have concluded that ascertainment of albuminuria is central to ESKD prognosis [42,45].

The 4-variable KFRE can be easily implemented in electronic medical records and laboratory information systems and has therefore been recommended as the model for implementation into clinical practice [42]. In its simplest and most common application, the 4-variable KFRE requires the input of age, gender, Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) creatinine-based eGFR and urine ACR [46]. In addition to its use for predicting referral from primary care to nephrology services, the KFRE may also be used to improve timing of referral for permanent vascular access creation and kidney transplantation [47]. An examination of data collected at state level and analysed against the KFRE could assist in identifying or mapping the distribution of state-wide CKD and assessing the usefulness of the tool to support health service planning at the state and local level.

1.4. Data source - CKD.QLD Registry

The Chronic Kidney Disease in Queensland (CKD.QLD) Registry is a collaborative of most public sector nephrology practices in Queensland Australia. The main objective of the Registry is to profile all consenting participants with CKD, laying a foundation for CKD surveillance, practice improvement and research. The

CKD.QLD data collection methods have been described by Venuthurapalli et. al, briefly however, the Registry was designed to use a data linkage framework which centralizes data captured by multiple mechanisms to an individual participant via a unique identifier [48]. Patients already on kidney replacement therapy and those with acute kidney injury (AKI) are excluded unless they subsequently developed and met the diagnostic criteria for CKD.

2. Methods and Design

This is a retrospective study which will undertake a secondary analysis of CKD.QLD Registry data. The aims and hypotheses of this study are:

Aims

- 1) To describe the referral patterns of participants in the CKD.QLD database with regard to the timing and appropriateness of referral and the associated impact on outcomes.
- 2) To study the progression of CKD in a subpopulation of participants followed up in specialist nephrology clinics. This includes comparing the association of pre-referral eGFR slope with subsequent adverse outcomes between early referrals and late referrals and examining the consistency of these associations across subgroups.
- 3) To evaluate the application of the KFRE and its impact on referral patterns.

Hypotheses

- 1) For participants with CKD, timely referral to specialist care will be associated with slowing down of progression to ESKD, improvement in CV outcomes and efficient utilisation of resources.
- 2) For participants under the care of nephrology services, past eGFR slope and albuminuria category are associated with the rate of progression of CKD and subsequent clinical outcomes.
- 3) For participants with CKD, the KFRE will significantly increase identification of those who are at risk of progressing to ESKD, who would benefit from timely referral to specialist nephrology services.

2.1 Sampling framework and study participants

Overall, the Registry includes approximately 7,600 participants \geq 18 years who were enrolled between 1st January 2011 and 31st December 2018. The participants were drawn from patients attending public kidney clinics in QLD Health facilities, thus the registry contains a mix of prevalent and incident patients. All such participants will contribute to completing Aim 1, whilst Aim 2 limits participants to those who were enrolled in the CKD.QLD Registry between 1st June 2011 and 30th June 2013 and followed up for at least five years, until 31st December 2018. Approval to access the CKD.QLD data is under the participant's original consent to share their data for research, and access to hospital record(s) has been granted under a waiver of consent by the Royal Brisbane and Women's Hospital Human Research Ethics Committee (LNR/2020/QRBW/69707 14/01/2021).

2.2 Patient and public involvement

The development of the research question or outcome measures was not informed by patients' priorities, experience or preferences. No patients were involved in the design and development of the study protocol. There are no plans to disseminate the results to study participants.

2.3. Research Outcomes

There are a number of outcomes of interest to this study's aims and these are defined below:

2.21. Referral patterns

- Prevalence of late referrals by eGFR.
- Describe outcomes associated with late referral.
- Proportion of participants who progressed to KRT at 3, 6 and 12 months.
- Proportion of participants who commenced KRT with a temporary vascular access.
- Incident KRT modality (Haemodialysis vs Peritoneal Dialysis vs Pre-emptive transplantation).
- Characteristics of participants who are referred late.

2.22. Progression of CKD under specialist nephrology services

- Association of past eGFR slopes vs eGFR at referral, albuminuria stage, comorbidities, and cause of CKD with subsequent outcomes (ESKD, non-CV death, and major adverse cardiovascular events (MACE).
- Five-year cumulative incidence of KRT, MACE, death without ESKD and KRT-free survival by past eGFR slope, eGFR and albuminuria stage at study entry.
- Correlation of eGFR slope with the time interval between referral and initiation of KRT.
- Outcomes at 3, 6 and 12 months after first visit to nephrology service (MACE, KRT, hospitalization).

2.23. Impact of the KFRE on referral patterns

- The proportion of participants in the database who require redesignation of their referrals to the nephrologist using the KFRE.
- The number of participants in the database who met the QLD Health Clinical prioritisation criteria and Kidney Disease: Improving Global Outcomes (KDIGO) criteria for nephrology referral.
- The proportion of participants who required referral for access creation and the timing of referral as predicted by the KFRE.
- The proportion of participants who progressed to ESKD as predicted by the KFRE and the time it took to progress to ESKD from time of referral.
- The proportion of participants in the database who had a low risk of progression at baseline and could therefore have been managed safely by their primary care providers.
- The effect of the KFRE stratification on number of referrals and wait times.

3. Procedure

The CKD.QLD data custodian will provide the researchers with the CKD.QLD identification number of the eligible population and will provide access to the Registry data set. Each participant's CKD.QLD identification number will be matched with QLD hospital record numbers. The variables to be extracted from CKD.QLD and hospitalisation records are listed in Tables 1-6 and will be entered onto Excel spreadsheets prior to upload in STATA 16.0 [StataCorp LP. Stata Statistical Software: College Station, Texas].

Table 1. Demographic and clinical characteristics of the study participants

0			
Variable	Operational definition	Scale of	Collection interval
		measurement	
Gender	Will be taken as recorded in database	M or F or other	Baseline
Age	Age at the time of enrolment	Years	Baseline and at time of
			event
Indigenous	Indigenous vs non-Indigenous	Y or N	Baseline, at 3 and 6
status			months and 12 monthly

SES	Low SES will be defined according to the SEIFA scores determined by participant post code	Quintileof disadvantage on a scale of 1-5	Baseline, at 3 and 6 months and 12 month
Area of residence	Area of residence by postcode	Rural vs urban	Baseline, at 3 and 6 months and 12 month
Wait times	Time from time of referral to first visit to the kidney clinic	Number of months	Baseline
Comorbidities			
T1DM	Clinical label of T1DM or commencing insulin within a year of diagnosis of DM	Y or N	Baseline
T2DM	Clinical label of T2DM or no requirement of insulin within one year of diagnosis of DM	Y or N	Baseline, at 3 and 6 months and 12 month
Obesity	BMI \geq 30	Y or N	Baseline
Dyslipidemia	Dyslipidemia will be defined as a LDL-C of ≥ 2.586 without further risk factors and ≥ 1.81 in patients with CVD or CKD or receipt of lipid lowering drug treatment	Y or N	Baseline
CHD	History of acute myocardial infarction or history of coronary revascularisation	Y or N	Baseline, at 3 and 6 months and 12 month
Heart failure	The diagnosis of heart failure will be obtained from participant admission records	Y or N	Baseline, at 3 and 6 months and 12 month
Hypertension	Hypertension will be defined as BP levels above 140 mmHg SBP or 90 mmHg DBP or the receipt of antihypertensive drugs	Y or N	Baseline, at 3 and 6 months and 12 month
CVD	History of a CVA or a TIA	Y or N	Baseline, at 3 and 6 months and 12 month
PVD	PVD will be defined as lower extremity peripheralartery disease or carotid artery stenosis diagnosed using duplex ultrasound scan or CT angiography.	Y or N	Baseline
Smoking	Smoking status.	Former or current or never	Baseline ,
Pulmonary	Chronic obstructive pulmonary disease or	Y or N	Baseline, at 3 and 6
disease	emphysema		months and 12 month
Other diseases	As documented in participant record.	Y or N	Baseline, at 3 and 6 months and 12 month

SES: Socioeconomic status; SEIFA: Socio-Economic Indexes for Areas; T1DM: Type 1 Diabetes Mellitus; DM: Diabetes Mellitus; T2DM: Type 2 Diabetes Mellitus; BMI: Body mass index; LDL-C: Low-density lipoprotein cholesterol; CVD: Cardiovascular disease; CKD : Chronic kidney disease; CHD: Coronary heart disease; SBP: Systolic blood pressure; DBP: Diastolic blood pressure; CVA: Cerebrovascular accident; TIA: Transient ischemic attack; PVD: Peripheral vascular disease.

Table 2. Primary cause of chronic kidney disease at referral

Primary kidney disease	Duration
DKD	Date of first diagnosis or if not available, duration prior to entering the CKD
	Registry
Glomerulonephritis	Date of first diagnosis or if not available, duration prior to entering the CKD
	Registry
Obstructive uropathy	Date of first diagnosis or if not available, duration prior to entering the CKD
	Registry
Hypertensive kidney	Date of first diagnosis or if not available, duration prior to entering the CKD
disease	Registry
ADPKD	Date of first diagnosis or if not available, duration prior to entering the CKD
	Registry
ANCA vasculitis	Date of first diagnosis or if not available, duration prior to entering the CKD
	Registry
Lupus nephritis	Date of first diagnosis or if not available, duration prior to entering the CKD
	Registry
Renovascular disease	Date of first diagnosis or if not available, duration prior to entering the CKD
	Registry
Reflux nephropathy	Date of first diagnosis or if not available, duration prior to entering the CKD
	Registry
Other	Date of first diagnosis or if not available, duration prior to entering the CKD
	Registry
Unknown	Date of first diagnosis or if not available, duration prior to entering the CKD
	Registry

The primary cause of chronic kidney disease will be based on the entry by the treating nephrologist. DKD: Diabetic kidney disease; ACR: Albumin to creatinine ratio; eGFR: Estimated glomerular filtration rate; ADPKD: Autosomal dominant polycystic Kidney disease; ANCA: Antineutrophil cytoplasmic antibodies.

 Table 3. Pathology results to be collected

0,		
Laboratory Parameter	Units of measurement	Collection interval
Urine albumin to creatinine ratio	mg/mmol or g/mol	Baseline, at 3 and 6 months and 12 monthly
Urine protein to creatinine ratio	mg/mmol or g/mol	Baseline, at 3 and 6 months and 12 monthly
24Hr urine protein excretion	mg/24hrs or g/24hrs	Baseline, at 3 and 6 months and 12 monthly

Urine dipstick	Negative or positive for protein	Baseline, at 3 and 6 months and 12
		monthly
Serum creatinine	micromol/L	Baseline, at 3 and 6 months and 12
		monthly
eGFR	mL/min/1.73m ²	Baseline, at 3 and 6 months and 12
		monthly
Serum albumin	g/L	Baseline, at 3 and 6 months and 12
	0	monthly
Hb	g/L	Baseline, at 3 and 6 months and 12
	0	monthly
Serum calcium	mmol/L	Baseline, at 3 and 6 months and 12
		monthly
Serum phosphate	mmol/I	Baseline at 3 and 6 months and 12
Seruit prospride		monthly
Sorum PTH	nmol/I	Baseline at 2 and 6 months and 12
Serunt i III	phot/E	baseline, at 5 and 6 months and 12
		montniy
HbA1C	% or mmol/mol	Baseline

Hb: Hemoglobin; PTH: Parathyroid hormone; HbA1C: Glycated haemoglobin.

Table 4. Parameters of pre-referral management

Parameter	Operational definition	Scale of measurement
Use of RAAS inhibitors	Use of ACE inhibitors or ARBs	Y or N. If yes, details about
		drug, dosage, duration
Glycemic control	Target HbA1c ≤ 53mmol/mol (7%)	Optimal vs suboptimal
		control
Use of vitamin D or calcium	Participants taking vitamin D or calcium	Y or N
supplements	supplements at the time of enrolment	
BP at initial visit (Systolic/diastolic)	BP recorded on first visit to the	Suboptimal vs optimal
	nephrology clinic with target < 130/80	control
	representing adequate control	
Body mass Index (BMI)	BMI at enrolment, with obesity defined as	$<30 \text{ or } \ge 30$
	BMI \geq 30	

RAAS: Renin angiotensin aldosterone system; ACE: Angiotensin converting enzyme; ARB: Angiotensin receptor blockers; HbA1C: Glycated hemoglobin; BP: Blood pressure; BMI: Body mass Index.

Table 5 Participant outcomes under nephrological care

00	57 58 59 60			
----	----------------------	--	--	--

2		
4	Hospitalisation records	Hospita
5	-	an adm
7 8		acute cl
9 10 11	LOS	Avorag
12 13 14	203	hospita
15 16 17 18	Progression to ESKD	Definec eGFR < comme
19 20 21	CVD events	CVD w
22 23 24 25		events o ischemi
26 27	Death	As ente
28	Achievement of blood	Target <
29 30	pressure control	0
31	Achievement of	Target <
32 33	glycemic control	
34 35	Pharmacy review	Review
36 37 38	Dietary education	Receive
39 40	AKI	Frequer
41 42	ICD: International Classification	ı of Disease
42 43 44	kidney injury.	
45 46	Table 6. Pharmacological inte	rvention a
47	Medication initiated	Operati
48 49 50 51	ESA therapy	Initiatic Hb is <
52 53	ACE-I or ARB	Initiatio
54 57	Other anti-hypertensive	Initiatio
55 56	medication	anti-hy
57	Calcium supplements	Calciun
58 59	Vitamin D supplements	Vitamir
60	Lipid lowering drugs	Lipid lo

spitalisation records	Hospitalisation will be defined as	Y or N	3, 6 months and 12
	an admission to hospital to receive	Number of hospitalisations,	monthly
	acute clinical care	Reason for hospitalisation	
		(ICD-Codes), associated	
		conditions (ICD-Codes)	
5	Average number of days spent in	Date of admission and date	3, 6 months and 12
	hospital	of discharge or number of	monthly
		days	
gression to ESKD	Defined as sustained reduction in	Y or N. If yes, the relevant	
	eGFR < 15ml/min or	date	
	commencement of KK1		
D events	CVD will be defined as a composite	Y or N. If yes, then the	3, 6 months and 12
	outcome of fatal and honratal	relevant date(s)	montnly
	ischemic stroke heart failure and		
	peripheral vascular disease		
ath	As entered in patient records	Y or N If yes date of death	
niovement of blood	Target < 120/80	V or N	2.6 months and 12
ssure control	Target < 150/60	I OI IN	monthly
nievement of	Target < 53mmol/mol (7%)	Y or N	3, 6 months and 12-
cemic control			monthly
rmacy review	Reviewed by pharmacist	Y or N. If yes, date of	
		review	
tary education	Received dietary counselling	Y or N. If yes, date of	
		review	
		V or N Single or multiple	

after referral

Medication initiated	Operational definition	Scale of meaasurement
ESA therapy	Initiation of ESA in participants whose	Y or N. If yes, date of initiation or titration
	Hb is < 100g/L	if available
ACE-I or ARB	Initiation of ACE-I or ARB	Y or N. If yes, date of initiation
Other anti-hypertensive	Initiation of Other	Y or N. If yes, date of initiation
medication	anti-hypertensive medication	
Calcium supplements	Calcium supplements	Y or N. If yes, date of initiation
Vitamin D supplements	Vitamin D supplements	Y or N. If yes, date of initiation
Lipid lowering drugs	Lipid lowering drugs	Y or N. If yes, date of initiation

Loop di	uretics	Loop diuretics	Y or N. If yes, date of initiation
ESA: Erytl	hropoiesis stimu	lating agent; SGLT2-I: Sodium-glucose co	-transporter-2 inhibitors; DPP4-I: Dipeptidyl-peptidase 4 inhibitors; ACE-
: Angioten	isin converting e	enzyme inhibitors; ARB: Angiotensin rece	ptor blockers.
3.1. L	Data analysis		
This	is an observa	tional study and a range of statisti	cal methods will be used to measure the association between
data	elements and	l outcomes. Firstly, descriptive sta	atistics and basic inferential statistics will be used to present
parti	cipant charac	teristics and explore basic patterns	of the data (e.g., describing referral patterns). If the variables
are c	ontinuous an	d normally distributed, means and	d t-tests will be used. For non-normally distributed (skewed)
conti	nuous data, r	nedians and equivalent non-paran	netric tests will be used. For categorical data, proportions and
chi-s	quared tests v	vill be used and reported.	
Seco	ndly, where a	ppropriate, multivariate analysis m	nethods will be used to account for measurable covariates, thus
bette	r capturing th	ne true effect size. Multiple regressi	on models (linear, multinomial, logistic and Cox proportional
haza	rds or comp	eting risks, where appropriate) v	vill be used to explore the association between participant
chara	acteristics and	l clinical outcomes adjusting for po	tential confounders based on previous literature and available
meas	ures as outlir	ned in Table 2 [49,50]. Variables wil	l be fitted as covariates in the regression models and variables
with	a p < .2 will b	e accepted for covariate interaction	n inclusion in the regression model.
The v	variables broa	adly categorized as follows will be	investigated as any of predictors, covariates or outcomes, as
appr	opriate to the	analyses:	
1.	Demographi	ic variables (age, residential addres	ss, gender, ethnicity, socioeconomic status).
2.	Lifestyle fac	tors (alcohol and tobacco use).	
3.	Past and cu	rrent medical history (cardiac, hy	vpertension, diabetes and type and level of kidney disease,
	pulmonary o	lisease, obesity).	
4.	Kidney dise	ase factors (Urine albumin/creatir	nine ratio, urine protein/creatinine ratio, 24-hr urine protein
	excretion, se	rum creatinine, eGFR, HbA1c, seru	ım phosphate, PTH, haemoglobin, serum albumin).
5.	Kidney disea	ase outcome variables (transplant,	KRT, Dialysis modality, death).
6.	Pre-referral	parameters (RAAS inhibitors, Lipic	l lowering drugs, vitamin D or Calcium supplements, Systolic
	BP, Diastolic	e BP, BMI, PTH, serum albumin, eC	GFR, serum calcium, serum phosphate, urine ACR, urine PCR,
	24hr protein	excretion, urine dipstick, Hb).	
Resu	lts will be rep	orted with the level of significance	at alpha .05 and accompanied by 95% confidence intervals (95%
CI). N	Missing data a	and outliers will be reported but w	ill be excluded from analysis. Outliers will be identified by the
use o	f boxplots in	STATA [®] . These outliers will be con	firmed based on the established procedures from Hoaglin and
Iglew	vicz [51].		
4.0. C	Conclusion		
The p clinic	prevalence of cal practice ar	CKD is a burgeoning world-wide ad policy by:	issue. The findings from this study are intended to inform
•	Describing t	he patterns and predicting factors o	of CKD progression and other end points and the impact of the
	KFRE on the	CKD.QLD examined cohort.	
•	Correlating	the time interval between referral	and initiation of KRT or development of CV events to inform
			-

- Determining the optimal risk stratification strategy which will accurately predict risk of progression to ESKD.
- Reviewing referral strategies, guidelines, and QLD health service delivery recommendations to improve the health outcomes of CKD and maximize efficiency of its management within the health care system.

Ultimately, the study findings are intended to provide CKD health care providers with a robust decision making tool. This will enable targeted care initiatives to ensure that individuals at high risk of progressing to ESKD are identified early and given an opportunity to benefit from specialized nephrology care.

Author affiliations

¹Renal Unit, Bundaberg Hospital, Wide Bay Hospital and Health Service, Bundaberg 4670, Australia

²Rural Clinical School, Faculty of Medicine, The University of Queensland, Brisbane 4072 Australia; m.mcgrail@uq.edu.au (M.M.); uqskonda@uq.edu.au (S.K.)

³Research Education, Development and Support, Wide Bay Hospital and Health Service, Hervey Bay 4655, Australia; angela.ratsch@health.qld.gov.au

⁴School of Nursing, Midwifery and Social Work, The University of Queensland, Brisbane 4072, Australia

⁵Renal Services, West Moreton Hospital and Health Service, Ipswich 4305, Australia; sree.venuthurupalli@health.qld.gov.au

Acknowledgments: We would like to thank the CKD.QLD Registry for granting us the approval of access to CKD.QLD Registry Patient Data. We would also like to acknowledge the 'in-kind' support provided by Wide Bay Hospital and Health Service to the researchers and for relevant resources including computers, telephone, and office space for the duration of this project. This study was partly supported by the Australian Government Department of Health under the Rural Health Multidisciplinary Training Program.

Author Contributions: Conceptualization, C.M., S.K.C., S.K.V. and A.R.; methodology, C.M., S.K.C., A.R., S.K.V. and M.M.;
 writing—original draft preparation, C.M., S.K.C., A.R.; writing—review and editing, A.R., S.K.C., M.M., S.K.V. All authors have
 read and agreed to the published version of the manuscript.

Funding: The APC was partially funded by Otsuka Australia.

Institutional Review Board Statement: The study was conducted according to the guidelines of the Declaration of Helsinki, and approved by the Ethics Committee of the Royal Brisbane and Women's Hospital (LNR/2020/QRBW/69707 14/01/2021)

Informed Consent Statement: The HREC waived the requirement for patient consent as all patient's had consented for the use of their data for the purpose of research on recruitment into CKD.QLD Registry.

Competing interests: The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Provenance and peer review: Not commissioned; externally peer reviewed.

References

1. Gomez, G.B.; de Lusignan, S.; Gallagher, H. Chronic kidney disease: A new priority for primary care. Br J Gen Pract. 2006,

908-910.

2. Kamath, C.C.; Dobler, C.C.; Lampman, M.A.; Erwin, P.J.; Matulis, J.; Elrashidi, M.; McCoy, R.G.; Alsawaz, M.; Pajouhi, A.;

Vasdev, A., et al. Implementation strategies for interventions to improve the management of chronic kidney disease

- (CKD) by primary care clinicians: Protocol for a systematic review. BMJ Open. 2019, 9, 1-6.
- 3. Black, C.; Sharma, P.; Scotland, G.; McCullough, K.; McGurn, D.; Robertson, L.; Fluck, N.; MacLeod, A.; McNamee, P.;
 - Prescott, G., et al. Early referral strategies for management of people with markers of renal disease: A systematic review of

the evidence of clinical effectiveness, cost-effectiveness and economic analysis. Health Technol Assess. 2010, 14, 1-184.

Page 13 of 17

1		
2 3		
4 5	4.	Hallan, S.I.; Dahl, K.; Oien, C.M.; Grootendorst, D.C.; Aasberg, A.; Holmen, J.; Dekker, F.W. Screening strategies for
6 7		chronic kidney disease in the general population: Follow-up of cross sectional health survey. BMJ. 2006, 333, 1047.
8 9	5.	Akbari, A.; Grimshaw, J.; Stacey, D.; Hogg, W.; Ramsay, T.; Cheng-Fitzpatrick, M.; Magner, P.; Bell, R.; Karpinski, J.
10 11		Change in appropriate referrals to nephrologists after the introduction of automatic reporting of the estimated glomerular
12 13		filtration rate. CMAJ. 2012, 184, E269-276.
14 15	6.	Chan, M.R.; Dall, A.T.; Fletcher, K.E.; Lu, N.; Trivedi, H. Outcomes in patients with chronic kidney disease referred late to
16 17		nephrologists: A meta-analysis. Am J Med. 2007, 120, 1063-1070.
18 19	7.	Xie, Y.; Bowe, B.; Mokdad, A.H.; Xian, H.; Yan, Y.; Li, T.; Maddukuri, G.; Tsai, CY.; Floyd, T.; Al-Aly, Z. Analysis of the
20 21		Global Burden of Disease study highlights the global, regional, and national trends of chronic kidney disease
22 23		epidemiology from 1990 to 2016. <i>Kidney Int.</i> 2018, 94, 567-581.
24 25 26	8.	Martínez-Castelao, A.; Soler, M.J.; Górriz Teruel, J.L.; Navarro-González, J.F.; Fernandez-Fernandez, B.; de Alvaro
20 27 28		Moreno, F.; Ortiz, A. Optimizing the timing of nephrology referral for patients with diabetic kidney disease. Clin Kidney J.
20 29 20		2020, 14, 5-8.
31 32	9.	Go, A.S.; Yang, J.; Tan, T.C.; Cabrera, C.S.; Stefansson, B.V.; Greasley, P.J.; Ordonez, J.D. Contemporary rates and
33 34		predictors of fast progression of chronic kidney disease in adults with and without diabetes mellitus. BMC Nephrol. 2018,
35 36		19, 1-13.
37 38	10.	Australian and New Zealand Society of Nephrology. Report of the Workforce Review Committee of the Australian and
39 40		New Zealand Society of Nephrology. Available online: <u>https://www.nephrology.edu.au/workforce-report.asp</u> (accessed
41 42		on 8 March, 2021).
43 44	11.	Australian Institute of Health and Welfare. Chronic kidney disease. Available online:
45 46		https://www.aihw.gov.au/reports/chronic-kidney-disease/chronic-kidney-disease (accessed on 7 March, 2021).
47 48	12.	Amos, L.; Toussaint, N.; Phoon, R.; Elias, T.; Levidiotis, V.; Campbell, S.; Walker, A.; Harrex, C. Increase in nephrology
49 50		advanced trainee numbers in A ustralia and associated reduction in clinical exposure over the past decade. Internal
51 52		<i>medicine journal.</i> 2013 , 43, 287-293.
53 54	13.	Wright, J.; Glenister, K.M.; Thwaites, R.; Terry, D. The importance of adequate referrals for chronic kidney disease
55 56		management in a regional Australian area of nephrologist workforce shortage. Aust J Gen Pract. 2018, 47, 58-62.
57 58	14.	Tangri, N.; Stevens, L.A.; Griffith, J.; Tighiouart, H.; Djurdjev, O.; Naimark, D.; Levin, A.; Levey, A.S. A predictive model
59 60		for progression of chronic kidney disease to kidney failure. JAMA. 2011, 305, 1553-1559.

2 3		
4 5	15.	Major, R.W.; Shepherd, D.; Medcalf, J.F.; Xu, G.; Gray, L.J.; Brunskill, N.J. The Kidney Failure Risk Equation for prediction
6 7		of end stage renal disease in UK primary care: An external validation and clinical impact projection cohort study. PLoS
8 9		<i>Med.</i> 2019 , <i>16</i> , e1002955.
10 11	16.	Whitlock, R.H.; Chartier, M.; Komenda, P.; Hingwala, J.; Rigatto, C.; Walld, R.; Dart, A.; Tangri, N. Validation of the
12 13		Kidney Failure Risk Equation in Manitoba. Can J Kidney Health Dis. 2017, 4, 1-9.
14 15	17.	Hemmelgarn, B.R.; Zhang, J.; Manns, B.J.; James, M.T.; Quinn, R.R.; Ravani, P.; Klarenbach, S.W.; Culleton, B.F.; Krause,
16 17 18		R.; Thorlacius, L. Nephrology visits and health care resource use before and after reporting estimated glomerular filtration
19		rate. JAMA. 2010, 303, 1151-1158.
20 21	18.	Bikbov, B.; Purcell, C.A.; Levey, A.S.; Smith, M.; Abdoli, A.; Abebe, M.; Adebayo, O.M.; Afarideh, M.; Agarwal, S.K.;
22 23		Agudelo-Botero, M. Global, regional, and national burden of chronic kidney disease, 1990–2017: A systematic analysis for
24 25		the Global Burden of Disease Study 2017. The Lancet. 2020, 395, 709-733.
26 27	19.	Foreman, K.J.; Marquez, N.; Dolgert, A.; Fukutaki, K.; Fullman, N.; McGaughey, M.; Pletcher, M.A.; Smith, A.E.; Tang, K.;
28 29		Yuan, CW. Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 causes of
30 31		death: Reference and alternative scenarios for 2016–40 for 195 countries and territories. The Lancet. 2018, 392, 2052-2090.
32 33	20.	Ojo, A. Addressing the global burden of chronic kidney disease through clinical and translational research. <i>Trans Am Clin</i>
34 35		Climatol Assoc. 2014, 125, 229-246.
36 37	21.	Australian Institute of Health Welfare. Geographical variation in chronic kidney disease. Available online:
38 39		https://www.aihw.gov.au/reports/chronic-kidney-disease/geographical-variation-ckd (accessed on 8 March, 2021).
40 41	22.	Wouters, O.I.; O'donoghue, D.I.; Ritchie, I.; Kanavos, P.G.; Narva, A.S. Early chronic kidney disease: Diagnosis,
42 43		management and models of care Nat Rev Newbrol 2015 11 491-502
44 45	22	Strange K.T. Eischen M.L. Kerfmen I.C. O'Here A.M. Sehn M.M. Preseries M.M. Here 7. Heres D.M. Predicherie
46 47	23.	Stroupe, K.1.; Fischer, M.J.; Kaufman, J.S.; O Hare, A.M.; Sohn, M.W.; Browning, M.M.; Huo, Z.; Hynes, D.M. Fredraysis
48		nephrology care and costs in elderly patients initiating dialysis. <i>Med Care</i> . 2011 , 49, 248-256.
49 50	24.	Levin, A.; Stevens, P.E.; Bilous, R.W.; Coresh, J.; De Francisco, A.L.; De Jong, P.E.; Griffith, K.E.; Hemmelgarn, B.R.; Iseki,
51 52		K.; Lamb, E.J. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 clinical practice
53 54		guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl. 2013, 3, 1-150.
55 56	25.	Li, P.K.T.; Garcia-Garcia, G.; Lui, S.F.; Andreoli, S.; Fung, W.W.S.; Hradsky, A.; Kumaraswami, L.; Liakopoulos, V.;
57 58		Rakhimova, Z.; Saadi, G., et al. Kidney Health for Everyone Everywhere: From Prevention to Detection and Equitable
59 60		Access to Care. Blood Purif. 2021, 50, 1-8.

3		
4 5	26.	Ryz, K.; Tangri, N.; Verrelli, M.; Schneider, J.; Lesyk, A.; Eng, A.; Hiebert, B.; Whitlock, R.H.; Sood, M.M.; Rigatto, C. A
6 7		before and after cross-sectional analysis of a public health campaign to increase kidney health awareness in a Canadian
8 9		province. BMC Res Notes. 2015, 8, 1-6.
10 11	27.	Kaushal, A.; Naimark, D.; Tangri, N. Use of the kidney failure risk equation to reduce uncertainty in predicting time to
12 13		ESRD. Am J Kidney Dis. 2015, 65, 369-371.
14 15	28.	Gill, T.M.; Gahbauer, E.A.; Han, L.; Allore, H.G. Trajectories of disability in the last year of life. N Engl J Med. 2010, 362,
16 17		1173-1180.
18 19	29.	Lunney, J.R.; Lynn, J.; Foley, D.J.; Lipson, S.; Guralnik, J.M. Patterns of functional decline at the end of life. JAMA. 2003,
20 21		289, 2387-2392.
22 23	30.	Mitch, W.E.; Walser, M.; Buffington, G.A.; Lemann, J., Jr. A simple method of estimating progression of chronic renal
24 25		failure. Lancet. 1976, 2, 1326-1328.
26 27	31.	Inker, L.A.; Heerspink, H.J.; Tighiouart, H.; Levey, A.S.; Coresh, J.; Gansevoort, R.T.; Simon, A.L.; Ying, J.; Beck, G.J.;
28 29		Wanner, C. GFR slope as a surrogate end point for kidney disease progression in clinical trials: A meta-analysis of
30 31		treatment effects of randomized controlled trials. J Am Soc Nephrol. 2019, 30, 1735-1745.
32 33	32.	Naimark, D.M.; Grams, M.E.; Matsushita, K.; Black, C.; Drion, I.; Fox, C.S.; Inker, L.A.; Ishani, A.; Jee, S.H.; Kitamura, A.,
34 35 26		et al. Past Decline Versus Current eGFR and Subsequent Mortality Risk. J Am Soc Nephrol. 2016, 27, 2456-2466.
36 37 38	33.	Levey, A.S.; Inker, L.A.; Matsushita, K.; Greene, T.; Willis, K.; Lewis, E.; De Zeeuw, D.; Cheung, A.K.; Coresh, J. GFR
38 39		decline as an end point for clinical trials in CKD: A scientific workshop sponsored by the National Kidney Foundation and
40 41 42		the US Food and Drug Administration. <i>Am J Kidney Dis.</i> 2014 , 64, 821-835.
42 43	34.	Kovesdy, C.P.; Coresh, J.; Ballew, S.H.; Woodward, M.; Levin, A.; Naimark, D.M.; Nally, J.; Rothenbacher, D.; Stengel, B.;
45 46		Iseki, K. Past decline versus current eGFR and subsequent ESRD risk. J Am Soc Neprol. 2016, 27, 2447-2455.
47 48	35.	Perkins, R.M.; Bucaloiu, I.D.; Kirchner, H.L.; Ashouian, N.; Hartle, J.E.; Yahya, T. GFR decline and mortality risk among
49 50		patients with chronic kidney disease. Clin J Am Soc Nephrol. 2011, 6, 1879-1886.
51 52	36.	Al-Aly, Z.; Zeringue, A.; Fu, J.; Rauchman, M.I.; McDonald, J.R.; El-Achkar, T.M.; Balasubramanian, S.; Nurutdinova, D.;
53 54		Xian, H.; Stroupe, K., et al. Rate of kidney function decline associates with mortality. J Am Soc Nephrol. 2010, 21, 1961-1969.
55 56	37.	Coresh, J.; Turin, T.C.; Matsushita, K.; Sang, Y.; Ballew, S.H.; Appel, L.J.; Arima, H.; Chadban, S.J.; Cirillo, M.; Djurdjev, O.
57 58		Decline in estimated glomerular filtration rate and subsequent risk of end-stage renal disease and mortality. JAMA. 2014,
59 60		311, 2518-2531.

3		
4 5	38.	Orlandi, P.F.; Xie, D.; Yang, W.; Cohen, J.B.; Deo, R.; Ricardo, A.C.; Schrauben, S.; Wang, X.; Hamm, L.L.; He, J. Slope of
6 7		Kidney Function and Its Association with Longitudinal Mortality and Cardiovascular Disease among Individuals with
8 9		CKD. J Am Soc Nephrol. 2020, 2912-2923.
10 11	39.	Lerner, B.; Desrochers, S.; Tangri, N. Risk prediction models in CKD. In Proceedings of Semin Nephrol; pp. 144-150.
12 13	40.	Hingwala, J.; Wojciechowski, P.; Hiebert, B.; Bueti, J.; Rigatto, C.; Komenda, P.; Tangri, N. Risk-based triage for
14 15 16		nephrology referrals using the kidney failure risk equation. Can J Kidney Health Dis. 2017, 4, 2054358117722782.
10 17 19	41.	Tangri, N.; Kitsios, G.D.; Inker, L.A.; Griffith, J.; Naimark, D.M.; Walker, S.; Rigatto, C.; Uhlig, K.; Kent, D.M.; Levey, A.S.
10 19 20		Risk prediction models for patients with chronic kidney disease: A systematic review. Ann Intern Med. 2013, 158, 596-603.
20 21 22	42.	Tangri, N.; Grams, M.E.; Levey, A.S.; Coresh, J.; Appel, L.J.; Astor, B.C.; Chodick, G.; Collins, A.J.; Djurdjev, O.; Elley, C.R.
22 23 24		Multinational assessment of accuracy of equations for predicting risk of kidney failure: a meta-analysis. JAMA. 2016, 315,
25 26		164-174.
27 28	43.	Ramspek, C.L.; Evans, M.; Wanner, C.; Drechsler, C.; Chesnaye, N.C.; Szymczak, M.; Krajewska, M.; Torino, C.; Porto, G.;
29 30		Hayward, S., et al. Kidney Failure Prediction Models: A Comprehensive External Validation Study in Patients with
31 32		Advanced CKD. J Am Soc Nephrol (2021).
33 34	44.	Naranjo, F.S.; Sang, Y.; Ballew, S.H.; Stempniewicz, N.; Dunning, S.C.; Levey, A.S.; Coresh, J.; Grams, M.E. Estimating
35 36		kidney failure risk using electronic medical records. <i>Kidney360</i> . 2021 , <i>2</i> , 415-424.
37 38	45.	Tangri, N.; Stevens, L.A.; Griffith, J.; Tighiouart, H.; Djurdjev, O.; Naimark, D.; Levin, A.; Levey, A.S. A predictive model
39 40		for progression of chronic kidney disease to kidney failure. JAMA. 2011, 305, 1553-1559.
41 42	46.	McCudden, C.; Akbari, A.; White, C.A.; Biyani, M.; Hiremath, S.; Brown, P.A.; Tangri, N.; Brimble, S.; Knoll, G.; Blake,
43 44		P.G., et al. Individual patient variability with the application of the kidney failure risk equation in advanced chronic
45 46		kidney disease. PLoS One. 2018, 13(6), e0198456.
47 48	47.	Grams, M.E.; Coresh, J. Predicting Risk of RRT in Patients with CKD. Clin J Am Soc Nephrol. 2017, 12, 3-4.
49 50	48.	Venuthurupalli, S.K.; Hoy, W.E.; Healy, H.G.; Cameron, A.; Fassett, R.G. CKD.QLD: Establishment of a chronic kidney
51 52		disease [CKD] registry in Queensland, Australia. BMC Nephrol. 2017, 18, 1-10.
53 54	49.	Reichel, H.; Zee, J.; Tu, C.; Young, E.; Pisoni, R.L.; Stengel, B.; Duttlinger, J.; Lonnemann, G.; Robinson, B.M.; Pecoits-Filho,
55 56 57		R. Chronic kidney disease progression and mortality risk profiles in Germany: Results from the Chronic Kidney Disease
57 58 59		Outcomes and Practice Patterns Study. Nephrol Dial Transplant. 2020, 35, 803-810.
60	50.	Evans, M.; Grams, M.E.; Sang, Y.; Astor, B.C.; Blankestijn, P.J.; Brunskill, N.J.; Collins, J.F.; Kalra, P.A.; Kovesdy, C.P.;
		Levin, A. Risk factors for prognosis in patients with severely decreased GFR. Kidney Int Rep. 2018, 3, 625-637.

2 3		
4 5	51.	Hoaglin, D.C.; Iglewicz, B. Fine-tuning some resistant rules for outlier labeling. J Am Stat Assoc. 1987, 82, 1147-1149.
6		
7 8		
9 10		
11		
12 13		
14 15		
16		
17 18		
19 20		
21		
22		
24 25		
26 27		
28		
29 30		
31 32		
33 34		
35		
30 37		
38 39		
40 41		
42		
43 44		
45 46		
47 48		
49		
50 51		
52 53		
54 55		
56		
57 58		
59 60		

BMJ Open

BMJ Open

Referral patterns, disease progression and impact of the Kidney Failure Risk Equation (KFRE) in a Queensland chronic kidney disease Registry (CKD.QLD) cohort: a study protocol

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-052790.R1
Article Type:	Protocol
Date Submitted by the Author:	09-Nov-2021
Complete List of Authors:	Mutatiri, Clyson; The University of Queensland Faculty of Medicine, Renal Medicine Ratsch, Angela; Wide Bay Hospital and Health Service McGrail, Matthew R.; The University of Queensland Faculty of Medicine Venuthurupalli, Sree ; West Moreton Hospital and Health Service, Medicine KondalsamyChennakesavan, Srinivas; The University of Queensland, Discipline of Medicine
Primary Subject Heading :	Renal medicine
Secondary Subject Heading:	Cardiovascular medicine, Diabetes and endocrinology
Keywords:	Dialysis < NEPHROLOGY, End stage renal failure < NEPHROLOGY, Chronic renal failure < NEPHROLOGY
	·

SCHOLARONE[™] Manuscripts

Referral patterns, disease progression and impact of the Kidney Failure Risk Equation (KFRE) in a Queensland chronic kidney disease Registry (CKD.QLD) cohort: a study protocol

Clyson Mutatiri^{1*}, Angela Ratsch², Matthew McGrail³, Sree Krishna Venuthurupalli⁴, and Srinivas Kondalsamy Chennakesavan⁵

¹Renal Unit, Bundaberg Base Hospital, Wide Bay Hospital and Health Service, 271 Bourbong St, Bundaberg Central QLD 4670,

Australia; Email: clyson.mutatiri@health.qld.gov.au, Ph: +61 7 41502222, Fax: +61 41502449

²Wide Bay Hospital and Health Service, Hervey Bay, Australia

³The University of Queensland, Rural Clinical School, Rockhampton, Australia

⁴The University of Queensland, Faculty of Medicine, Brisbane, Australia

⁵The University of Queensland Rural Clinical School, Toowoomba, Australia

*Corresponding Author

Keywords: chronic kidney disease; referral pattern; chronic kidney disease progression; eGFR slope; kidney failure risk equation Word count: 4253

ABSTRACT:

Introduction: Chronic kidney disease (CKD) is a rapidly increasing and global phenomenon which carries high morbidity and mortality. Although timely referral from primary care to secondary care confers favourable outcomes, it is not possible for every patient with CKD to be managed at secondary care. With 1 in 10 Australians currently living with markers of CKD against a workforce of about 600 nephrology specialists, a risk stratification strategy is required that will reliably identify individuals whose kidney disease is likely to progress.

Methods and Analysis: This study will undertake a retrospective secondary analysis of the Chronic Kidney Disease Queensland Registry (CKD.QLD) data of consented adults to examine the referral patterns to specialist nephrology services from primary care providers and map the patient trajectory and outcomes to inform the optimal referral timing for disease mitigation. Patient data over a 5-year period will be examined to determine the impact of the kidney failure risk equation (KFRE)-based risk stratification on the referral patterns, disease progression and patient outcomes. The results will inform considerations of a risk stratification strategy that will ensure adequate pre-dialysis management and add to the discussion of the time interval between referral and initiation of kidney replacement therapy or development of cardiovascular events.

Ethics and dissemination: This protocol was approved by the Ethics Committee of the Royal Brisbane and Women's Hospital in January 2021 (LNR/2020/QRBW/69707 14/01/2021). The HREC waived the requirement for patient consent as all patients had consented for the use of their data for the purpose of research on recruitment into CKD.QLD Registry. The results will be presented as a component of a PhD study with The University of Queensland. It is anticipated that the results will be presented at health-related conferences (local, national and possibly international) and via publication in peer-reviewed academic journals.

Strength of this study

• The major strength of the current study is the large sample size, derived from one of the largest CKD surveillance cohorts in the world, with longer follow-up, which provides opportunities to study the journey of CKD patients under nephrology care and assess several important clinical outcomes and their predictors, including morbidity, mortality and KRT, and potentially of comprehensive hospitalisations and health service consumption.

Limitations of this study

- Both intertest and interlaboratory variability of serum creatinine values may mean that the index eGFR at first clinic visit might not necessarily represent baseline kidney function.
- The outcome of initiation of KRT as an endpoint excludes those participants who progressed to ESKD but opted to be managed conservatively, which can potentially underestimate the incidence of ESKD in this cohort.
- The participants in the CKD.QLD registry represent a fraction of individuals with CKD in QLD as the registry data represents 60% to 70% of the estimated target population and is limited to individuals with CKD referred to renal services in the public hospital system.
- Given the retrospective and observational nature of the study, it will also be limited by potential confounding, information and selection bias.

1. Introduction

Most individuals with chronic kidney disease (CKD) can be safely managed in primary care . A successful model of primary care should incorporate early detection of the disease through proactive screening of high-risk individuals, together with timely specialist referral of individuals who are at high risk of progressing to end-stage kidney disease (ESKD) [1]. Nevertheless, whilst the literature suggests that early referral confers favourable outcomes at both individual and system level[2], the benefits can be eroded by the negative impact of high rates of premature referrals on the health care system [3-5].

Optimal timing for referral of individuals with CKD from primary care to specialist nephrology services has been the subject of debate for several decades and there continues to be a lack of consensus on what constitutes a late (or early) referral. This ambiguity impacts the timing of referral to achieve optimum patient outcomes, which continues to pose an ongoing challenge for patients, policymakers and service providers.

The increase in the burden of diabetes and hypertension, considered as the two leading drivers of CKD [6] has led to an increase in individuals diagnosed with CKD in primary care, which in turn has translated into a surge in referrals to specialist nephrology services [7]. Notably, a significant proportion of these are related to individuals who are at low risk of progressing to ESKD or developing cardiovascular (CV) events [8]. Compounding the volume rise is the dearth in nephrology specialists in Australia, creating a mismatch between service demand and service providers. A workforce review committee of the Australian and New Zealand Society of Nephrology (ANZSN) identified 598 practicing nephrologists in Australia in 2017 [9]. Currently there are approximately 1.7 million Australians aged > 18 years with clinical evidence of CKD; specialist referral of all patients with CKD would see an average of > 2800 patients per nephrologist [10]. Although the number of Australian nephrology trainees has been expanding at a faster pace in recent years[11], the shortage of nephrologists persists outside metropolitan areas in regional, rural and remote areas [9]. This maldistribution of nephrology workforce is compounded by a higher prevalence of CKD and other chronic conditions in rural and remote areas, where a larger proportion of Aboriginal and Torres Strait Islander peoples reside [12].

With mounting referrals comes service overload, leading to long wait times and inefficient utilisation of the available nephrologist's time for higher need patients. Moreover, the absense of a precise and easily accessible guide to optimal referral timing escalates the risk that individuals could remain in primary care for too long, resulting in unwanted outcomes for both the affected individual and the health care system. To mitigate this situation arising, substantial work has been invested in the development of risk stratification strategies that predict the risk of progression to ESKD as well as CV events, and therefore the likely need for (more urgent) referral to nephrology services. One such prediction strategy is the kidney failure risk equation (KFRE) which was developed in 2011 to quantify the risk of progression to ESKD [13]. Despite its validation in North America and Europe [14,15], the KFRE has not yet been widely adopted in Australian clinical practice.

In this project we will conduct a retrospective analysis of an existing Registry, examining participant data and outcomes from the time of the participant's enrolment into the Registry up to and including the end of the 5th year of their follow-up after enrolment. Referral patterns and disease progression will be described, and the KFRE-based risk stratification tool will be evaluated against the clinical outcomes.

1.1. Chronic Kidney Disease: Epidemiology

The prevalence of diagnosed CKD has increased worldwide since the adoption of the Kidney Disease Outcomes Quality Initiative (KDOQI) classification for CKD, and the implementation of automated reporting of creatininebased estimated glomerular filtration rate (eGFR) by many laboratories [16]. Currently, there are nearly 700 million people living with diagnosed CKD across the world, representing a global prevalence of 9·1% and it is estimated that by 2040, CKD will catapult from its current ranking of twelfth to fifth as the leading cause of mortality around the world [17]. In Australia, population studies have estimated that every year, at least 16,000 Australian adults will be added to the over 1.7 million Australian adults (1 in 10) currently living with biomedical markers of CKD such as a reduced eGFR or protein in their urine .

Given this rise, CKD poses a major challenge to all world health care systems and has motivated investments in research and the development of potential strategies to delay or slow progression [18]. Previous reports by the Australian Institute of Health and Welfare (AIHW) have highlighted that the impact of CKD is not distributed evenly across the population (identifying "CKD Hot Spots"), with people living in remote areas experiencing substantially higher rates than those living in urban areas.

1.2. Chronic Kidney Disease: Identification

The timely involvement of specialist nephrology services has been shown to improve health outcomes after commencement of kidney replacement therapy (KRT) and can also reduce overall costs of caring for individuals with CKD [19-21]. In a systematic review of clinical and cost effectiveness modelling for management of individuals with CKD, the data suggested that early referral strategies may have the potential to offer an efficient use of resources [2]. Public health campaigns have therefore focussed on early detection of CKD in high risk individuals and also on strategies to reduce the rates of late referrals to nephrology services [22,23]. Nevertheless, determination of the optimal timing of referral to specialist care is complicated by several factors including: the heterogeneity of CKD, the recognised imprecision of estimates of progression based on eGFR trajectories, and the non-linear nature of eGFR decline due to intercurrent events such as acute kidney injury (AKI) or CV events [20,24].

Knowledge of the trajectory of any disease can form the basis of clinical decision-making by shaping the goals of care and anticipating when interventions might be required [25,26]. The role of kidney disease trajectories was initially used in clinical practice to predict CKD progression by plotting the reciprocal of serial serum creatinine

concentration measurements against time [27]. Lately, acknowledgement of the substantial heterogeneity of kidney disease trajectories has prompted studies to examine the clinical implications of eGFR slopes and their links with subsequent outcomes, and whether past decline in eGFR adds information to the assessment of individuals with kidney disease beyond eGFR at a single time point [28-30]. In an international meta-analysis of 22 diverse cohorts consisting of more than a million participants, lower levels of eGFR and a higher decline in eGFR (described as an eGFR slope of <-5 ml/min per 1.73 m² per year) were both found to demonstrate a significant and independent association with higher subsequent risk of ESKD in the CKD cohorts[31]. A less than average negative eGFR slope and a positive eGFR slope have previously been found to be associated with increased risks of death and CV events by some investigators [29,32-34], while a more recent study found no associated risks with eGFR rise or less than average decline in eGFR slopes, suggesting that an improving eGFR might not be associated with adverse outcomes

1.3. Chronic Kidney Disease: Prediction and referral

Risk prediction models of progression of CKD have been developed to aid treatment decisions and prognostication in clinical practice, hence informing the decision on when to refer from primary care, and on when to refer for access planning in preparation for KRT or transplantation [35]. With the use of such models, most individuals with lower risk CKD (e.g., Stage G3) can potentially be treated solely by their primary care provider, whereas those at high risk of progression to ESKD should be referred for specialized care by nephrology services .

Many different risk prediction equations have been developed and a few of them, including the KFRE , have been validated in different CKD cohorts [13,36]. The accuracy of these equations for predicting risk of kidney failure was evaluated by Tangri et al. in a meta-analysis involving thirty-one cohorts, including 721,357 participants with CKD stages G3 to G5 in more than 30 countries spanning 4 continents. From the meta-analysis, three ESKD prediction equations were derived and assessed, based on 4, 6, or 8 variables and the performance of the 4-variable KFRE was found to be similar to that of the other 2 equations [37]. In another study which undertook external validation of 11 existing models of kidney failure, the 4- and 8-variable 2-year KFREs were found to be most suitable for short-term prediction of risk of kidney failure. However, for prediction of kidney failure over a longer time frame, the 5-year KFRE overestimated the actual risk of KRT by 10 - 18% due to the competing risk of death [38]. Furthermore, the application of the KFRE was explored more recently by Naranjo et al. Using electronic medical records to estimate the risk of kidney failure, the 4-variable KFRE (with albuminuria) resulted in consistent improvement in risk discrimination when compared to the three-variable KFRE (without albuminuria), even when albumin-creatinine ratio (ACR) was imputed from protein-creatinine ratio (PCR) or urine dipstick protein measurements [39]. These findings were consistent with previous studies that have concluded that ascertainment of albuminuria is central to ESKD prognosis [37,40].

The 4-variable KFRE can be easily implemented in electronic medical records and laboratory information systems and has therefore been recommended as the model for implementation into clinical practice [37]. In its simplest and most common application, the 4-variable KFRE requires the input of age, gender, Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) creatinine-based eGFR and urine ACR [41]. In addition to its use for predicting referral from primary care to nephrology services, the KFRE may also be used to improve timing of referral for permanent vascular access creation and kidney transplantation [42].

An examination of data collected at state level and analysed against the KFRE could assist in identifying or mapping the distribution of state-wide CKD and assessing the usefulness of the tool to support health service planning at the state and local level.

1.4. Data source - CKD.QLD Registry

The Chronic Kidney Disease in Queensland (CKD.QLD) Registry is a collaborative of most public sector nephrology practices in Queensland Australia. The main objective of the Registry is to profile all consenting participants with CKD, laying a foundation for CKD surveillance, practice improvement and research. The CKD.QLD data collection methods have been described by Venuthurapalli et. al, briefly however, the Registry was designed to use a data linkage framework which centralizes data captured by multiple mechanisms to an individual participant via a unique identifier [43]. Patients already on kidney replacement therapy and those with acute kidney injury (AKI) are excluded unless they subsequently developed and met the diagnostic criteria for CKD. After commencing in May 2011, recruitment of new participants to the Registry was discontinued in May 2019, on the advice of the CKD.QLD surveillance stream due to funding constraints. However, participating sites who wished to continue enrolling new participants could do so if they had a special reason to. Sites that ceased enrolment could still take up recruitment again, with governance and ethics approvals refreshed, if they later chose to do so, but analyses would be their own responsibilities. Some sites chose to continue, as they found the registry functions useful as an audit tool.

2. Methods and Design

This is a retrospective study which will undertake a secondary analysis of CKD.QLD Registry data. The aims and hypotheses of this study are:

Aims

- 1) To describe the referral patterns of participants in the CKD.QLD database with regard to the timing and appropriateness of referral and the associated impact on outcomes.
- 2) To study the progression of CKD in a subpopulation of participants followed up in specialist nephrology clinics. This includes comparing the association of pre-referral eGFR slope with subsequent adverse outcomes between early referrals and late referrals and examining the consistency of these associations across subgroups.
- 3) To evaluate the application of the KFRE and its impact on referral patterns.

Hypotheses

- 1) For participants with CKD, timely referral to specialist care will be associated with slowing down of progression to ESKD, improvement in CV outcomes and efficient utilisation of resources.
- 2) For participants under the care of nephrology services, past eGFR slope and albuminuria category are associated with the rate of progression of CKD and subsequent clinical outcomes.
- 3) For participants with CKD, the KFRE will significantly increase identification of those who are at risk of progressing to ESKD, who would benefit from timely referral to specialist nephrology services.

2.1 Sampling framework and study participants

Overall, the Registry includes approximately 7,600 participants \geq 18 years who were enrolled between 1st January 2011 and 31st December 2018. The participants were drawn from patients attending public kidney clinics in QLD Health facilities, thus the registry contains a mix of prevalent and incident patients. All such participants will contribute to completing Aim 1, whilst Aim 2 limits participants to those who were enrolled in the CKD.QLD

Арр	proval to access the CKD.QLD data is under the participant's original consent to share their data for research
and	access to hospital record(s) has been granted under a waiver of consent by the Royal Brisbane and Women'
Hos	pital Human Research Ethics Committee (LNR/2020/QRBW/69707 14/01/2021).
2.3.	Research Outcomes
The	re are a number of outcomes of interest to this study's aims and these are defined below:
2.21	. Referral patterns
•	Prevalence of late referrals by eGFR.
•	Describe outcomes associated with late referral.
•	Proportion of participants who progressed to KRT at 3, 6 and 12 months.
•	Proportion of participants who commenced KRT with a temporary vascular access.
•	Incident KRT modality (Haemodialysis vs Peritoneal Dialysis vs Pre-emptive transplantation).
•	Characteristics of participants who are referred late.
2.22	. Progression of CKD under specialist nephrology services
•	Association of past eGFR slopes vs eGFR at referral, albuminuria stage, comorbidities, and cause of CKD w
	subsequent outcomes (ESKD, non-CV death, and major adverse cardiovascular events (MACE).
•	Five-year cumulative incidence of KRT, MACE, death without ESKD and KRT-free survival by past eC
	slope, eGFR and albuminuria stage at study entry.
•	Correlation of eGFR slope with the time interval between referral and initiation of KRT.
•	Outcomes at 3, 6 and 12 months after first visit to nephrology service (MACE, KRT, hospitalization).
2.23	. Impact of the KFRE on referral patterns
•	The proportion of participants in the database who require redesignation of their referrals to the nephrologusing the KFRE.
•	The number of participants in the database who met the Kidney Health Australia (KHA)'s recommendation for nephrology referral.
•	The proportion of participants who required referral for access creation and the timing of referral as predic by the KFRE.
•	The proportion of participants who progressed to ESKD as predicted by the KFRE and the time it tool progress to ESKD from time of referral.
•	The proportion of participants in the database who had a low risk of progression at baseline and co
	therefore have been managed safely by their primary care providers.
•	The effect of the KFRE stratification on number of referrals and wait times.
2.3 1	Definitions related to referral
2.31	. Appropriateness of referral:
The	appropriateness of referrals will be determined according to the recommendations in Kidney health
Aus	stralia's The Chronic Kidney Disease Management in Primary Care handbook[44], which are also in tandem
witł	the CARI guidelines[45] (Table 1). Referrals will be deemed as appropriate if any of the indications for

3	
4	 eGFR <30 mL/min/1.73m2 (Stage G4 or G5 CKD of any cause).
5	 Persistent significant albuminuria (urine ACR ≥30 mg/mmol)
6 7	 A sustained decrease in eGFR of 25% or more within 12 months OR a sustained decrease in eGFR of 15 mL/min/1.73m2 per
/ 8	year • CKD with homestancian that is hand to get to target density at least three antihementensing a sente
9	• CKD with hypertension that is hard to get to target despite at least three antihypertensive agents
10	
11	2.32. Definition of late referral
12	KDIGO defines late referral as referral to specialist services less than 1 year before start of KRT[46]. However,
13 14	many previous studies have applied a cut-off of less than 3-4 months, with others going for less than 6 months. In
15	our analysis we plan to apply the 3 months cut-off as this is the definition that is used in by Kidney Health
16	Australia in their latest edition of their CKD management in primary care handbook [44].
17	
18	2.4 Kidney Failure Risk Equation
20	The published KEPE 4 variable non North American equation will be used at the initial visit to discriminate.
21	The published KFKE 4-variable hole-North American equation will be used at the initial visit to discriminate
22	participants who would develop kidney failure within 5 years from those who would not. The observed kidney
23 24	failure rate (on the basis of CKD.QLD follow-up data) will be the reference. The variables accessible in the CKD.QLD
24 25	database will allow for integration into the KFRE to calculate the proportion of patients who would fulfil criteria
26	for referral to the nephrologist based on the calculated risk. eGFR (calculated from serum creatinine using the
27	Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation), urine ACR (where available), gender
28	and age will be retrieved from the registry to enable the calculation of each patient's risk threshold for progression
29 30	to ESKD. Where only results of urine protein to creatinine ratio (PCR) or urine dipsticks are available, the equations
31	developed by Sumida et al. in 2020 will be employed to calculate the predicted ACR [47]. Where no ACR, PCR or
32	urine dipsticks are available at the initial visit, we intend to use the earliest interval where the first urine protein
33 24	examination would have been performed within the first 6 months of the initial visit. We anticipate that most
34 35	patients seen in the neutrology clinics will be brought back for review within 3.6 ments and that most of them
36	will have uning a second to the second
37	will have urine examination for proteinuria/albuminuria ordered by the nephrologist. The date of the
38	proteinuria/albuminuria measurement will automatically become the date for estimating baseline risk using the
39 40	KFRE and for beginning the follow-up period.
41	The participants will then be stratified as either high risk or low risk according to the calculated 2-year and 5-year
42	risk of progressing to ESKD. Patients whose 5-year risk for kidney failure is less than 3% and are without any
43	structural abnormalities such as a diagnosis of polycystic kidney disease, would be deemed low risk and hence

could be safely managed in primary care, whereas all those with a 5-year risk of >3% would be classified as high risk and therefore would be considered for a nephrology referral. A KFRE threshold of >10% in 2 years would require referral to multidisciplinary team programs, whereas a 2-year threshold of 20-40% would trigger referral for planning a transplant or fistula [48-50].

3. Procedure

 The CKD.QLD data custodian will provide the researchers with the CKD.QLD identification number of the eligible population and will provide access to the Registry data set. Each participant's CKD.QLD identification number will be matched with QLD hospital record numbers. The variables to be extracted from CKD.QLD and hospitalisation records are listed in Tables 2-7 and will be entered onto Excel spreadsheets prior to upload in STATA 16.0 [StataCorp LP. Stata Statistical Software: College Station, Texas].

Variable	Operational definition	Scale of measurement	Collection interval
Gender	Will be taken as recorded in database	M or F or other	Baseline
Age	Age at the time of enrolment	Years	Baseline and at time of event
Indigenous status	Indigenous vs non-Indigenous	Y or N	Baseline, at 3 and 6 months and 12 monthl
SES	Low SES will be defined according to the SEIFA scores determined by participant post code	Quintileof disadvantage on a scale of 1-5	Baseline, at 3 and 6 months and 12 monthl
Area of residence	Area of residence by postcode	Rural vs urban	Baseline, at 3 and 6 months and 12 monthly
Wait times	Time from time of referral to first visit to the kidney clinic	Number of months	Baseline
Comorbidities			
T1DM	Clinical label of T1DM or commencing insulin within a year of diagnosis of DM	Y or N	Baseline
T2DM	Clinical label of T2DM or no requirement of insulin within one year of diagnosis of DM	Y or N	Baseline, at 3 and 6 months and 12 monthl
Obesity	BMI ≥ 30	Y or N	Baseline
Dyslipidemia	Dyslipidemia will be defined as a LDL-C of ≥ 2.586 without further risk factors and ≥ 1.81 in patients with CVD or CKD or receipt of lipid lowering drug treatment	Y or N	Baseline
CHD	History of acute myocardial infarction or history of coronary revascularisation	Y or N	Baseline, at 3 and 6 months and 12 monthl
Heart failure	The diagnosis of heart failure will be obtained from participant admission records	Y or N	Baseline, at 3 and 6 months and 12 month
Hypertension	Hypertension will be defined as BP levels above 140 mmHg SBP or 90 mmHg DBP or the receipt of antihypertensive drugs	Y or N	Baseline, at 3 and 6 months and 12 month
CVD	History of a CVA or a TIA	Y or N	Baseline, at 3 and 6 months and 12 monthl
PVD	PVD will be defined as lower extremity peripheralartery disease or carotid artery stenosis diagnosed using duplex ultrasound scan or CT angiography.	Y or N	Baseline
Smoking	Smoking status.	Former or current or never	Baseline
Pulmonary disease	Chronic obstructive pulmonary disease or emphysema	Y or N	Baseline, at 3 and 6 months and 12 monthl
Other diseases	As documented in participant record.	Y or N	Baseline, at 3 and 6 months and 12 monthl

SES: Socioeconomic status; SEIFA: Socio-Economic Indexes for Areas; T1DM: Type 1 Diabetes Mellitus; DM: Diabetes Mellitus; T2DM:
Type 2 Diabetes Mellitus; BMI: Body mass index; LDL-C: Low-density lipoprotein cholesterol; CVD: Cardiovascular disease; CKD : Chronic kidney disease; CHD: Coronary heart disease; SBP: Systolic blood pressure; DBP: Diastolic blood pressure; CVA: Cerebrovascular accident; TIA:
Transient ischemic attack; PVD: Peripheral vascular disease.

Table 3.	Primary cause	e of chronic	kidney disea	se at referral

Primary kidney disease	Duration
DKD	Date of first diagnosis or if not available, duration prior to entering the CKD
	Registry
Glomerulonephritis	Date of first diagnosis or if not available, duration prior to entering the CKD
	Registry
Obstructive uropathy	Date of first diagnosis or if not available, duration prior to entering the CKD
	Registry
Hypertensive kidney	Date of first diagnosis or if not available, duration prior to entering the CKD
disease	Registry
ADPKD	Date of first diagnosis or if not available, duration prior to entering the CKD
	Registry
ANCA vasculitis	Date of first diagnosis or if not available, duration prior to entering the CKD
	Registry
Lupus nephritis	Date of first diagnosis or if not available, duration prior to entering the CKD
	Registry
Renovascular disease	Date of first diagnosis or if not available, duration prior to entering the CKD
	Registry
Reflux nephropathy	Date of first diagnosis or if not available, duration prior to entering the CKD
	Registry
Other	Date of first diagnosis or if not available, duration prior to entering the CKD
	Registry
Unknown	Date of first diagnosis or if not available, duration prior to entering the CKD
	Registry

The primary cause of chronic kidney disease will be based on the entry by the treating nephrologist. DKD: Diabetic kidney disease; ACR: Albumin to creatinine ratio; eGFR: Estimated glomerular filtration rate; ADPKD: Autosomal dominant polycystic Kidney disease; ANCA: Antineutrophil cytoplasmic antibodies.

 Table 4. Pathology results to be collected

Laboratory Parameter	Units of measurement	Collection interval
Urine albumin to creatinine ratio	mg/mmol or g/mol	Baseline, at 3 and 6 months and 12 monthly
Urine protein to creatinine ratio	mg/mmol or g/mol	Baseline, at 3 and 6 months and 12 monthly
24Hr urine protein excretion	mg/24hrs or g/24hrs	Baseline, at 3 and 6 months and 12 monthly
Urine dipstick	Negative or positive for protein	Baseline, at 3 and 6 months and 12 monthly
Serum creatinine	micromol/L	Baseline, at 3 and 6 months and 12 monthly

eGFR	mL/min/1.73m ²	Baseline, at 3 and 6 months and 12 monthly
Serum albumin	g/L	Baseline, at 3 and 6 months and 12 monthly
Hb	g/L	Baseline, at 3 and 6 months and 12 monthly
Serum calcium	mmol/L	Baseline, at 3 and 6 months and 12 monthly
Serum phosphate	mmol/L	Baseline, at 3 and 6 months and 12 monthly
Serum PTH	pmol/L	Baseline, at 3 and 6 months and 12 monthly
HbA1C	% or mmol/mol	Baseline

Table 5. Parameters of pre-referral management

Parameter	Operational definition	Scale of measurement
Use of RAAS inhibitors	Use of ACE inhibitors or ARBs	Y or N. If yes, details about
		drug, dosage, duration
Glycemic control	Target HbA1c \leq 53mmol/mol (7%)	Optimal vs suboptimal
		control
Use of vitamin D or calcium	Participants taking vitamin D or calcium	Y or N
supplements	supplements at the time of enrolment	
BP at initial visit (Systolic/diastolic)	BP recorded on first visit to the	Suboptimal vs optimal
	nephrology clinic with target < 130/80	control
	representing adequate control	
Body mass Index (BMI)	BMI at enrolment, with obesity defined as	$< 30 \text{ or} \ge 30$
-	$BMI \ge 30$	

RAAS: Renin angiotensin aldosterone system; ACE: Angiotensin converting enzyme; ARB: Angiotensin receptor blockers; HbA1C: Glycated hemoglobin; BP: Blood pressure; BMI: Body mass Index.

Table 6. Participant outcomes under nephrological care

-			
Outcome	Operational definition	Scale of measurement	Collection interval
Hospitalisation records	Hospitalisation will be defined as an admission to hospital to receive acute clinical care	Y or N 3, 6 months and Number of monthly hospitalisations, Reason for hospitalisation (ICD- Codes) associated	
LOS	Average number of days spent in hospital	conditions (ICD-Codes) Date of admission and date of discharge or number of days	3, 6 months and 12 monthly
Progression to ESKD	Defined as sustained reduction in eGFR < 15ml/min or commencement of KRT	Y or N. If yes, the relevant date	

3				
4 5 6 7 8 9	CVD events	CVD will be defined as a composite outcome of fatal and nonfatal events of ischemic heart disease, ischemic stroke, heart failure, and peripheral vascular disease	Y or N. If yes, then the relevant date(s)	3, 6 months and 12 monthly
10 11	Death	As entered in patient records	Y or N. If yes, date of death	
12 13 14	Achievement of blood pressure control	Target < 130/80	Y or N	3, 6 months and 12- monthly
15 16	Achievement of glycemic control	Target < 53mmol/mol (7%)	Y or N	3, 6 months and 12- monthly
17 18 10	Pharmacy review	Reviewed by pharmacist	Y or N. If yes, date of review	
20 21	Dietary education	Received dietary counselling	Y or N. If yes, date of review	
22	AKI	Frequency/episodes of AKI	Y or N, Single or multiple	

ICD: International Classification of Diseases; LOS: Length of stay; ESKD: End-stage kidney disease; CVD: Cardiovascular disease; AKI: Acute kidney injury.

Table 7. Pharmacological intervention after referral

Medication initiated	Operational definition	Scale of meaasurement
ESA therapy	Initiation of ESA in participants whose	Y or N. If yes, date of initiation or titration
	Hb is < 100g/L	if available
ACE-I or ARB	Initiation of ACE-I or ARB	Y or N. If yes, date of initiation
Other anti-hypertensive	Initiation of Other	Y or N. If yes, date of initiation
medication	anti-hypertensive medication	
Calcium supplements	Calcium supplements	Y or N. If yes, date of initiation
Vitamin D supplements	Vitamin D supplements	Y or N. If yes, date of initiation
Lipid lowering drugs	Lipid lowering drugs	Y or N. If yes, date of initiation
Loop diuretics	Loop diuretics	Y or N. If yes, date of initiation

ESA: Erythropoiesis stimulating agent; SGLT2-I: Sodium-glucose co-transporter-2 inhibitors; DPP4-I: Dipeptidyl-peptidase 4 inhibitors; ACE-I: Angiotensin converting enzyme inhibitors; ARB: Angiotensin receptor blockers.

3.1. Data analysis

This is an observational study and a range of statistical methods will be used to measure the association between data elements and outcomes. Firstly, descriptive statistics and basic inferential statistics will be used to present participant characteristics and explore basic patterns of the data (e.g., describing referral patterns). If the variables are continuous and normally distributed, means and t-tests will be used. For non-normally distributed (skewed) continuous data, medians and equivalent non-parametric tests will be used. For categorical data, proportions and chi-squared tests will be used and reported.

Secondly, where appropriate, multivariate analysis methods will be used to account for measurable covariates, thus better capturing the true effect size. Multiple regression models (linear, multinomial, logistic and Cox proportional hazards or competing risks, where appropriate) will be used to explore the association between participant characteristics and clinical outcomes adjusting for potential confounders based on previous literature and available measures as outlined in Table 2 [51,52]. Variables will be fitted as covariates in the regression models and variables with a p < .2 will be accepted for covariate interaction inclusion in the regression model.

The variables broadly categorized as follows will be investigated as any of predictors, covariates or outcomes, as appropriate to the analyses:

- 1. Demographic variables (age, residential address, gender, ethnicity, socioeconomic status).
- 2. Lifestyle factors (alcohol and tobacco use).
- 3. Past and current medical history (cardiac, hypertension, diabetes and type and level of kidney disease, pulmonary disease, obesity).
- 4. Kidney disease factors (Urine albumin/creatinine ratio, urine protein/creatinine ratio, 24-hr urine protein excretion, serum creatinine, eGFR, HbA1c, serum phosphate, PTH, haemoglobin, serum albumin).
- 5. Kidney disease outcome variables (transplant, KRT, Dialysis modality, death).
- Pre-referral parameters (RAAS inhibitors, Lipid lowering drugs, vitamin D or Calcium supplements, Systolic BP, Diastolic BP, BMI, PTH, serum albumin, eGFR, serum calcium, serum phosphate, urine ACR, urine PCR, 24hr protein excretion, urine dipstick, Hb).

Results will be reported with the level of significance at alpha .05 and accompanied by 95% confidence intervals (95% CI). Missing data and outliers will be reported but will be excluded from analysis. Outliers will be identified by the use of boxplots in STATA[®]. These outliers will be confirmed based on the established procedures from Hoaglin and Iglewicz [53].

4.0 Benefits and policy implications

Determination of the optimal risk stratification strategy which will accurately predict risk of progression to ESKD or development of CV events will inform the optimal timing of referral to specialist care. This has several policy implications in the overall care of the CKD patient including:

i) Spurring the need to review referral strategies, guidelines, and QLD health service delivery recommendations to improve the health outcomes of CKD and maximize efficiency of its management within the health care system.

ii) Balancing of quality of care and cost by improving appropriateness of referrals and efficient integration of primary and specialist services.

iii) Enabling the coordination of primary care and secondary care providers to optimize value by providing clinically indicated services at the appropriate time and reducing rates of referrals of low risk participants who could be safely managed in primary care.

iv) Reserving scarce specialist services for individuals at high risk of progressing to ESKD or developing cardiovascular events, where timely intervention is likely to improve outcomes.

v) Helping to inform the need for education of health care providers and implementation of targeted care initiatives, to ensure that individuals at high risk of progressing to ESKD are captured earlier and given an opportunity to benefit from a more specialized care environment.

Ultimately, the study findings are intended to provide CKD health care providers with a robust decision-making tool. This will enable targeted care initiatives to ensure that individuals at high risk of progressing to ESKD are identified early and given an opportunity to benefit from specialized nephrology care.

5.0 Patient and public involvement

No patients were involved in the development of the research questions, the design and development of the study protocol. However, the conception of the study protocol, the scope of the research questions and outcome measures were informed by identified gaps in the current specialist referral process of individuals with CKD, and the uncertainty of the optimal timing of referral that will enable optimal specialist intervention, all of which were inspired by interaction with patients in the nephrology clinics. Results will be disseminated to patients and the public through social media and through their primary care physicians.

6.0 Ethics and dissemination

6.1 Ethics

The CKD.QLD registry and the hospital record(s) are being examined by the researchers retrospective to the participants' details being entered into CKD.QLD and their hospital admissions. The CKD.QLD data and the hospital record(s) are identifiable data, critical to the data linkage of this research. On enrolment into CKD.QLD, the informed consent for enrolment for the CKD.QLD registry included permission to access and link all relevant clinical material on the participants, including medical history, pathology reports and hospital admissions collected prior to enrolment in the registry for future CKD research. The Participant Information and Consent Form includes the following statement: *"The (CKD.QLD Registry) information is used for improvement of the quality of care for people with kidney disease, to study kidney disease and plan health services"*...and *"The information produced from the database may be used for future research in CKD. However, any research proposal based on the information collected from you will require additional approval from Ethics committees belonging to Queensland Health."*

6.2 Dissemination

The results will be presented as a component of a PhD study with The University of Queensland. It is also anticipated that the results will be presented at health-related conferences (local, national and possibly international) and via publication in peer-reviewed academic journals.

Author affiliations

¹Renal Unit, Bundaberg Hospital, Wide Bay Hospital and Health Service, Bundaberg 4670, Australia;

<u>clyson.mutatiri@health.qld.gov.au</u> (C.M.),

²Rural Clinical School, Faculty of Medicine, The University of Queensland, Brisbane 4072 Australia; <u>clyson.mutatiri@uq.edu.au</u>; <u>angela.ratsch@uq.edu.au</u> (A.R.); <u>m.mcgrail@uq.edu.au</u> (M.M.); <u>s.kondalsamychennakes@uq.edu.au</u> (S.K.C); <u>s.venuthurupalli@uq.edu.au</u> (S.K.V).

³Research Education, Development and Support, Wide Bay Hospital and Health Service, Hervey Bay 4655, Australia; <u>angela.ratsch@health.qld.gov.au</u>,

⁴Renal Services, West Moreton Hospital and Health Service, Ipswich 4305, Australia; sree.venuthurupalli@health.qld.gov.au.

Acknowledgments: We would like to thank the CKD.QLD Registry for granting us the approval of access to CKD.QLD Registry Patient Data. We would also like to acknowledge the 'in-kind' support provided by Wide Bay Hospital and Health Service to the researchers and for relevant resources including computers, telephone, and office space for the duration of this project. This study was partly supported by the Australian Government Department of Health under the Rural Health Multidisciplinary Training Program.

- Author Contributions: Conceptualization, C.M., S.K.C., S.K.V. and A.R.; methodology, C.M., S.K.C., A.R., S.K.V. and M.M.;
 writing—original draft preparation, C.M., S.K.C., A.R.; writing—review and editing, A.R., S.K.C., M.M., S.K.V. All authors have
 read and agreed to the published version of the manuscript.
 - Funding: The APC was partially funded by Otsuka Australia (Award/Grant number is not applicable for this funding).
- Institutional Review Board Statement: The study was conducted according to the guidelines of the Declaration of Helsinki, and approved by the Ethics Committee of the Royal Brisbane and Women's Hospital (LNR/2020/QRBW/69707 14/01/2021)
- Informed Consent Statement: The HREC waived the requirement for patient consent as all patient's had consented for the use of their data for the purpose of research on recruitment into CKD.QLD Registry.
- **Competing interests:** The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

on 8 March, 2021).

Provenance and peer review: Not commissioned; externally peer reviewed.

References

> 1. Kamath, C.C.; Dobler, C.C.; Lampman, M.A.; Erwin, P.J.; Matulis, J.; Elrashidi, M.; McCoy, R.G.; Alsawaz, M.; Pajouhi, A.; Vasdev, A., et al. Implementation strategies for interventions to improve the management of chronic kidney disease (CKD) by primary care clinicians: protocol for a systematic review. BMJ Open. 2019, 9, e027206. 2. Black, C.; Sharma, P.; Scotland, G.; McCullough, K.; McGurn, D.; Robertson, L.; Fluck, N.; MacLeod, A.; McNamee, P.; Prescott, G., et al. Early referral strategies for management of people with markers of renal disease: a systematic review of the evidence of clinical effectiveness, cost-effectiveness and economic analysis. Health Technol Assess. 2010, 14, 1-184. 3. Moynihan, R.; Glassock, R.; Doust, J. Chronic kidney disease controversy: how expanding definitions are unnecessarily labelling many people as diseased. BMJ. 2013, 347, Foote, C.; Clayton, P.A.; Johnson, D.W.; Jardine, M.; Snelling, P.; Cass, A. Impact of estimated GFR reporting on late 4. referral rates and practice patterns for end-stage kidney disease patients: a multilevel logistic regression analysis using the Australia and New Zealand Dialysis and Transplant Registry (ANZDATA). Am J Kidney Dis. 2014, 64, 359-366. Hingwala, J.; Wojciechowski, P.; Hiebert, B.; Bueti, J.; Rigatto, C.; Komenda, P.; Tangri, N. Risk-based triage for 5. nephrology referrals using the kidney failure risk equation. Can J Kidney Health Dis. 2017, 4, 2054358117722782. Xie, Y.; Bowe, B.; Mokdad, A.H.; Xian, H.; Yan, Y.; Li, T.; Maddukuri, G.; Tsai, C.-Y.; Floyd, T.; Al-Aly, Z. Analysis of the 6. global burden of disease study highlights the global, regional, and national trends of chronic kidney disease epidemiology from 1990 to 2016. Kidney Int. 2018, 94, 567-581. Martínez-Castelao, A.; Soler, M.J.; Górriz Teruel, J.L.; Navarro-González, J.F.; Fernandez-Fernandez, B.; de Alvaro 7. Moreno, F.; Ortiz, A. Optimizing the timing of nephrology referral for patients with diabetic kidney disease. Clin Kidney J. 2020, 14, 5-8. Go, A.S.; Yang, J.; Tan, T.C.; Cabrera, C.S.; Stefansson, B.V.; Greasley, P.J.; Ordonez, J.D. Contemporary rates and 8. predictors of fast progression of chronic kidney disease in adults with and without diabetes mellitus. BMC Nephrol. 2018, 19, 1-13. 9. Australian and New Zealand Society of Nephrology. Report of the Workforce Review Committee of the Australian and New Zealand Society of Nephrology. Available online: https://www.nephrology.edu.au/workforce-report.asp (accessed

3		
4 5	10.	Australian Institute of Health and Welfare. Chronic kidney disease. Available online:
6 7		https://www.aihw.gov.au/reports/chronic-kidney-disease/chronic-kidney-disease (accessed on 7 March, 2021).
8 9	11.	Amos, L.; Toussaint, N.; Phoon, R.; Elias, T.; Levidiotis, V.; Campbell, S.; Walker, A.; Harrex, C. Increase in nephrology
10 11		advanced trainee numbers in Australia and associated reduction in clinical exposure over the past decade. Intern Med J.
12 13		2013 , <i>4</i> 3, 287-293.
14 15	12.	Wright, J.; Glenister, K.M.; Thwaites, R.; Terry, D. The importance of adequate referrals for chronic kidney disease
16 17		management in a regional Australian area of nephrologist workforce shortage. Aust J Gen Pract. 2018, 47, 58-62.
18 19	13.	Tangri, N.; Stevens, L.A.; Griffith, J.; Tighiouart, H.; Djurdjev, O.; Naimark, D.; Levin, A.; Levey, A.S. A predictive model
20 21		for progression of chronic kidney disease to kidney failure. JAMA. 2011, 305, 1553-1559.
22 23	14.	Major, R.W.; Shepherd, D.; Medcalf, J.F.; Xu, G.; Gray, L.J.; Brunskill, N.J. The kidney failure risk equation for prediction of
24 25		end stage renal disease in UK primary care: an external validation and clinical impact projection cohort study. PLoS Med.
26 27		2019 , <i>16</i> , e1002955.
28 29	15.	Whitlock, R.H.; Chartier, M.; Komenda, P.; Hingwala, J.; Rigatto, C.; Walld, R.; Dart, A.; Tangri, N. Validation of the
30 31		kidney failure risk equation in Manitoba. Can J Kidney Health Dis. 2017, 4, 1-9.
32 33 24	16.	Hemmelgarn, B.R.; Zhang, J.; Manns, B.J.; James, M.T.; Quinn, R.R.; Ravani, P.; Klarenbach, S.W.; Culleton, B.F.; Krause,
35 36		R.; Thorlacius, L. Nephrology visits and health care resource use before and after reporting estimated glomerular filtration
30 37 20		rate. JAMA. 2010, 303, 1151-1158.
30 39 40	17.	Foreman, K.J.; Marquez, N.; Dolgert, A.; Fukutaki, K.; Fullman, N.; McGaughey, M.; Pletcher, M.A.; Smith, A.E.; Tang, K.;
40 41 42		Yuan, CW. Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 causes of
43 44		death: Reference and alternative scenarios for 2016–40 for 195 countries and territories. The Lancet. 2018, 392, 2052-2090.
45 46	18.	Ojo, A. Addressing the global burden of chronic kidney disease through clinical and translational research. <i>Trans Am Clin</i>
47 48		<i>Climatol Assoc.</i> 2014 , 125, 229-246.
49 50	19.	Wouters, O.J.; O'donoghue, D.J.; Ritchie, J.; Kanavos, P.G.; Narva, A.S. Early chronic kidney disease: diagnosis,
51 52		management and models of care. Nat Rev Nephrol. 2015, 11, 491-502.
53 54	20.	Stroupe, K.T.; Fischer, M.J.; Kaufman, J.S.; O'Hare, A.M.; Sohn, M.W.; Browning, M.M.; Huo, Z.; Hynes, D.M. Predialysis
55 56		nephrology care and costs in elderly patients initiating dialysis. Med Care. 2011, 49, 248-256.
57 58	21.	Levin, A.; Stevens, P.E.; Bilous, R.W.; Coresh, J.; De Francisco, A.L.; De Jong, P.E.; Griffith, K.E.; Hemmelgarn, B.R.; Iseki,
59 60		K.; Lamb, E.J. Kidney Disease: improving global outcomes (KDIGO) CKD work group. KDIGO 2012 clinical practice
		guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl. 2013, 3, 1-150.
		o

3		
4 5	22.	Li, P.K.T.; Garcia-Garcia, G.; Lui, S.F.; Andreoli, S.; Fung, W.W.S.; Hradsky, A.; Kumaraswami, L.; Liakopoulos, V.;
6 7		Rakhimova, Z.; Saadi, G., et al. Kidney health for everyone everywhere: from prevention to detection and equitable access
8 9		to care. <i>Blood Purif.</i> 2021 , <i>50</i> , 1-8.
10 11	23.	Ryz, K.; Tangri, N.; Verrelli, M.; Schneider, J.; Lesyk, A.; Eng, A.; Hiebert, B.; Whitlock, R.H.; Sood, M.M.; Rigatto, C. A
12 13		before and after cross-sectional analysis of a public health campaign to increase kidney health awareness in a Canadian
14 15		province. BMC Res Notes. 2015, 8, 1-6.
16 17	24.	Kaushal, A.; Naimark, D.; Tangri, N. Use of the kidney failure risk equation to reduce uncertainty in predicting time to
18 19 20		ESRD. Am J Kidney Dis. 2015 , 65, 369-371.
20 21 22	25.	Gill, T.M.; Gahbauer, E.A.; Han, L.; Allore, H.G. Trajectories of disability in the last year of life. N Engl J Med. 2010, 362,
22 23 24		1173-1180.
24 25 26	26.	Lunney, J.R.; Lynn, J.; Foley, D.J.; Lipson, S.; Guralnik, J.M. Patterns of functional decline at the end of life. JAMA. 2003,
20 27 28		289, 2387-2392.
29 30	27.	Mitch, W.E.; Walser, M.; Buffington, G.A.; Lemann, J., Jr. A simple method of estimating progression of chronic renal
31 32		failure. Lancet. 1976, 2, 1326-1328.
33 34	28.	Inker, L.A.; Heerspink, H.J.; Tighiouart, H.; Levey, A.S.; Coresh, J.; Gansevoort, R.T.; Simon, A.L.; Ying, J.; Beck, G.J.;
35 36		Wanner, C. GFR slope as a surrogate end point for kidney disease progression in clinical trials: A meta-analysis of
37 38		treatment effects of randomized controlled trials. J Am Soc Nephrol. 2019, 30, 1735-1745.
39 40	29.	Naimark, D.M.; Grams, M.E.; Matsushita, K.; Black, C.; Drion, I.; Fox, C.S.; Inker, L.A.; Ishani, A.; Jee, S.H.; Kitamura, A.,
41 42		et al. Past decline versus current eGFR and subsequent mortality risk. <i>J Am Soc Nephrol.</i> 2016, 27, 2456-2466.
43 44	30.	Levey, A.S.; Inker, L.A.; Matsushita, K.; Greene, T.; Willis, K.; Lewis, E.; De Zeeuw, D.; Cheung, A.K.; Coresh, J. GFR
45 46		decline as an end point for clinical trials in CKD: A scientific workshop sponsored by the National Kidney Foundation and
47 48		the US Food and Drug Administration. Am J Kidney Dis. 2014, 64, 821-835.
49 50	31.	Kovesdy, C.P.; Coresh, J.; Ballew, S.H.; Woodward, M.; Levin, A.; Naimark, D.M.; Nally, J.; Rothenbacher, D.; Stengel, B.;
51 52		Iseki, K. Past decline versus current eGFR and subsequent ESRD risk. J Am Soc Neprol. 2016, 27, 2447-2455.
53 54	32.	Perkins, R.M.; Bucaloiu, I.D.; Kirchner, H.L.; Ashouian, N.; Hartle, J.E.; Yahya, T. GFR decline and mortality risk among
55 56		patients with chronic kidney disease. Clin J Am Soc Nephrol. 2011, 6, 1879-1886.
57 58	33.	Al-Aly, Z.; Zeringue, A.; Fu, J.; Rauchman, M.I.; McDonald, J.R.; El-Achkar, T.M.; Balasubramanian, S.; Nurutdinova, D.;
59 60		Xian, H.; Stroupe, K., et al. Rate of kidney function decline associates with mortality. J Am Soc Nephrol. 2010, 21, 1961-1969.

BMJ Open

Coresh, J.; Turin, T.C.; Matsushita, K.; Sang, Y.; Ballew, S.H.; Appel, L.J.; Arima, H.; Chadban, S.J.; Cirillo, M.; Djurdjev, O.
Decline in estimated glomerular filtration rate and subsequent risk of end-stage renal disease and mortality. JAMA. 2014,
311, 2518-2531.
Lerner, B : Desrochers, S : Tangri, N. Risk prediction models in CKD. In Proceedings of <i>Semin Nenhrol</i> : pp. 144-150
Tangri N. Kitsios C.D. Inkor I. A. Criffith L. Naimark D.M. Walkor S. Bigatto C. Ublig K. Kont D.M. Lovov, A.S.
Disk prediction models for notionts with shronis hidney diseases A systematic review. Any Intern Med 2012, 158–506 602
Kisk prediction models for patients with chronic kidney disease: A systematic review. Ann Intern Med. 2013, 158, 596-605.
Tangri, N.; Grams, M.E.; Levey, A.S.; Coresh, J.; Appel, L.J.; Astor, B.C.; Chodick, G.; Collins, A.J.; Djurdjev, O.; Elley, C.R.
Multinational assessment of accuracy of equations for predicting risk of kidney failure: a meta-analysis. JAMA. 2016, 315,
164-174.
Ramspek, C.L.; Evans, M.; Wanner, C.; Drechsler, C.; Chesnaye, N.C.; Szymczak, M.; Krajewska, M.; Torino, C.; Porto, G.;
Hayward, S., et al. Kidney failure prediction models: a comprehensive external validation study in patients with advanced
CKD. J Am Soc Nephrol (2021).
Naranjo, F.S.; Sang, Y.; Ballew, S.H.; Stempniewicz, N.; Dunning, S.C.; Levey, A.S.; Coresh, J.; Grams, M.E. Estimating
kidney failure risk using electronic medical records. <i>Kidney</i> 360. 2021 , 2, 415-424.
Tangri, N.; Stevens, L.A.; Griffith, J.; Tighiouart, H.; Djurdjev, O.; Naimark, D.; Levin, A.; Levey, A.S. A predictive model
for progression of chronic kidney disease to kidney failure. JAMA. 2011, 305, 1553-1559.
McCudden, C.; Akbari, A.; White, C.A.; Biyani, M.; Hiremath, S.; Brown, P.A.; Tangri, N.; Brimble, S.; Knoll, G.; Blake,
P.G., et al. Individual patient variability with the application of the kidney failure risk equation in advanced chronic
kidney disease. <i>PLoS One</i> . 2018 , <i>13(6)</i> , e0198456.
Grams, M.E.; Coresh, J. Predicting risk of RRT in patients with CKD. Clin J Am Soc Nephrol. 2017, 12, 3-4.
Venuthurupalli, S.K.; Hoy, W.E.; Healy, H.G.; Cameron, A.; Fassett, R.G. CKD.QLD: Establishment of a chronic kidney
disease [CKD] registry in Oueensland, Australia, BMC Nenhrol, 2017, 18, 1-10.
Australia K.H. Chronic Kidnov Dicease (CKD) Management in Primary Care. Available online:
Australia, K.H. Chronic Rulley Disease (CKD) Management in Finnary Care. Available online.
https://kidney.org.au/uploads/resources/CKD-Management-in-Primary-Care_handbook_2020.1.pdf (accessed on 9
October).
Johnson, D.W. When to refer for specialist renal care. Available online: https://www.cariguidelines.org/guidelines/chronic
kidney-disease/early-chronic-kidney-disease/when-to-refer-for-specialist-renal-care/ (accessed on 10 October).
Levin, A.; Stevens, P.E. Summary of KDIGO 2012 CKD Guideline: behind the scenes, need for guidance, and a framework
for moving forward. <i>Kidney Int.</i> 2014 , <i>85</i> , 49-61.

∠ 3		
4 5	47.	Sumida, K.; Nadkarni, G.N.; Grams, M.E.; Sang, Y.; Ballew, S.H.; Coresh, J.; Matsushita, K.; Surapaneni, A.; Brunskill, N.;
6 7		Chadban, S.J., et al. Conversion of urine protein-creatinine ratio or urine dipstick protein to urine albumin-creatinine ratio
8 9		for use in chronic kidney disease screening and prognosis: an individual participant-based meta-analysis. Ann Intern Med.
10 11		2020,
12	48.	Tangri, N.; Ferguson, T.; Komenda, P. Pro: risk scores for chronic kidney disease progression are robust, powerful and
14 15 16		ready for implementation. Nephrol Dial Transplant. 2017, 32, 748-751.
10 17 18	49.	Wojciechowski, P.; Tangri, N.; Rigatto, C.; Komenda, P. Risk prediction in CKD: the rational alignment of health care
10 19 20		resources in CKD 4/5 care. Adv Chronic Kidney Dis. 2016, 23, 227-230.
20 21 22	50.	Hingwala, J.; Wojciechowski, P.; Hiebert, B.; Bueti, J.; Rigatto, C.; Komenda, P.; Tangri, N.; disease. Risk-based triage for
23 24		nephrology referrals using the kidney failure risk equation. <i>Can J Kidney Health Dis</i> . 2017 , 4, 2054358117722782.
25 26	51.	Reichel, H.; Zee, J.; Tu, C.; Young, E.; Pisoni, R.L.; Stengel, B.; Duttlinger, J.; Lonnemann, G.; Robinson, B.M.; Pecoits-Filho,
27 28		R. Chronic kidney disease progression and mortality risk profiles in Germany: results from the chronic kidney disease
29 30		outcomes and practice patterns study. <i>Nephrol Dial Transplant</i> . 2020 , <i>35</i> , 803-810.
31 32	52.	Evans, M.; Grams, M.E.; Sang, Y.; Astor, B.C.; Blankestijn, P.J.; Brunskill, N.J.; Collins, J.F.; Kalra, P.A.; Kovesdy, C.P.;
33 34		Levin, A. Risk factors for prognosis in patients with severely decreased GFR. Kidney Int Rep. 2018, 3, 625-637.
35 36	53.	Hoaglin, D.C.; Iglewicz, B. Fine-tuning some resistant rules for outlier labeling. J Am Stat Assoc. 1987, 82, 1147-1149.
37 38		
39 40		
41 42		
43 44		
45 46		
47 48		
49 50		
51		
52 53		
55 54		
55		
วง 57		
58		
59 60		
υU		