

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

A systematic review of nutrigenetics, omega-3 and plasma 2 lipids/lipoproteins/apolipoproteins with evidence evaluation using the GRADE approach

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-054417
Article Type:	Original research
Date Submitted by the Author:	16-Jun-2021
Complete List of Authors:	Horne, Justine; Université Laval, Centre Nutrition, Santé et Société (NUTRISS), Institut sur la Nutrition et les Aliments Fonctionnels (INAF); Université Laval, School of Nutrition Garneau, Véronique; Université Laval, Centre Nutrition, Santé et Société (NUTRISS), Institut sur la Nutrition et les Aliments Fonctionnels (INAF); Universite Laval, School of Nutrition Marcil, Valérie ; University of Montreal, Department of Nutrition; Sainte- Justine University Health Centre, Research Centre Mutch, David; University of Guelph, Department of Human Health and Nutritional Sciences Robitaille, Julie; Laval University, Centre Nutrition, Santé et Société (NUTRISS), Institut sur la Nutrition et les Aliments Fonctionnels (INAF); Laval University, School of Nutrition Rudkowska, Iwona; Université Laval, Department of Kinesiology; Centre de recherche du CHU de Quebec-Universite Laval, Endocrinology and Nephrology Unit Sofian, Gabriela; Université Laval, Library Desroches, Sophie; Université Laval, Centre Nutrition, Santé et Société (NUTRISS), Institut sur la Nutrition et les Aliments Fonctionnels (INAF); Université Laval, Library Desroches, Sophie; Université Laval, Centre Nutrition, Santé et Société (NUTRISS), Institut sur la Nutrition et les Aliments Fonctionnels (INAF); Université Laval, Centre Nutrition, Santé et Société (NUTRISS), Institut sur la Nutrition et les Aliments Fonctionnels (INAF); Université Laval, Centre Nutrition, Santé et Société (NUTRISS), Institut sur la Nutrition et les Aliments Fonctionnels (INAF); Université Laval, School of Nutrition
Keywords:	NUTRITION & DIETETICS, GENETICS, Lipid disorders < DIABETES & ENDOCRINOLOGY
	1

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

re-iezoni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	A systematic review of nutrigenetics, omega-3 and plasma
2	lipids/lipoproteins/apolipoproteins with evidence evaluation using the
3	GRADE approach
4	Justine R Horne, PhD, RD ^{1,2} ; Véronique Garneau, MSc, RD ¹ ; Valérie Marcil ^{3,4} , PhD, David M
5 6	Mutch, PhD ³ , Julie Robitalle, PhD, RD ^{1,2} , Iwona Rudkowska, PhD, RD ^{5,7} , Gabriela Sonan, MSI ⁸ , Sophie Desroches, PhD, RD ^{1,2} ; Marie-Claude Vohl, PhD^{1,2}*
7	¹ Centre Nutrition, Santé et Société (NUTRISS), Institut sur la Nutrition et les Aliments
8	Fonctionnels (INAF), Université Laval, Québec City, Québec, G1V 0A6, Canada
9	² School of Nutrition, Université Laval, Québec City, Québec, G1V 0A6, Canada
10	³ Research Centre, Sainte-Justine University Health Centre, Montréal, Québec, H3T 1C5, Canada
11	⁴ Department of Nutrition, Université de Montréal, Montréal, Québec, H3T 1J4, Canada
12 13	⁵ Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
14 15	⁶ Endocrinology and Nephrology Unit, CHU de Québec-Université Laval Research Center, Québec City, Québec, G1V 0A6, Canada
16	⁷ Department of Kinesiology, Université Laval, Québec City, Québec, G1V 0A6, Canada
17	⁸ Library, Université Laval, Québec City, Québec, G1V 0A6, Canada
18	**Corresponding Author: marie-claude.vohl@fsaa.ulaval.ca; Tel.: +1-418-656-2131 (ext.
19	404676)
20	Ethics Approval Statement: No ethics approval was required for a systematic review.
21	Running Head: Nutrigenetics, omega-3 and lipids/lipoproteins
22	Data described in the manuscript will be made available upon request pending approval
23	from the corresponding author.
24	Abbreviations: ALA (alpha-linolenic acid); CV (coefficient of variation); DHA
25 26	(docosanexaenoic acid); EPA (elcosapentaenoic acid); FDA (Food and Drug Administration): GPADE (Grading of Pacammandations Assessment Davalanment and
20 27	Evaluation): HCP (healthcare professional): I D (linkage disequilibrium): nutri-GRS
28	(nutrigenetic risk score); SNP (single nucleotide polymorphism)
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

ABSTRACT

Objectives: Despite the uptake of nutrigenetic testing through direct-to-consumer services and healthcare professionals, systematic reviews determining scientific validity are limited in this field. The objective of this review was to: retrieve, synthesize and assess the quality (level) of evidence for nutrigenetic approaches related to the effect of genetic variation on plasma lipid, lipo- and apolipoprotein responsiveness to omega-3 fatty acid intake.

Design: A systematic review was conducted using three search engines. Included studies assessed dietary interventions or associations between genetic variants and plasma lipid, lipo- and apolipoprotein levels based on omega-3 fatty acid intake. Studies were selected for evidence grading if there were statistically significant nutrigenetic findings for the same SNP(s) and lipid/lipoprotein/apolipoprotein outcome in at least two independent studies. Risk of bias was assessed in individual studies. Evidence was evaluated using the GRADE approach. This systematic review was registered with PROSPERO

(CRD42020185087).

Results: Out of 1830 articles screened, 65 met the inclusion criteria (n=23 observational, n=42 interventional); of these, 25 met the criteria for evidence evaluation using GRADE. Overall, current evidence is insufficient for gene-diet associations related to omega-3 fatty acid intake on plasma apolipoproteins, total cholesterol, HDL-cholesterol, LDL-cholesterol and LDL particle size. However, there is strong (GRADE rating: moderate quality) evidence to suggest that male APOE-E4 carriers (rs429358, rs7412) exhibit significant triglyceride reductions in response to omega-3-rich fish oil with a dose-response effect. Moreover, strong (GRADE rating: high quality) evidence suggests that a 31-SNP nutrigenetic risk score can predict plasma triglyceride responsiveness to omega-

- 3-rich fish oil in adults with overweight/obesity from various ethnicities.
- **Conclusions:** Most evidence in this area is weak, but two specific nutrigenetic interactions exhibited strong evidence, with limited generalizability to specific populations.
 - **Keywords:** nutrigenomics, nutrigenetics, nutritional genomics, genetic risk score, nutrigenetic risk score, triglycerides, lipids, lipoproteins, omega-3 fatty acid, APOE
- STRENGTHS AND LIMITATIONS

- -Strength: Comprehensive systematic review guided by PRSIMA
- Strength: Critical appraisal of the evidence guided by GRADE
 - Limitation: Inability to conduct a meta-analysis given the comprehensive overview of studies and thus heterogeneity
- Limitation: Several included studies without replication; most evidence was low or very low quality according to GRADE

INTRODUCTION

Cardiometabolic disease is a health concern worldwide (1). Nutrigenetic research demonstrates that there is significant inter-individual variability in cardiometabolic risk factor levels, in part based on a combination of genetic and nutrition-related risk factors (2,3). Consumers indicate great interest in personalized nutrition based on genetics (4,5), however, a lack of industry oversight (6,7) has led to highly variable scientific validity of nutrigenetic tests available to consumers. While recognizing that some groups question whether genetic testing for personalized nutrition is ready for 'prime time', Gorman and colleagues suggested that there are certain specific nutrigenetic interactions with strong evidence that could be considered for implementation into clinical practice by expert committees who are responsible for creating dietary guidelines (8). With this in mind, systematic reviews that include an evaluation of levels of evidence are urgently needed in order to determine if there are any nutrigenetic associations that may warrant potential implementation into practice.

The dominant omega-3 polyunsaturated fatty acids are eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which typically come from marine sources (e.g. fish oil), and alpha-linolenic acid (ALA), which are rich in plant sources (e.g., canola oil) (10,11). It is well established that higher intakes of omega-3 fatty acids from foods or supplements (herein after referred to as "omega-3s"), particularly from long-chain EPA and DHA, tend to improve indicators of cardiometabolic health (11,12). In terms of their lipid and lipoprotein lowering effects, omega-3s have consistently demonstrated an impact on triglycerides (TG) (13). High-quality evidence from population-based studies

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 5 of 71

BMJ Open

3 4	89	suggests that long-chain omega-3s (EPA and DHA) reduce plasma TG by about 15%
5 6	90	(13). There is also high-quality evidence suggesting that EPA and DHA can raise high-
7 8	91	density lipoprotein (HDL) cholesterol (13). Some studies have further demonstrated an
9 10 11	92	effect of omega-3 on HDL-cholesterol (14), low-density lipoprotein (LDL)-cholesterol
12 13	93	(14), total cholesterol (15–17), apolipoproteins (18), and LDL particle size (19). Despite
14 15	94	several studies with significant findings for these outcomes, when reviewing the
16 17	95	evidence, studies have demonstrated conflicting results for the impact of omega-3 on
18 19 20	96	many lipid profile outcomes (13). Genetic variation could explain this heterogeneity.
20 21 22	97	EPA and DHA have been shown to significantly impact the expression of thousands of
23 24	98	genes including those involved in inflammatory and atherogenic pathways (20,21).
25 26 27	99	Evidence now demonstrates that the health impacts of omega-3 intake could differ based
27 28 29	100	on genetic variation (22,23). Despite the potential for omega-3s to have a significant
30 31	101	positive impact on health outcomes, population intakes of omega-3s tend to be low (24).
32 33	102	While the World Health Organization's Adequate Intake level for adults is 200-250 mg
34 35 36	103	EPA+DHA daily (25,26), the mean reported intake of EPA+DHA in the United States is
37 38	104	only approximately 100 mg daily (24). Nutrigenetic interventions have the potential to
39 40	105	motivate improvements in dietary intake beyond population-based interventions (27).
41 42	106	Additionally, evidence suggests that genetic variability affects health responses to
43 44 45	107	omega-3s (22). Thus, critically appraising and grading the evidence for nutrigenetic
46 47	108	interactions related to omega-3s and plasma lipids, lipoproteins and apolipoproteins is an
48 49	109	important research priority. The most recent systematic review on nutrigenetic
50 51	110	interactions related to omega-3s and intermediate phenotypes of cardiovascular disease
52 53 54	111	was conducted nearly a decade ago, and this study did not evaluate the quality of
54 55 56	111	was conducted nearly a decade ago, and this study the not evaluate the quanty of

2	
3	
4	
5	
6	
/	
8	
9	
10	
11	
12	
13	
14	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33 24	
34	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
4/	
48	
49 50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

112	evidence using an established methodology (28). Therefore, we aimed to provide a
113	comprehensive summary of current evidence related to inter-individual variability in
114	plasma lipid, lipoprotein and apolipoprotein responses to omega-3 intake (plant and
115	marine sources) based on genetic variations. Overall, the specific objective of this study
116	was to: systematically search, identify (select), summarize, synthesize and assess the
117	quality of evidence for gene-diet effects on cardiometabolic risk factors - more
118	specifically, plasma lipid, lipoprotein and apolipoprotein responsiveness to omega-3s.
119	Methods
120	Patient and Public Involvement: No patient involvement.
122	Literature Search
123	The systematic review protocol was registered with PROSPERO (CRD42020185087).
124	The review process was guided by previously established methods, including a
125	previously outlined five-step systematic review process (29,30). The search engines
126	Embase, Web of Science and Medline OVID were used to conduct the search and screen
127	for articles meeting inclusion criteria, using the comprehensive search terms outlined in
128	Supplementary Table 1, properly combined by Boolean operators. The literature was
129	searched up until August 1, 2020. A PRISMA diagram (Figure 1) guided the article
130	screening process (31).
131	Inclusion and Exclusion Criteria
132	Original studies were included if they were written in English or French. Inclusion
133	criteria were developed using the Population, Intervention, Comparison, Outcomes,
134	(PICO) and Population, Exposure, Comparison, Outcomes (PECO) methods (32,33) for
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 7 of 71

BMJ Open

135	interventional and observational research, respectively. There were no limitations to the
136	population characteristics (all populations/patient samples were included). Animal studies
137	were excluded. Dietary interventions and observational studies involving omega-3s (total
138	omega-3 or various types; supplemental and/or dietary intake) and comparing lipid and/or
139	lipoprotein and/or apolipoprotein outcomes between different genetic variations based on
140	omega-3 dietary or supplemental intake (and not blood fatty acid levels; e.g. EPA and
141	DHA in red blood cells) were included. In included studies, samples had to be stratified
142	on the basis of genetic variation. Specific lipid and lipoprotein outcomes of interest were:
143	HDL-cholesterol, LDL-cholesterol, LDL particle size, total cholesterol, apolipoproteins,
144	and triglycerides (TG). Studies that reported ratios of the aforementioned lipid parameters
145	(e.g. HDL-cholesterol to total cholesterol ratio) were also included. Both observational
146	and interventional studies were included, as well as single-gene, polygenic and genome-
147	wide association studies (GWAS). Differences in study designs and methods were
148	considered when developing the overall evidence grades, as further detailed below.
149	Article Selection and Data Extraction
150	Two independent investigators (JH and VG) screened articles using the computer
151	software Covidence (including title, abstract, and full-text screening) and extracted data
152	from the included articles. Reference lists of included articles and of a systematic review
153	on a similar topic (34) were also screened for relevant articles. Data extraction templates
154	were piloted by two independent investigators (JH and VG) on ten included studies and
155	revised accordingly. The final data extraction templates included the following
156	components for each study: first author name and year, study design, genetic approach,
157	population and sample size, study duration (interventional studies only), genes and single

nucleotide polymorphisms (SNPs) analyzed with rs numbers, quantity and type of
omega-3, comparisons (e.g. a control group or different amount/type of omega-3s as well
as genetic grouping), lipid/lipoprotein outcome(s), whether or not the study reported that
they followed STREGA guidelines and a summary of statistically significant study
findings relevant to the research question. Corresponding authors of included studies
were contacted as needed to provide clarity and/or additional information about the
included studies.

Upon reading all full-text articles included, and summarizing the body of evidence,

Evidence Grading

SNPs/nutrigenetic risk scores (nutri-GRSs) and subsequent lipid/lipoprotein/apolipoprotein outcomes were systematically selected for evidence grading based on the following predetermined replication criteria: statistically significant nutrigenetic results for the same SNP(s)/nutri-GRS [or SNPs in strong linkage disequilibrium (LD)] and lipid/lipoprotein outcome in at least two studies. The Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach indicates that a single study rarely (if ever) results in strong evidence, but two studies (typically RCTs) can indicate strong evidence if they are graded highly using the GRADE criteria (35). Prior to selecting the genetic variants and lipid/lipoprotein/apolipoprotein outcomes for evidence grading, LD was assessed using the SNIPA SNP Annotator Software (36) for genes located on the same chromosome and arm (determined using the Online Mendelian Inheritance in Man® [OMIM] database) as outlined in the summary of results' tables in the column labelled 'Cytogenic Location of

180 Gene(s)' (Tables 1 and 2). Strong LD was defined as $r^2>0.8$ and location <250 kb away

Page 9 of 71

1

BMJ Open

8

2	
3	
4	
5	
6	
0	
/	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
10	
17	
20	
21	
22	
23	
24	
25	
26	
20	
2/	
28	
29	
30	
31	
32	
22	
רכ 2√	
34	
35	
36	
37	
38	
39	
10	
40 1	
41	
42	
43	
44	
45	
46	
47	
<u>4</u> 8	
40	
49	
50	
51	
52	
53	
54	
55	
55	
20	
5/	
58	
59	
60	

from the index SNP location. SNPs in strong LD were considered together for thepurposes of evidencing grading.

183 Based on our abovementioned predetermined criteria for study selection for evidence 184 grading, SNPs that were not included in the evidence grading process likely have weak evidence (at minimum due to lack of replication). According to the GRADE guidelines, 185 when only a single study exists indicating significant findings for an outcome of interest 186 187 (especially when the study is observational), the overall quality of the evidence is generally rated to be low or very low (37). Therefore, our study selection prioritization 188 189 process aimed to filter out evidence that would be deemed low or very low quality. Two 190 authors (JH and VG) critically appraised the selected nutrigenetic interactions using the 191 GRADE methodology (37,38). Nutrigenetic interactions were grouped according to 192 studies assessing the same SNP(s)/nutri-GRS and lipid/lipoprotein/apolipoprotein 193 outcome, and the quality of the body of evidence was rated; this process was guided by 194 the GRADE Evidence Profile, which included consideration of risk of bias, 195 inconsistency, indirectness, imprecision, publication bias, plausible confounding, dose-196 response and other factors (37). For example, different sources of omega-3s (e.g. 197 EPA+DHA vs. ALA; food sources vs. supplementation) were taken into consideration 198 when grading the evidence through the analysis of indirectness within the GRADE 199 approach (37,38). Risk of bias was assessed in each of the included interventional and 200 observational studies using the National Institutes of Health Study Quality Assessment 201 Tools, in line with recently published recommendations for risk of bias assessments (39). 202 To assess measures of precision, coefficients of variation (CV) were calculated based on 203 outcome means (mean change or absolute values – whichever was used for the analyses)

and standard deviations. In cases where standard errors of the mean were reported, these

were converted to standard deviation to calculate the CV. The nutrigenetic interactions were each given an evidence grade of high, moderate, low or very low. Results Figure 1 outlines the PRISMA Flow Diagram, which was used to guide the systematic review. Tables 1 and 2 provide a summary of the 65 included studies. The results columns of Tables 1 and 2 (far right) indicate only nutrigenetic findings that were statistically significant. Any results related to the studies' analyzed SNPs and outcomes of interest that were not statistically significant are not indicated in the results column. No studies explicitly reported that they followed STREGA guidelines. LD analysis of SNPs tested in different studies revealed strong LD in several SNPs from the FADS gene cluster (see Table 3 footnote). As such, LD was taken into consideration in the selection of nutrigenetic interactions selected for evidence grading. **Observational Studies** Of the 65 included studies, 23 were observational with the majority of these being cross-sectional, as outlined in Table 1. A total of 62,221 participants were included in the observational studies. These studies assessed correlations among a number of different genetic variations and outcomes, with several studies assessing genetic variations in the FADS gene cluster (40–46), $TNF\alpha$ (47–49) and $PPAR\alpha$ (50–52). Most studies (n=13) assessed total omega-3s (40,45–47,49,52–59). The intake and type of omega-3s, lipid/lipoprotein/apolipoprotein outcomes and associations revealed from these studies were variable as further detailed in Table 1. In the observational studies assessing genetic

BMJ Open

227	variation in the FADS gene cluster, some studies indicated significant gene-diet findings
228	related to HDL-cholesterol, LDL-cholesterol, TG, total-cholesterol while other studies
229	demonstrated no significant gene-diet interactions for these outcomes thus indicating
230	notable inconsistency among the results, while considering that SNPs differed by studies
231	(40–46). In the observational studies focused on genetic variation in the <i>TNF</i> α gene, there
232	was some evidence of a gene-diet relationship for omega-3 and LDL-cholesterol, total-
233	cholesterol and total-cholesterol:HDL-cholesterol ratio, but again, results differed
234	between studies (47–49). For gene-diet relationships and <i>PPARa</i> genetic variation,
235	individual studies indicated significant findings related to total-cholesterol, LDL-
236	cholesterol, TG, apoC-III and LDL peak particle diameter (50-52). Comprehensive
237	details of the observational studies are outlined in Table 1.
238	Interventional Studies
239	Of the 65 included studies, 42 were interventional including 16 randomized trials. Non-
240	randomized studies included single arm clinical trials and sequential non-randomized
241	cross-over interventions. For interventional studies, n=6,225 upon combining all sample
242	sizes of the included studies. Again, these studies assessed relationships between a
243	number of different genetic variants and study outcomes. In more recent years, several
244	studies (n=8) used a nutri-GRS or polygenic approaches (60–67) given the plausibility
245	that many gene-lipid/lipoprotein/apolipoprotein and omega-3 interactions are polygenic
246	in nature. Numerous studies assessed genetic variations in the FADS gene cluster
247	(60,61,68–70), APOE (60,70–79), CD36 (66,80,81), PPARγ2 (61,66,82–84) and PPARα
248	(82,85,86). Among these studies, results related to significant gene-diet (omega-3)
249	associations influencing lipid/lipoprotein outcomes were generally inconsistent except for

250	APOE (rs429358 and rs7412), omega-3 and TG in males only (70–74,76–79), and for a
251	31-SNP nutri-GRS, omega-3 and TG (64,65). There was also consistent evidence to
252	indicate a lack of association among PPARy2 (rs1801282) genetic variation, EPA+DHA
253	and LDL cholesterol (61,66,83,84,87). Most studies (n=40) used supplemental EPA
254	and/or DHA sources of omega-3s for the dietary intervention (see Table 2). The
255	dosage/intake and type of omega-3s were variable with EPA and/or DHA dosages
256	ranging from 0.5-3.7 g/day across different studies, and one study with an ALA
257	intervention dosage of 8.1 g/day, as further detailed in Table 2.
258	Levels of Evidence Using GRADE
259	A total of 25 articles were included in the evidence grading process, representing 11
260	unique nutrigenetic interactions as outlined in Tables 3 and 4, and Supplementary Table
261	2. Through the GRADE process, it was determined that there is strong evidence (GRADE
262	rating: moderate quality) for APOE genotypes (rs7412, rs429358), omega-3s and TG
263	lowering in male adults only (70-74,76-79). This evidence suggests that adult males (but
264	not females) with the APOE-E3/E4 or E4/E4 genotype (rs429358, rs7412) tend to
265	experience significant reductions in TG in response to 0.7-3.7 g/day of EPA and/or DHA,
266	with higher dosages demonstrating greater TG lowering effects (70-74,76-79).
267	Furthermore, it was determined that there is strong evidence (GRADE rating: high
268	quality) for using a 31-SNP nutri-GRS to assess the effectiveness of omega-3s for TG
269	lowering in adults with overweight/obesity in various ethnicities (64,65). The evidence
270	suggests that in adults with overweight/obesity, lower genetic risk scores demonstrate
271	greater responsiveness to omega-3 supplementation (64,65).

1	
2	
3	
4	
5	
7	
8	
9	
10	
11	
12	
13	
14	
15	
17	
18	
19	
20	
21	
22	
23	
24 25	
25 26	
27	
28	
29	
30	
31	
32	
33 24	
35	
36	
37	
38	
39	
40	
41	
42 13	
44	
45	
46	
47	
48	
49	
50	
51 52	
52 52	
54	
55	
56	
57	
58	

59

60

272 All other evidence that was evaluated was determined to be weak (GRADE rating: low or 273 very low quality), as further detailed in Table 3. Imprecision, indirectness, and 274 inconsistency were common reasons for downgrading the evidence (refer to Table 3 275 footnote). There was evidence for a plausible mechanism of action for most of the

nutrigenetic interactions that were graded; evidence of a dose response was less common. 276

rde.

Page 14 of 71

Table 1: Summary of observational studies									
Author, Year	Study Design	Genetic Approach	Population (sample size included in analyses)	Gene(s), SNP(s)	Cytogenic Location of Gene(s)	Quantity, Source and Type of Omega-3 ¹	Comparators	Plasma Lipid/ Lipoprotein Outcome(s)	Summary of Statistically Significant Study Findings Relevant to the Research Question ²
Bouchard- Mercier et al. 2011 (88)	Cross- Sectional	Single SNP	Healthy Caucasian men and women from INFOGENE study (n=674)	PPARa, L162V (rs1800206) PPARγ, P12A (rs1801282) PPARδ, -87T→ C (rs2016520)	РРАВа: 22q13.31 РРАВу: 3p25.2 РРАВб: 6p21.31	Mean: L162; 2.8 g/day V162; 2.9 g/day (unclear if food and/or supplement sources)	Minor allele carriers vs. Non-carriers	LDL-PPD	LDL-PPD: In a model including age, sex, TG, BMI, energy and omega-3 intakes and PPAR <i>a</i> L162V (rs1800206) polymorphism, the interaction of PPAR <i>a</i> 162V and omega-3 intakes explained 0.62% of the variance in LDL-PPD.
Bodhini et al. 2017 (89)	Cross- Sectional	Single SNP	Adults with normal glucose tolerance (n=821) and adults with type 2 diabetes (n=861)	MC4R, rs17782313 TCF7L2, rs12255372 TCF7L2, rs7903146	MC4R: 18q21.32 TCF7L2: 10q25.2- q25.3	Low: 0.38 g/day ALA Moderate: 0.58 g/day ALA High: 0.89 g/day ALA (means) (food)	Major allele homozygotes vs. Minor allele carriers	HDL-c	HDL-c: 'T' allele carriers of <i>TCF7L2</i> rs12255372 within the lowest tertile of ALA intake (mean=0.38 g/day) exhibited higher levels of HDL-c compared to GG homozygotes in the lowest tertile of ALA intake (mean=0.38 g/day)
Chen et al. 2019 (40)	Cross- Sectional Analysis within a Prospective Cohort	Single SNP, Haplotype and Gene-Centric	Adults of Swedish ancestry from the GLACIER cohort (n=5160)	All variations in the FADS1- FADS2-FADS3 gene cluster and variation within 200kb upstream and downstream of the FADS region	<i>FADS1:</i> 11q12.2 <i>FADS2:</i> 11q12.2 <i>FADS3:</i> 11q12.2	High: >1.6 g/day Low: <1.6 g/day (food)	Entire FADS region gene-centric analysis and Variation in individual FADS cluster SNPs: rs174570, rs174602, rs74771917, rs3168072, rs71577276, rs7115739 and Haplotype analysis	HDL-c LDL-c TG Total-c	 HDL-c: Significant interaction of rs174570 and omega-3 on HDL-c LDL-c: Significant interaction of rs174602 and omega-3 on LDL-c TG: Gene-centric analyses demonstrated a significant interaction between variation in the <i>FADS</i> gene cluster and omega-3 intake on TG Total-c: Significant interaction of rs174602 and omega-3 on total-c ('C' allele carriers exhibited lower total-c with low omega-3 intake, while no such relationship was observed with high omega-3 intake)
Ching et al. 2019 (90)	Cross- Sectional	Single SNP	Vegetarian adults of Malaysian ancestry (n=200)	<i>FADSI,</i> rs174547	<i>FADSI:</i> 11q12.2	Low: ≤0.45 g/day ALA Moderate: 0.46- 0.64 g/day ALA High: >0.64 g/day ALA (means) (food)	Comparison between three genotypes	HDL-c TG	HDL-c: The TT genotype had significantly lower HDL-c when ALA intake was in the moderate intake range, but there were no significant gene-omega-3 interaction on lipid levels
Dumont et al.	Cross-	Single SNP	Adolescents of	FADS1,	FADS1: 11q12.2	High: >1.4 g/day	Major allele	HDL-c	Total-c: Significant interaction whereby the minor allele

1		
T	٠	

2011 (42)	Sectional		European ancestry (n=573)	rs174547		ALA Low: ≤1.4 g/day ALA (unclear if food and/or supplement sources)	homozygotes vs. Minor allele carriers	LDL-c TG Total-c	(CT+TT genotype) was associated with lower total-c whe ALA intake is high as compared to when intake is low. Th remained significant after assessing the interaction using AI intake as a continuous variable.
Dumont et al. 2018 (43)	Cross- Sectional	Single SNP	Men and women aged 35 to 74 years from the MONA LISA Study of three French populations (n=3069)	FADSI, rs174547	<i>FADSI:</i> 11q12.2	Low: 0.6 g/day ALA (mean) Median: 0.8 g/day ALA (stratified by median for analyses) High: 1.3 g/day ALA (mean) (food and supplement)	Comparison between three genotypes	HDL-c LDL-c TG Total-c	
Fallaize et al. 2016 (53)	Cross- Sectional (Baseline) and Longitudinal Analyses within a Randomized Intervention	Single SNP*	Healthy adults enrolled in the Food4Me European trial (<i>n</i> =1466)	APOE, rs429358, rs7412	<i>APOE:</i> 19q13.32	High: >0.67 %kcal Low: <0.67 %kcal Increased Intake: reduced omega-3 intake from baseline Decreased Intake: decreased omega-3 intake from baseline (unclear if food and/or supplement sources)	<i>APOE</i> -E4- vs. <i>APOE</i> -E4+	Total-c	Total-c: Cross-sectional (baseline) analysis demonstrated significant genotype effect for <i>APOE</i> , omega-3 intake, an total-c. Longitudinal analysis (baseline to month 6) demonstrated a significant genotype effect for <i>APOE</i> , chang omega-3 intake (increase or decrease) and total-c.
Fontaine- Bisson and El- Sohemy 2007 (91)	Cross- Sectional	Genetic Score	Men and women aged 20-29 years (n=595)	<i>TNFa</i> , rs361525, rs1800629	TNFa: 6p21.33	Intake range: 0.2- 4.6 %kcal (mean intakes were 0.7 %kcal for 0/0, 0.7% kcal for 0/1 and 0.6%kcal for 1/0) (food)	No minor allele ('A') for both SNPs (0/0) vs. One minor allele for rs361525 (1/0) vs. One minor allele for rs1800625 (0/1)	HDL-c	
Fontaine- Bisson et al. 2009 (92)	Cross- Sectional	Single SNP	Healthy men and women aged 20-29 years (n=593)	<i>NF-κB</i> -94Ins/Del ATTG (rs28362491)	<i>NF-кВ:</i> 4q24	Mean intake: 0.7 %kcal (unclear if food and/or supplement sources)	Ins/Ins vs. Ins/Del vs. Del/Del	HDL-c	HDL-c: Significant interaction between <i>NF-κB</i> genotype a omega-3 intake on HDL-c
Hellstrand et al. 2012 (93)	Cross- Sectional	Single SNP	Healthy men and women aged 45-68 years from Sweden (n=4635)	<i>FADS,</i> rs174547	FADS: 11q12.2	Low: ≤0.14 %kcal long-chain omega- 3 Moderate: 0.14- 0.28 %kcal long- chain omega-3 High: >0.28 %kcal long-chain omega-3 (terilles	TT vs. TC vs. CC	HDL-c LDL-c TG	LDL-c: Significant interaction between FADS rs174547 genotype and long-chain omega-3 on LDL-c whereby the ' allele was significantly associated with lower LDL-c whe long-chain omega-3 intake was in the lowest tertile (but not the moderate or highest tertile). High long-chain omega- intake was associated with significantly higher LDL-c for C and TC genotypes but not TT genotypes. Stratified analys based on sex demonstrated that these significant interaction remained for men but not women however there was not

			1						
						of intake reported only for certain significant findings) (food and supplement)			significant difference in interactions by sex.
Hosseini- Esfahani et al. 2017 (94)	Nested Case- Control	Single SNP	Healthy men and women aged ≥18 years from Iran (n=1634)	ZNT8, rs13266634	ZNT8: 8q24.11	Tertiles for omega-3: Low: <0.38 %kcal	CC vs. CT+TT	HDL-c TG	 HDL-c: Significant interaction between ZNT8 rs13266634 genotype and omega-3 intake on the risk of low HDL-c whereby CC genotypes exhibited a decreased risk of low HDL-c with increasing intake of omega-3; this was not observed in the CT+TT genotype group. TG: Significant interaction between ZNT8 rs13266634 genotype and omega-3 intake on the risk of high TG whereby CC genotypes exhibited a decreased risk of high TG with increasing intake of omega-3; this was not exhibited in the CT+TT genotype group.
Jang et al. 2014 (95)	Cross- Sectional	Single SNP	Adult: Men and women aged 40-69 from Korea (n=4205) Children: Boys and girls aged 8-13 years from Korea (n=1548)	PCSK5, rs1029035	<i>PCSK5</i> : 9q21.13	Based on overall median intake (further detailed elsewhere (95)): Low: <0.4 %kcal High: >0.4 %kcal (food)	CC vs. CA vs. AA	HDL-c	HDL-c: Significant interaction between <i>PCSK5</i> rs1029035 and omega-3 on HDL-c in male children and male adults. 'C' allele carriers exhibit a tendency to decrease HDL-c with omega-3, while AA genotypes exhibit the opposite effect.
Joffe et al. 2010 (96)	Cross- Sectional	Single SNP	Black women from South Africa, normal weight or with obesity (n=138)	<i>TNFa,</i> rs1800629	TNFa: 6p21.33	ALA (amount not reported/cannot determine) (food)	GG vs. GA+AA	HDL-c LDL-c TG Total-c Total-c:HDL-c	Total-c:HDL-c ratio: Significant interaction between <i>TNFa</i> , rs1800629 genotypes and %kcal from ALA whereby increasing %kcal from ALA was associated with increases in Total-c:HDL-c for GG genotypes but decreases in Total-c:HDL-c ratio for GA+AA genotypes
Joffe et al. 2012 (97)	Cross- Sectional	Single SNP	Black and white women from South Africa, normal weight or with obesity (n=263)	<i>TNFa,</i> rs361525	<i>TNFα:</i> 6p21.33	Median Intakes: omega-3: 0.28- 0.36 % kcal ALA: 0.21-0.26 %kcal EPA: 0.02 %kcal DHA: 0.04-0.08 %kcal (food)	GG vs. GA(+AA for one participant: black, normal weight)	HDL-c LDL-c TG Total-c Total-c:HDL-c	 LDL-c: Significant interaction for Caucasian women whereby LDL-c decreased with increasing %kcal from EPA in the GG genotype but not the GA genotype of <i>TNFa</i>, rs361525. Total-c: Significant interaction for white women whereby total-c decreased with increasing EPA and DHA intakes in the GG genotype group but not the GA genotype group of <i>TNFa</i> rs361525 but individual rates were not significant. Total-c:HDL-c ratio: Significant interaction for black women whereby Total-c:HDL-c decreased within increasing %kcal from omega-3 in the GA genotype group but not GG of <i>TNFa</i> rs361525.
Joffe et al. 2014 (98)	Cross- Sectional	Single SNP	Black and white women from South Africa, normal weight or with obesity (n=268)	<i>IL-6</i> , -174 G>C, IVS3 (rs1800795), +281 G>T, IVS4 (rs1554606), +869 A>G (rs2069845)	IL-6: 7p15.3	Black Women (%kcal/day): 0.28 omega-3, 0.21 ALA, 0.02 EPA, 0.04 DHA (normal weight); 0.36 omega-3, 0.22 ALA, 0.04 EPA, 0.08 DHA (obesity)	Major allele homozygotes vs. Minor allele carriers <i>or</i> Comparison between three genotypes	HDL-c LDL-c TG Total-c Total-c:HDL-c	The following results were statistically significant only in white women, but not in black women ³ : HDL-c: Significant interaction whereby HDL-c increased with: increasing omega-3 and/or DHA and/or ALA intake in <i>IL-6</i> rs1800795 C allele carriers and increasing ALA intake in <i>IL-6</i> rs1554606 T allele carriers. HDL-c decreased with: increasing EPA and/or DHA intake in <i>IL-6</i> rs2069845 G allele carriers. TG: Significant interaction whereby TG reduced with increasing EPA intake in <i>IL-6</i> rs1800795 C allele carriers Total-c:HDL-c: Significant interaction whereby total-c:HDL-c

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	
Т	

						White Women (%kcal/day): 0.33 omega-3, 0.26 ALA, 0.01 EPA, 0.05 DHA (normal weight); 0.32 omega-3, 0.25 ALA, 0.02 EPA, 0.05 DHA (food)			ratio decreased with: increasing EPA intake in <i>IL-6</i> rs CC genotypes and <i>IL-6</i> rs1554606 TT genotypes, inc DHA intake in <i>IL-6</i> rs1800795 CC genotypes, and inc ALA intake in <i>IL-6</i> rs1554606 TT genotypes.
Lai et al. 2006 (99)	Cross- Sectional	Single SNP	Men and women from the Framingham Heart Study (n=2148)	APOA5, rs662799, rs651821, rs3135506, rs2072560, rs2266788	<i>APOA5:</i> 11q23.3	Mean Intake: 0.69 %kcal omega-3 Tertiles for omega-3: Low: <0.58 %kcal Moderate: 0.58- 0.74 %kcal High: >0.74 %kcal (unclear if food and/or supplement sources)	Major allele homozygotes vs. Minor allele carriers	TG	
Lu et al. 2010 (100)	Cross- Sectional	Single SNP	Men and women of Doetinchem Cohort Study (n=3575)	<i>FADS</i> , rs174546, rs482548, rs174570	FADS: 11q12.2	Mean intake: 0.5 %kcal (food)	Comparison between three genotypes	HDL-c Total-c	Total -c : In high omega-3 intake group, total-c v significantly higher with each added minor 'C' all rs174546
Nettleton et al. 2009 (101)	Cross- Sectional	Single SNP	Men and women of Caucasian ancestry (n=8511)	ANGPTL4 E40K (rs116843064)	ANGPTL4: 19p13.2	Not Reported/Cannot Determine (food)	Minor allele carriers vs. Non-allele carriers	HDL-c TG	-
Richardson et al. 2011 (102)	Meta-analysis of the Framingham Offspring Study (FOS) and the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN)	Single SNP	Men and women from FOS and GOLDN studies (n=3605)	PLIN4, rs8887, rs11673616, rs892158, rs7250947, rs8102428, rs1609717, rs884164	<i>PLIN4:</i> 19p13.3	Mean intakes: FOS Men: 1.43 g/d FOS Women: 1.37 g/d GOLDN Men: 1.83 g/d GOLDN Women: 1.48 g/d (food and supplement)	Minor allele carriers vs. Non-allele carriers	TG HDL-c	TG: Significant interactions for <i>PLIN4</i> , rs884164 wh levels increased in minor allele carriers with higher of intake for males and females combined, and males ind
Standl et al. 2012 (46)	Cross- Sectional Analysis (10- year time point) within a 10-year longitudinal cohort study	Single SNP	10 year-old children of the GINIplus and LISAplus birth cohort studies (n=1697)	FADS1/FADS2, rs174545, rs174546, rs174556, rs1745561, rs174561, rs174575, rs3834458	FADS1/2: 11q12.2	Median intake: 0.14 mg/MJ omega-3 (ALA+EPA+DPA +DHA) (food and supplement)	Comparison between three genotypes	HDL-c LDL-c Total-c TG	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2 4										
5 6 7 8	Tai et al. 2005 (103)	Cross- Sectional	Single SNP	Framingham Cohort, men and women (n=2106)	<i>PPARα</i> , L162V (rs1800206)	<i>PPARα</i> : 22q13.31	High: >0.69 %kcal Low: <0.69 %kcal (food)	PPARa: 162V carriers vs. 162L/162L homozygotes	TG apoC-III	TG: 167V carriers had lower TG with high omega-3 intake compared to low omega-3 intake (gene-diet-interaction effects were NS) apoC-III: Significant gene-diet interactions; Higher apoC-III in 162V carriers with low omega-3 intake compared to 162V carriers with high omega-3 intake and 162L homozygotes with low omega-3 intake
9 10 11 12 13 14 15 16	Volcik et al. 2008 (104)	Cross- Sectional (Baseline) Analysis within a Prospective Cohort	Single SNP	African American (n=3480) and Caucasian (n=10 134) men and women (N=13,614)	PPARa, L162V (rs1800206), 3'UTR G>A (rs6008259), 3'UTR C>T (rs3892755)	<i>PPARa</i> : 22q13.31	African American: High: >0.32 g/d EPA+DHA Low: ≤0.32 g/d EPA+DHA Caucasian: High: >0.22 g/d EPA+DHA Low: ≤0.22 g/d EPA+DHA (food)	Comparison between three genotypes for each SNP	HDL-c LDL-c TG Total-c	Total-c, LDL-c: African Americans (but not Caucasians) homozygous for <i>PPARα</i> (rs3892755) TT genotype with high EPA+DHA intake had significantly lower total-c and LDL-c compared to CT and TT genotypes (both high and low EPA+DHA intake)
17 18 19 20	Warodomwich it et al. 2009 (105)	Cross-sectional with fasting and postprandial measures	Single SNP	Men and women of GOLDN study (n=1083)	<i>TCF7L2</i> rs7903146, rs12255372	<i>TCF7L2</i> : 10q25.2-25.3	N/A (Median omega-3: 0.67% of kcal) (food)	Major allele homozygotes vs. Minor allele carriers	HDL-c LDL-c LDL-c particle size TG Total-c	
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37	AL ⁴ not a 1. In 2. A Part 3. T and '' in *Hu	A: alpha-linolenic applicable, NS: Na takes are total om Il other (not listed icipants are descri hese results were t un-stratified by et ndicates that all of man <i>APOE</i> is poly	acid, Apo: apolipo on-significant, sdL lega-3 unless other l) gene/omega-3/lip bed as "healthy" for taken from the full- hnicity. Note: Then f the completed ger ymorphic at two sin	protein, DHA: do DL-c: small, dens wise specified bid/lipoprotein res or studies that inco- text manuscript's re were no correct re/omega-3/lipid/l ngle nucleotides (cosahexaenoic ac ie, low-density lip oults of interest to orporated exclusis summary table of tions for multiple lipoprotein analys rs429358 and rs7	cid, EPA: eicosapent poprotein cholesterol the present review v on criteria for certain of IL-6 results. Refer testing in the statisti ses were NS (412) resulting in thr	aenoic acid, HDL: h , SNP: single nucleo vere NS n conditions, blood l to Supplementary T cal analyses. ee different alleles (a	igh-density lipoprotein tide polymorphism, T ipid levels, etc. and wh ables S8-S13 in Joffe ε2, ε3 and ε4)	n cholesterol, LD 'G: triglycerides hen studies descri et al. 2014 (98) f	L: low-density lipoprotein cholesterol, N/A: ibed the population as "healthy." or several other significant results, stratified
38										

-	
_	

5 6 7	Table 2: Summary of interventional studies										
8 9 1 QAuthor, Year 1 1	Study Design	Genetic Approach	Population (sample size included in analyses)	Intervention Duration	Gene(s), SNP(s)	Cytogenic Location of Gene(s)	Quantity, Source and Type of Omega-3	Comparators	Plasma Lipid/ Lipoprotein Outcome(s)	Summary of Statistically Significant Study Findings Relevant to the Research Question ¹	
T2 13 14 15 16 17 18AbuMweis et 19 ^{al. 2018 (70)} 20 21 22 23 24 25	Randomized, Crossover Controlled Intervention	Single SNP*	Adults with at least one cardiovascular risk factor (n=129)	4 weeks	<i>FADS1</i> , rs174561 <i>FADS2</i> , rs174583 <i>ELOVL2</i> , rs953413 <i>ELOVL5</i> , rs2397142 <i>CETP</i> , rs5882 <i>SCD1</i> , rs2234970, <i>PPARα</i> , rs6008259 <i>LIPF</i> , rs814628 and <i>APOE</i> , rs429358, rs7412	FADS1/2: 11q12.2 ELOVL2: 6p24.2 ELOVL5: 6p12.1 CETP: 16q13 SCD1: 10q24.31 PPARa: 22q13.31 LIPF: 10q23.31 APOE: 19q13.32	Intake range: 1.0 – 2.5 g/day DHA (supplement)	Comparison between three genotypes for each single SNP (except <i>PPARA</i> and <i>LIPF</i> whereby analyses were major allele homozygotes vs. minor allele carriers) and <i>APOE</i> -E2 vs. <i>APOE</i> -E3 vs. <i>APOE</i> -E4	apoA1 apoB HDL-c LDL-c TG Total-c		
26 27 28 29 30 31 32 _{Alsaleh et al.} 33 2014 (106) 34 85 36 37 38 39 40	Randomized Controlled Intervention	Single SNP and Polygenic	Healthy men and women (n=310)	12 months	CETP, rs3764261, <i>LIPC</i> , rs1532085 <i>APOB</i> , rs1367117 <i>ABCG5/ABCG</i> , rs4299376 <i>TIMD4/HAVCR</i> <i>I</i> , rs6882076 <i>GCKR</i> , rs1260326 <i>TRIB1</i> , rs2954029 <i>ANGPTL3/DO</i> <i>CK7</i> , rs2131925 <i>FADS1/2/3</i> , rs174546 <i>GALNT2</i> , rs4846914 <i>ABCA1</i> ,	CETP: 16q13 LIPC: 15q21.3 APOB: 2p24.1 ABCG5/ABCG8: 2p.21 TIMD4/HAVCR1: 5q33.3 GCKR: 2p23.3 TRIB1: 8q24.13 ANGPTL3/DOCK 7: 1p31.3 FADS: 11q12.2 GALNT2: 1q42.13 ABCA1: 9q31.1 APOE/APOC1/AP OC2: 19q13.32	Low Dose: 0.5 g/day EPA and DHA Moderate Dose: 0.9 g/day EPA and DHA High Dose: 1.8 g/day EPA and DHA (supplement)	Effect sizes per GRS risk allele after omega-3 treatment <i>and</i> Risk allele carriers vs. non-risk allele carriers	HDL-c LDL-c TG Total-c	TG: significant interaction whereby 1.8 g/day EPA and DHA significantly reduced TG in T allele carriers (21.6% reduction vs. CC genotypes (3.5% reduction) of <i>FADS1</i> rs174546	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2 3										Ĩ
4 5 6 7					rs4149268 <i>APOE/APOC1/</i> <i>APOC2</i> , rs439401					
7 8 9 10 _{Armstrong et} 1 fal. 2012 (107) 12 13 14	Double-Blind, Placebo- Controlled Randomized Intervention	Single SNP (deletion polymorphism)	Healthy adults of African ancestry (n=98)	6 weeks	ALOX5, dd (33, 34 or 44), d5 (35, 45) and 55 (control) genotypes	<i>ALOX5:</i> 10q11.21	Fish oil: 5.0 g/day containing 2.0 g/day EPA and 1.0 g/day DHA Control oil: 5.0 g/day corn/soy oil (supplement)	dd vs. d5 vs. 55	TG Mean lipoprotein particle diameter, total number of particles and particle concentration for: HDL-c and LDL-c	 TG: significant interaction whereby decreases in TG from omega-3 supplementation were specific to d5 genotype group HDL-c particle concentration: significant decrease with omega-3 intervention in the d5 and 55 genotype groups compared to placebo, but no decreases in the dd genotype group Medium HDL-c particles and HDL-c (mmol/L): significant gene-treatment interaction but no significant differences after post-hoc analysis for comparisons among genotypes
15 16 17 ^{Binia} et al. 2017 (82) 18	Single-Arm Clinical Trial	Single SNP	Mexican adults 18-40 years (n=191)	6 weeks	<i>PPARα</i> , L162V (rs1800206), <i>PPARγ2</i> , P12A (rs1801282)	PPARa: 22q13.31 PPARy2: 3p25.2	Fish oil: 2.7 g/day containing 1.9 g/d EPA and 0.8 g/day DHA (supplement)	Major allele homozygotes vs. Minor allele carriers	HDL-c LDL-c TG Total-c	LDL-c: significant increase in LDL-c among minor allele carriers (PPARγ2 Pro12Ala and Ala12Ala) only vs. PPARγ2 Pro12Pro genotypes only for individuals with BMI>25.0 kg/m ² Total-c: significant increase in total-c among minor allele carriers (PPARγ2 Pro12Ala and Ala12Ala) only vs. PPARγ2 Pro12Pro genotypes only for individuals with BMI>25.0 kg/m ²
20 21 22 23 24 25 Bouchard 25 Bouchard 26 2013 (108) 27 28 29 30 21	Single Arm Clinical Trial	Single SNP	Healthy adults aged 18-50 years (n=208)	6 weeks	SREBF1, rs4925115, rs4925115, rs12953299 ACLY, rs8071753, rs8065502, rs2304497 ACACA rs2017571, rs29221368, rs9906044, rs2229416, rs1714987, rs1266175, rs3815059, rs829165	<i>SREBF1:</i> 17p11.2 <i>ACLY:</i> 17q21.2 <i>ACACA:</i> 17q12	Fish oil: 5.0 g/day containing 1.9-2.2 g/day EPA and 1.1 g/day DHA (supplement)	Major allele homozygotes vs. Minor allele carriers <i>or</i> Comparison between three genotypes (when minor allele frequencies were >0.05)	TG	TG: Significant gene-diet interaction whereby individuals with the GG genotype of <i>ACLY</i> rs8071753 and individuals with the GG or CG genotype of <i>ACACA</i> rs1714987 exhibited greater TG lower effects following omega-3 supplementation; these two SNPs explained approximately 8% of the variance in plasma TG responses to omega-3 supplementation. There were significant differences in genotype frequencies of <i>ACLY</i> rs8071753 for responders and non-responders to omega-3 for TG lowering.
32 33 34 35 Bouchard- 36 ^{Mercier} et al. 36 ²⁰¹⁴ (109) 37 38 39 40	Single Arm Clinical Trial	Single SNP	Healthy men and women aged 18-50 years (n=208)	6 weeks	RXRA (12 SNPs), CPTIA (9 SNPs), ACADVL (1 SNP), ACAA2 (6 SNPs), ABCD2 (8 SNPs), ACOXI (8 SNPs), ACOXI (8 SNPs), ACAAI (3 SNPs) [outlined in Supplementary	<i>RXRA</i> : 9q34.2 <i>CPT1A</i> : 11q13.3 <i>ACADVL</i> : 17p13.1 <i>ACAA2</i> : 18q21.1 <i>ABCD2</i> : 12q12 <i>ACOXI</i> : 17q25.1 <i>ACAA1</i> : 3p22.2	Fish oil: 5.0 g/day containing 1.9-2.2 g/day EPA and 1.1 g/day DHA (supplement)	Major allele homozygotes vs. Minor allele carriers <i>or</i> Comparison between three genotypes (when minor allele frequencies were >0.05)	TG	TG: There were significant gene-diet interaction effects on TG responses to omega-3 for RXRA rs11185660 genotype dependent on total fat intake, RXRA rs10881576, rs12339187 and rs11185660 genotypes dependent on saturated fat intake, and ACOX1 rs17583163 dependent on total polyunsaturated fat intake

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 21 of 71

\sim	
• •	I

4										
5					Table 2]					
6 7 8 Bouchard- Mercier et al. 9 2014 (110) 10 11	Single Arm Clinical Trial	Single SNP	Healthy men and women aged 18-50 years (n=208)	6 weeks	GCK (13 SNPs) [outlined in Supplementary Table 3]	<i>GCK:</i> 7p13	Fish oil: 5.0 g/day containing 1.9-2.2 g/day EPA and 1.1 g/day DHA (supplement)	Major allele homozygotes vs. Minor allele carriers <i>or</i> Comparison between three genotypes (when minor allele frequencies were >0.05)	TG	TG: CC genotypes of <i>GCK</i> rs741038 exhibited significantly greater TG reduction in response to omega-3 when their carbohydrate intake was high (>48.6%kcal) compared to those with the CC genotype of rs741038 with low carbohydrate intake (\leq 48.6%kcal) and compared to CT or TT genotypes with either high or low carbohydrate intake.
12 13Caron-Dorval 14 ^{et al. 2008} (111) 15	Single Arm Clinical Trial	Single SNP	Healthy men of Caucasian ancestry aged 18-55 years (n=28)	6 weeks	<i>PPARα</i> , L162V (rs1800206)	PPARa: 22q13.31	Fish oil: 5.0 g/day containing 1.9 g/day EPA and 1.1 g/day DHA (supplement)	V162 carriers vs. non-carriers	apoB-100 HDL-c LDL-c TG Total-c Total-C:HDL-c	
16 17 18 19 20 21 Carvalho- 22 Wells et al. 23 2012 (112) 24 25 26 27	Sequential Non- Randomized, Cross-Over Dietary Intervention	Single SNP*	Healthy men and women aged 35-70 years (<i>n</i> =88)	8 weeks per diet	<i>APOE</i> , rs429358, rs7412	<i>APOE:</i> 19q13.32	Low-Fat: 4.0 mg/day EPA, 10.6 mg/d DPA, 11.7 mg/d DHA High-SFA: 20.2 mg/d EPA, 27.1 mg/d DPA, 15.4 mg/d DHA High-SFA+DHA: 524.3 mg/d EPA, 215.5 mg/d DPA, 3017.3 mg/d DHA [actual intakes reported (113)] (supplemental DHA for High- SFA+DHA; others from food sources)	<i>APOE</i> -E3/3 vs. <i>APOE</i> -E3/4	apoB apoC-III apoE HDL-c LDL-c sdLDL-c TG Total-c	TG: Significant diet x genotype interaction for TG; greater TG lowering response to high-SFA+DHA diet in <i>APOE</i> -E3/4 carriers (compared to high-SFA diet alone)
28 29 30 ^C aslake et al. 31 2 ^{008 (114)} 32	Double-Blind, Randomized, Placebo- Controlled, Crossover Intervention	Single SNP*	Healthy men and women aged 20-70 years (n=312)	8 weeks per diet	APOE, rs429358, rs7412	APOE: 19q13.32	Control oil: 0.0 g/d EPA and DHA Fish oil: 0.7 g/d EPA and DHA Fish oil: 1.8 g/d EPA and DHA (supplement)	APOE-E2/E2 + E2/E3 vs. APOE-E3/E3 vs. APOE-E3/E4 + E4/E4	HDL-c LDL-c TG Total-c	TG: Significant interaction between treatment x sex x genotype whereby $APOE$ -E3/E4 + E4/E4 males exhibited the greatest TG reductions with both 0.7 g/d EPA and DHA as well as 1.8 g/d EPA and DHA compared to other genotypes
B3 B4 _{Cormier et al.} B5 2012 (115) B6	Single Arm Clinical Trial	Single SNP	Healthy men and women aged 18-50 years (n=208)	6 weeks	FADS gene cluster (19 SNPs) [outlined in Supplementary Table 3]	FADS: 11q12.2	Fish oil: 5.0 g/day containing 1.9 g/day EPA and 1.1 g/day DHA (supplement)	Major allele homozygotes vs. Minor allele carriers	TG	
B7 B8 Dang et al. 2015 (73) B9	Single Arm Clinical Trial	Single SNP*	Healthy men and women aged 20-35 years (n=80)	4 weeks	<i>APOE</i> , rs429358, rs7412	APOE: 19q13.32	Fish oil containing 900 mg EPA and 680 mg DHA (supplement)	APOE-E4+ vs. APOE-E4-	HDL-c LDL-c TG Total-c	
4 Pawczynski et	Randomized,	Single SNP	Men and	10 weeks	CD36,	CD36: 7q21.11	Yogurt with lower	Comparison between	HDL-c	HDL-c: In response to omega-3 supplementation (0.8-3.0

3										
al. 2013 (81)	Placebo- Controlled, Double-Blind Intervention		women with $TG \ge 1.7$ mmol/L, otherwise healthy (n=47)		rs1761667, rs1049673		dose fish oil: 0.8g/day omega-3 containing 0.01g ALA, 0.44g EPA, 0.06g DPA and 0.31g DHA (fish oil)	three genotypes	TG	g/day), HDL-c increased in GA genotype of <i>CD36</i> rs1761667 and CG genotype of <i>CD36</i> rs1049673. TG : In response to omega-3 supplementation (0.8-3.0 g/day), TG decreased in GA genotype of <i>CD36</i> rs1761667.
10							Yogurt with			
11							oil: 3.0 g/day			
12							omega-3			
3							ALA, 1.59g EPA,			
4							0.23g DPA and 1 12g DHA (fish			
15					6		oil)			
10							Control yogurt:			
12							commercial whole			
10							3.5% milk fat			
20							(food)			
<u>21</u>									apoA-1	
22 23 Ferguson et al. 24 2010 (116)	Randomized Intervention and Cross- Sectional	Single SNP	Men and women with metabolic syndrome from	12 weeks	<i>NOS3,</i> rs11771443, rs1800783, rs1800779,	NOS3: 7q36.1	1.24 g/d EPA+DHA supplement (intervention); quantity of omega-	Major allele homozygotes vs.	apoB apoB-48 apoC-II apoC-III apoE	TG: For <i>NOS3</i> rs1799983 minor-allele (A) carriers only, the observational analysis indicated higher TG with lower EPA+DHA intake (and lower TG with higher EPA+DHA intake). Post-intervention with omega-3 supplementation
25	(Baseline)		LIPGENE		rs3918227,		3 not reported for	Minor allele carriers	HDL-c	significated that only minor-allele (A) carriers exhibited significant TG reduction (accompanied by increases in plasma
26	Analysis		conort (n=450)		rs743507		analyses		TG	omega-3).
27								PP / Pu2 gapatupa	Total-c	
28								analyses were by		
29								major allele		
30					PPARv2			heterozygotes		
31					Pro12Ala		5.0 mL/day fish	and		
32	Dandamizad		Infants of		(rs1801282), FADSI, rs1535,	PPARy2: 3p25.2	reported intake:	E4DS construes	HDL-c	TC: DD (Du2) hotomorphics on which its direction of TC in morphone
$33_{\text{Harsløf et al.}}$	Controlled	Single SNP and	Danish	9 months	FADS2, rs174575	FADS: 11q12.2	3.8 g/day	analyses were by the	LDL-c TG	to omega-3 when compared to $PPARy2$ heterozygotes in the
54 ²⁰¹⁴ (01)	Intervention	Genetic Score	(n=133)		FADS3,	q25.3	mg/day EPA and	number of DHA- increasing alleles	Total-c	control (sunflower oil) group
36					rs174448 COX2, rs5275		620 mg/day DHA) (supplement)			
37					rs689466		(~~FF)	and		
38								COX2 genotype		
39								major allele		
40								homozygotes vs.		

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 23 of 71

1

\mathbf{r}	
	•

2 3										
4 5 6								heterozygotes vs. minor allele homozygotes		
7 8 Itariu et al. 9 2012 (83) 10	Randomized, Controlled Intervention	Single SNP	Men and women without diabetes with a BMI ≥40 kg/m ² aged 20- 65 years (n=55)	8 weeks	<i>PPARγ2</i> , Pro12Ala (rs1801282)	<i>ΡΡΑRγ2</i> : 3p25.2	Fish oil containing 3.4 g/day EPA + DHA (supplement)	PPARγ2, Ala12 carriers vs. Pro12Pro	apoB HDL-c LDL-c TG Total-c	 apoB: Significant increases in apoB with omega-3 intervention in Ala12 carriers when compared to Pro12 carriers. Total-c: Significant interaction effect whereby increases in total-c were exhibited with omega-3 intervention in Ala12 carriers when compared to the Pro12Pro genotype.
12 13 $14^{Jackson et al.}$ 15 16 17	Non- Randomized Intervention	Single SNP*	Healthy men aged 35-70 years (n=23)	8 weeks and 480-min postprandial	<i>APOE</i> , rs429358, rs7412	APOE: 19q13.32	Fish oil containing 3.45 g/day DHA (supplement)	<i>APOE</i> -E3/3 vs. <i>APOE</i> -E3/4	apoB apoC-III apoE HDL-c LDL-c TG Total-c	TG: APOE-E3/E4 exhibited reduced fasting TG in response to a high saturated fat + DHA intervention when compared to the high saturated fat diet alone. There was also a significant interaction (meal x time x genotype) for the postprandial TG lowering response whereby APOE-E3/4 consuming a high saturated fat + DHA intervention exhibited significantly lower postprandial TG, TG area under the curve, and TG maximum concentration compared to those consuming the high saturated fat diet alone.
$18^{\text{Jackson et al.}}$ $18^{2017 (117)}$	Non- Randomized Intervention	Single SNP*	Healthy men aged 35-70 years (n=23)	480-min postprandial	APOE, rs429358, rs7412	APOE: 19q13.32	Fish oil containing 3.45 g/day DHA (supplement)	APOE-E3/3 vs. APOE-E3/4	ароВ-48 ароВ-100	
20 _{Lindi et al.} 21 ^{2003 (84)}	Randomized Intervention	Single SNP	Healthy men and women aged 30-65 years (<i>n</i> =150)	3 months	<i>PPARy2</i> , Pro12Ala (rs1801282)	<i>PPARy2</i> : 3p25.2	Fish oil containing 2.4 g/d EPA + DHA (supplement)	PPARy2, Ala12 carriers vs. Pro12Pro	HDL-c LDL-c TG Total-c	TG: Compared to Pro12Pro, Ala12 carriers exhibited significantly greater TG reductions in response to omega-3 supplementation only when total fat intake was ≤37 %kcal or SFA intake was ≤10 %kcal
22 23 24 25 26 (118) 27 28 29	Randomized, Controlled Intervention	Single SNP	Men at high risk of cardiovascular disease aged 65-75 years (n=204)	6 months	<i>FVII</i> , rs6046	<i>FVII:</i> 13q34	Fish oil containing 2.4 g/d EPA + DHA Dietary advice including recommendations to increase omega- 3 (supplement and food)	Major allele homozygotes vs. Minor allele carriers	TG	-
30 31 32 33 34 _{Madden et al.} 35 2008 (80) 36 37 38 39	Non- Randomized Intervention	Single SNP	Healthy men aged 43-84 years (<i>n</i> =111)	12 weeks	<i>CD36</i> , rs1527483, rs1049673, rs1761667, rs1984112	CD36: 7q21.11	Fish oil containing 1.02 g/d EPA and 0.69 g/d DHA (supplement)	For each SNP: AA vs. AG vs. GG	HDL-c LDL-c LDL-c:HDL-c TG	TG: In response to omega-3 supplementation, TG significantly reduced only in individuals with the GG genotype, for each SNP individually (i.e. for rs1527483, rs1049673, rs1761667 and rs1984112 individually) LDL-c: In response to omega-3 supplementation, LDL-c increased only in individuals with the rs1761667 AA genotype as well as for individuals with the rs1761667 AA genotype HDL-c: In response to omega-3 supplementation, HDL-c significantly increased in individuals with rs1761667 AA or AG as well as for individuals with the CC or CG genotype for either rs1984112, rs1527483 and/or rs1049673; NOTE: rs1527483 results should be interpreted with caution due to low sample sizes for AA and AG genotypes thus reducing statistical power)
40 ^{IVIAIKOVIC et}	Single-Alli	Single Sivr	incatury men	12 weeks	11110, -308	11vru. 0p21.55	r isii on containing	i major affete	10	1 G. Significant negative contention between pre-

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

- 41
- 42
- 43
- 44
- 45 46
- 47

2										
3 4 5 ^{al. 2004 (119)} 6 7 8 9	Clinical Trial		(n=159)		(rs1800629) <i>LT-α</i> , +252 (rs909253) <i>IL-1β</i> , -511 (rs16944) <i>IL-6</i> , -174 (rs1800795)	<i>LT-a</i> : 6p21.33 <i>IL-1β</i> : 2q14.1 <i>IL-6</i> : 7p15.3	1.8 g/d EPA+DHA (supplement)	homozygotes vs. Minor allele carriers <i>or</i> Comparison between three genotypes (depending on allele frequencies)		supplementation TG and change of TG during omega-3 supplementation for all genotypes of genes studied except for LT - α rs909253 GG genotype and IL - $I\beta$ rs16944 TT genotype. In LT - α rs909253 AA genotype and $TNF\alpha$ rs1800629 AA genotype, signification association between BMI (divided in tertiles) and TG changes.
10 11 12 13 _{McColley et} 14il. 2011 (120) 15 16 17	Crossover Intervention	Single SNP	Healthy post- menopausal women (n=16)	8 weeks per diet	FABP2, rs1799883	<i>FABP2:</i> 4q26	High-Fat: 50 %kcal from dietary fat Low-Fat: 20 %kcal from dietary fat Low-Fat + omega-3: 23% kcal from dietary fat with 3 %kcal from omega-3 (food)	Major allele homozygotes vs. Minor allele carriers	TG	
18 19 20 ¹ inihane et al. 2000 (121) 21 22	Double-Blind, Randomized, Placebo- Controlled, Crossover Intervention	Single SNP*	Healthy men aged 30-70 years at risk of atherogenic lipoprotein phenotype (n=50)	6 weeks per diet and 480 minute postprandial	APOE, rs429358, rs7412	APOE: 19q13.32	Fish oil containing 3.0 g/d EPA and DHA, Control oil: 6.0 g/d olive oil capsule (supplement)	APOE-E2/E3 vs. APOE-E3/E3 vs. APOE-E3/E4 + E4/E4	HDL-c LDL-c TG Total-c Total-c:HDL	TG: Postprandial: Significantly greater reduction in TG incremental area under postprandial TG curve in APOE-E2/E3 relative to other APOE genotype categories Total-c: 6-week: APOE-E3/E4 + E4/E4 genotype group exhibited significantly different changes in total-c (increase), relative to other APOE genotypes, whereby reductions in total-c occurred
23 24 25 ^{Olano-Martin} 26 (77) 27 28	Randomized, Cross-Over Intervention	Single SNP*	Healthy normolipidemi c men (n=38)	4 weeks per diet	<i>APOE</i> , rs429358, rs7412	<i>APOE:</i> 19q13.32	EPA-rich fish oil: 3.3 g/d EPA DHA-rich fish oil: 3.7 g/d DHA Control oil: 80:20 palm olein:soyabean (supplement)	APOE-E3/3 vs. APOE-E3/4 (carriers)	apoB apoE HDL-c LDL-c TG TG:HDL-c Total-c	apoB, LDL-c: In APOE-E4 carriers only, DHA-rich oil treatment resulted in significant increases in apoB and LDL-c TG: Significant reduction in TG in response to both EPA and DHA in APOE-E3/E3 group; significant reduction in TG in APOE-E4 carriers with EPA only. No significant interactions. Total-c: Significant genotype x treatment interaction whereby APOE-E4 carriers exhibit total-c reductions in response to EPA-rich oil.
29 30 3 Duellette et al. 32 ^{2013 (122)} 33 34	Single-Arm Clinical Trial	Single SNP	Healthy men and women aged 18-50 (n=210)	6 weeks	GPAM (3 SNPs), AGPAT3 (13 SNPs), AGPAT4 (35 SNPs) [outlined in Supplementary Table 3]	GPAM: 10q25.2 AGPAT3: 21q22.3 AGPAT4: 6q26	Fish oil containing 1.9-2.2 g/d EPA + 1.1 g/d DHA (supplement)	Major allele homozygotes vs. Minor allele carriers <i>or</i> Comparison between three genotypes (depending on allele frequencies)	HDL-c LDL-c TG Total-c	 LDL-c: Significant <i>GPAM</i>, rs2792751 genotype x supplementation interaction on LDL-c TG: Significant genotype x supplementation interaction on TG for <i>GPAM</i>, rs2792751 and rs17129561 as well as <i>AGPAT4</i>, rs9458172 and rs3798943
35 36 37 ^{2014 (123)} 38 39 40	Single-Arm Clinical Trial	Single SNP	Healthy men and women 18- 50 years (n=208)	6 weeks	MGLL (18 SNPs) [outlined in Supplementary Table 3]	<i>MGLL:</i> 3q21.3	Fish oil containing 1.9-2.2 g/d EPA + 1.1 g/d DHA (supplement)	Major allele homozygotes vs. Minor allele carriers <i>or</i> Comparison between three genotypes (depending on allele	apoB HDL-c LDL-c LDL particle size TG Total-c	LDL-c: Significant interactions for <i>MGLL</i> rs6776142, rs555183, rs782444, rs6787155 and rs1466571 whereby omega-3 supplementation modulated LDL-c levels; rs782444 and rs555183 minor allele homozygotes more likely to be negative responders to omega-3 supplementation (i.e. exhibit reduced LDL-c); rs6780384, rs782444 and rs6787155 major allele homozygotes more likely to be negative responders to omega-3 supplementation

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 25 of 71

4										
5 6 7 8								frequencies)		LDL particle size: Significant interactions for MGLL rs782440, rs13076543 and rs9877819 whereby omega-3 supplementation modulated LDL particle size; rs549662 minor allele homozygotes more likely to be positive responders to omega-3 supplementation (i.e. exhibit increased LDL particle size)
9 10Paschos et al. 11 ^{2005 (78)} 12	Single-Arm Clinical Trial	Single SNP*	Men with dyslipidemia, aged 35 to 67 years (n=50)	12 weeks	<i>APOE</i> , rs429358, rs7412	<i>APOE:</i> 19q13.32	8.1 g/day ALA (via 15 ml of Flaxseed oil supplementation)	APOE-E2/E3 vs. APOE-E3/E3 vs. APOE-E3/E4	ApoA-I ApoB HDL-c LDL-c TG Total-c	ApoA-I: Significant decrease in E3/E3 HDL-c: Significant decrease in E3/E3
13 14 15 16Pishva et al. 17 ^{2010 (124)} 18 19 20	Single-Arm Clinical Trial	Single SNP	Adults with hypertriglyceri demia (n=46)	8 weeks	<i>FABP2,</i> Ala54Thr (rs1799883)	<i>FABP2:</i> 4q26	2.0 g/day pure EPA (supplement)	Ala54Ala (GG) vs. Thr54 carriers (GT+TT)	ApoB ApoC-III HDL-c LDL-c TG Total-c	 ApoC-III: In response to EPA supplementation, significantly greater reductions in ApoC-III in GT+TT genotypes of rs1799883 compared to GG genotype. HDL-c: In response to EPA supplementation, significantly greater increases in HDL-c in GT+TT genotypes of rs1799883 compared to GG genotype. LDL-c: In response to EPA supplementation, LDL-c significantly decreased in GG genotypes of rs1799883 but not GT+TT genotypes. TG: In response to EPA supplementation, significantly greater reductions in TG in GT+TT genotypes of rs1799883 compared to GG genotype.
21 22 23 Pishva et al. 24 2014 (125) 25 26	Single-Arm Clinical Trial	Single SNP	Adults with hypertriglyceri demia (n=46)	8 weeks	<i>PPARα</i> , Leu162Val (rs1800206) <i>PPARα</i> , Intron 7 SNP	<i>PPARα</i> : 22q13.31	2.0 g/day pure EPA (supplement)	Leu162 vs. Val162 carriers <i>and</i> Intron 7 GG vs Intron 7 GC	ApoB ApoCIII HDL-c LDL-c TG Total-c	
27 28 29 Roke and 30 ^{Mutch, 2014} (68) 31 32	Single-Arm Clinical Trial	Single SNP	Men aged 18- 25 years (n=12)	12 weeks (+8 week washout)	FADS1, rs174537 FADS2, rs174576 (LD=1.0 therefore presented results for rs174537)	<i>FADS1/2:</i> 11q12.2	Fish oil containing 1.8 g/d EPA+DHA (supplement)	Major allele homozygotes Vs. Minor allele carriers	HDL-c LDL-c TG Total-c Total-c:HDL-c	_
83 34 35 _{Rudkowska et} 361. 2014 (126) 37 38	Single-Arm Clinical Trial	Single SNP	Healthy men and women aged 18-50 (<i>n</i> =210)	6 weeks	SCD1, rs1502593, rs522951, rs11190480, rs3071, rs3829160, rs2234970, rs10883463, rs508384	<i>SCD1 :</i> 10q24.31	Fish oil containing 1.9-2.2 g/d EPA + 1.1 g/d DHA (supplement)	Comparison between three genotypes	HDL-c LDL-c TG Total-c Total-c:HDL-c	TG: For <i>SCD1</i> rs508384, AA genotype was associated with lower TG than CA and CC genotypes both pre- and post-supplementation.
B9 Rudkowska et 40 ^{al. 2014} (2)	Single-Arm Clinical Trial	Nutrigenomic GWAS	Healthy men and women	6 weeks	Genetic Risk Score	IQCJ-SCHIP1: 3q25.32	Fish oil containing 1.9-2.2 g/d EPA +	Responders versus non-responders (i.e.	TG	Thirteen SNPs were associated with TG response to omega-3 supplementation and 10 were used in the GRS calculation.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2 3										
4 5 7 8 9 10 11 12 13			aged 18-50 (n=141) + Replication of GRS in FINGEN study (n=310)	¢0.	including: IQCJ-SCHIP1 (4 SNPs), SLIT2 (3 SNPs), PHF17 (3 SNPs), MYB (1 SNP), NXPH1 (1 SNP), NELL1 (1 SNP) [outlined in Supplementary Table 3]	<i>SLIT2:</i> 4p15.31 <i>PHF17:</i> 4q28.2 <i>MYB:</i> 6q23.3 <i>NXPH1:</i> 7p21.3 <i>NELL1:</i> 11p15.1	1.1 g/d DHA (supplement)	TG response) to supplementation		The GRS was significantly associated with TG response. TG: The GRS explained 21.5% of the variation in TG response when adjusted for age, sex and BMI. Replication of this GRS in the FINGEN study: the GRS explained 2.0% of the TG change but the association as NS (adjusted for age, sex and BMI).
14 15 16 ^{Scorletti et al.} 2015 (127) 17 18	Randomized, Placebo- Controlled, Double-Blind Intervention	Single SNP	Men and women with non-alcoholic fatty liver disease (n=95)	15-18 months	PNPLA3, 1148M (rs738409) TM6SF2, E167K (rs58542926)	PNPLA3: 22q13.31 TM6SF2: 19p13.11	1.8 g/day EPA+ 1.5 g/day DHA (supplement)	Comparison between three genotypes <i>and</i> Major allele homozygotes vs. Minor allele carriers	TG	_
19 20 _{. Thifault et al.} 21 2013 (128) 22 23	Single-Arm Clinical Trial	Single SNP*	Healthy men and women with overweight or obesity aged 18-50 (n=210)	6 weeks	<i>APOE</i> , rs429358, rs7412	APOE: 19q13.32	Fish oil containing 1.9-2.2 g/d EPA and 1.1 g/d DHA (supplement)	APOE-E2 vs. APOE-E3 vs. APOE-E4	apoB HDL-c LDL-c TG Total-c	
24 25 26 27 28 29 ^{Tremblay et} 29 ^{al. 2015 (129)} 30 31 32 33 33	Single-Arm Clinical Trial	Single SNP	Healthy men and women aged 18-50 years (<i>n</i> =208)	6 weeks	PLA2G2A (5 SNPs), PLA2G2C (6 SNPs), PLA2G2D (8 SNPs), PLA2G2F (6 SNPs), PLA2G2F (6 SNPs), PLA2G6 (5 SNPs), PLA2G7 (9 SNPs) [outlined in Supplementary Table 3]	PLA2G2A: 1p36.13 PLA2G2C: 1p36.13 PLA2G2D: 1p36.12 PLA2G2F: 1p36.12 PLA2G4A: 1q31.1 PLA2G6: 22q13.1 PLA2G7: 6p12.3	Fish oil containing 1.9 g/d EPA + 1.1 g/d DHA (supplement)	Major allele homozygotes vs. Minor allele carriers <i>or</i> Comparison between three genotypes (depending on allele frequencies)	apoB-100 HDL-c LDL-c TG Total-c	TG: omega-3 supplementation significantly reduced TG in <i>PLA2G7</i> rs1805018 as well as <i>PLA2G4A</i> rs10752979, rs10737277, rs7540602 and rs3820185; in the linear regression model, <i>PLA2G6</i> rs132989, <i>PLA2G7</i> rs679667, <i>PLA2G2D</i> rs12045689, <i>PLA2G4A</i> rs 10752979 and rs1160719 together explained 5.9% of post-supplementation TG levels
35 36 37 Vallée 38 2016 (130) 39 40	Single-Arm Clinical Trial	Nutrigenomic GWAS	Men and woman aged 18-50 years (n=208)	6 weeks	<i>IQCJ</i> (16 SNPs), <i>NXPH1</i> (34 SNPs), <i>PHF17</i> (8 SNPs), <i>MYB</i> (9 SNPs) [outlined in	<i>IQCJ:</i> 3q25.32 <i>NXPH1:</i> 7p21.3 <i>PHF17:</i> 4q28.2 <i>MYB:</i> 6q23.3	Fish oil containing 1.9-2.2 g/d EPA + 1.1 g/d DHA (supplement)	Comparison between three genotypes	TG	TG: Significant gene-diet interaction on TG levels pre- vs. post-supplementation for the following SNPs: <i>IQCJ</i> (10 SNPs: rs2044704, rs1962071, rs6800211, rs17782879, rs1868414, rs2595260, rs9827242, rs1449009, rs2621309, rs61332355), <i>NXPHI</i> (4 SNPs: rs7806226, rs7805772, rs2349780, rs6974252), <i>MYB</i> (3 SNPs: rs9321493, rs11154794, rs210962). Four SNPs were still significant after applying the false discovery rate to account for multiple testing: rs1449009,

Page 27 of 71

\mathbf{a}	
1	
_	

1										_
2 3										
4 5 6 7 8 9 10					Supplementary Table 3]					rs2621309, rs61332355 in <i>IQCJ</i> ; rs7805772 in <i>NXPH1</i> . There were four dominant SNPs driving the association with the TG response: rs61332355 and rs9827242 in <i>IQCJ</i> , rs7805772 in <i>NXPH1</i> and rs11154794 in <i>MYB</i> . Significant differences in genotype frequencies between positive and negative responders to omega-3 for TG changes for <i>IQCJ</i> rs2044704, rs1962071, rs17782879, rs1868414, rs2595260, rs9827242, rs1449009, rs2621309, rs61332355, <i>NXPH1</i> rs7806226, rs7805772, <i>MYB</i> rs11154794 and rs210936.
11 12 13 Vallée 14/arcotte et al. 15 ^{2019 (131)} 16 17	Single-Arm Clinical Trial (replication of GRS in a novel cohort)	Nutrigenomic GWAS	Healthy adults of Mexican descent aged 18-40 years (n=191)	6 weeks	Genetic Risk Score including 103 SNPs: [outlined in Supplementary Table 3]	NA	Fish oil containing 1.9 g/day EPA + 0.8 g/day DHA (supplement)	Responders versus non-responders (i.e. TG response) to supplementation	TG	TG: A first 7-SNP GRS [SNPs selected based on previously developed GRS (2,130)] did not explain TG variation. A second GRS calculated from 103 SNPs significantly explained 4.4% of TG variation. A third GRS including the 5 most relevant SNPs significantly explained 11.0% of TG variation (<i>NXPH1</i> rs10265408, rs10486228, rs10486228, rs17150341, rs6974252 and <i>IQCJ-SCHIP1</i> rs2595241). When subjects with the lowest TG change were not included, this third GRS explained more TG variation. Including only the 28 responders and 28 non-responders with the greatest TG variation, this third GRS explained 29.1% of TG variation.
18 19 Vallée 20 Marcotte et al. 21 ²⁰¹⁹ (132) 22	Single-Arm Clinical Trial	Nutrigenomics GWAS (polygenic)	Men and woman aged 18-50 years with overweight or obesity (n=208)	6 weeks	GWAS; GRS included 31 SNPs [outlined in Supplementary Table 3]	NA	Fish oil containing 1.9-2.2g/d EPA + 1.1g/d DHA (supplement)	Responders to omega-3 supplementation for TG reduction vs. Non-Responders	TG	TG: 31 SNPs associated with TG response to omega-3 supplementation and used in GRS calculation; Lower GRSs were significantly more responsive to omega-3 supplementation for TG reduction compared to higher GRS (GRS accounted for 49.7% of TG responses); These findings were replicated in the FINGEN study with 23 SNPs (GRS accounted for 3.7% of TG responses).
23 24 25 26 Vallée 2 ^{Marcotte et al.} 28 29 30 31	Double-Blind, Randomized, Controlled, Crossover Intervention	Nutrigenomics GWAS (polygenic)	Men and women with abdominal obesity and elevated CRP aged 18-70 years (n=122)	10 weeks per diet	GRS included 30 SNPs [outlined in Supplementary Table 3]	NA	Control oil: 3 g/d corn oil Pure EPA: 2.7 g/d Pure DHA: 2.7 g/d (supplement)	Responders to different types of omega-3 supplementation for TG reduction vs. Non-Responders vs. Adverse Responders vs. Adverse Responders vs. Adverse Responders	TG	TG: The GRS was significantly associated with responsiveness to EPA for TG reduction when comparing responders vs. non-responders vs. adverse responders (trend, p=0.08, for DHA). The GRS was significantly associated with responsiveness to both EPA and DHA for TG reduction when comparing responders vs. adverse responders.
32 3 3 Vu et al. 2014 34 ⁽¹³³⁾ 35	Double-Blind, Randomized, Placebo- Controlled, Crossover Intervention	Single SNP	Men and women with moderate risk of CVD (n=84)	8 weeks	<i>eNOS</i> Glu298Asp (rs1799983)	<i>NOS3:</i> 7q36.1	Fish oil containing 0.9 g/day EPA + 0.6 g/day DHA (supplement)	Major allele homozygotes (GG) vs. Minor allele carriers (GT+TT)	LDL-c HDL-c TG Total-c	
86 87 _{Zheng} et al. 88 2018 (134) 89 40	Double-Blind, Randomized, Controlled Intervention	Single SNP and Polygenic	Men and women with type 2 diabetes aged 35-80 years for men or postmenopausa	25 weeks	CD36, rs1527483 NOS3, rs1799983 PPARγ2, rs1801282	<i>CD36:</i> 7q21.11 <i>NOS3:</i> 7q36.1 <i>PPARy2:</i> 3p25.2	Fish oil: 2.0 g/d EPA and DHA Flaxseed oil: 2.5 g/d ALA Control oil: corn oil (supplement)	Major allele homozygotes vs. Minor allele carriers and High vs. low genetic score calculated	HDL-c LDL-c TG Total-c:HDL-c Total-c	 LDL-c: significant interaction for PPARy2 rs1801282 genotype, intervention group and LDL-c change; but increased LDL-e in G allele carriers of PPARy2 rs1801282 compared to CC genotype only in the control (corn oil) group TG: omega-3 fish oil (but not flaxseed oil) supplementation reduced TG for individuals with the CD36 rs1527483 GG genotype (significant interaction); significant interaction

1 2 3

> 45 46 47

4				
5 6	l and 80 years for women (n=139)		based on three SNPs	between genetic score and omega-3 on TG levels whereby omega-3 (fish oil and flaxseed oil) supplementation significantly reduced TG levels compared to control only in individuals with high genetic scores
/ 0				
0				
9 10	ALA: alpha-linolenic acid, Apo: apolipoprotein, DHA: doc	osahexaenoic acid, EPA: eicosapentaenoic acid, Hi	DL: high-density lipoprotein choles	sterol, LDL: low-density lipoprotein
10	1. All other (not listed) gene/omega-3/lipid/lipoprotein results of intere	est to the present review were NS	renoiesteroi, SNF. single nucleouc	e porymorphism, 10. ungrycenaes
17	Participants are described as "healthy" for studies that incorporated exe	clusion criteria for certain conditions, blood lipid le	evels, etc. and when studies describ	ed the population as "healthy."
12	'' indicates that all of the completed gene/omega-3/lipid/lipoprotein an	nalyses were NS	and c(1)	
12	Human AFOL is polymorphic at two single nucleotides (18429538 and	a 18/412) resulting in three different aneles (22, 25		
15				
16				
17				
18				
19				
20				
21				
22				
23				
24				
25				
26				
27				
28				
29				
30				
31				
32				
33				
34 25				
30 26				
20 27				
20				
30				
40				
41				
42				
43				
44				
45	For peer review	w only - http://bmjopen.bmj.com/site/a	bout/guidelines.xhtml	

Table 3. GRADE Evidence Profile: Genetic Variation, Omega-3 and Lipids

⁹ Nutrigenetic interactions for omega-3 and plasma lipid/lipoprotein outcomes 10

Patient or Population: adults

Intervention/Exposure: dietary or supplemental omega-3 (EPA and/or DHA and/or ALA) Comparison/Control: genetic variation, different omega-3 intakes

Outcomes: plasma lipids and lipoproteins

17 <i>Gene</i> rs Number and 18 Lipid: Number and 10 Type of Studies (total <i>n</i>)	Limitations	Inconsistency	Indirectness	Imprecision	Publication Bias	Dose Response	Biological Plausibility*	Quality	Conclusion
20 <i>CD36</i> rs1761667 and 21 HDL-c: 22 1 RCT and 1 single arm trial (<i>n</i> =115) (80,135) 23	Serious limitations ^a	Serious inconsistency ^b	Serious indirectness ^c	Serious imprecision ^d	Undetected	No evidence of a gradient	Evidence of a mechanism of action	⊕⊕⊖⊖ (Low)	Weak evidence suggests that possessing the GA or possibly the AA genotype of <i>CD36</i> rs1761667 could lead to significant increases in HDL-c in response to 0.8-3.0 g/day of omega-3s.
24 CD36 rs1761667 and 25 TG: 26 1 RCT and 1 single arm 27 trial (n=115) (80,135)	Serious limitations ^a	Serious inconsistency ^b	Serious indirectness ^c	Serious imprecision ^e	Undetected	No evidence of a gradient	Evidence of a mechanism of action	⊕⊕⊖⊖ (Low)	Weak evidence suggests that possessing the GA or possibly the GG genotype of <i>CD36</i> rs1761667 could lead to significant reductions in TG in response to 0.8-3.0 g/day of omega-3s.
28 29 <i>CD36</i> rs1049673 and 30 HDL-c: 31 RCT and 1 single arm 31 trial (<i>n</i> =115) (80,135)	Serious limitations ^a	Serious inconsistency ^b	Serious indirectness ^c	No serious imprecision	Undetected	No evidence of a gradient	Evidence of a mechanism of action	⊕⊕⊝⊝ (Low)	Weak evidence suggests that possessing the CG or possibly the CC genotype of <i>CD36</i> rs1049673 could lead to significant increases in HDL-c in response to 0.8-3.0 g/day of omega-3s.
33 CD36 rs1527483 and 34 TG: 35 1 RCT and 1 single arm trial (n=250) (66,80) 36	Serious limitations ^f	No serious inconsistency	Serious indirectness ^g	Very serious imprecision ^e	Undetected	No evidence of a gradient	Evidence of a mechanism of action	⊕⊕⊖⊖ (Low)	Weak evidence suggests that possessing the GG genotype of <i>CD36</i> rs1527483 could lead to significant decreases in TG in response to approximately 2.0 g/day of EPA+DHA (but not ALA).
37 <i>APOE</i> rs429358, rs7412 38 and TG: 4 RCTs and 5 39 ^{single} arm trials (1 single 40	No serious limitations	No serious inconsistency	Serious indirectness ^h	No serious imprecision	Undetected	Evidence of a gradient	Evidence of a mechanism of action	⊕⊕⊕⊖ (Moderate)	Strong evidence suggests that adult males (but not females) with the <i>APOE</i> -E3/E4 or E4/E4 genotype (rs429358, rs7412) experience significant reductions in TG in

1									
2									
3									
5 subset sample of another									response to 0.7-3.7 g/day of EPA and/or
$6 \qquad \text{single arm trial} \\ (n=980) (70, 74, 76, 79)$									DHA. Higher dosages may have greater TG
APOE rs429358, rs7412									In males and females combined strong
8 and Total-c: 4 RCTs, 5								(Moderate:	evidence suggests that there is no nutrigenetic
9 single arm trials (1 single								Males and	interaction between EPA and/or DHA, APOE
10 arm trial consisted of a	N	Cominue	C ani aug	No conicco		No suidence	Lack of	Females)	(rs429358, rs7412) and total-c. There is no
single arm trial) 1 cross-	limitations	inconsistency ⁱ	indirectnessh	imprecision	Undetected	of a gradient	mechanism of	and	ALA APOE (rs429358 rs7412) and total-c
sectional and longitudinal				mpreention			action	und	In male subgroups, weak evidence suggests
³ analysis within an RCT								$\oplus \oplus \ominus \ominus$	that there is no nutrigenetic interaction
(n=2,446) (53,70–74,76–								(Low:	between ALA or EPA and/or DHA, APOE
16			· · ·					(Males)	Strong evidence suggests that in adults with
1731 SND Nutri CDS and									overweight/obesity, a 31-SNP genetic risk
18 TG:	No serious	No serious	Serious	No serious		Evidence of	Some evidence		score can predict TG responsiveness to
191 RCT, 1 single arm trial	limitations	inconsistency	indirectness ^j	imprecision	Undetected	a gradient ^k	of a mechanism	High	EPA+DHA supplementation. Individuals
20 (<i>n</i> =330) (64,65)					-		of action		greater responsiveness to EPA+DHA for TG
21									lowering.
22 <i>PPARg2</i> rs1801282 and	Number	Negative	C	Q			Lack of		Strong evidence suggests that genetic
23LDL-c: 4 RC1s, 1 single arm trial $(n=670)$	limitations	inconsistency	indirectness ^m	imprecision ⁿ	Undetected	of a gradient	mechanism of	(Moderate)	influence LDL-c responses to omega-3s
24 (61,66,83,84,87)	minutions	meonsistency	mancethess	imprecision		of a gradient	action	(inodefate)	(EPA+DHA).
26						N			Weak evidence suggests that possessing the
27 <i>PPARg2</i> rs1801282 and							Lack of		CG or GG genotype of <i>PPARg2</i> (rs1801282)
28Total-c: 4 RCTs, 1 single	No serious	Serious	Serious	Serious	Undetected	No evidence	evidence of a	$\oplus \oplus \ominus \ominus$	response to approximately 3 g/day of omega-
29 $\underset{(61,66,82,84,87)}{\text{arm trial } (n=670)}$	limitations	inconsistency ^o	indirectness ^m	imprecision ⁿ		of a gradient	mechanism of	(Low)	3s (EPA+DHA) in individuals with
30							action		overweight or obesity, but not for individuals
31									Weak evidence suggests that genetic variation
^{B2} <i>PPARg2</i> rs1801282 and									in <i>PPARg2</i> (rs1801282) does not influence
TG: 4 RCTs, 1 single arm	No serious	Very serious	Serious	Serious	Undetected	No evidence	Evidence of a mechanism of	$\oplus \oplus \ominus \ominus$	total-c responses to omega-3s (EPA+DHA),
p^{4} trial (<i>n</i> =670)	limitations	inconsistency ^p	indirectness ^m	imprecision ⁿ	Ondettetted	of a gradient	action	(Low)	but when dietary total fat and saturated fat
BG (61,66,83,84,87)									exist
37 <i>FADS</i> (rs174547**) and	Vanagaria	Na anima	V.m. comin	Carrieure		No order i	Evidence of a		Weak evidence suggests that genetic variation
Total-c: 2 RCTs, 1	risk of bias ^q	inconsistency	very serious indirectness ^r	Serious imprecision ⁿ	Undetected	of a gradient	mechanism of	(Very Low)	in FADS (rs174547**) does not influence
39 ^{single-arm trial, 4 cross-}		linconsistency	manoouloss	mpreension			action		total-c responses to omega-3.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1										5
2										
3										
1										
- sectional studies (n=9365)								
(42,43,45,46,60)	68,70)	,								
6 *	Direct 1	nechanisms of ac	tion were conside	ered	-	•		•		-
/										
8 *	**FADS	rs174547 was in	strong LD with t	he following SNF	s from other inclu	ided studies and	therefore these S	SNPs were also incl	uded in the sele	ction of studies assessing FADS genetic
9 \	variation	, n-3 intake and L	DL-c: rs174546	rs174599, rs1746	501, rs174583, rs1	353, rs174561, r	s174556, rs1745	545, rs174537 and r	s174576.	
10						1.1				
11 ^I	HDL-c:	high-density lipop	brotein cholester	ol, LDL-c: low-de	nsity lipoprotein c	holesterol, TG:	riglycerides, tot	al-c: total cholester	ol	
12		Small cample sizes	aspacially among	omozugous groups	in the PCT (with a l	larger beterozygou	s group potential	waffecting the results)	
13	a. b	Some variation in re	esults by genotype	ioniozygous groups	In the KC1 (with a	larger neterozygot	s group, potentian	ly affecting the results)	
14	с.	One study sample c	onsisted of all male	es while the other sa	mple consisted of bo	oth men and wome	n; differences in a	ge and n-3 dosages (w	vith some overlap)	
15	d.	Coefficient of varia	tion >1 for all signi	ficant values	1		,	e e (17	
16	e.	Coefficient of varia	tion substantially >	1 for several values						
17	f.	Small sample size v	vithin genotype gro	ups for minor allele	homozygote and her	terozygote groups	in the RCT			
18	g.	One study sample c	onsisted of all men	while the other con	sisted of men and po	stmenopausal woi	nen with type 2 di	abetes	- .	
19	п.	samples	omega-5 dosages, a	ind types (with some	e overlap), and dieta	Ty interventions ev	en when consider	ing studies with male	study samples sep	arate nom male + remaie study
20	i.	Serious inconsisten	ev for men subgrou	p only: men + wom	en samples were con	nsistent				
20	j.	EPA and DHA sepa	rate on one study a	nd EPA+DHA in th	e other, sample strat	ified into two grou	ps in one study (r	esponders and non-res	ponders) and sepa	arated into three groups (responders,
21	-	non-responders and	adverse responder	5)	-			-		
22	k.	Evidence of a gradi	ent for GRS and TO	G responsiveness to	omega-3 supplemen	tation				
23	l.	Some evidence of a	potential mechanis	m of action for IQC	J-SCHIP1, NXPH1,	PHF17, MYB and	NELL1 as discus	sed by Rudkowska et	al. (62), Vallée M	arcotte et al. (63)
24	m.	Differences in popu	lation (nealthy adu	ssible to assess pred	hic disease or obesit	y, infants), some v	ariation in length of	of follow-up nd SD/SEM		
25	0	Some variation in re	esults even when co	onsidering difference	es in BMI and popul	ations among stud	ies	IId 5D/5EW		
26	р.	Major variability in	results even when	considering differer	ices in BMI and pop	ulations among stu	idies			
2/	q.	Risk of bias detecte	d in every study ex	cept one		-				
28	r.	Major differences in	n populations, types	s and amounts of on	nega-3 and follow-up	o for interventiona	studies			
29										
30										
31										
32										
33										
34										
35										
36										
37										
38										
39										
40										
41										
42										
43										
44										
45				For peer revie	w only - http://b	omjopen.bmj.o		t/guidelines.xhtr	nl	
46				-		/		-		
10										

For beer review only

Table 4. Summary of Risk of Bias Across SNPs and Outcomes Following Ome	2ga-3
Exposure/Intervention	

<i>CD36</i> , F\$1/61	Disk of Disc	
Study	KISK Of Blas	
Dawczynski et al. 2013	Θ	
Madden et al. 2008		
<i>CD36</i> , r\$1/6	Dick of Disk	
	RISK OF Blas	
Dawczynski et al. 2013	<u> </u>	
Madden et al. 2008		
<i>CD36</i> , r\$1049	6/3 and HDL-c	
Study	Risk of Blas	
Dawczynski et al. 2013	Θ	
Madden et al. 2008		
<i>CD36</i> , r\$152		
Study	Risk of Blas	
Zheng et al. 2018		
Madden et al. 2008		
<i>ApoE</i> , rs429358	8, rs/412 and 1G	
Study	Risk of Blas	
AbuMweis et al. 2018	Θ	
Carvalho-Wells et al. 2012	•	
Caslake et al. 2008	\oplus	
Dang et al. 2015	<u> </u>	
Jackson et al. 2012	Θ	
Minihane et al. 2000	•	
Olano-Martin et al. 2010	_	
Paschos et al. 2005	Θ	
Thifault et al. 2013	\square	
<i>ApoE</i> , rs429358, 1	rs7412 and Total-c	
Study	Risk of Bias	
AbuMweis et al. 2018	θ	
Carvalho-Wells et al. 2012	<u> </u>	
Caslake et al. 2008	<u> </u>	
Dang et al. 2015	<u> </u>	
Fallaize et al. 2016	Θ	
Jackson et al. 2012	Θ	
Minihane et al. 2000	—	
Olano-Martin et al. 2010	—	
Paschos et al. 2005	Θ	
Thifault et al. 2013	<u> </u>	
31-SNP Nutr	i-GRS and TG	
Study	Risk of Bias	
Vallée Marcotte et al. 2019	—	
Vallée Marcotte et al. 2020	E A	

<i>PPARg2</i> , rs1801282 and LDL-c	
Study	Risk of Bias
Binia et al. 2017	Θ
Harslof et al. 2014	\oplus
Itariu et al. 2012	\oplus
Lindi et al. 2003	Θ
Zheng et al. 2018	\oplus
PPARg2, rs1801282 and Total-c	
Study	Risk of Bias
Binia et al. 2017	Θ
Harslof et al. 2014	\oplus
Itariu et al. 2012	\oplus
Lindi et al. 2003	Θ
Zheng et al. 2018	\oplus
<i>PPARg2</i> , rs1801282 and TG	
Study	Risk of Bias
Binia et al. 2017	Θ
Harslof et al. 2014	\oplus
Itariu et al. 2012	\bigcirc \oplus
Lindi et al. 2003	Θ
Zheng et al. 2018	\oplus
<i>FADS</i> , rs174547 and Total-c	
Study	Risk of Bias
AbuMweis et al. 2018	Θ
Alsaleh et al. 2014	\oplus
Lu et al. 2010	Θ
Standl et al. 2012	Θ
Dumont et al. 2011	Θ
Dumont et al. 2018	Θ
Roke and Mutch 2014	θ

 \oplus no serious risk of bias; \ominus serious risk of bias; $\ominus \ominus$ very serious risk of bias (for study design type using NIH Study Quality Assessment Tools)

HDL-c: high-density lipoprotein cholesterol, LDL-c: low-density lipoprotein cholesterol, TG: triglycerides, total-c: total cholesterol
Page 35 of 71

BMJ Open

1		
2		
3 4	271	DISCUSSION
5	272	
6	273	Overall, this systematic review found strong evidence (i.e. GRADE ratings: moderate and
7 8 9	274	high quality evidence) for only a limited amount of evidence in this area: APOE
10 11	275	(rs429358 and rs7412) genotypes and TG responsiveness to omega-3s in men, and a 31-
12 13	276	SNP nutri-GRS and TG responsiveness to omega-3s in adults with overweight/obesity.
14 15	277	Limited evidence exists for individual genetic-based responsiveness of omega-3s on
16 17 18	278	apolipoprotein and/or LDL particle size, with no studies from the present comprehensive
19 20	279	review meeting the criteria for evidence. This highlights the need for more replication
21 22	280	studies in this area. While more research exists on omega-3 responsiveness for other lipid
23 24 25	281	outcomes such as total-c, HDL-c and LDL-c, the level of evidence for nutrigenetic
26 27	282	interactions related to these outcomes remains low. Again, more studies are needed
28 29	283	related to these outcomes, including replication studies of previously identified
30 31 32	284	nutrigenetic interactions. These studies should first replicate the interventions (i.e. use the
33 34	285	same type and amount of omega-3s as the original study), and recruit samples with
35 36	286	similar characteristics to the original study. Once replication is established, research
37 38	287	should then seek to expand the population studied to improve generalizability and explore
39 40 41	288	the effectiveness of different interventions (i.e. different formulations and doses of
42 43	289	omega-3s). The variability of the interventions and sample sizes in the studies conducted
44 45	290	to date often resulted in the quality of evidence being downgraded (see Table 3). It should
46 47 48	291	also be noted that study heterogeneity precluded the ability to conduct a meta-analysis.
49 50	292	Thus, the GRADE approach worked well for evaluating the quality of the evidence given
51 52 53 54	293	that this approach takes into consideration several factors when determining the quality of
51 52 53 54 55	293	that this approach takes into consideration several factors when determining the qualit

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 36 of 71

evidence such as risk of bias, indirectness of evidence, inconsistency or results,imprecision and publication bias (37).

It is important to note that our results demonstrating strong evidence for interactions between APOE genotypes and lipid responses to omega-3s have notable ethical implications. Compared to non-carriers, carriers of APOE-E4 have a 15 times greater risk of developing Alzheimer's disease (136). Moreover, APOE genotypes are significantly associated with CVD risk including risk of coronary artery disease and hyperlipidemia (137–139). Interestingly, the pathology of Alzheimer's disease has been linked to cardiovascular mechanisms (136). Future research should explore nutrigenetic interactions, with risk of developing Alzheimer's disease as the study endpoint/outcome of interest. Despite the current lack of knowledge about how diet may play a role in mitigating the genetic-based risk of Alzheimer's disease, several potentially modifiable risk factors account for around 40% of dementia and Alzheimer's disease globally (140), and the link between Alzheimer's disease risk and APOE is well-established (141). Therefore, despite the strong scientific validity identified in the present review, there are other factors that must be considered before this test can be recommended for implementation in a practice setting; this includes ethical, legal and social implications (142).In addition, our finding of strong evidence for APOE genotypes and TG responsiveness to omega-3s in men but not women speaks to the importance of taking biological sex into account in nutrigenetics research. The importance of this has been further highlighted

Page 37 of 71

BMJ Open

3 4	317	elsewhere, where it has been noted that the results of nutrigenetic research may differ in
5 6	318	men and women (143). As more studies are completed, researchers may find that certain
7 8	319	nutrigenetic interactions differ depending on biological sex, ethnicity, age or other
9 10 11	320	factors, similar to our findings on APOE, omega-3s and TG in which there was evidence
12 13	321	of a nutrigenetic interaction in males only. Researchers may also find explanations for
14 15	322	this, which are currently poorly understood. In general, it is becoming increasingly
16 17	323	recognized that health-related responses to different interventions may vary based on
18 19 20	324	biological sex; this is an important consideration of personalized nutrition (143).
20 21 22	325	Nutrigenetic research often groups men and women together, but stratifying based on
23 24	326	biological sex could provide further insights for specific nutrigenetic interactions and
25 26	327	could also help explain why some replication studies have not demonstrated significant
27 28 29	328	findings (143). Moreover, biomedical research in general historically has been conducted
30 31	329	more in men than women; yet such research findings are often generalized to women
32 33	330	despite limited research conducted in samples of women, which is problematic for a
34 35	331	number of reasons (144). In the present review, the evidence was strong for the $APOF$
36 37	222	fundimention men and a best net mean in most because them are studies and best d
38 39	332	findings in men only, but not women in part because there were more studies conducted
40 41	333	in men. Specifically, there were five studies conducted in men and women (combined)
42 43	334	(70,72,73,112,128), and four studies conducted in samples of only men (74,77,78,121),
44 45	335	yet no studies conducted in samples of only women. This brings to light important issues
46 47	336	of equity and warrants further discussion and consideration.
48 49	227	

As research continues to develop, it appears likely that lipid and lipoprotein responses are polygenic in nature. Therefore, future research should consider using nutri-GRSs or other

1	
ר	
2	
3	
4	
5	
6	
7	
,	
8	
9	
10	
11	
12	
12	
15	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
23	
23	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
24	
24	
35	
36	
37	
38	
30	
10	
40	
41	
42	
43	
44	
15	
45	
46	
47	
48	
49	
50	
50	
51	
52	
53	
54	
55	
56	
50	
5/	
58	
59	
60	

340	polygenic methods of assessing responsiveness to nutrition interventions. This work
341	should use unbiased approaches or non-hypothesis driven approach to derive nutri-GRSs,
342	such as establishing them from genetic-wide association studies. In addition to the two
343	studies meeting the criteria for evidence grading (64,65), a modified version of the 31-
344	SNP GRS was tested in men and women in the FINGEN study, using 23 of the 31 SNPs
345	(64). While this did not meet our inclusion criteria for evidence grading given that a
346	different GRS was used, the 23-SNP GRS was significantly associated with TG
347	responsiveness to omega-3 supplementation in this population as well, providing further
348	evidence for the scientific validity of this nutrigenetic interaction (64).
349	
350	While we used the GRADE approach to evaluate the body of evidence, several tools are
351	available for evaluating the quality of scientific evidence, though no generally accepted
352	methods exist for nutrigenetic research specifically. In 2017, Grimaldi et al. proposed a
353	set of guidelines to assess the scientific validity of genotype-based dietary advice (29).
354	While we originally intended to use these guidelines for assessing the evidence, we came
355	across some limitations that ultimately led us to use the GRADE guidelines. Specifically,
356	Grimaldi et al. (2017) suggested that only studies that include STREGA guidelines
357	should be included in the assessment of scientific validity (29). However, limiting the
358	evidence to only these studies could result in several important studies being missed. In
359	the present review, none of the included studies explicitly indicated that they followed
360	STREGA guidelines. In addition, it was recommended by Grimaldi et al. to use STREGA
361	guidelines to assess risk of bias (29). However, the STREGA checklist is only intended
362	for observational genetic association studies - not interventional research (145). In the

BMJ Open

363	present review, 42 of the 65 included studies were interventional (65%) (Table 2). In
364	addition, the STREGA guidelines are intended to improve the transparency and adequate
365	reporting of genetic association studies, but it is not intended to be used as a study quality
366	assessment tool (145). However, Grimaldi et al. nicely highlighted the importance of
367	understanding the nature of the genetic variation, at a functional level, when assessing
368	scientific validity (29). This is not included in the standard GRADE approach but is an
369	important niche component of nutrigenetic research. As such, an analysis of functional
370	SNPs (biological plausibility) was included as an additional component of the standard
371	GRADE process, as indicated in the methods section above. Overall, we found that the
372	methods used in this systematic review were effective and can be used to synthesize and
373	evaluate nutrigenetic studies assessing other gene-nutrient-health outcome interactions.
374	
375	The additional consideration of functional SNPs to the standard GRADE approach helped
376	to strengthen this review, as biological mechanistic evidence can help ensure that study
377	findings did not occur by chance alone, and this is a component of evidence evaluation
378	frameworks in medical genetics (146,147). Transcriptomic and pathway analyses can
379	help inform the direction of future nutrigenetic studies by generating hypotheses about
380	the impact of specific genetic variations on varying responses to nutrition on health-
381	related outcomes. For example, using transcriptomics and pathway analyses to identify
382	changes in lipid metabolism following omega-3 supplementation, Rudkowska and
383	colleagues identified six genes expressed in opposite directions between responders and
384	non-responders to omega-3 supplementation for TG lowering: FADS2, PLA2G4A,
385	ALOX15, PEMT, MGLL and GPAM (148). Tremblay et al. then built on this knowledge

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

386	and discovered that PLA2G6 rs132989, PLA2G7 rs679667, PLA2G2D rs12045689,
387	PLA2G4A rs10752979 and rs1160719 together explained 5.9% of post- omega-3
388	supplementation TG levels, with several individual PLA2G4A SNPs also having a
389	significant impact on the TG lowering effect of omega-3 supplementation (129). Others
390	have built on this mechanistic knowledge as well (122). Future research should now seek
391	to replicate this work given that we found that there have been no replication studies
392	completed and thus, this research (122,129) did not meet the criteria for evidence
393	grading.
394	
395	In the current body of literature, there are some limitations that should be highlighted.
396	Given the variability in allele frequencies for each SNP, it should be noted that study
397	limitations can arise with small sample sizes whereby some genotype groups may not be
398	adequately powered to detect significant differences. For example, Dawczynski et al.
399	(2013) detected significant changes in TG among the GA genotype group of CD36
400	rs1761667 (n=18) in response to omega-3s but neither of the homozygote groups (AA:
401	n=8, GG: n=7) exhibited a significant difference, despite similar directions and
402	magnitudes of effect among the GA and GG genotypes (81). It is thus possible that this
403	study was not adequately powered. Some researchers aim to mitigate this issue of small
404	numbers by grouping minor allele carriers together (i.e. heterozygotes + homozygotes for
405	the minor allele) (68). However, such an approach precludes the possibility to detect an
406	allele-dosage effect. From a physiological perspective, an allele dosage effect would be
407	expected whereby a significant change among a heterozygote group would likely be
408	accompanied by a significant change in one of the homozygote groups but with an even

4

2	
3	409
5 6	410
7 8	411
9 10	412
11 12	410
13 14	413
15 16	414
17 18	415
19 20	416
21 22	417
23 24	418
25 26	419
27 28 20	420
29 30 21	121
32	421
33 34	422
35 36 27	423
37 38 30	424
39 40 41	425
41 42 43	426
44 45	427
46 47	428
48 49	120
50 51	429
52 53	430
54 55	431
56 57	
58 59	

60

greater magnitude of the effect. This consideration highlights the importance of having an
adequately powered sample size, while factoring in the prevalence of each genotype.

2 While single SNP research provides important information about individual gene-nutrient 3 interactions, the results of this review indicate that individual responses to omega-3s for 4 altering lipids, lipoproteins and apolipoproteins appear to be polygenic in nature. Thus, 5 we encourage researchers to further explore the use of nutri-GRSs to improve the 6 accuracy of genetic-based predictions. See, for example, the work of Vallée Marcotte et 7 al., which obtained a high quality evidence grade in the present review (64,65). This is further exemplified in the analyses recently conducted by Chen et al. (40), which has yet 8 9 to be replicated and thus was not selected for evidence grading.

The present analysis of scientific validity provides an important first step towards the 1 2 eventual development of clinical practice guidelines for genetic-based responses to 3 dietary intake. With questionable and variable scientific validity of existing consumer nutrigenetic tests, the development of clinical practice guidelines is an important next 4 5 step as these can be used by HCPs and industry alike to help promote evidence-based 6 practice in personalized nutrition. Ideally, industry should use future clinical practice 7 guidelines to inform the nutrigenetic associations and related dietary recommendations 8 included in their reports. Decision aids can also be useful to guide clinical practice for HCPs (149), and future research should seek to develop a decision aid related to omega-9 0 3s and lipid/lipoprotein outcomes based on genetic variation.

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
20	
20 21	
ר∠ בר	
∠∠ วว	
ע∠ 2∧	
24	
25	
20	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
3/	
38	
39	
40	
41	
42	
43	
44	
45	
40	
47	
40 40	
49 50	
50	
51	
J∠ 52	
22	
54	
55	
50	
57 58	
50	
73	
00	

1

432 Overall, we have provided a comprehensive overview the body of evidence related to nutrigenetics, omega-3s and plasma lipids/lipoproteins/apolipoproteins, while providing 433 an overview of levels of evidence in this field. To our knowledge, this is the first 434 systematic review with evidence grading in the broader field of nutrigenetics. The results 435 of this work should be used in clinical practice guideline development, to ultimately 436 437 guide evidence-based practice in personalized nutrition and move this emerging field forward. 438 439 440 **Sources of Support:** J.R.H. received postdoctoral fellowships from the Canadian Institute of Health Research, NUTRISS and INAF. I.R. holds a Junior 2 research Scholar from the Fonds de 441 442 recherche du Québec—Santé (FRQ-S). M-C.V. holds a Tier 1 Canada Research Chair in Nutrition Applied to Genetics and Metabolic Health. 443 444 445 **Contributorship Statements:** M-C.V. and J.R.H. conceptualized the review. G.S. was responsible 446 for the search strategy, in collaboration with J.R.H, M-C.V., S.D. and V.G. J.R.H and V.G. were 447 responsible for article screening and selection, summarizing, evidence grading, and developing a 448 draft of the CPGs. The first CPG draft underwent revisions from S.D. and M-C.V. Following this, 449 all authors reviewed and revised the CPGs as well as the full-text manuscript. J.R.H. wrote the first 450 draft of the manuscript. All authors reviewed, revised and approved the final manuscript. 451 **Competing Interests:** The authors have no competing interests to declare. 452 **Funding:** This project was supported through a pilot projects grant from INAF. J.R. Horne was 453 supported through postdoctoral fellowships from CIHR (#430907), NUTRISS and INAF. M-C 454 Vohl holds a Canada Research Chair in Genomics Applied to Nutrition and Metabolic Health. 455 **Data Sharing Statement:** Data are available upon reasonable request. 456 457

1 2		·
3	458	Figure Legend:
4 5	459 460	Eiguna 1. DDISMA Flavy Diagnom
6	460 461	*The original PRISMA Flow Diagram indicated the number of studies included in meta-analysis in this
7 8	462	box. This has been revised for the purposes of this research
9 10		
11		
12 13		
14 15		
15 16		
17 18		
19		
20 21		
22 23		
24		
25 26		
27 28		
29		
30 31		
32 33		
34		
36		
37 38		
39 40		
40		
42 43		
44 45		
46		
47 48		
49 50		
51		
52 53		
54 55		
56		
57 58		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

References

- 1. Barquera S, Pedroza-Tobias A, Medina C, Hernandez-Barrera L, Bibbins-Domingo K, Lozano R, et al. Global overview of the epidemiology of atherosclerotic cardiovascular disease. Arch Med Res. 2015;46:328–38.
- 2. Rudkowska I, Guénard F, Julien P, Couture P, Lemieux S, Barbier O, et al. Genome-wide association study of the plasma triglyceride response to an n-3 polyunsaturated fatty acid supplementation. J Lipid Res. 2014 Jul;55(7):1245–53.
- 3. Rizzi F, Conti C, Dogliotti E, Terranegra A, Salvi E, Braga D, et al. Interaction between polyphenols intake and PON1 gene variants on markers of cardiovascular disease: a nutrigenetic observational study. Journal of Translational Medicine. 2016;14:186.
- 4. Vallée Marcotte B, Cormier V, Garneau V, Robitaille J, Desroches S, Vohl M-C. Nutrigenetic Testing for Personalized Nutrition: An Evaluation of Public Perceptions, Attitudes, and Concerns in a Population of French Canadians. Lifestyle Genomics [Internet]. 2019; Available from: https://doi.org/10.1159/000499626
- 5. Vallée Marcotte B, Cormier H, Garneau V, Robitaille J, Desroches S, Vohl M-C. Current knowledge and interest of French Canadians regarding nutrigenetics. Genes Nutr. 2019 Dec;14(1):5.
- 6. Caulfield T, McGuire AL. Direct-to-Consumer Genetic Testing: Perceptions, Problems, and Policy Responses. Annu Rev Med. 2012;63(1):23–33.
- Horne J, Gilliland J, Madill J, Shelley J. A critical examination of legal and ethical considerations for nutrigenetic testing with recommendations for improving regulation in Canada: From science to consumer. J Law Biosci. 2020;
- 8. Görman U, Mathers JC, Grimaldi KA, Ahlgren J, Nordström K. Do we know enough? A scientific and ethical analysis of the basis for genetic-based personalized nutrition. Genes Nutr. 2013 Jul;8(4):373–81.
- 9. Brouwers MC, Kho ME, Browman GP, Burgers JS, Cluzeau F, Feder G, et al. AGREE II: advancing guideline development, reporting and evaluation in health care. Can Med Assoc J. 2010 Dec 14;182(18):E839–42.
- 10. Harris WS. Stearidonic acid as a "pro-eicosapentaenoic acid." Curr Opin Lipidol. 2012 Feb;23(1):30–4.
- 11. Shahidi F, Ambigaipalan P. Omega-3 Polyunsaturated Fatty Acids and Their Health Benefits. Annu Rev Food Sci Technol. 2018 25;9:345–81.
- 12. Hu Y, Hu FB, Manson JE. Marine Omega-3 Supplementation and Cardiovascular Disease: An Updated Meta-Analysis of 13 Randomized Controlled Trials Involving 127 477 Participants. J Am Heart Assoc. 2019;8(19):e013543.

'1		BMJ Open	
			4
	13.	Abdelhamid AS, Brown TJ, Brainard JS, Biswas P, Thorpe GC, Moore HJ, et al. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev [Internet]. 2018 Jul 18 [cited 2020 Dec 1];2018(7). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6513557/	
	14.	Jones PJH, Senanayake VK, Pu S, Jenkins DJA, Connelly PW, Lamarche B, et al. DHA- enriched high-oleic acid canola oil improves lipid profile and lowers predicted cardiovascular disease risk in the canola oil multicenter randomized controlled trial. Am J Clin Nutr. 2014 Jul;100(1):88–97.	
	15.	Ballantyne CM, Bays HE, Kastelein JJ, Stein E, Isaacsohn JL, Braeckman RA, et al. Efficacy and Safety of Eicosapentaenoic Acid Ethyl Ester (AMR101) Therapy in Statin-Treated Patients With Persistent High Triglycerides (from the ANCHOR Study). Am J Cardiol. 2012 Oct 1;110(7):984–92.	7
	16.	Davidson MH, Stein EA, Bays HE, Maki KC, Doyle RT, Shalwitz RA, et al. Efficacy and tolerability of adding prescription omega-3 fatty acids 4 g/d to simvastatin 40 mg/d in hypertriglyceridemic patients: an 8-week, randomized, double-blind, placebo-controlled study. Clin Ther. 2007 Jul;29(7):1354–67.	
	17.	Bradberry JC, Hilleman DE. Overview of Omega-3 Fatty Acid Therapies. Pharm Ther. 2013 Nov;38(11):681–91.	
	18.	Skulas-Ray AC, Alaupovic P, Kris-Etherton PM, West SG. Dose-response effects of marin omega-3 fatty acids on apolipoproteins, apolipoprotein-defined lipoprotein subclasses, and Lp-PLA2 in individuals with moderate hypertriglyceridemia. J Clin Lipidol. 2015 Jun;9(3):360–7.	e
	19.	Lee MW, Park JK, Hong JW, Kim KJ, Shin DY, Ahn CW, et al. Beneficial Effects of Omega-3 Fatty Acids on Low Density Lipoprotein Particle Size in Patients with Type 2 Diabetes Already under Statin Therapy. Diabetes Metab J. 2013 Jun;37(3):207–11.	}
	20.	Bouwens M, van de Rest O, Dellschaft N, Bromhaar MG, de Groot LCPGM, Geleijnse JM, e al. Fish-oil supplementation induces antiinflammatory gene expression profiles in human blood mononuclear cells. Am J Clin Nutr. 2009 Aug;90(2):415–24.	ŧ
	21.	Rudkowska I, Paradis A-M, Thifault E, Julien P, Tchernof A, Couture P, et al. Transcriptomic and metabolomic signatures of an n-3 polyunsaturated fatty acids supplementation in a normolipidemic/normocholesterolemic Caucasian population. J Nutr Biochem. 2013 Jan;24(1):54–61.	
	22.	Merched AJ, Chan L. Nutrigenetics and Nutrigenomics of Atherosclerosis. Curr Atheroscler Rep. 2013 Jun;15(6):328.	
	23.	Madden J, Williams CM, Calder PC, Lietz G, Miles EA, Cordell H, et al. The impact of common gene variants on the response of biomarkers of cardiovascular disease (CVD) risk to increased fish oil fatty acids intakes. Annu Rev Nutr. 2011 Aug 21;31:203–34.	
	24.	Cave C, Hein N, Smith LM, Anderson-Berry A, Richter CK, Bisselou KS, et al. Omega-3 Long-Chain Polyunsaturated Fatty Acids Intake by Ethnicity, Income, and Education Level in the United States: NHANES 2003–2014. Nutrients [Internet]. 2020 Jul 9 [cited	

	BMJ Open
	4
	2020 Oct 27];12(7). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7400855/
25.	World Health Organization. Joint FAO/WHO Expert Consultation on Fats and Fatty Acids in Human Nutrition [Internet]. 2008. Available from: http://www.who.int/nutrition/topics/FFA_interim_ recommendations/en/
26.	Fats and Fatty Acids in Human Nutrition Karger Book [Internet]. [cited 2021 Jan 14]. Available from: https://www.karger.com/Book/Home/251867
27.	Horne J, Madill J, O'Connor C, Shelley J, Gilliland J. A Systematic Review of Genetic Testing and Lifestyle Behaviour Change: Are We Using High-Quality Genetic Interventions and Considering Behaviour Change Theory? Lifestyle Genomics. 2018;11(1):49–63.
28.	Corella D, Ordovás JM. Interactions between dietary <i>n-3</i> fatty acids and genetic variants and risk of disease. Br J Nutr. 2012 Jun;107(S2):S271–83.
29.	Grimaldi KA, van Ommen B, Ordovas JM, Parnell LD, Mathers JC, Bendik I, et al. Proposed guidelines to evaluate scientific validity and evidence for genotype-based dietary advice. Genes Nutr. 2017 Dec;12(1):35.
30.	Khan KS, Kunz R, Kleijnen J, Antes G. Five steps to conducting a systematic review. J R Soc Med. 2003 Mar;96(3):118–21.
31.	PRISMA. PRISMA: Transparent reporting of systematic reviews and meta-analyses [Internet]. 2015. Available from: http://www.prisma-statement.org/
32.	Pollock A, Berge E. How to do a systematic review. Int J Stroke. 2018 Feb 1;13(2):138– 56.
33.	Dekkers OM, Vandenbroucke JP, Cevallos M, Renehan AG, Altman DG, Egger M. COSMOS- E: Guidance on conducting systematic reviews and meta-analyses of observational studies of etiology. PLoS Med [Internet]. 2019 Feb 21 [cited 2020 Apr 9];16(2). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6383865/
34.	Corella D, Ordovás JM. Interactions between dietary n-3 fatty acids and genetic variants and risk of disease. Br J Nutr. 2012 Jun;107(0 2):S271–83.
35.	GRADE handbook [Internet]. [cited 2020 Sep 29]. Available from: https://gdt.gradepro.org/app/handbook/handbook.html
36.	SNiPA - a single nucleotide polymorphisms annotator and browser [Internet]. [cited 2020 Aug 20]. Available from: https://snipa.helmholtz-muenchen.de/snipa3/index.php?task=proxy_search
37.	GRADE handbook [Internet]. [cited 2020 Apr 3]. Available from: https://gdt.gradepro.org/app/handbook/handbook.html#h.dce0ghnajwsm

- 38. Murad MH, Mustafa RA, Schünemann HJ, Sultan S, Santesso N. Rating the certainty in evidence in the absence of a single estimate of effect. Evid Based Med. 2017 Jun;22(3):85–7.
 39. Ma L-L. Wang Y-Y. Yang Z-H. Huang D. Weng H. Zeng X-T. Methodological quality (ris)
 - 39. Ma L-L, Wang Y-Y, Yang Z-H, Huang D, Weng H, Zeng X-T. Methodological quality (risk of bias) assessment tools for primary and secondary medical studies: what are they and which is better? Mil Med Res [Internet]. 2020 Feb 29 [cited 2020 Sep 2];7. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7049186/
 - 40. Chen Y, Estampador AC, Keller M, Poveda A, Dalla-Riva J, Johansson I, et al. The combined effects of FADS gene variation and dietary fats in obesity-related traits in a population from the far north of Sweden: the GLACIER Study. Int J Obes. 2019 Apr;43(4):808–20.
 - 41. Ching YK, Chin YS, Appukutty M, Ramanchadran V, Yu CY, Ang GY, et al. Interaction of Dietary Linoleic Acid and α -Linolenic Acids with rs174547 in FADS1 Gene on Metabolic Syndrome Components among Vegetarians. Nutrients. 2019 Jul 23;11(7):1686.
 - 42. Dumont J, Huybrechts I, Spinneker A, Gottrand F, Grammatikaki E, Bevilacqua N, et al. FADS1 genetic variability interacts with dietary α -linolenic acid intake to affect serum non-HDL-cholesterol concentrations in European adolescents. J Nutr. 2011 Jul;141(7):1247–53.
 - 43. Dumont J, Goumidi L, Grenier-Boley B, Cottel D, Marécaux N, Montaye M, et al. Dietary linoleic acid interacts with FADS1 genetic variability to modulate HDL-cholesterol and obesity-related traits. Clin Nutr. 2018 Oct 1;37(5):1683–9.
 - 44. Hellstrand S, Sonestedt E, Ericson U, Gullberg B, Wirfält E, Hedblad B, et al. Intake levels of dietary long-chain PUFAs modify the association between genetic variation in *FADS* and LDL-C. J Lipid Res. 2012 Jun;53(6):1183–9.
 - 45. Lu Y, Feskens EJ, Dollé ME, Imholz S, Verschuren WM, Müller M, et al. Dietary n–3 and n–6 polyunsaturated fatty acid intake interacts with FADS1 genetic variation to affect total and HDL-cholesterol concentrations in the Doetinchem Cohort Study. Am J Clin Nutr. 2010 Jul 1;92(1):258–65.
 - 46. Standl M, Lattka E, Stach B, Koletzko S, Bauer C-P, von Berg A, et al. FADS1 FADS2 Gene Cluster, PUFA Intake and Blood Lipids in Children: Results from the GINIplus and LISAplus Studies. PLoS ONE [Internet]. 2012 May 21 [cited 2020 Aug 3];7(5). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3357401/
 - 47. Fontaine-Bisson B, Wolever TMS, Chiasson J-L, Rabasa-Lhoret R, Maheux P, Josse RG, et al. Genetic polymorphisms of tumor necrosis factor-alpha modify the association between dietary polyunsaturated fatty acids and fasting HDL-cholesterol and apo A-I concentrations. Am J Clin Nutr. 2007 Sep;86(3):768–74.
 - 48. Joffe YT, van der Merwe L, Carstens M, Collins M, Jennings C, Levitt NS, et al. Tumor Necrosis Factor- α Gene -308 G/A Polymorphism Modulates the Relationship between Dietary Fat Intake, Serum Lipids, and Obesity Risk in Black South African Women. J Nutr. 2010 May 1;140(5):901–7.

- 49. Joffe YT, van der Merwe L, Evans J, Collins M, Lambert EV, September A, et al. The tumor necrosis factor- α gene -238 G>A polymorphism, dietary fat intake, obesity risk and serum lipid concentrations in black and white South African women. Eur J Clin Nutr. 2012 Dec;66(12):1295–302.
- 50. Tai ES, Corella D, Demissie S, Cupples LA, Coltell O, Schaefer EJ, et al. Polyunsaturated Fatty Acids Interact with the PPARA-L162V Polymorphism to Affect Plasma Triglyceride and Apolipoprotein C-III Concentrations in the Framingham Heart Study. J Nutr. 2005 Mar 1;135(3):397–403.
- 51. Volcik KA, Nettleton JA, Ballantyne CM, Boerwinkle E. Peroxisome proliferator-activated receptor [alpha] genetic variation interacts with n-6 and long-chain n-3 fatty acid intake to affect total cholesterol and LDL-cholesterol concentrations in the Atherosclerosis Risk in Communities Study. Am J Clin Nutr. 2008 Jun;87(6):1926–31.
- 52. Bouchard-Mercier A, Godin G, Lamarche B, Pérusse L, Vohl M-C. Effects of Peroxisome Proliferator-Activated Receptors, Dietary Fat Intakes and Gene–Diet Interactions on Peak Particle Diameters of Low-Density Lipoproteins. J Nutr Nutr. 2011;4(1):36–48.
- 53. Fallaize R, Celis-Morales C, Macready AL, Marsaux CF, Forster H, O'Donovan C, et al. The effect of the apolipoprotein E genotype on response to personalized dietary advice intervention: findings from the Food4Me randomized controlled trial. Am J Clin Nutr. 2016 Sep;104(3):827–36.
- 54. Fontaine-Bisson B, Wolever TMS, Connelly PW, Corey PN, El-Sohemy A. NF-κB –94Ins/Del ATTG polymorphism modifies the association between dietary polyunsaturated fatty acids and HDL-cholesterol in two distinct populations. Atherosclerosis. 2009 Jun;204(2):465–70.
- 55. Hosseini-Esfahani F, Mirmiran P, Koochakpoor G, Daneshpour MS, Guity K, Azizi F. Some dietary factors can modulate the effect of the zinc transporters 8 polymorphism on the risk of metabolic syndrome. Sci Rep. 2017 Dec;7(1):1649.
- 56. Jang HB, Hwang J-Y, Park JE, Oh JH, Ahn Y, Kang J-H, et al. Intake levels of dietary polyunsaturated fatty acids modify the association between the genetic variation in *PCSK5* and HDL cholesterol. J Med Genet. 2014 Dec;51(12):782–8.
- 57. Lai C-Q, Corella D, Demissie S, Cupples LA, Adiconis X, Zhu Y, et al. Dietary Intake of n-6 Fatty Acids Modulates Effect of Apolipoprotein A5 Gene on Plasma Fasting Triglycerides, Remnant Lipoprotein Concentrations, and Lipoprotein Particle Size: The Framingham Heart Study. Circulation. 2006 May 2;113(17):2062–70.
- 58. Richardson K, Louie-Gao Q, Arnett DK, Parnell LD, Lai C-Q, Davalos A, et al. The PLIN4 Variant rs8887 Modulates Obesity Related Phenotypes in Humans through Creation of a Novel miR-522 Seed Site. Mailund T, editor. PLoS ONE. 2011 Apr 20;6(4):e17944.
- 59. Warodomwichit D, Arnett DK, Kabagambe EK, Tsai MY, Hixson JE, Straka RJ, et al. Polyunsaturated Fatty Acids Modulate the Effect of TCF7L2 Gene Variants on Postprandial Lipemia. J Nutr. 2009 Mar 1;139(3):439–46.

- 60. AlSaleh A, Maniou Z, Lewis FJ, Hall WL, Sanders TAB, O'Dell SD. Genetic predisposition scores for dyslipidaemia influence plasma lipid concentrations at baseline, but not the changes after controlled intake of n-3 polyunsaturated fatty acids. Genes Nutr. 2014 Jul;9(4):412.
- 61. Harsløf LBS, Damsgaard CT, Hellgren LI, Andersen AD, Vogel U, Lauritzen L. Effects on metabolic markers are modified by PPARG2 and COX2 polymorphisms in infants randomized to fish oil. Genes Nutr. 2014 May;9(3):396.
- 62. Rudkowska I, Guénard F, Julien P, Couture P, Lemieux S, Barbier O, et al. Genome-wide association study of the plasma triglyceride response to an n-3 polyunsaturated fatty acid supplementation. J Lipid Res. 2014 Jul;55(7):1245–53.
- 63. Vallée Marcotte B, Guénard F, Cormier H, Lemieux S, Couture P, Rudkowska I, et al. Plasma Triglyceride Levels May Be Modulated by Gene Expression of IQCJ, NXPH1, PHF17 and MYB in Humans. Int J Mol Sci. 2017 Jan 26;18(2).
- 64. Vallée Marcotte B, Guénard F, Lemieux S, Couture P, Rudkowska I, Calder PC, et al. Fine mapping of genome-wide association study signals to identify genetic markers of the plasma triglyceride response to an omega-3 fatty acid supplementation. Am J Clin Nutr. 2019 Jan 1;109(1):176–85.
- 65. Vallée Marcotte B, Allaire J, Guénard F, de Toro-Martín J, Couture P, Lamarche B, et al. Genetic risk prediction of the plasma triglyceride response to independent supplementations with eicosapentaenoic and docosahexaenoic acids: the ComparED Study. Genes Nutr. 2020 Dec;15(1):10.
- 66. Zheng J-S, Chen J, Wang L, Yang H, Fang L, Yu Y, et al. Replication of a Gene-Diet Interaction at CD36, NOS3 and PPARG in Response to Omega-3 Fatty Acid Supplements on Blood Lipids: A Double-Blind Randomized Controlled Trial. EBioMedicine. 2018 May;31:150–6.
- 67. Vallée Marcotte B, Guénard F, Marquis J, Charpagne A, Vadillo-Ortega F, Tejero M, et al. Genetic Risk Score Predictive of the Plasma Triglyceride Response to an Omega-3 Fatty Acid Supplementation in a Mexican Population. Nutrients. 2019 Mar 29;11(4):737.
- 68. Roke K, Mutch DM. The Role of FADS1/2 Polymorphisms on Cardiometabolic Markers and Fatty Acid Profiles in Young Adults Consuming Fish Oil Supplements. Nutrients. 2014 Jun 16;6(6):2290–304.
- 69. Cormier H, Rudkowska I, Paradis A-M, Thifault E, Garneau V, Lemieux S, et al. Association between Polymorphisms in the Fatty Acid Desaturase Gene Cluster and the Plasma Triacylglycerol Response to an n-3 PUFA Supplementation. Nutrients. 2012 Aug 17;4(8):1026–41.
- 70. AbuMweis SS, Panchal SK, Jones PJH. Triacylglycerol-Lowering Effect of Docosahexaenoic Acid Is Not Influenced by Single-Nucleotide Polymorphisms Involved in Lipid Metabolism in Humans. Lipids. 2018;53(9):897–908.

- 71. Carvalho-Wells AL, Jackson KG, Lockyer S, Lovegrove JA, Minihane AM. APOE genotype influences triglyceride and C-reactive protein responses to altered dietary fat intake in UK adults. Am J Clin Nutr. 2012 Dec 1;96(6):1447–53.
- 72. Caslake MJ, Miles EA, Kofler BM, Lietz G, Curtis P, Armah CK, et al. Effect of sex and genotype on cardiovascular biomarker response to fish oils: the FINGEN Study. Am J Clin Nutr. 2008 Sep 1;88(3):618–29.
- 73. Dang TM, Conway V, Plourde M. Disrupted fatty acid distribution in HDL and LDL according to apolipoprotein E allele. Nutrition. 2015 Jun 1;31(6):807–12.
- 74. Jackson KG, Lockyer S, Carvalho-Wells AL, Williams CM, Minihane AM, Lovegrove JA. Dietary fat manipulation has a greater impact on postprandial lipid metabolism than the apolipoprotein E (epsilon) genotype–insights from the SATgenε study. Mol Nutr Food Res. 2012;56(12):1761–70.
- 75. Jackson KG, Lockyer S, Carvalho-Wells AL, Williams CM, Minihane AM, Lovegrove JA. *Apolipoprotein* E (epsilon) genotype has a greater impact on apoB-48 than apoB-100 responses to dietary fat manipulation-insights from the SATgenε study. Mol Nutr Food Res. 2017 Apr;61(4):1600688.
- 76. Minihane AM, Khan S, Leigh-Firbank EC, Talmud P, Wright JW, Murphy MC, et al. ApoE Polymorphism and Fish Oil Supplementation in Subjects With an Atherogenic Lipoprotein Phenotype. Arterioscler Thromb Vasc Biol. 2000 Aug;20(8):1990–7.
- 77. Olano-Martin E, Anil E, Caslake MJ, Packard CJ, Bedford D, Stewart G, et al. Contribution of apolipoprotein E genotype and docosahexaenoic acid to the LDL-cholesterol response to fish oil. Atherosclerosis. 2010 Mar;209(1):104–10.
- 78. Paschos GK, Yiannakouris N, Rallidis LS, Davies I, Griffin BA, Panagiotakos DB, et al. Apolipoprotein E Genotype in Dyslipidemic Patients and Response of Blood Lipids and Inflammatory Markers to Alpha-Linolenic Acid. Angiology. 2005 Jan 1;56(1):49–60.
- 79. Thifault E, Cormier H, Bouchard-Mercier A, Rudkowska I, Paradis A-M, Garneau V, et al. Effects of Age, Sex, Body Mass Index and APOE Genotype on Cardiovascular Biomarker Response to an n-3 Polyunsaturated Fatty Acid Supplementation. J Nutr Nutr. 2013;6(2):73–82.
- 80. Madden J, Carrero J, Brunner A, Dastur N, Shearman C, Calder P, et al. Polymorphisms in the CD36 gene modulate the ability of fish oil supplements to lower fasting plasma triacyl glycerol and raise HDL cholesterol concentrations in healthy middle-aged men. Prostaglandins, Leukotrienes and Essential Fatty Acids. 2008;78:327–35.
- Dawczynski C, Massey KA, Ness C, Kiehntopf M, Stepanow S, Platzer M, et al. Randomized placebo-controlled intervention with n-3 LC-PUFA-supplemented yoghurt: Effects on circulating eicosanoids and cardiovascular risk factors. Clin Nutr. 2013 Oct 1;32(5):686–96.
- 82. Binia A, Vargas-Martínez C, Ancira-Moreno M, Gosoniu LM, Montoliu I, Gámez-Valdez E, et al. Improvement of cardiometabolic markers after fish oil intervention in young

	Mexican adults and the role of PPAR α L162V and PPAR $\gamma 2$ P12A. J Nutr Biochem. 2017 May;43:98–106.
83.	Itariu BK, Zeyda M, Hochbrugger EE, Neuhofer A, Prager G, Schindler K, et al. Long-chain n–3 PUFAs reduce adipose tissue and systemic inflammation in severely obese nondiabetic patients: a randomized controlled trial. Am J Clin Nutr. 2012 Nov 1;96(5):1137–49.
84.	Lindi V, Schwab U, Louheranta A, Laakso M, Vessby B, Hermansen K, et al. Impact of the Pro12Ala polymorphism of the PPAR- γ 2 gene on serum triacylglycerol response to n–3 fatty acid supplementation. Mol Genet Metab. 2003 May;79(1):52–60.
85.	Pishva H, Mehdipour P, Eshraghian MR, Mahboob S-A. Effects of Eicosapentaenoic Acid Supplementation on Lipid and Lipoprotein Profile in Hypertriglyceridemic Subjects with Different Proliferator-activated Receptor Alpha Genotypes. :13.
86.	Caron-Dorval D, Paquet P, Paradis A-M, Rudkowska I, Lemieux S, Couture P, et al. Effect of the PPAR-Alpha L162V Polymorphism on the Cardiovascular Disease Risk Factor in Response to n–3 Polyunsaturated Fatty Acids. J Nutr Nutr. 2008;1(4):205–12.
87.	Binia A, Vargas-Martínez C, Ancira-Moreno M, Gosoniu LM, Montoliu I, Gámez-Valdez E, et al. Improvement of cardiometabolic markers after fish oil intervention in young Mexican adults and the role of PPAR α L162V and PPAR γ 2 P12A. J Nutr Biochem. 2017 May;43:98–106.
88.	Bouchard-Mercier A, Godin G, Lamarche B, Pérusse L, Vohl M-C. Effects of Peroxisome Proliferator-Activated Receptors, Dietary Fat Intakes and Gene–Diet Interactions on Peak Particle Diameters of Low-Density Lipoproteins. J Nutr Nutr. 2011;4(1):36–48.
89.	Bodhini D, Gaal S, Shatwan I, Ramya K, Ellahi B, Surendran S, et al. Interaction between TCF7L2 polymorphism and dietary fat intake on high density lipoprotein cholesterol. Li S, editor. PLOS ONE. 2017 Nov 28;12(11):e0188382.
90.	Ching YK, Chin YS, Appukutty M, Ramanchadran V, Yu CY, Ang GY, et al. Interaction of Dietary Linoleic Acid and α -Linolenic Acids with rs174547 in FADS1 Gene on Metabolic Syndrome Components among Vegetarians. Nutrients. 2019 Jul;11(7):1686.
91.	Fontaine-Bisson B, El-Sohemy A. Genetic polymorphisms of tumor necrosis factor-alpha modify the association between dietary polyunsaturated fatty acids and plasma high-density lipoprotein-cholesterol concentrations in a population of young adults. J Nutr Nutr. 2008;1(5):215–23.
92.	Fontaine-Bisson B, Wolever TMS, Connelly PW, Corey PN, El-Sohemy A. NF-κB –94Ins/Del ATTG polymorphism modifies the association between dietary polyunsaturated fatty acids and HDL-cholesterol in two distinct populations. Atherosclerosis. 2009 Jun;204(2):465–70.
93.	Hellstrand S, Sonestedt E, Ericson U, Gullberg B, Wirfält E, Hedblad B, et al. Intake levels of dietary long-chain PUFAs modify the association between genetic variation in FADS and LDL-C. J Lipid Res. 2012 Jun;53(6):1183–9.

94. Hosseini-Esfahani F, Mirmiran P, Koochakpoor G, Daneshpour MS, Guity K, Azizi F. Some dietary factors can modulate the effect of the zinc transporters 8 polymorphism on the risk of metabolic syndrome. Sci Rep. 2017 Dec;7(1):1649.

- 95. Jang HB, Hwang J-Y, Park JE, Oh JH, Ahn Y, Kang J-H, et al. Intake levels of dietary polyunsaturated fatty acids modify the association between the genetic variation in *PCSK5* and HDL cholesterol. J Med Genet. 2014 Dec;51(12):782–8.
- 96. Joffe YT, van der Merwe L, Carstens M, Collins M, Jennings C, Levitt NS, et al. Tumor Necrosis Factor-α Gene -308 G/A Polymorphism Modulates the Relationship between Dietary Fat Intake, Serum Lipids, and Obesity Risk in Black South African Women. J Nutr. 2010 May 1;140(5):901–7.
- 97. Joffe YT, van der Merwe L, Evans J, Collins M, Lambert EV, September A, et al. The tumor necrosis factor-α gene -238 G>A polymorphism, dietary fat intake, obesity risk and serum lipid concentrations in black and white South African women. Eur J Clin Nutr. 2012 Dec;66(12):1295–302.
- 98. Joffe YT, van der Merwe L, Evans J, Collins M, Lambert EV, September A, et al. Interleukin-6 Gene Polymorphisms, Dietary Fat Intake, Obesity and Serum Lipid Concentrations in Black and White South African Women. Nutrients. 2014 Jun 24;6(6):2436–65.
- 99. Lai Chao-Qiang, Corella Dolores, Demissie Serkalem, Cupples L. Adrienne, Adiconis Xian, Zhu Yueping, et al. Dietary Intake of n-6 Fatty Acids Modulates Effect of Apolipoprotein A5 Gene on Plasma Fasting Triglycerides, Remnant Lipoprotein Concentrations, and Lipoprotein Particle Size. Circulation. 2006 May 2;113(17):2062–70.
- 100. Lu Y, Feskens EJ, Dollé ME, Imholz S, Verschuren WM, Müller M, et al. Dietary n–3 and n–6 polyunsaturated fatty acid intake interacts with FADS1 genetic variation to affect total and HDL-cholesterol concentrations in the Doetinchem Cohort Study. Am J Clin Nutr. 2010 Jul 1;92(1):258–65.
- 101. Nettleton JA, Volcik KA, Hoogeveen RC, Boerwinkle E. Carbohydrate intake modifies associations between ANGPTL4[E40K] genotype and HDL-cholesterol concentrations in White men from the Atherosclerosis Risk in Communities (ARIC) study. Atherosclerosis. 2009 Mar;203(1):214–20.
- 102. Richardson K, Louie-Gao Q, Arnett DK, Parnell LD, Lai C-Q, Davalos A, et al. The PLIN4 Variant rs8887 Modulates Obesity Related Phenotypes in Humans through Creation of a Novel miR-522 Seed Site. PLOS ONE. 2011 Apr 20;6(4):e17944.
- 103. Tai ES, Corella D, Demissie S, Cupples LA, Coltell O, Schaefer EJ, et al. Polyunsaturated Fatty Acids Interact with the PPARA-L162V Polymorphism to Affect Plasma Triglyceride and Apolipoprotein C-III Concentrations in the Framingham Heart Study. J Nutr. 2005 Mar 1;135(3):397–403.
- 104. Volcik KA, Nettleton JA, Ballantyne CM, Boerwinkle E. Peroxisome proliferatoractivated receptor alpha genetic variation interacts with n-6 and long-chain n-3 fatty

1	
2	
3	acid intake to affect total cholesterol and LDL-cholesterol concentrations in the
4	Atherosclerosis Risk in Communities Study. Am J Clin Nutr. 2008:87:1926–31.
5	5, 7, 7,
6	105 Warodomwichit D. Arnett DK. Kahagamhe EK. Tsai MY. Hixson JE. Straka RJ. et al
7	Dolyuncaturated Fatty Acide Modulate the Effect of TCE71.2 Cone Variants on
8	Doctmendial Linemia I Nutr 2000 Mar 1.120(2).420 46
9	Postpranulai Lipenna. J Nutr. 2009 Mar 1;159(5):459–46.
10	
11	106. AlSaleh A, Maniou Z, Lewis FJ, Hall WL, Sanders TAB, O'Dell SD. Genetic
12	predisposition scores for dyslipidaemia influence plasma lipid concentrations at
13	baseline, but not the changes after controlled intake of n-3 polyunsaturated fatty acids.
14	Genes Nutr. 2014 Jul;9(4):412.
15	
16	107. Armstrong P. Kelley DS. Newman IW. Staggers FE. Hartiala I. Allayee H. et al.
17	Arachidonata 5-Linovygenase Cone Variants Affect Response to Fish Oil
12	Supplementation by Healthy African Americana 1224 I Nutr 2012 Aug 142(0):1417-20
10	Supplementation by healthy African Africans 1254. J Nutl. 2012 Aug;142(6):1417–26.
20	
20	108. Bouchard-Mercier A, Rudkowska I, Lemieux S, Couture P, Vohl M-C. Polymorphisms,
21	de novo lipogenesis, and plasma triglyceride response following fish oil
22	supplementation. J Lipid Res. 2013 Oct;54(10):2866–73.
23	
24	109. Bouchard-Mercier A, Rudkowska I, Lemieux S, Couture P, Vohl M-C. Polymorphisms
25	in Genes Involved in Fatty Acid 6-Oxidation Interact with Dietary Fat Intakes to
26	Modulate the Plasma TG Response to a Fish Oil Supplementation Nutrients 2014 Mar
27	
28	10,0(5).1145-05.
29	110 De de dimensiona Dille de la la construcción de División de la construcción de la con
30	110. Bouchard-Mercier A, Rudkowska I, Lemieux S, Couture P, Voni M-C. An interaction
31	effect between glucokinase gene variation and carbohydrate intakes modulates the
32	plasma triglyceride response to a fish oil supplementation. Genes Nutr. 2014
33	May;9(3):395.
34	
35	111. Caron-Dorval D, Paquet P, Paradis A-M, Rudkowska I, Lemieux S, Couture P, et al.
36	Effect of the PPAR-Alpha L162V Polymorphism on the Cardiovascular Disease Risk
37	Factor in Response to n=3 Polyunsaturated Fatty Acids I Nutr Nutr 2008-1(4)-205-12
38	
39	112 Carvalho-Wells AL Jackson KC Lockwar S Lovegrove IA Minihane AM APOF
40	anotimo influences triglucevide and C reactive metain responses to altered distant fat
41	genotype innuences trigiyceniue and C-reactive protein responses to altered dietary fat
42	Intake in UK adults. Am J Clin Nutr. 2012 Dec 1;96(6):1447–53.
43	
44	113. Lockyer S, Tzanetou M, Carvalho-Wells AL, Jackson KG, Minihane AM, Lovegrove JA.
45	SATgene dietary model to implement diets of differing fat composition in prospectively
46	genotyped groups (apoE) using commercially available foods. Br J Nutr. 2012
47	Nov;108(9):1705–13.
47 //8	
40	114. Caslake MI, Miles EA, Kofler BM, Lietz G, Curtis P, Armah CK, et al. Effect of sex and
49 50	genotype on cardiovascular biomarker response to fish oils, the FINGEN Study. Am I
50	Clin Nutr 2008 Sen 1.88(3):618–29
51	onn maar 2000 Sep 1,00(5).010 27.
52	115 Cormior H. Budlzowska I. Davadia A. M. Thifault F. Corneau V. Lomiour S. et al
55	115. Commer n, Kuukowska I, Farauls A-M, Innault E, Garneau V, Lenneux S, et al.
54 55	Association between Polymorphisms in the Fatty Acid Desaturase Gene Cluster and the
33	Plasma Triacylglycerol Response to an n-3 PUFA Supplementation. Nutrients. 2012
50	Aug;4(8):1026–41.
5/	
58	
59	

116. Ferguson JF, Phillips CM, McMonagle J, Pérez-Martínez P, Shaw DI, Lovegrove JA, et al. NOS3 gene polymorphisms are associated with risk markers of cardiovascular disease, and interact with omega-3 polyunsaturated fatty acids. Atherosclerosis. 2010 Aug 1;211(2):539–44.

- 117. Jackson KG, Lockyer S, Carvalho-Wells AL, Williams CM, Minihane AM, Lovegrove JA. Apolipoprotein E (epsilon) genotype has a greater impact on apoB-48 than apoB-100 responses to dietary fat manipulation—insights from the SATgenε study. Mol Nutr Food Res. 2017;61(4):1600688.
- 118. Lindman AS, Pedersen JI, Hjerkinn EM, Arnesen H, Veierød MB, Ellingsen I, et al. The effects of long-term diet and omega-3 fatty acid supplementation on coagulation factor VII and serum phospholipids with special emphasis on the R353Q polymorphism of the FVII gene. Thromb Haemost. 2004 Jun;91(6):1097–104.
- 119. Markovic O, O'Reilly G, Fussell HelenM, Turner SJ, Calder PC, Howell WM, et al. Role of single nucleotide polymorphisms of pro-inflammatory cytokine genes in the relationship between serum lipids and inflammatory parameters, and the lipid-lowering effect of fish oil in healthy males. Clin Nutr. 2004 Oct 1;23(5):1084–95.
- 120. McColley SP, Georgopoulos A, Young LR, Kurzer MS, Redmon JB, Raatz SK. A high-fat diet and the threonine-encoding allele (Thr54) polymorphism of fatty acid-binding protein 2 reduce plasma triglyceride-rich lipoproteins. Nutr Res. 2011 Jul 1;31(7):503–8.
- 121. Minihane Anne M., Khan Syrah, Leigh-Firbank Elizabeth C., Talmud Philippa, Wright John W., Murphy Margaret C., et al. ApoE Polymorphism and Fish Oil Supplementation in Subjects With an Atherogenic Lipoprotein Phenotype. Arterioscler Thromb Vasc Biol. 2000 Aug 1;20(8):1990–7.
- 122. Ouellette C, Cormier H, Rudkowska I, Guénard F, Lemieux S, Couture P, et al. Polymorphisms in Genes Involved in the Triglyceride Synthesis Pathway and Marine Omega-3 Polyunsaturated Fatty Acid Supplementation Modulate Plasma Triglyceride Levels. Lifestyle Genomics. 2013;6(4–5):268–80.
- 123. Ouellette C, Rudkowska I, Lemieux S, Lamarche B, Couture P, Vohl M-C. Gene-diet interactions with polymorphisms of the MGLL gene on plasma low-density lipoprotein cholesterol and size following an omega-3 polyunsaturated fatty acid supplementation: a clinical trial. Lipids Health Dis. 2014 May 24;13:86.
- 124. Pishva H, Mahboob S-A, Mehdipour P, Eshraghian MR, Mohammadi-Asl J, Hosseini S, et al. Fatty acid–binding protein-2 genotype influences lipid and lipoprotein response to eicosapentaenoic acid supplementation in hypertriglyceridemic subjects. Nutrition. 2010 Nov 1;26(11):1117–21.
- 125. Pishva H, Mehdipour P, Eshraghian MR, Mahboob S-A. Effects of Eicosapentaenoic Acid Supplementation on Lipid and Lipoprotein Profile in Hypertriglyceridemic Subjects with Different Proliferator-activated Receptor Alpha Genotypes. Int J Prev Med. 2014 Mar;5(3):333–40.

2		
-		
3		
4		
5		
6		
7		
/		
8		
0		
9		
10		
11		
12		
13		
1.5		
14		
15		
10		
16		
17		
10		
10		
19		
20		
20		
21		
22		
22		
23		
24		
27		
25		
26		
27		
27		
28		
20		
29		
30		
21		
31		
32		
22		
22		
34		
35		
55		
36		
37		
20		
38		
39		
40		
40		
41		
40		
42		
43		
11		
44		
45		
16		
40		
47		
48		
40		
49		
50		
50		
51		
52		
52		
53		
54		
55		
56		
57		
5/		
58		
50		
צנ		

- 126. Rudkowska I, Julien P, Couture P, Lemieux S, Tchernof A, Barbier O, et al. Cardiometabolic risk factors are influenced by Stearoyl-CoA Desaturase (SCD) –1 gene polymorphisms and n-3 polyunsaturated fatty acid supplementation. Mol Nutr Food Res. 2014;58(5):1079–86.
- 127. Scorletti E, West AL, Bhatia L, Hoile SP, McCormick KG, Burdge GC, et al. Treating liver fat and serum triglyceride levels in NAFLD, effects of PNPLA3 and TM6SF2 genotypes: Results from the WELCOME trial. J Hepatol. 2015 Dec 1;63(6):1476–83.
- 128. Thifault E, Cormier H, Bouchard-Mercier A, Rudkowska I, Paradis A-M, Garneau V, et al. Effects of Age, Sex, Body Mass Index and APOE Genotype on Cardiovascular Biomarker Response to an n-3 Polyunsaturated Fatty Acid Supplementation. Lifestyle Genomics. 2013;6(2):73–82.
- 129. Tremblay BL, Cormier H, Rudkowska I, Lemieux S, Couture P, Vohl M-C. Association between polymorphisms in phospholipase A2 genes and the plasma triglyceride response to an n-3 PUFA supplementation: a clinical trial. Lipids Health Dis. 2015 Feb 21;14(1):12.
- 130. Bastien Vallée Marcotte, Cormier H, Guénard F, Rudkowska I, Lemieux S, Couture P, et al. Novel Genetic Loci Associated with the Plasma Triglyceride Response to an Omega-3 Fatty Acid Supplementation. J Nutr Nutr. 2016;9:1–11.
- 131. Vallée Marcotte B, Guénard F, Marquis J, Charpagne A, Vadillo-Ortega F, Tejero ME, et al. Genetic Risk Score Predictive of the Plasma Triglyceride Response to an Omega-3 Fatty Acid Supplementation in a Mexican Population. Nutrients [Internet]. 2019 Mar 29 [cited 2020 Aug 3];11(4). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6521301/
- 132. Vallée Marcotte B, Guénard F, Lemiux S, Couture P, Rudkowska I, Calder PC, et al. Fine mapping of genome-wide association study signals to identify genetic markers of the plasma triglyceride response to an omega-3 fatty acid supplementation.
- 133. Wu S-Y, Mayneris-Perxachs J, Lovegrove JA, Todd S, Yaqoob P. Fish-oil supplementation alters numbers of circulating endothelial progenitor cells and microparticles independently of eNOS genotype. Am J Clin Nutr. 2014 Nov 1;100(5):1232–43.
- 134. Zheng J-S, Chen J, Wang L, Yang H, Fang L, Yu Y, et al. Replication of a Gene-Diet Interaction at CD36, NOS3 and PPARG in Response to Omega-3 Fatty Acid Supplements on Blood Lipids: A Double-Blind Randomized Controlled Trial. EBioMedicine. 2018 Apr 17;31:150–6.
- 135. Dawczynski C, Massey KA, Ness C, Kiehntopf M, Stepanow S, Platzer M, et al. Randomized placebo-controlled intervention with n-3 LC-PUFA-supplemented yoghurt: Effects on circulating eicosanoids and cardiovascular risk factors. Clin Nutr. 2013 Oct;32(5):686–96.

136. Kotze M, Brand T, Pretorius J, J van Rensburg S, Luckhoff HK. Apolipoprotein E epsilon-4 as a genetic determinant of Alzheimer's disease heterogeneity. Degener Neurol Neuromuscul Dis. 2015 Jan;9.

- 137. Marais AD. Apolipoprotein E in lipoprotein metabolism, health and cardiovascular disease. Pathology (Phila). 2019 Feb;51(2):165–76.
- 138. Kuo C-L, Pilling LC, Atkins JL, Kuchel GA, Melzer D. ApoE e2 and aging-related outcomes in 379,000 UK Biobank participants. Aging. 2020 Jun 8;12(12):12222–33.
- 139. Nawawi HM, Chua Y-A, Watts GF. The brave new world of genetic testing in the management of the dyslipidaemias. Curr Opin Cardiol. 2020;35(3):226–33.
- 140. Livingston G, Huntley J, Sommerlad A, Ames D, Ballard C, Banerjee S, et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. The Lancet. 2020 Aug;396(10248):413–46.
- 141. Dorszewska J, Prendecki M, Oczkowska A, Dezor M, Kozubski W. Molecular Basis of Familial and Sporadic Alzheimer's Disease. Curr Alzheimer Res. 2016;13(9):952–63.
- 142. ACCE Model Process for Evaluating Genetic Tests | CDC [Internet]. 2021 [cited 2021 Feb 15]. Available from: https://www.cdc.gov/genomics/gtesting/acce/index.htm
- 143. Corella D, Coltell O, Portolés O, Sotos-Prieto M, Fernández-Carrión R, Ramirez-Sabio J, et al. A Guide to Applying the Sex-Gender Perspective to Nutritional Genomics. Nutrients. 2018 Dec 20;11(1):4.
- 144. Vidaver RM, Lafleur B, Tong C, Bradshaw R, Marts SA. Women Subjects in NIH-Funded Clinical Research Literature: Lack of Progress in Both Representation and Analysis by Sex. J Womens Health Gend Based Med. 2000 Jun 1;9(5):495–504.
- 145. Little J, Higgins J, Ioannidis J, Moher D, Gagnon F, von Elm E, et al., editors. STrengthening the REporting of Genetic Association studies (STREGA) - An extension of the STROBE statement. PLoS Med. 2009;6(2):e1000022.
- 146. Strande NT, Riggs ER, Buchanan AH, Ceyhan-Birsoy O, DiStefano M, Dwight SS, et al. Evaluating the Clinical Validity of Gene-Disease Associations: An Evidence-Based Framework Developed by the Clinical Genome Resource. Am J Hum Genet. 2017 Jun;100(6):895–906.
- 147. Ciesielski TH, Pendergrass SA, White MJ, Kodaman N, Sobota RS, Huang M, et al. Diverse convergent evidence in the genetic analysis of complex disease: coordinating omic, informatic, and experimental evidence to better identify and validate risk factors. BioData Min. 2014 Dec;7(1):10.
- 148. Rudkowska I, Paradis A-M, Thifault E, Julien P, Barbier O, Couture P, et al. Differences in metabolomic and transcriptomic profiles between responders and nonresponders to an n-3 polyunsaturated fatty acids (PUFAs) supplementation. Genes Nutr. 2013 Jul;8(4):411–23.

149. Ray-Barruel G, Rickard CM. Helping nurses help PIVCs: decision aids for daily assessment and maintenance. Br J Nurs Mark Allen Publ. 2018 Apr 26;27(8):S12–8.

tor peet terien only

For beer review only

Figure 1: PRISMA 2009 Flow Diagram

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52	
48 49 50 51 52 53	
54 55 56 57 58 59 60	For peer review only - http://bmiopen.hmi.com/site/about/quidelines.yhtml
60	r or peer review only - http://bhijopen.bhij.com/site/about/guideines.xhtml

Supplementary Tables

Supplementary Table 1: Search Strategy

Em	Embase		
#	Search Strategy		
1	omega-3':ti,ab,kw OR pufa\$:ti,ab,kw OR ((acid* NEAR/5 ('n-3' OR polyunsaturated OR linolenic OR eicosapenta\$noic OR timnodonic OR docosahexa\$noic)):ti,ab,kw) OR docosahexaenoate:ti,ab,kw OR epa:ti,ab,kw OR dha:ti,ab,kw OR ala:ti,ab,kw		
2	omega 3 fatty acid'/exp		
3	#1 OR #2		
4	cholesterol*:ti,ab,kw OR hdl:ti,ab,kw OR ldl:ti,ab,kw OR 'high density lipoprotein*':ti,ab,kw OR 'low density lipoprotein*':ti,ab,kw OR 'beta lipoprotein*':ti,ab,kw OR apo*protein*:ti,ab,kw OR apoa:ti,ab,kw OR apob:ti,ab,kw OR apoc:ti,ab,kw OR apod:ti,ab,kw OR apoe:ti,ab,kw OR apoh:ti,ab,kw OR ((apo NEXT/1 (a OR b OR c OR d OR e OR h)):ti,ab,kw) OR triglyceride*:ti,ab,kw OR triacylglycerol*:ti,ab,kw OR (((serum OR plasma) NEXT/1 (lipid* OR tg OR tag)):ti,ab,kw)		
5	cholesterol'/exp OR 'lipoprotein'/exp OR 'triacylglycerol'/exp		
6	#4 OR #5		
7	nutrigenomic*:ti,ab,kw OR nutrigenetic*:ti,ab,kw OR (((nutritional OR expression* OR variation* OR variant*) NEAR/2 (genomic* OR genetic* OR gene OR genes)):ti,ab,kw) OR genotype:ti,ab,kw OR ((('nutrient-gene' OR 'gene-nutrient' OR 'gene-diet') NEXT/1 interaction*):ti,ab,kw) OR 'personali?ed nutrition':ti,ab,kw OR 'precision nutrition':ti,ab,kw		
8	nutrigenomics'/exp OR 'nutrigenetics'/exp OR 'genetic variation'/exp OR 'genotype'/exp		
9	#7 OR #8		
10	#3 AND #6 AND #9		
11	[animals]/lim NOT [humans]/lim		
12	#10 NOT #11		

Medline (Ovid)		
#	Search Strategy	
1	("omega-3" or PUFA? or (acid* adj5 ("n-3" or polyunsaturated or linolenic or eicosapenta?noic or timnodonic or docosahexa?noic)) or docosahexaenoate or EPA or DHA or ALA).ab,kf,ti.	
2	exp Fatty Acids, Omega-3/	
3	1 or 2	
4	(cholesterol* or HDL or LDL or "high density lipoprotein*" or "low density lipoprotein*" or "beta lipoprotein*" or apo*protein* or apoA or apoB or apoC or apoD or apoE or apoH or (apo adj (A or B or C or D or E or H)) or triglyceride* or triacylglycerol* or ((serum or plasma) adj (lipid* or TG or TAG))).ab,kf,ti.	
5	exp Cholesterol/ or exp Lipoproteins/ or exp Triglycerides/	
6	4 or 5	
7	(nutrigenomic* or nutrigenetic* or ((nutritional or expression* or variation* or variant*) adj2 (genomic* or genetic* or gene or genes)) or genotype or (("nutrient-gene" or "gene-nutrient" or "gene-diet") adj interaction*) or "personali#ed nutrition" or "precision nutrition").ab,kf,ti.	
8	Nutrigenomics/ or Genetic Variation/ or Genotype/	
9	7 or 8	
10	3 and 6 and 9	
11	exp animals/ not humans.sh.	
12	10 not 11	

Web of Science

Indexes = SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, ESCI Timespan =All years

 BMJ Open

π	Search Strategy
1	TS=("omega-3" or PUFA\$ or (acid* NEAR/5 ("n-3" or polyunsaturated or linolenic or eicosapenta\$noic or timnodonic or docosahexa\$noic)) or docosahexaenoate or EPA or DHA or ALA)
2	TS=(cholesterol* or HDL or LDL or "high density lipoprotein*" or "low density lipoprotein*" or "beta lipoprotein*" or apo*protein* or apoA or apoB or apoC or apoD or apoE or apoH or (apo NEAR/0 (A or B or C or D or E or H)) or triglyceride* or triacylglycerol* or ((serum or plasma) NEAR/0 (lipid* or TG or TAG)))
3	TS=(nutrigenomic* or nutrigenetic* or ((nutritional or expression* or variation* or variant*) NEAR/2 (genomic* or genetic* or gene or genes)) or genotypor (("nutrient-gene" or "gene-nutrient" or "gene-diet") NEAR/0 interaction*) or "personali?ed nutrition" or "precision nutrition")
4	#1 AND #2 AND #3
5	TS=(animals OR animal OR mice OR mus OR mouse OR murine OR woodmouse OR rats OR rat OR murinae OR muridae OR cottonrat OR cottonrats OR hamster OR hamsters OR cricetinae OR rodentia OR rodent OR rodents OR pigs OR pig OR swine OR swines OR piglets OR piglet OR boar OR boars OR "sus scrofa" OR ferrets OR ferret OR polecat OR polecats OR "mustela putorius" OR "guinea pigs" OR "guinea pig" OR cavia OR callithrix O marmoset OR marmosets OR cebuella OR hapale OR octodon OR chinchilla OR chinchillas OR gerbillinae OR gerbil OR gerbils OR jird OR jirds OR merione OR meriones OR rabbits OR rabbit OR hares OR hare OR diptera OR flies OR fly OR dipteral OR drosphila OR drosphilidae OR cats OR cat OR carus OR felis OR nematoda OR nematode OR nematoda OR nematodes OR sipunculida OR dogs OR dog OR canine OR canine OR canis OR sheep OR sheeps OR mouflon OR mouflons OR ovis OR goats OR goat OR capra OR capras OR rupicapra OR chamois OR haplorhini OR monkey OR monkeys OR anthropoidea OR anthropoids OR saguinus OR tamarin OR tamarins OR leontopithecus OR hominidae OR ape OR apes OR pan OR paniscus OR "pan paniscus" OR bonobo OR bonobos OR troglodytes OR "pan troglodytes" OR gibbon OR gibbons OR siamang OR siamangs OR nomascus OR symphalangus OR chimpanzee OR chimpanzees OR "pongo pygmaeus" OR orangutans OR pygmaeus OR lemur OR lemurs OR lemuridae OR horse OR horses OR pongo OR equus OR cow OR calf OR bull OR chickens OR chickens OR gallus OR galligator OR alligators OR crocodile OR "epidalea calamita" OR salamander OR salamanders OR eel OR eels OR sicuridae OR squirrel OR squirrel OR dot oR salientia OR toad OR toad OR toads OR susliks OR vole OR voles OR lemming OR lemmings OR muskrat OR muskrats OR lemmus OR chimpunks OR suslik OR susliks OR vole OR voles OR lemming OR lemmings OR muskrat OR muskrats OR lemmus OR otter OR otters OR martes OR martes OR meriodel OR toad OR toads OR "epidalea calamita" OR salamander OR salamanders OR eel OR eels OR sciuridae OR squirrel OR squirrel OR chimpunk OR chimpunks OR martes OR muskrat O

3
4
5
5
6
7
8
9
10
11
11
12
13
14
15
16
17
10
10
19
20
21
22
23
23
24
25
26
27
28
29
20
21
31
32
33
34
35
36
20
3/
38
39
40
41
42
12
40
44
45
46
47
48
⊿0
79
50
51
52
53
54
55
55
20
57
58
59
60

Supplementary Table 2: Genes, SNPs, lipid/lipoprotein outcomes and studies included in
evidence grading process and guideline development

Gene, SNP(s)	Outcome	Studies
<i>APOE</i> : rs429358, rs7412 (Genotype)	TG	AbuMweis et al. 2018 (65) Carvalho-Wells et al. 2012 (106) Caslake et al. 2008 (108) Dang et al. 2015 (68) Jackson et al. 2012 (69) Olano-Martin et al. 2010 (72) Minihane et al. 2000 (115) Paschos et al. 2005 (73) Thifault et al. 2013 (122)
<i>APOE</i> : rs429358, rs7412	Total-c	Fallaize et al. 2016 (48) AbuMweis et al. 2018 (65) Carvalho-Wells et al. 2012 (106) Caslake et al. 2008 (108) Dang et al. 2015 (68) Jackson et al. 2012 (69) Olano-Martin et al. 2010 (72) Paschos et al. 2005 (73) Thifault et al. 2013 (122)
<i>PPARy2</i> : rs1801282	LDL-c	Binia et al. 2017 (77) Harsløf et al. 2014 (56) Itariu et al. 2012 (78) Lindi et al. 2003 (79) Zheng et al. 2018 (128)
<i>PPARy2</i> : rs1801282	Total-c	Binia et al. 2017 (77) Harsløf et al. 2014 (56) Itariu et al. 2012 (78) Lindi et al. 2003 (79) Zheng et al. 2018 (128)
<i>PPARγ2</i> : rs1801282	TG	Binia et al. 2017 (77) Harsløf et al. 2014 (56) Itariu et al. 2012 (78) Lindi et al. 2003 (79) Zheng et al. 2018 (128)
CD36: rs1761667	HDL-c	Dawczynski et al. 2013 (76) Madden et al. 2008 (75)
CD36: rs1761667	TG	Dawczynski et al. 2013 (76) Madden et al. 2008 (75)
CD36: rs1049673	HDL-c	Dawczynski et al. 2013 (76) Madden et al. 2008 (75)
CD36: rs1527483	TG	Madden et al. 2008 (75) Zheng et al. 2018 (128)
<i>FADS</i> : rs174547*	Total-c	Dumont et al. 2011 (37) Dumont et al. 2018 (38) Lu et al. 2010 (94) Standl et al. 2012 (41) Alsaleh et al. 2014 (100) AbuMweis et al. 2018 (65) Roke et al. 2014 (63)
31-SNP Genetic Risk Score	TG	Vallée Marcotte et al. 2019 (59) Vallée Marcotte et al. 2020 (60)

Study	Gene(s), SNP(s)
	<i>FADS2</i> , rs174599, rs174601, rs556656, rs11501631, rs rs3168072, rs182008711, rs73487492, rs174602, rs12
Chen et al. Int J Obes;43:808-820	<i>FADS3</i> , rs191972868, rs115905177, rs174635, rs17 rs174454, rs12292968, rs174570, rs7930349, rs1166 rs116139751, rs7942717, rs7115739, rs174450, rs74

Supplementary Table 3: Additional list of gene(s) and SNP(s) tested in studies

Chen et al. Int J Obes;43:808-820 (2019)	 FADS2, rs174599, rs174601, rs556656, rs11501631, rs74771917, rs3168072, rs182008711, rs73487492, rs174602, rs12577276 FADS3, rs191972868, rs115905177, rs174635, rs174634, rs174454, rs12292968, rs174570, rs7930349, rs116672159, rs116139751, rs7942717, rs7115739, rs174450, rs74626285 RAB3IL1, rs741887, rs2521561, rs2727258, rs2524288, rs117518711, rs74957100, rs77071864, rs78243280, rs741888, rs2524287, rs12420625, rs77229376, rs187943834, rs78156005, rs190738753, rs11230827, rs76133863, rs116985542, rs73491252
Cormier et al. 2012	<i>FADS</i> gene cluster rs174456, rs174627, rs482548, rs2072114, rs12807005, rs174448, rs2845573, rs7394871, rs7942717, rs74823126, rs174602, rs498793, rs7935946, rs174546, rs174570, rs174579, rs174611, rs174616, rs968567
Vallée Marcotte et al. Am J Clin Nutr;109:176–185 (2019)	<i>IQCJ-SCHIP1</i> , rs7639707, rs62270407 NXPH1, rs61569932, rs1990554, rs6463808, rs6966968, rs28473103, rs28673635, rs12702829, rs78943417, rs293180, rs1837523 <i>PHF17</i> , rs1216346, rs114348423, rs75007521 <i>MYB</i> , rs72560788, rs72974149, rs210962, rs6933462 <i>NELL1</i> , rs79624996, rs1850875, rs78786240, rs117114492 <i>SLIT2</i> , rs184945470, rs143662727, rs10009109, rs10009535, rs61790364, rs73241936, rs16869663, rs76015249
Tremblay et al. Lipids in Health and Disease (2015) 14:12	 PLA2G2A, rs876018, rs955587, rs3753827, rs11573156, rs11573142 PLA2G2C, rs6426616, rs12139100, rs10916716, rs2301475, rs10916712, rs10916718 PLA2G2D, rs578459, rs16823482, rs3736979, rs584367, rs12045689, rs679667, rs17354769, rs1091671 PLA2G2F, rs12065685, rs6657574, rs11582551, rs818571, rs631134, rs11583904

	<i>PLA2G4A</i> , rs979924, rs2076075, rs3736741, rs10911949, rs10752979, rs1160719, rs10737277, rs12720702, rs7522213, rs7540602, rs10157410, rs12720497, rs4651331, rs1569480, rs10911935, rs12353944, rs11576330, rs10489410, rs10911946, rs3820185, rs12746200, rs11587539
	<i>PLA2G6</i> , rs5750546, rs132989, rs133016, rs2235346, rs2284060
	<i>PLA2G7</i> , rs12195701, rs12528807, rs1421368, rs1421378, rs17288905, rs1805017, rs1805018, rs6929105, rs7756935
	<i>GPAM</i> , rs17129561, rs10787428, rs2792751
	AGPAT3, rs999519, rs2838440, rs2838445, rs2838458, rs4818873, rs9978441, rs9982600, rs11700575, rs17004619, rs2838452, rs2838456, rs3788086, rs2838429
Ouellette et al. J Nutrigenet Nutrigenomics;6:268–280 (2013)	<i>AGPAT4</i> , rs746731, rs747866, rs1125640, rs2277092, rs2293286, rs3757025, rs3798225, rs3798920, rs3798924, rs3798929, rs3798943, rs3798945, rs3822853, rs3823058, rs4709501, rs6906489, rs6923835, rs7750302, rs7769321, rs9458172, rs10945713, rs10945719, rs11965825, rs12202278, rs17627837, rs12524665, rs1001422, rs6455711, rs9456642, rs2064721, rs3778227, rs3798922, rs11967514, rs7768457, rs12662114
Ouellette et al. Lipids in Health and Disease, 13:86 (2014)	<i>MGLL</i> , rs782440, rs16826716, rs6776142, rs9877819, rs555183, rs6780384, rs13076593, rs605188, rs6765071, rs782444, rs549662, rs3773155, rs541855, rs6439081, rs6439082, rs6787155, rs1466571, rs893294
Bouchard-Mercier et al. Genes Nutr 9:395 (2014)	<i>GCK</i> , rs2268573, rs2908297, rs2971676, rs758989, rs12673242, rs2908290, rs2284777, rs2300584, rs1990458, rs741038, rs1799884, rs2908277, rs3757838
	<i>RXRA</i> , rs10881576, rs7871655, rs12339187, rs11185660, rs11103473, rs10776909, rs12004589, rs3132301, rs1805352, rs3132294, rs1805343, rs1045570
	<i>CPT1A</i> , rs3019598, rs897048, rs7942147, rs4930248, rs11228364, rs11228368, rs10896371, rs1017640, rs613084
Bouchard-Mercier et al. Nutrients, 6, 1145-1163 (2014)	ACADVL, rs2017365
	<i>ACAA2</i> , rs529556, rs10502901, rs631536, rs1942421, rs2276168, rs7237253
	<i>ABCD2</i> , rs4072006, rs10877201, rs12582802, rs4294600, rs11172696, rs10877173, rs7133376, rs7968837
	ACOX1, rs10852766, rs3744033, rs12430, rs8065144,

BMJ Open

	rs11651351, rs3643, rs7213998, rs17583163
	ACAA1, rs2239621, rs156265, rs5875
	CETP, rs3764261, rs247616, rs7205804
	<i>LIPC</i> , rs1532085
	APOB, rs1367117
	ABCG5, ABCG8, rs4299376
	<i>TIMD4, HAVCR1</i> , rs6882076, rs1501908, rs1553318
	GCKR, rs1260326, rs780094
AlSaleh et al. Genes Nutr 9:412 (2014)	TRIB1, rs2954022, rs10808546, rs2954029
	ANGPTL3, DOCK7, rs3850634, rs1167998, rs2131925
	<i>FADS1, FADS2, FADS3</i> , rs174550, rs174547, rs174546, rs174583
	<i>GALNT2</i> , rs4846914, rs1321257
	ABCA1, rs4149268
	APOE, APOC1, APOC2, rs439401
Vallée Marcotte et al. Genes & Nutrition 15:10 (2020)	IQCJ-SCHIP1, rs7639707, rs62270407
	NXPH1, rs61569932, rs1990554, rs6463808, rs6966968, rs28473103, rs28673635, rs12702829, rs78943417, rs29318 rs1837523
	PHF17, rs1216346, rs114348423, rs75007521
	MYB, rs72560788, rs72974149, rs210962, rs6933462
	NELL1, rs79624996, rs1850875, rs78786240, rs117114492
	<i>SLIT2</i> , rs184945470, rs143662727, rs10009109, rs1000953 rs61790364, rs73241936, rs16869663, rs76015249
Rudkowska et al. Journal of Lipid Research 55 (2014)	<i>IQCJ-SCHIP1, MYB, NELL1, NXPH1, PHF17, SLIT2,</i> rs2621308, rs1449009, rs61332355, rs2621309, rs2952724 rs2629715, rs1216352, rs1216365, rs931681, rs6920829, rs6463808, rs752088
Vallée Marcotte et al. J Nutrigenet Nutrigenomics;9 :1-11 (2016)	<i>IQCJ</i> , rs12497650, rs4501157, rs13091349, rs2044704, rs1062071, rs7634829, rs2621294, rs6800211, rs17782879 rs1868414, rs2595260, rs6763890, rs9827242, rs1449009, rs2621309, rs61332355

	NXPH1, rs6956210, rs2107779, rs10273195, rs12216689
	rs6963644, rs17150341, rs1013868, rs12537067, rs4318981.
	rs17153997. rs7801099. rs4725120. rs1859275. rs10238726.
	rs1012960, rs11767429, rs4333500, rs7793115, rs7799856,
	rs7806226, rs13221144, rs17406479, rs10486228, rs17154569.
	rs4141002, rs7805772, rs2349780, rs2107474, rs11769942.
	rs6952383, rs6974252, rs10265408, rs2189904, rs2057862
	, , , , , , , , , , , , , , , , , , ,
	PHF17, rs2217023, rs4975270, rs11722830, rs12505447,
	rs6534/04, rs13148510, rs13143//1, rs13142964
	<i>MYB</i> , rs9321493, rs11154794, rs210798, rs210936, rs7757388,
	rs210962, rs17639758, rs1013891, rs2179308
	IOCI SCHIP1 rs12407650 rs4501157 rs12001240 rs2044704
O,	1963071 rs 7634829 rs 2621294 rs 6800211 rs 17782879
Ċ	$r_{s1868414}$ $r_{s2595260}$ $r_{s6763890}$ $r_{s1449009}$ $r_{s61332355}$
	$r_{s}12485627$ $r_{s}2595242$ $r_{s}7639937$ $r_{s}9820807$ $r_{s}1375409$
	$r_{s}1967363$ $r_{s}9824310$ $r_{s}11915303$ $r_{s}9835214$ $r_{s}11921343$
	$r_{s13066560}$ $r_{s1675497}$ $r_{s9839862}$ $r_{s16829875}$ $r_{s17795566}$
	rs9860588 rs16830408 rs17798579 rs2364930 rs9865997
	rs2595241 rs7632574 rs2621308
	102050211,107052071,102021500
	NXPH1, rs6956210, rs2107779, rs10273195, rs12216689,
	rs6963644, rs17150341, rs1013868, rs4318981, rs17153997,
Vallée Marcotte et al. Nutrients;	rs7801099, rs4725120, rs10238726, rs1012960, rs11767429,
11, 737 (2019)	rs4333500, rs7793115, rs7799856, rs7806226, rs13221144,
	rs17406479, rs10486228, rs17154569, rs4141002, rs7805772,
	rs2349780, rs2107474, rs11769942, rs6952383, rs6974252,
	rs10265408, rs2189904, rs2057862, rs6463808
	PHF17 rs2217023 rs4975270 rs11722830 rs12505447
	rs6534704_rs13148510_rs13143771_rs13142964_rs1216352
	rs1216365
	<i>MYB</i> , rs9321493, rs11154794, rs210798, rs210936, rs7757388,
	rs1/639/58, rs1013891, rs21/9308, rs6920829, <i>SL112</i> , rs2952724
	<i>NELL1</i> , rs752088

Gene, rs Number	Alleles ¹	Associated Points	
<i>IQCJ-SCHIP1</i> , rs7639707	<u>A</u> /G	+1	
<i>IQCJ-SCHIP1</i> , rs62270407	C/ <u>T</u>	-1	
NXPH1, rs61569932,	<u>G</u> /T	+1	
NXPH1, rs1990554	<u>A</u> /C	+1	
NXPH1, rs6463808	<u>A</u> /G	+1	
NXPH1, rs6966968	A/ <u>G</u>	+1	
NXPH1, rs28473103	A/G	-1	
NXPH1, rs28673635	<u>A</u> /G	+1	
NXPH1, rs12702829	<u>C</u> /T	+1	
NXPH1, rs78943417	A/T	-1	
NXPH1, rs293180	G/T	+1	
NXPH1, rs1837523	<u>C</u> /T	-1	
<i>PHF17</i> , rs1216346	<u>C</u> /T	+1	
<i>PHF17</i> , rs114348423	<u>A</u> /G	+1	
<i>PHF17</i> , rs75007521	G/T	-1	
MYB, rs72560788	C/T	-1	
MYB, rs72974149	A/ <u>G</u>	-1	
<i>MYB</i> , rs210962	C/T	-1	
MYB, rs6933462	C/G	+1	
NELL1, rs79624996	<u>A</u> /G	+1	
NELL1, rs1850875	<u>C</u> /T	+1	
NELL1, rs78786240	C/T	-1	
NELL1, rs117114492	<u>G/T</u>	+1	
<i>SLIT2</i> , rs184945470	C/ <u>T</u>	+1	
SLIT2, rs143662727	A/G	-1	
SLIT2, rs10009109	<u>C</u> /T	+1	
SLIT2, rs10009535	A/G	+1	
SLIT2, rs61790364	<u>A</u> /G	+1	
<i>SLIT2</i> , rs73241936	<u>C</u> /T	+1	
<i>SLIT2</i> , rs16869663	Ā/ <u>G</u>	+1	
SLIT2 ma76015240	A/G	+1	

Supplementary Table 4: 31-SNP Nutri-GRS

1. Minor alleles are underlined

For individuals carrying one or two minor alleles, provide the associated number of points (either +1 or -1). For individuals homozygous for the major allele, provide 0 points. Count the overall number of points. Individuals with lower nutri-GRS are more likely to respond to approximately 3.0 g/day EPA+DHA for TG lowering.

PRISMA 2009 Checklist

Section/topic	#	Checklist item	Reported on page #	
TITLE				
Title	1	Identify the report as a systematic review, meta-analysis, or both.	1	
ABSTRACT				
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	2	
INTRODUCTION				
Rationale	3	Describe the rationale for the review in the context of what is already known.	3-5	
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	5-6	
METHODS				
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	5	
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	5-6	
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	5, 7	
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	Suppl. T1	
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	6-7	
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	6-7	
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	5-7	
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	8-9	
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	9	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
PRISMA 2009 Checklist

1	ERIS MAX
2 3 4 5 6 7 8 0	Synthesis of
9 10	
10 11 12	Section/top
13 14	Risk of bias a
15 16 17	Additional an
18	RESULTS
20 21	Study selecti
22 23	Study charac
24 25	Risk of bias v
26 27 28	Results of inc
29	Synthesis of
30 31	Risk of bias a
32 33 24	Additional an
34 35	DISCUSSIC
36 37 38	Summary of
39 40	Limitations
41 42	Conclusions
43	FUNDING
44 45	
40	

46 47

Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I ²) for each meta-analysis.	NA (meta- analysis not appropriate)
	•	Page 1 of 2	
Section/topic	#	Checklist item	Reported on page #
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	Table 4
Additional analyses		Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	11-12
RESULTS			
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	Figure 1
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	Tables 1 and 2
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	Table 4
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	Tables 1 and 2
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	NA
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	Table 4
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	11-12, Table 3
DISCUSSION	<u>.</u>		
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	Table 3,

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

25 Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of

26 Provide a general interpretation of the results in the context of other evidence, and implications for future research.

identified research, reporting bias).

34-39

45-46

40-47

Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the

systematic review. , rems for Systen. For more informa. From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(7): e1000097. doi:10.1371/journal.pmed1000097

 Funding

BMJ Open

A systematic review of nutrigenetics, omega-3 and plasma 2 lipids/lipoproteins/apolipoproteins with evidence evaluation using the GRADE approach

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-054417.R1
Article Type:	Original research
Date Submitted by the Author:	21-Oct-2021
Complete List of Authors:	Keathley, Justine; Université Laval, Centre Nutrition, Santé et Société (NUTRISS), Institut sur la Nutrition et les Aliments Fonctionnels (INAF) Quebec, QC, CAN; Universite Laval, School of Nutrition Quebec, QC, CAN Garneau, Véronique; Université Laval, Centre Nutrition, Santé et Société (NUTRISS), Institut sur la Nutrition et les Aliments Fonctionnels (INAF); Universite Laval, School of Nutrition Marcil, Valérie ; University of Montreal, Department of Nutrition; Sainte- Justine University Health Centre, Research Centre Mutch, David; University of Guelph, Department of Human Health and Nutritional Sciences Robitaille, Julie; Laval University, Centre Nutrition, Santé et Société (NUTRISS), Institut sur la Nutrition et les Aliments Fonctionnels (INAF); Laval University, School of Nutrition Rudkowska, Iwona; Université Laval, Department of Kinesiology; Centre de recherche du CHU de Quebec-Universite Laval, Endocrinology and Nephrology Unit Sofian, Gabriela; Université Laval, Library Desroches, Sophie; Université Laval, Centre Nutrition, Santé et Société (NUTRISS), Institut sur la Nutrition et les Aliments Fonctionnels (INAF); Université Laval, Library Desroches, Sophie; Université Laval, Centre Nutrition, Santé et Société (NUTRISS), Institut sur la Nutrition et les Aliments Fonctionnels (INAF); Université Laval, Centre Nutrition, Santé et Société (NUTRISS), Institut sur la Nutrition et les Aliments Fonctionnels (INAF); Université Laval, School of Nutrition
Primary Subject Heading :	Nutrition and metabolism
Secondary Subject Heading:	Cardiovascular medicine, Genetics and genomics, Nutrition and metabolism
Keywords:	NUTRITION & DIETETICS, GENETICS, Lipid disorders < DIABETES & ENDOCRINOLOGY

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

re-iezoni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2 2	A systematic review of nutrigenetics, omega-3 and plasma lipids/lipoproteins/apolipoproteins with evidence evaluation using the CRADE approach
5 4 5 6	Justine Keathley, PhD, RD ^{1,2} ; Véronique Garneau, MSc, RD ¹ ; Valérie Marcil ^{3,4} , PhD, David M Mutch, PhD ⁵ , Julie Robitaille, PhD, RD ^{1,2} , Iwona Rudkowska, PhD, RD ^{6,7} , Gabriela Sofian, MSI ⁸ , Sophie Desroches, PhD, RD ^{1,2} ; Marie-Claude Vohl, PhD^{1,2}**
7 8	¹ Centre Nutrition, Santé et Société (NUTRISS), Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Université Laval, Québec City, Québec, G1V 0A6, Canada
9	² School of Nutrition, Université Laval, Québec City, Québec, G1V 0A6, Canada
10	³ Research Centre, Sainte-Justine University Health Centre, Montréal, Québec, H3T 1C5, Canada
11	⁴ Department of Nutrition, Université de Montréal, Montréal, Québec, H3T 1J4, Canada
12 13	⁵ Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
14 15	⁶ Endocrinology and Nephrology Unit, CHU de Québec-Université Laval Research Center, Québec City, Québec, G1V 0A6, Canada
16	⁷ Department of Kinesiology, Université Laval, Québec City, Québec, G1V 0A6, Canada
17	⁸ Library, Université Laval, Québec City, Québec, G1V 0A6, Canada
18	**Corresponding Author: marie-claude.vohl@fsaa.ulaval.ca; Tel.: +1-418-656-2131 (ext.
19	404676)
20 21 22 23 24 25 26 27 28	 Ethics Approval Statement: No ethics approval was required for a systematic review. Running Head: Nutrigenetics, omega-3 and lipids/lipoproteins Data described in the manuscript will be made available upon request pending approval from the corresponding author. Abbreviations: ALA (alpha-linolenic acid); CV (coefficient of variation); DHA (docosahexaenoic acid); EPA (eicosapentaenoic acid); FDA (Food and Drug Administration); GRADE (Grading of Recommendations Assessment, Development and Evaluation); HCP (healthcare professional); LD (linkage disequilibrium); nutri-GRS (nutrigenetic risk score); SNP (single nucleotide polymorphism)
	For poor rovious only a http://bmiopon.hmi.com/site/about/guidelinge.yhtml
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

29 ABSTRACT

Objectives: Despite the uptake of nutrigenetic testing through direct-to-consumer services and healthcare professionals, systematic reviews determining scientific validity are limited in this field. The objective of this review was to: retrieve, synthesize and assess the quality of evidence (confidence) for nutrigenetic approaches related to the effect of genetic variation on plasma lipid, lipo- and apolipoprotein responsiveness to omega-3 fatty acid intake.

36 Design: A systematic review was conducted using three search engines (Embase, Web of
 37 Science and Medline) for articles published up until August 1, 2020. Included studies for
 38 the narrative synthesis assessed any nutrigenetic associations/interactions for genetic

39 variants influencing the plasma lipid, lipo- and/or apolipoprotein response to omega-3

40 fatty acid intake in humans (adult and pediatric). Specific nutrigenetic

41 associations/interactions were then prioritized for evidence grading if they had been

42 reported in at least two independent studies. Risk of bias was assessed in individual

43 studies. Evidence was evaluated using the GRADE approach. This systematic review was
44 registered with PROSPERO (CRD42020185087).

Results: Out of 1830 articles screened, 65 met the inclusion criteria for the narrative synthesis (n=23 observational, n=42 interventional); of these, 25 met the inclusion criteria for evidence evaluation using GRADE. Overall, current evidence is insufficient for gene-diet associations related to omega-3 fatty acid intake on plasma apolipoproteins, total cholesterol, HDL-cholesterol, LDL-cholesterol and LDL particle size. However, there is strong (GRADE rating: moderate quality) evidence to suggest that male APOE-E4 carriers (rs429358, rs7412) exhibit significant triglyceride reductions in response to omega-3-rich fish oil with a dose-response effect. Moreover, strong (GRADE rating: high quality) evidence suggests that a 31-SNP nutrigenetic risk score can predict plasma triglyceride responsiveness to omega-3-rich fish oil in adults with overweight/obesity from various ethnicities.

Conclusions: Most evidence in this area is weak, but two specific nutrigenetic
 interactions exhibited strong evidence, with limited generalizability to specific
 populations.

Keywords: nutrigenomics, nutrigenetics, nutritional genomics, genetic risk score,
nutrigenetic risk score, triglycerides, lipids, lipoproteins, omega-3 fatty acid, *APOE*

STRENGTHS AND LIMITATIONS 62 - Strength: Comprehensive system

- Strength: Comprehensive systematic review guided by PRISMA
- 63 Strength: Critical appraisal of the evidence guided by GRADE
- Limitation: Inability to conduct a meta-analysis given the comprehensive
 overview of studies and thus heterogeneity
- Limitation: Several included studies without replication; most evidence was low
 or very low quality according to GRADE

68 INTRODUCTION

Cardiometabolic disease is a health concern worldwide (1). Nutrigenetic research demonstrates that there is significant inter-individual variability in cardiometabolic risk factor levels, in part based on a combination of genetic and nutrition-related risk factors (2,3). For example, protein intake has consistently been shown to influence measures of body weight and composition dependent on FTO genotype (rs9939609 or loci in strong linkage disequilibrium) (4,5). Consumers indicate great interest in personalized nutrition based on genetics (6,7), however, a lack of industry oversight (8,9) has led to highly variable scientific validity of nutrigenetic tests available to consumers. While recognizing that some groups question whether genetic testing for personalized nutrition is ready for 'prime time', Gorman and colleagues suggested that there are certain specific nutrigenetic interactions with strong evidence that could be considered for implementation into clinical practice by expert committees who are responsible for creating dietary guidelines (10). With this in mind, systematic reviews that include an evaluation of levels of evidence are urgently needed in order to determine if there are any nutrigenetic associations that may warrant potential implementation into practice. The dominant omega-3 polyunsaturated fatty acids are eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which typically come from marine sources (e.g. fish oil), and alpha-linolenic acid (ALA), which are rich in plant sources (e.g., canola oil) (11,12).

88 It is well established that higher intakes of omega-3 fatty acids from foods or

supplements (herein after referred to collectively as "omega-3s"), particularly from long-

90 chain EPA and DHA, tend to improve indicators of cardiometabolic health (12,13). In

Page 5 of 73

BMJ Open

91	terms of their lipid and lipoprotein lowering effects, omega-3s have consistently
92	demonstrated an impact on triglycerides (TG) (14). High-quality evidence from
93	population-based studies suggests that long-chain omega-3s (EPA and DHA) reduce
94	plasma TG by about 15% (14). There is also high-quality evidence suggesting that EPA
95	and DHA can raise high-density lipoprotein (HDL) cholesterol (14). Other studies have
96	further demonstrated a relationship between omega-3 and HDL-cholesterol (15), low-
97	density lipoprotein (LDL)-cholesterol (15), total cholesterol (16-18), apolipoproteins
98	(19), and LDL particle size (20). Despite several studies with significant findings for
99	these outcomes, when reviewing the evidence, studies have demonstrated conflicting
100	results for the impact of omega-3 on many lipid profile outcomes (14). Genetic variation
101	could explain this heterogeneity. EPA and DHA have been shown to significantly impact
102	the expression of thousands of genes including those involved in inflammatory and
103	atherogenic pathways (21,22). Evidence now demonstrates that the health impacts of
104	omega-3 intake could differ based on genetic variation (23,24). Despite the potential for
105	omega-3s to have a significant positive impact on health outcomes, population intakes of
106	omega-3s tend to be low (25). While the World Health Organization's Adequate Intake
107	level for adults is 200-250 mg EPA+DHA daily (26,27), the mean reported intake of
108	EPA+DHA in the United States is only approximately 100 mg daily (25). Nutrigenetic
109	interventions have the potential to motivate improvements in dietary intake beyond
110	population-based interventions (28). Additionally, evidence suggests that genetic
111	variability affects health responses to omega-3s (23). Thus, critically appraising and
112	grading the evidence for nutrigenetic interactions related to omega-3s and plasma lipids,
113	lipoproteins and apolipoproteins is an important research priority. The most recent

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 6 of 73

systematic review on nutrigenetic interactions related to omega-3s and intermediate phenotypes of cardiovascular disease was conducted nearly a decade ago, and this study did not evaluate the quality of evidence using an established methodology (29). Therefore, we aimed to provide a comprehensive summary of current evidence related to inter-individual variability in plasma lipid, lipoprotein and apolipoprotein responses to omega-3 intake (plant and marine sources) based on genetic variations. Overall, the specific objectives of this study were as follows: **Objective 1.** Systematically search, identify (select), and provide a narrative synthesis of all studies that assessed nutrigenetic associations/interactions for genetic variants (comparators) influencing the plasma lipid, lipoprotein and/or apolipoprotein response (outcomes) to omega-3 fatty acid intake (intervention/exposure) in humans – both pediatric and adult populations (population). **Objective 2.** Assess the overall quality of evidence for specific priority nutrigenetic associations/interactions based on the following inclusion criteria: nutrigenetic associations/interactions reported for the same genetic variants (comparators) influencing the same plasma lipid, lipoprotein and/or apolipoprotein response (outcomes) to omega-3 fatty acid intake (intervention/exposure) in humans – both pediatric and adult populations (population) in two independent studies, irrespective of the findings. Methods Patient and Public Involvement: No patient involvement.

BMJ Open

137 Literature Search

138	The systematic review protocol was registered with PROSPERO (CRD42020185087).
139	The review process was guided by previously established methods, including a
140	previously outlined five-step systematic review process (30,31). The search engines
141	Embase, Web of Science and Medline OVID were used to conduct the search starting in
142	May 2020 and screen for articles meeting inclusion criteria, using the comprehensive
143	search terms outlined in Supplementary Table 1, properly combined by Boolean
144	operators. The literature was searched up until August 1, 2020. A PRISMA diagram
145	(Figure 1) guided the article screening process (32).
146	Inclusion and Exclusion Criteria
147	Original studies were included if they were written in English or French. Inclusion
148	criteria were developed using the Population, Intervention, Comparison, Outcomes,
149	(PICO) and Population, Exposure, Comparison, Outcomes (PECO) methods (33,34) for
150	interventional and observational research, respectively. These are detailed in Table 1 for
151	each study objective.

152 Table 1. PICO/PECO for Study Objectives

PICO/PECO for Objective 1:		
Population	Human studies (adult and pediatric)	
Intervention/	Omega-3s (total omega-3 or various types; supplemental and/or dietary	
Exposure	intake)	
Comparison	Genetic variation	
Outcomes	HDL-cholesterol, LDL-cholesterol, LDL particle size, total	
	cholesterol, apolipoproteins, and/or TG	
PICO/PECO for Objective 2*:		
Population	Human studies (adult and pediatric)	
Intervention/	Omega-3s (total omega-3 or various types; supplemental and/or dietary	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

	Exposure	intake)
	Comparison	Genetic variation in the same genetic location [gene(s) and SNP(s)]
	Outcomes	The same outcome of interest among studies with the same genetic comparators: HDL-cholesterol, LDL-cholesterol, LDL particle size, total cholesterol, apolipoproteins, and/or TG
153 154 155	*Nutrigenetic ass process, irrespect	ociations/interactions were included in objective 2, in the evidence grading tive of the findings, provided that they had been reported in at least two es on the same gene(s) and SNP(s) and the same plasma outcome
156	There were no li	imitations to the population characteristics (all populations/patient
157	samples were in	cluded). Animal studies were excluded. Dietary interventions and
158	observational st	udies involving omega-3s (total omega-3 or various types; supplemental
159	and/or dietary in	ntake) and comparing lipid and/or lipoprotein and/or apolipoprotein
160	outcomes betwe	en different genetic variations based on omega-3 dietary or supplemental
161	intake (and not l	blood fatty acid levels; e.g. EPA and DHA in red blood cells) were
162	included in the r	narrative synthesis. In included studies, samples had to be stratified on the
163	basis of genetic	variation. Specific lipid and lipoprotein outcomes of interest were: HDL-
164	cholesterol, LDI	L-cholesterol, LDL particle size, total cholesterol, apolipoproteins, and
165	triglycerides (To	G). Studies that reported ratios of the aforementioned lipid parameters
166	(e.g. HDL-chole	esterol to total cholesterol ratio) were also included. Both observational
167	and intervention	al studies were included, as well as single-gene, polygenic and genome-
168	wide association	n studies (GWAS). Differences in study designs and methods were
169	considered when	n developing the overall evidence grades, as further detailed below.
170	Associations/int	eractions reported in two independent studies formed the basis of the
1/1	nciusion criteria	a for objective 2, in which nutrigenetic associations/interactions were
172	entitled "Eviden	whence grading. This is further detailed in Table 1 and the section below
1/3	chunea Eviden	or orading.

Article Selection and Data Extraction

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 9 of 73

BMJ Open

175	Two independent investigators (JK and VG) screened articles using the computer
176	software Covidence (including title, abstract, and full-text screening) and extracted data
177	from the included articles. Reference lists of included articles and of a systematic review
178	on a similar topic (35) were also screened for relevant articles. Data extraction templates
179	were piloted by two independent investigators (JK and VG) on ten included studies and
180	revised accordingly. The final data extraction templates included the following
181	components for each study: first author name and year, study design, genetic approach,
182	population and sample size, study duration (interventional studies only), genes and single
183	nucleotide polymorphisms (SNPs) analyzed with rs numbers, quantity and type of
184	omega-3, comparisons (e.g. a control group or different amount/type of omega-3s as well
185	as genetic grouping), lipid/lipoprotein outcome(s), whether or not the study reported that
186	they followed STREGA guidelines and a summary of statistically significant study
187	findings relevant to the research question. Corresponding authors of included studies
188	were contacted as needed to provide clarity and/or additional information about the
189	included studies.
190	Evidence Grading
191	Upon reading all full-text articles included, and summarizing the body of evidence

(Tables 2 and 3), SNPs/nutrigenetic risk scores (nutri-GRSs) and subsequent
lipid/lipoprotein/apolipoprotein outcomes were systematically prioritized and selected for
evidence grading, if a specific nutrigenetic association/interaction was reported in at least
two independent studies. To clarify, this refers to the same SNP(s)/nutri-GRS [or SNPs

196 in strong linkage disequilibrium (LD)] being assessed and influencing the same

197 lipid/lipoprotein outcome in at least two studies. For these nutrigenetic

2	
3	
4	
5	
6	
7	
γ Q	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
20	
30	
21	
ו כ ככ	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
50	
5/	
20	
59	
bÜ	

1

198	associations/interactions, we proceeded with evidence grading, while including all
199	studies relevant to the particular nutrigenetic association/interaction, irrespective of the
200	findings. Consistency of results was then one of several factors considered when grading
201	the body of evidence. The Grading of Recommendations Assessment, Development and
202	Evaluation (GRADE) approach indicates that a single study rarely (if ever) results in
203	strong evidence, but two studies (typically RCTs) can indicate strong evidence if they are
204	graded highly using the GRADE criteria (36). Prior to selecting the nutrigenetic
205	associations/interactions (genetic variants and lipid/lipoprotein/apolipoprotein outcomes)
206	for evidence grading, LD was assessed using the SNIPA SNP Annotator Software (37)
207	for genes located on the same chromosome and arm (determined using the Online
208	Mendelian Inheritance in Man® [OMIM] database) as outlined in the summary of
209	results' tables in the column labelled 'Cytogenic Location of Gene(s)' (Tables 1 and 2).
210	Strong LD was defined as r ² >0.8 and location <250 kb away from the index SNP
211	location. SNPs in strong LD were considered together for the purposes of evidencing
212	grading.

213 Based on our abovementioned predetermined criteria for specific nutrigenetic topic 214 selection for evidence grading, nutrigenetic associations/interactions that were not 215 included in the evidence grading process likely have weak evidence (at minimum due to 216 lack of replication, for example, ZNT8 rs13266634 and HDL-c or TG responsiveness to 217 omega-3, which has only been assessed in a single study (38)). According to the GRADE 218 guidelines, when only a single study exists indicating significant findings for an outcome 219 of interest (especially when the study is observational), the overall quality of the evidence 220 is generally rated to be low or very low (39). Therefore, our process for prioritizing

Page 11 of 73

BMJ Open

<u>~</u>		
- 3 4	221	nutrigenetic topics for evidence grading aimed to filter out specific nutrigenetic
5 6	222	associations/interactions that would likely be deemed low or very low quality (based on,
7 8	223	at minimum, lack of replication). Two authors (JK and VG) critically appraised the
9 10 11	224	selected nutrigenetic interactions using the GRADE methodology (39,40). Nutrigenetic
12 13	225	interactions were grouped according to studies assessing the same SNP(s)/nutri-GRS and
14 15 16	226	lipid/lipoprotein/apolipoprotein outcome, and the quality of the body of evidence (studies
17 18	227	with significant and non-significant results) was rated; this process was guided by the
19 20	228	GRADE Evidence Profile, which included consideration of risk of bias, inconsistency,
21 22 23	229	indirectness, imprecision, publication bias, plausible confounding, dose-response and
23 24 25	230	other factors (39). For example, different sources of omega-3s (e.g. EPA+DHA vs. ALA;
26 27	231	food sources vs. supplementation) were taken into consideration when grading the
28 29	232	evidence through the analysis of indirectness within the GRADE approach (39,40). Risk
30 31 32	233	of bias was assessed in each of the included interventional and observational studies
33 34	234	using the National Institutes of Health Study Quality Assessment Tools, in line with
35 36	235	recently published recommendations for risk of bias assessments (41). To assess
37 38 39	236	measures of precision, coefficients of variation (CV) were calculated based on outcome
40 41	237	means (mean change or absolute values – whichever was used for the analyses) and
42 43	238	standard deviations. In cases where standard errors of the mean were reported, these were
44 45 46	239	converted to standard deviations to calculate the CV. The nutrigenetic interactions were
47 48	240	each given an evidence grade of high, moderate, low or very low.
49 50	241	Results
51	242	
52	212	Figure 1 outlines the PRISMA Flow Diagram, which was used to guide the systematic
53	243	rigure i outmites the rational riow Diagram, which was used to guide the systematic

review. Supplementary Tables 2 and 3 provide a summary of the 65 included studies. The

_ ז	
1	
4	
5	
6	
7	
8	
9	
10	
11	
11	
12	
13	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
23	
24	
25	
25	
20	
27	
28	
29	
30	
31	
32	
22	
22	
34	
35	
36	
37	
38	
39	
10	
40 // 1	
41	
42	
43	
44	
45	
46	
47	
48	
<u>40</u>	
50	
50	
51	
52	
53	
54	
55	
56	
57	
57	
28	
59	
60	

1 2

> results columns of Supplementary Tables 2 and 3 (far right) indicate nutrigenetic findings that were statistically significant. Any results related to the studies' analyzed SNPs and outcomes of interest that were not statistically significant are not indicated in the results column. No studies explicitly reported that they followed STREGA guidelines. LD analysis of SNPs tested in different studies revealed strong LD in several SNPs from the *FADS* gene cluster (see Table 2 footnote). As such, LD was taken into consideration in the selection of nutrigenetic interactions selected for evidence grading.

252 Observational Studies

253 Of the 65 included studies, 23 were observational with the majority of these being cross-254 sectional, as outlined in Supplementary Table 2. A total of 62,221 participants were 255 included in the observational studies. These studies assessed correlations among a 256 number of different genetic variations and outcomes, with several studies assessing 257 genetic variations in the FADS gene cluster (42–48), $TNF\alpha$ (49–51) and $PPAR\alpha$ (52–54). 258 Most studies (n=13) assessed total omega-3s (38,42,47–49,51,54–60). The intake and 259 type of omega-3s, lipid/lipoprotein/apolipoprotein outcomes and associations revealed 260 from these studies were variable as further detailed in Supplementary Table 2. In the 261 observational studies assessing genetic variation in the *FADS* gene cluster, some studies indicated significant gene-diet findings related to HDL-cholesterol, LDL-cholesterol, TG, 262 263 total-cholesterol while other studies demonstrated no significant gene-diet interactions for 264 these outcomes thus indicating notable inconsistency among the results, while 265 considering that SNPs differed by studies (42–48). In the observational studies focused 266 on genetic variation in the $TNF\alpha$ gene, there was some evidence of a gene-diet 267 relationship for omega-3 and LDL-cholesterol, total-cholesterol and total-

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 13 of 73

60

BMJ Open

1		1.
2 3 4	268	cholesterol:HDL-cholesterol ratio, but again, results differed between studies (49-51).
5 6	269	For gene-diet relationships and $PPAR\alpha$ genetic variation, individual studies indicated
7 8	270	significant findings related to total-cholesterol, LDL-cholesterol, TG, apoC-III and LDL
9 10 11	271	peak particle diameter (52–54). Comprehensive details of the observational studies are
12 13	272	outlined in Supplementary Table 2.
14 15 16 17	273	Interventional Studies
18 19 20	274	Of the 65 included studies, 42 were interventional including 16 randomized trials. Non-
21 22	275	randomized studies included single arm clinical trials and sequential non-randomized
23 24	276	cross-over interventions. For interventional studies, n=6,225 participants upon combining
25 26	277	all sample sizes of the included studies. Again, these studies assessed relationships
27 28 29	278	between a number of different genetic variants and study outcomes. In more recent years,
30 31	279	several studies (n=8) used a nutri-GRS or polygenic approaches (61–68) given the
32 33	280	plausibility that many gene-lipid/lipoprotein/apolipoprotein and omega-3 interactions are
34 35	281	polygenic in nature. Numerous studies assessed genetic variations in the FADS gene
36 37 38	282	cluster (61,62,69–71), APOE (61,71–80), CD36 (67,81,82), PPARy2 (62,67,83–85) and
39 40	283	<i>PPARa</i> (83,86,87). Among these studies, results related to significant gene-diet (omega-
41 42	284	3) associations influencing lipid/lipoprotein outcomes were generally inconsistent except
43 44	285	for <i>APOE</i> (rs429358 and rs7412), omega-3 and TG in males only (71–75,77–80), and for
45 46 47	286	a 31-SNP nutri-GRS, omega-3 and TG (65.66). There was also consistent evidence to
48 49	287	indicate a lack of association among $PPARv2$ (rs1801282) genetic variation EPA+DHA
50 51	288	and I.DL cholesterol (62 67 84 85 88) Most studies (n=40) used supplemental FPA
52 53	200	and/or DHA sources of emerge 2s for the distance intervention (see Supplementary Table
54 55	209	and/or DHA sources of onlega-5s for the dietary intervention (see Supplementary Table
56 57	290	3). The dosage/intake and type of omega-3s were variable with EPA and/or DHA dosages
58 59		

291	ranging from 0.5-3.7 g/day across different studies, and one study with an ALA
292	intervention dosage of 8.1 g/day, as further detailed in Table 3.
293	Levels of Evidence Using GRADE
294	A total of 25 articles were included in the evidence grading process, representing 11
295	unique nutrigenetic associations/interactions as outlined in Tables 2 and 3, and
296	Supplementary Table 4. Through the GRADE process, it was determined that there is
297	strong evidence (GRADE rating: moderate quality) for APOE genotypes (rs7412,
298	rs429358), omega-3s and TG lowering in male adults only (71–75,77–80). This evidence
299	suggests that adult males (but not females) with the APOE-E3/E4 or E4/E4 genotype
300	(rs429358, rs7412) tend to experience significant reductions in TG in response to 0.7-3.7
301	g/day of EPA and/or DHA, with higher dosages demonstrating greater TG lowering
302	effects (71–75,77–80). Furthermore, it was determined that there is strong evidence
303	(GRADE rating: high quality) for using a 31-SNP nutri-GRS (detailed in Supplementary
304	Tables 5 and 6) to assess the effectiveness of omega-3s for TG lowering in adults with
305	overweight/obesity in various ethnicities (65,66). The evidence suggests that in adults
306	with overweight/obesity, lower genetic risk scores demonstrate greater responsiveness to
307	omega-3 supplementation (65,66).
308	All other evidence that was evaluated was determined to be weak (GRADE rating: low or
309	very low quality), as further detailed in Table 2. Imprecision, indirectness, and
310	inconsistency were common reasons for downgrading the evidence (refer to Table 2
311	footnote). There was evidence for a plausible mechanism of action for most of the
312	nutrigenetic interactions that were graded; evidence of a dose response was less common.

5 6 7

11

Table 2. GRADE Evidence Profile: Genetic Variation, Omega-3 and Lipids

⁹ Nutrigenetic interactions for omega-3 and plasma lipid/lipoprotein outcomes 10

Patient or Population: adults

Antervention/Exposure: dietary or supplemental omega-3 (EPA and/or DHA and/or ALA) Comparison/Control: genetic variation, different omega-3 intakes

Outcomes: plasma lipids and lipoproteins

16	5									
17 18	<i>Gene</i> rs Number and Lipid: Number and Type of Studies (total <i>n</i>)	Limitations	Inconsistency	Indirectness	Imprecision	Publication Bias	Dose Response	Biological Plausibility*	Quality	Conclusion
20 21 22 23	CD36 rs1761667 and HDL-c : 1 RCT and 1 single arm trial (<i>n</i> =115) (81,89)	Serious limitations ^a	Serious inconsistency ^b	Serious indirectness ^c	Serious imprecision ^d	Undetected	No evidence of a gradient	Evidence of a mechanism of action	⊕⊕⊝⊖ (Low)	Weak evidence suggests that possessing the GA or possibly the AA genotype of <i>CD36</i> rs1761667 could lead to significant increases in HDL-c in response to 0.8-3.0 g/day of omega-3s.
24 25 26 27	CD36 rs1761667 and TG: 1 RCT and 1 single arm trial (<i>n</i> =115) (81,89)	Serious limitations ^a	Serious inconsistency ^b	Serious indirectness ^c	Serious imprecision ^e	Undetected	No evidence of a gradient	Evidence of a mechanism of action	$\begin{array}{c} \bigoplus \bigoplus \ominus \ominus \\ (Low) \end{array}$	Weak evidence suggests that possessing the GA or possibly the GG genotype of <i>CD36</i> rs1761667 could lead to significant reductions in TG in response to 0.8-3.0 g/day of omega-3s.
28 29 30 31 31	CD36 rs1049673 and HDL-c : 1 RCT and 1 single arm trial (<i>n</i> =115) (81,89)	Serious limitations ^a	Serious inconsistency ^b	Serious indirectness ^c	No serious imprecision	Undetected	No evidence of a gradient	Evidence of a mechanism of action	⊕⊕⊖⊖ (Low)	Weak evidence suggests that possessing the CG or possibly the CC genotype of <i>CD36</i> rs1049673 could lead to significant increases in HDL-c in response to 0.8-3.0 g/day of omega-3s.
32 32 32 35 36	CD36 rs1527483 and TG : 1 RCT and 1 single arm trial (<i>n</i> =250) (67,81)	Serious limitations ^f	No serious inconsistency	Serious indirectness ^g	Very serious imprecision ^e	Undetected	No evidence of a gradient	Evidence of a mechanism of action	⊕⊕⊖⊖ (Low)	Weak evidence suggests that possessing the GG genotype of <i>CD36</i> rs1527483 could lead to significant decreases in TG in response to approximately 2.0 g/day of EPA+DHA (but not ALA).
37 38 39 40	APOE rs429358, rs7412 and TG: 4 RCTs and 5 single arm trials (1 single arm trial consisted of a	No serious limitations	No serious inconsistency	Serious indirectness ^h	No serious imprecision	Undetected	Evidence of a gradient	Evidence of a mechanism of action	⊕⊕⊕⊖ (Moderate)	Strong evidence suggests that adult males (but not females) with the <i>APOE</i> -E3/E4 or E4/E4 genotype (rs429358, rs7412) experience significant reductions in TG in

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

- 41
- 42
- 43

44

45 46

2									
3									
subset sample of another single arm trial)									response to 0.7-3.7 g/day of EPA and/or DHA. Higher dosages may have greater TG
(n=980) (71–75,77–80)									lowering effects.
<i>APOE</i> rs429358, rs7412								$\oplus \oplus \oplus \ominus$	In males and females combined, strong
and Total-c: 4 RCTs, 5								(Moderate:	evidence suggests that there is no nutrigenetic
single arm trials (1 single							Laskof	Males and	interaction between EPA and/or DHA, APOE (rg420258, rg7412) and total a Thora is no
10 ann that consisted of a	No serious	Serious	Serious	No serious		No evidence	evidence of a	remaies)	(18429338, 187412) and total-c. There is no evidence of a nutrigenetic interaction between
single arm trial) 1 cross-	limitations	inconsistency ⁱ	indirectnessh	imprecision	Undetected	of a gradient	mechanism of	and	ALA APOE (rs429358 rs7412) and total-c
sectional and longitudinal				mpreeision		or a grantent	action	unu	In male subgroups, weak evidence suggests
¹³ analysis within an RCT								$\oplus \oplus \ominus \ominus$	that there is no nutrigenetic interaction
14 (<i>n</i> =2,446) (55,71–75,77–								(Low:	between ALA or EPA and/or DHA, APOE
15 80)								Males)	(rs429358, rs7412) and total-c.
16									Strong evidence suggests that in adults with
⁷ 31-SNP Nutri-GRS and							G		overweight/obesity, a 31-SNP genetic risk
18 TG:	No serious	No serious	Serious	No serious	Undetexted	Evidence of	Some evidence	$\oplus \oplus \oplus \oplus$	score can predict IG responsiveness to
19 1 RCT, 1 single arm trial	limitations	inconsistency	indirectness ^j	imprecision	Undetected	a gradient ^k	of action ¹	High	with lower genetic risk scores demonstrate
20 (<i>n</i> =330) (65,66)							of action		greater responsiveness to EPA+DHA for TG
21									lowering.
22 <i>PPARg2</i> rs1801282 and							Lack of		Strong evidence suggests that genetic
23LDL-c: 4 RCTs, 1 single	No serious	No serious	Serious	Serious	Undetected	No evidence	evidence of a	$\oplus \oplus \oplus \Theta$	variation in PPARg2 (rs1801282) does not
24 arm trial $(n=670)$	limitations	inconsistency	indirectness ^m	imprecision ⁿ	Chaeleelea	of a gradient	mechanism of	(Moderate)	influence LDL-c responses to omega-3s
25 (62,67,84,85,88)							action		(EPA+DHA).
26									weak evidence suggests that possessing the CG or CG geneture of $PP4Pa2$ (re1201282)
27 <i>PPARg2</i> rs1801282 and							Lack of		could lead to significant increases in total-c in
28Total-c: 4 RCTs, 1 single	No serious	Serious	Serious	Serious	Undetected	No evidence	evidence of a	$\oplus \oplus \ominus \ominus$	response to approximately 3 g/day of omega-
29 arm trial $(n=670)$	limitations	inconsistency ^o	indirectness ^m	imprecision ⁿ		of a gradient	mechanism of	(Low)	3s (EPA+DHA) in individuals with
30 (62,67,84,85,88)							action		overweight or obesity, but not for individuals
31									without overweight or obesity.
32									Weak evidence suggests that genetic variation
<i>PPARg2</i> rs1801282 and			a .	a :		3.7 . 1	Evidence of a		in <i>PPARg2</i> (rs1801282) does not influence
1G: 4 RC1s, 1 single arm $\mathbf{B4}$	No serious	Very serious	Serious	Serious	Undetected	No evidence	mechanism of		total-c responses to omega-3s (EPA+DHA),
(n=0/0)	limitations	Inconsistency ^p	indirectness	Imprecision		of a gradient	action	(LOW)	but when dietary total fat and saturated fat
R6									exist
37FADS (rs174547**) and				G :		N T . 1	Evidence of a		Weak evidence suggests that genetic variation
Total-c: 2 RCTs, 1	very serious	No serious	Very serious	Serious	Undetected	No evidence	mechanism of	$\oplus \Theta \Theta \Theta$	in FADS (rs174547**) does not influence
39 single-arm trial, 4 cross-	TISK OF UIdS ¹	medifisistency	muneculess	mprecision		or a gradielit	action	(very Low)	total-c responses to omega-3.

1											1		
2													
3													
4													
sectional studies	s (n=9365)											
L (44,45,47,48,6	61,69,71)												
0	*Direct i	mechanisms of act	tion were conside	red									
/								~					
8	**FADS	rs174547 was in strong LD with the following SNPs from other included studies and therefore these SNPs were also included in the selection of studies assessing FADS genetic											
9	variation	i, n-3 intake and L	DL-c: rs1/4546,	rs174599, rs1740	501, rs174583, rs1	353, rs174561, r	s1/4556, rs1/45	645, rs174537 and	rs1/45/6.				
10	HDL-c.	high-density linor	rotein cholesterol	I DI -c: low-de	nsity lipoprotein c	pholesterol TG: t	riglycerides tot	al-c: total choleste	rol				
11	IIDL-¢.	ingii-density iipop	iotem enoiestero	i, LDL-c. 10w-dc	insity inpoprotein e		ingrycenides, tot	al-e. total enoieste	101				
12	a.	Small sample sizes,	mall sample sizes, especially among homozygous groups in the RCT (with a larger heterozygous group, potentially affecting the results)										
13	b.	Some variation in re	sults by genotype										
14	c.	One study sample co	onsisted of all males	s while the other sa	mple consisted of bo	oth men and wome	n; differences in a	ge and n-3 dosages (with some overlap)			
15	d.	Coefficient of variat	10n > 1 for all signif	icant values									
16	e. f	Small sample size w	ion substantiany ~1	ins for minor allele	homozygote and he	terozvante arnuns	in the RCT						
17	g.	One study sample of	onsisted of all men	while the other con	sisted of men and po	ostmenopausal wor	nen with type 2 di	abetes					
18	h.	Differences in age, o	omega-3 dosages, ai	nd types (with som	e overlap), and dieta	ry interventions ev	en when consider	ing studies with male	e study samples sep	parate from male + femal	e study		
19		samples											
20	i.	Serious inconsistent	y for men subgroup	only; men + wom	en samples were cor	nsistent				· 1. · · · ·			
21	J.	EPA and DHA sepa	rate on one study ar	nd EPA+DHA in th	ie other, sample strat	tified into two grou	ips in one study (r	esponders and non-re	esponders) and sep	arated into three groups	responders,		
22	k.	Evidence of a gradie	ent for GRS and TG	responsiveness to	omega-3 supplemen	ntation							
23	l.	Some evidence of a	potential mechanisi	n of action for IQC	CJ-SCHIP1, NXPH1,	, PHF17, MYB and	NELL1 as discus	sed by Rudkowska e	t al. (63), Vallée M	larcotte et al. (64)			
24	m.	Differences in popul	ifferences in population (healthy adults, adults with chronic disease or obesity, infants), some variation in length of follow-up										
25	n.	Downgraded precisi	owngraded precision as it was not possible to assess precision in most studies due to lack of reporting of means and SD/SEM										
26	0.	Some variation in re	ome variation in results even when considering differences in BMI and populations among studies										
27	р. а	Risk of bias detected	alor variability in results even when considering differences in BMI and populations among studies isk of bias detected in every study except one										
28	r.	Major differences in	populations, types	and amounts of on	nega-3 and follow-up	p for interventional	studies						
29		5			0	L.							
30													
31													
32													
33													
34													
35													
36													
37													
38													
39													
40													
41													
42													
43													
44													
45				For peer revie	w only - http://k	bmjopen.bmj.o	om/site/abou	t/guidelines.xht	ml				
46													

Study	Risk of Rios
Dawczynski et al. 2013	
Maddan at al. 2015	0
CD_{36} rs17	61667 and TC
Study	Risk of Bias
Dawczynski et al 2013	
Madden et al 2008	9
<i>CD36</i> , rs1049	0673 and HDL-c
Study	Risk of Bias
Dawczynski et al. 2013	Θ
Madden et al. 2008	θ
<i>CD36</i> , rs15	27483 and TG
Study	Risk of Bias
Zheng et al. 2018	Φ
Madden et al. 2008	Θ
<i>ApoE</i> , rs42935	8, rs7412 and TG
Study	Risk of Bias
AbuMweis et al. 2018	Θ
Carvalho-Wells et al. 2012	\oplus
Caslake et al. 2008	\oplus
Dang et al. 2015	\oplus
Jackson et al. 2012	Θ
Minihane et al. 2000	\oplus
Olano-Martin et al. 2010	\oplus
Paschos et al. 2005	Θ
Thifault et al. 2013	\oplus (
<i>ApoE</i> , rs429358,	rs7412 and Total-c
Study	Risk of Bias
AbuMweis et al. 2018	Θ
Carvalho-Wells et al. 2012	\oplus
Caslake et al. 2008	\oplus
Dang et al. 2015	\oplus
Fallaize et al. 2016	Θ
Jackson et al. 2012	Θ
Minihane et al. 2000	\oplus
Olano-Martin et al. 2010	\oplus
Paschos et al. 2005	Θ
Thifault et al. 2013	\oplus
31-SNP Nutr	ri-GRS and TG
Study	Risk of Bias
Allée Marcotte et al. 2019	θ

Table 3. Summary of Risk of Bias Across SNPs and Outcomes Following Omega-3Exposure/Intervention

<i>PPARg2</i> , rs180	1282 and LDL-c
Study	Risk of Bias
Binia et al. 2017	Θ
Harslof et al. 2014	\oplus
Itariu et al. 2012	\oplus
Lindi et al. 2003	Θ
Zheng et al. 2018	\oplus
<i>PPARg2</i> , rs180	1282 and Total-c
Study	Risk of Bias
Binia et al. 2017	Θ
Harslof et al. 2014	\oplus
Itariu et al. 2012	\oplus
Lindi et al. 2003	Θ
Zheng et al. 2018	\oplus
PPARg2, rs1	801282 and TG
Study	Risk of Bias
Binia et al. 2017	Θ
Harslof et al. 2014	\oplus
Itariu et al. 2012	\frown
Lindi et al. 2003	Θ
Zheng et al. 2018	\oplus
<i>FADS</i> , rs1745	547 and Total-c
Study	Risk of Bias
AbuMweis et al. 2018	Θ
Alsaleh et al. 2014	•
Lu et al. 2010	Θ
Standl et al. 2012	Θ
Dumont et al. 2011	Θ
Dumont et al. 2018	Θ
Roke and Mutch 2014	Θ

 \oplus no serious risk of bias; \ominus serious risk of bias; $\ominus \ominus$ very serious risk of bias (for study design type using NIH Study Quality Assessment Tools)

HDL-c: high-density lipoprotein cholesterol, LDL-c: low-density lipoprotein cholesterol, TG: triglycerides, total-c: total cholesterol

2	
כ ⊿	
4 5	
6	
7	
, 8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
20	
27	
20	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45 46	
40	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1

271 **DISCUSSION**

272

273 Overall, this systematic review found strong evidence (i.e. GRADE ratings: moderate and high quality evidence) for only a limited amount of evidence in this area: APOE 274 275 (rs429358 and rs7412) genotypes and TG responsiveness to omega-3s in men, and a 31-276 SNP nutri-GRS and TG responsiveness to omega-3s in adults with overweight/obesity. 277 Limited evidence exists for individual genetic-based responsiveness of omega-3s on 278 apolipoprotein and/or LDL particle size, with no studies from the present comprehensive review meeting the criteria for evidence grading. This highlights the need for more 279 280 replication studies in this area. While more research exists on omega-3 responsiveness for other lipid outcomes such as total-c, HDL-c and LDL-c, the level of evidence for 281 282 nutrigenetic interactions related to these outcomes remains low. Again, more studies are 283 needed related to these outcomes, including replication studies of previously identified nutrigenetic interactions. These studies should first replicate the interventions (i.e. use the 284 285 same type and amount of omega-3s as the original study), and recruit samples with 286 similar characteristics to the original study. Once replication is established, research should then seek to expand the population studied to improve generalizability and explore 287 288 the effectiveness of different interventions (i.e. different formulations and doses of 289 omega-3s). The variability of the interventions and sample sizes in the studies conducted 290 to date often resulted in the quality of evidence being downgraded (see Table 2). It should 291 also be noted that study heterogeneity precluded the ability to conduct a meta-analysis. Thus, the GRADE approach worked well for evaluating the quality of the evidence given 292 293 that this approach takes into consideration several factors when determining the quality of

BMJ Open

2

' ว	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
11	
12	
13	
14	
15	
16	
17	
18	
10	
20	
20	
21	
22	
23	
24	
25	
26	
27	
27 20	
20	
29	
30	
31	
32	
33	
34	
35	
36	
27	
20	
38	
39	
40	
41	
42	
43	
44	
45	
46	
<u>4</u> 7	
-+/ /0	
48	
49	
50	
51	
52	
53	
54	
55	
55	
50	
5/	
58	
59	
60	

294	evidence such as risk of bias, indirectness of evidence, inconsistency or results,
295	imprecision and publication bias (39).

296

297 It is important to note that our results demonstrating strong evidence for interactions 298 between APOE genotypes and lipid responses to omega-3s have notable ethical 299 implications. Compared to non-carriers, carriers of APOE-E4 have a 15 times greater risk of developing Alzheimer's disease (90). Moreover, APOE genotypes are significantly 300 301 associated with CVD risk including risk of coronary artery disease and hyperlipidemia 302 (91–93). Interestingly, the pathology of Alzheimer's disease has been linked to 303 cardiovascular mechanisms (90). Future research should explore nutrigenetic interactions, 304 with risk of developing Alzheimer's disease as the study endpoint/outcome of interest. 305 Despite the current lack of knowledge about how diet may play a role in mitigating the 306 genetic-based risk of Alzheimer's disease, several potentially modifiable risk factors 307 account for around 40% of dementia and Alzheimer's disease globally (94), and the link 308 between Alzheimer's disease risk and APOE is well-established (95). Therefore, despite 309 the strong scientific validity identified in the present review, there are other factors that 310 must be considered before this test can be recommended for implementation in a practice setting; this includes ethical, legal and social implications (96). 311

312

In addition, our finding of strong evidence for *APOE* genotypes and TG responsiveness to omega-3s in men but not women speaks to the importance of taking biological sex into account in nutrigenetics research. The importance of this has been further highlighted elsewhere, where it has been noted that the results of nutrition and nutrigenetic research

317	may differ in men and women (97). For example, UDP-glucuronidation isoenzyme
318	expression profiles have been demonstrated to be regulated by sex hormones, and thus
319	sex-specific differences in glucuronidation of resveratrol have been observed (98). As
320	more studies are completed, researchers may find that certain nutrigenetic interactions
321	differ depending on biological sex, ethnicity, age or other factors, similar to our findings
322	on APOE, omega-3s and TG in which there was robust evidence of a nutrigenetic
323	interaction in males only. Researchers may also find explanations for this, which are
324	currently poorly understood. In general, it is becoming increasingly recognized that
325	health-related responses to different interventions may vary based on biological sex; this
326	is an important consideration of personalized nutrition (97). Nutrigenetic research often
327	groups men and women together, but stratifying based on biological sex could provide
328	further insights for specific nutrigenetic interactions and could also help explain why
329	some replication studies have had conflicting findings (97). Moreover, biomedical
330	research in general historically has been conducted more in men than women; yet such
331	research findings are often generalized to women despite limited research conducted in
332	samples of women, which is problematic for a number of reasons (99). In the present
333	review, the evidence was strong for the APOE findings in men only, but not women in
334	part because there were more studies conducted in men. Specifically, there were five
335	studies conducted in men and women (combined) (71,73,74,100,101), and four studies
336	conducted in samples of only men (75,78,79,102), yet no studies conducted in samples of
337	only women. This brings to light important issues of equity and warrants further
338	discussion and consideration.
339	

Page 23 of 73

BMJ Open

340	As research continues to develop, it appears likely that lipid and lipoprotein responses are
341	polygenic in nature. Therefore, future research should consider using nutri-GRSs or other
342	polygenic methods of assessing responsiveness to nutrition interventions. This work
343	should use unbiased approaches or non-hypothesis driven approach to derive nutri-GRSs,
344	such as establishing them from genetic-wide association studies. In addition to the two
345	studies meeting the criteria for evidence grading (65,66), a modified version of the 31-
346	SNP GRS was tested in men and women in the FINGEN study, using 23 of the 31 SNPs
347	(65). While this did not meet our inclusion criteria for evidence grading given that a
348	different GRS was used, the 23-SNP GRS was significantly associated with TG
349	responsiveness to omega-3 supplementation in this population as well, providing further
350	evidence for the scientific validity of this nutrigenetic interaction (65).
351	
352	While we used the GRADE approach to evaluate the body of evidence, several tools are
353	available for evaluating the quality of scientific evidence, though no generally accepted
354	methods exist for nutrigenetic research specifically. In 2017, Grimaldi et al. proposed a
355	set of guidelines to assess the scientific validity of genotype-based dietary advice (30).
356	While we originally intended to use these guidelines for assessing the evidence, we came
357	across some limitations that ultimately led us to use the GRADE guidelines. Specifically,
358	Grimaldi et al. (2017) suggested that only studies that include STREGA guidelines
359	should be included in the assessment of scientific validity (30). However, limiting the
360	evidence to only these studies could result in several important studies being missed. In
361	the present review, none of the included studies explicitly indicated that they followed
362	STREGA guidelines. In addition, it was recommended by Grimaldi et al. to use STREGA

363	guidelines to assess risk of bias (30). However, the STREGA checklist is only intended
364	for observational genetic association studies - not interventional research (103). In the
365	present review, 42 of the 65 included studies were interventional (65%) (Supplementary
366	Table 3). In addition, the STREGA guidelines are intended to improve the transparency
367	and adequate reporting of genetic association studies, but it is not intended to be used as a
368	study quality assessment tool (103). However, Grimaldi et al. nicely highlighted the
369	importance of understanding the nature of the genetic variation, at a functional level,
370	when assessing scientific validity (30). This is not included in the standard GRADE
371	approach but is an important niche component of nutrigenetic research. As such, an
372	analysis of functional SNPs (biological plausibility) was included as an additional
373	component of the standard GRADE process, as indicated in the methods section above.
374	Overall, we found that the methods used in this systematic review were effective and can
375	be used to synthesize and evaluate nutrigenetic studies assessing other gene-nutrient-
376	health outcome interactions.
377	
378	The additional consideration of functional SNPs to the standard GRADE approach helped
379	to strengthen this review, as biological mechanistic evidence can help ensure that study
380	findings did not occur by chance alone, and this is a component of evidence evaluation
381	frameworks in medical genetics (104,105). Transcriptomic and pathway analyses can
382	help inform the direction of future nutrigenetic studies by generating hypotheses about
383	the impact of specific genetic variations on varying responses to nutrition on health-
384	related outcomes. For example, using transcriptomics and pathway analyses to identify
385	changes in lipid metabolism following omega-3 supplementation, Rudkowska and

Page 25 of 73

BMJ Open

386	colleagues identified six genes expressed in opposite directions between responders and
387	non-responders to omega-3 supplementation for TG lowering: FADS2, PLA2G4A,
388	ALOX15, PEMT, MGLL and GPAM (106). Tremblay et al. then built on this knowledge
389	and discovered that PLA2G6 rs132989, PLA2G7 rs679667, PLA2G2D rs12045689,
390	PLA2G4A rs10752979 and rs1160719 together explained 5.9% of post- omega-3
391	supplementation TG levels, with several individual PLA2G4A SNPs also having a
392	significant impact on the TG lowering effect of omega-3 supplementation (107). Others
393	have built on this mechanistic knowledge as well (108). Future research should now seek
394	to replicate this work given that we found that there have been no replication studies
395	completed and thus, this research (107,108) did not meet the criteria for evidence
396	grading.
397	
398	In the current body of literature, there are some limitations that should be highlighted.
399	Given the variability in allele frequencies for each SNP, it should be noted that study
400	limitations can arise with small sample sizes whereby some genotype groups may not be
401	adequately powered to detect significant differences. For example, Dawczynski et al.
402	(2013) detected significant changes in TG among the GA genotype group of CD36
403	rs1761667 (n=18) in response to omega-3s but neither of the homozygote groups (AA:
404	n=8, GG: n=7) exhibited a significant difference, despite similar directions and
405	magnitudes of effect among the GA and GG genotypes (82). It is thus possible that this

406 study was not adequately powered. Some researchers aim to mitigate this issue of small

408 the minor allele) (69). However, such an approach precludes the possibility to detect an

numbers by grouping minor allele carriers together (i.e. heterozygotes + homozygotes for

2	
3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20	
21	
22	
23	
24	
25	
26	
20	
27	
28	
29	
30	
31	
32	
22	
27	
24	
35	
36	
37	
38	
39	
40	
_10 ∕11	
41	
42	
43	
44	
45	
46	
47	
., ۵۷	
49	
50	
51	
52	
53	
54	
55	
55	
50	
57	
58	
59	
60	

409	allele-dosage effect. From a physiological perspective, an allele dosage effect would be
410	expected whereby a significant change among a heterozygote group would likely be
411	accompanied by a significant change in one of the homozygote groups but with an even
412	greater magnitude of the effect. This consideration highlights the importance of having an
413	adequately powered sample size, while factoring in the prevalence of each genotype.
414	
415	While single SNP research provides important information about individual gene-nutrient
416	interactions, the results of this review indicate that individual responses to omega-3s for
417	altering lipids, lipoproteins and apolipoproteins appear to be polygenic in nature. Thus,
418	we encourage researchers to further explore the use of nutri-GRSs to improve the
419	accuracy of genetic-based predictions. See, for example, the work of Vallée Marcotte et
420	al., which obtained a high quality evidence grade in the present review (65,66). This is
421	further exemplified in the analyses recently conducted by Chen et al. (42), which has yet
422	to be replicated and thus was not selected for evidence grading.
423	
424	The present analysis of scientific validity provides an important first step towards the
425	eventual development of clinical practice guidelines for genetic-based responses to
426	dietary intake. With questionable and variable scientific validity of existing consumer
427	nutrigenetic tests, the development of clinical practice guidelines is an important next
428	step as these can be used by HCPs and industry alike to help promote evidence-based
429	practice in personalized nutrition. Ideally, industry should use future clinical practice
430	guidelines to inform the nutrigenetic associations and related dietary recommendations
431	included in their reports. Decision aids can also be useful to guide clinical practice for

BMJ Open

2		
3	432	HCPs (109), and future research should seek to develop a decision aid related to omega-
4 5		
6 7	433	3s and lipid/lipoprotein outcomes based on genetic variation.
8 9	434	
10 11	435	Overall, we have provided a comprehensive overview the body of evidence related to
12 13	436	nutrigenetics, omega-3s and plasma lipids/lipoproteins/apolipoproteins, while providing
14 15 16	437	an overview of levels of evidence in this field. To our knowledge, this is the first
17 18	438	systematic review with GRADE evidence evaluation in the broader field of nutrigenetics.
19 20	439	The results of this work should be used in clinical practice guideline development, to
21 22	440	ultimately guide evidence-based practice in personalized nutrition and move this
23 24 25	441	emerging field forward.
26	442	
27	443	Sources of Support: J.K. received postdoctoral fellowships from the Canadian Institute of
28	444	Health Research NUTRISS and INAF LR holds a Junior 2 research Scholar from the Fonds de
29	445	recherche du Québec—Santé (FRQ-S) M-C V holds a Tier 1 Canada Research Chair in
30	446	Nutrition Applied to Genetics and Metabolic Health
31	110	Nutrition Applied to Genetics and Metabolic Health.
32 33	447 448	Contributorship Statements: M-C.V. and J.K. conceptualized the review. G.S. was responsible
34		
35 36	449	for the search strategy, in collaboration with J.K., M-C.V., S.D. and V.G. J.K. and V.G. were
37 38	450	responsible for article screening and selection, summarizing, evidence grading, and developing a
39 40	451	draft of the systematic review. The first systematic review draft underwent revisions from S.D. and
41 42	452	M-C.V., who provided overall supervision for the project. Following this, J.K., V.G., V.M.,
43 44	453	D.M.M., J.R., I.R., G.S., S.D., and M-C.V. served as scientific advisors and reviewed and revised
45 46 47	454	the full-text manuscript. J.K. wrote the first draft of the manuscript. J.K., V.G., V.M., D.M.M., J.R.,
48 49	455	I.R., G.S., S.D., and M-C.V., reviewed, revised and approved the final manuscript.
50 51 52	456	Competing Interests: The authors have no competing interests to declare.
53 54		
55		
56		
5/		

Funding: This project was supported through a pilot projects grant from INAF. J Keathley was supported through postdoctoral fellowships from CIHR (#430907), NUTRISS and INAF. M-C Vohl holds a Canada Research Chair in Genomics Applied to Nutrition and Metabolic Health. Data Sharing Statement: Data are available upon reasonable request. to beet eview only

2 3 4	463	Figure Legend:
5 6 7 8	464 465 466 467	Figure 1. PRISMA Flow Diagram *The original PRISMA Flow Diagram indicated the number of studies included in meta-analysis in this box. This has been revised for the purposes of this research
9 10 11		
12 13 14 15		
16 17 18		
19 20 21 22		
23 24 25		
26 27 28		
29 30 31 32		
33 34 35		
36 37 38 20		
40 41 42		
43 44 45		
46 47 48 49		
50 51 52		
53 54 55		
56 57 58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

References

- 1. Barquera S, Pedroza-Tobias A, Medina C, Hernandez-Barrera L, Bibbins-Domingo K, Lozano R, et al. Global overview of the epidemiology of atherosclerotic cardiovascular disease. Arch Med Res. 2015;46:328–38.
- 2. Rudkowska I, Guénard F, Julien P, Couture P, Lemieux S, Barbier O, et al. Genome-wide association study of the plasma triglyceride response to an n-3 polyunsaturated fatty acid supplementation. J Lipid Res. 2014 Jul;55(7):1245–53.
- 3. Rizzi F, Conti C, Dogliotti E, Terranegra A, Salvi E, Braga D, et al. Interaction between polyphenols intake and PON1 gene variants on markers of cardiovascular disease: a nutrigenetic observational study. Journal of Translational Medicine. 2016;14:186.
- 4. Zhang X, Qi Q, Zhang C, Smith SR, Hu FB, Sacks FM, et al. FTO Genotype and 2-Year Change in Body Composition and Fat Distribution in Response to Weight-Loss Diets: The POUNDS LOST Trial. Diabetes. 2012 Nov 1;61(11):3005–11.
- 5. Merritt DC, Jamnik J, El-Sohemy A. FTO genotype, dietary protein intake, and body weight in a multiethnic population of young adults: a cross-sectional study. Genes Nutr. 2018;13:4.
- Vallée Marcotte B, Cormier V, Garneau V, Robitaille J, Desroches S, Vohl M-C. Nutrigenetic Testing for Personalized Nutrition: An Evaluation of Public Perceptions, Attitudes, and Concerns in a Population of French Canadians. Lifestyle Genomics [Internet]. 2019; Available from: https://doi.org/10.1159/000499626
- Vallée Marcotte B, Cormier H, Garneau V, Robitaille J, Desroches S, Vohl M-C. Current knowledge and interest of French Canadians regarding nutrigenetics. Genes Nutr. 2019 Dec;14(1):5.
- 8. Caulfield T, McGuire AL. Direct-to-Consumer Genetic Testing: Perceptions, Problems, and Policy Responses. Annu Rev Med. 2012;63(1):23–33.
- 9. Horne J, Gilliland J, Madill J, Shelley J. A critical examination of legal and ethical considerations for nutrigenetic testing with recommendations for improving regulation in Canada: From science to consumer. J Law Biosci. 2020;
- 10. Görman U, Mathers JC, Grimaldi KA, Ahlgren J, Nordström K. Do we know enough? A scientific and ethical analysis of the basis for genetic-based personalized nutrition. Genes Nutr. 2013 Jul;8(4):373–81.
- 11. Harris WS. Stearidonic acid as a "pro-eicosapentaenoic acid." Curr Opin Lipidol. 2012 Feb;23(1):30–4.
- 12. Shahidi F, Ambigaipalan P. Omega-3 Polyunsaturated Fatty Acids and Their Health Benefits. Annu Rev Food Sci Technol. 2018 25;9:345–81.

l of 73		BMJ Open
		3
	13.	Hu Y, Hu FB, Manson JE. Marine Omega-3 Supplementation and Cardiovascular Disease: An Updated Meta-Analysis of 13 Randomized Controlled Trials Involving 127 477 Participants. J Am Heart Assoc. 2019;8(19):e013543.
	14.	Abdelhamid AS, Brown TJ, Brainard JS, Biswas P, Thorpe GC, Moore HJ, et al. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev [Internet]. 2018 Jul 18 [cited 2020 Dec 1];2018(7). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6513557/
	15.	Jones PJH, Senanayake VK, Pu S, Jenkins DJA, Connelly PW, Lamarche B, et al. DHA- enriched high-oleic acid canola oil improves lipid profile and lowers predicted cardiovascular disease risk in the canola oil multicenter randomized controlled trial. Am J Clin Nutr. 2014 Jul;100(1):88–97.
	16.	Ballantyne CM, Bays HE, Kastelein JJ, Stein E, Isaacsohn JL, Braeckman RA, et al. Efficacy and Safety of Eicosapentaenoic Acid Ethyl Ester (AMR101) Therapy in Statin-Treated Patients With Persistent High Triglycerides (from the ANCHOR Study). Am J Cardiol. 2012 Oct 1;110(7):984–92.
	17.	Davidson MH, Stein EA, Bays HE, Maki KC, Doyle RT, Shalwitz RA, et al. Efficacy and tolerability of adding prescription omega-3 fatty acids 4 g/d to simvastatin 40 mg/d in hypertriglyceridemic patients: an 8-week, randomized, double-blind, placebo-controlled study. Clin Ther. 2007 Jul;29(7):1354–67.
	18.	Bradberry JC, Hilleman DE. Overview of Omega-3 Fatty Acid Therapies. Pharm Ther. 2013 Nov;38(11):681–91.
	19.	Skulas-Ray AC, Alaupovic P, Kris-Etherton PM, West SG. Dose-response effects of marine omega-3 fatty acids on apolipoproteins, apolipoprotein-defined lipoprotein subclasses, and Lp-PLA2 in individuals with moderate hypertriglyceridemia. J Clin Lipidol. 2015 Jun;9(3):360–7.
	20.	Lee MW, Park JK, Hong JW, Kim KJ, Shin DY, Ahn CW, et al. Beneficial Effects of Omega-3 Fatty Acids on Low Density Lipoprotein Particle Size in Patients with Type 2 Diabetes Already under Statin Therapy. Diabetes Metab J. 2013 Jun;37(3):207–11.
	21.	Bouwens M, van de Rest O, Dellschaft N, Bromhaar MG, de Groot LCPGM, Geleijnse JM, et al. Fish-oil supplementation induces antiinflammatory gene expression profiles in human blood mononuclear cells. Am J Clin Nutr. 2009 Aug;90(2):415–24.
	22.	Rudkowska I, Paradis A-M, Thifault E, Julien P, Tchernof A, Couture P, et al. Transcriptomic and metabolomic signatures of an n-3 polyunsaturated fatty acids supplementation in a normolipidemic/normocholesterolemic Caucasian population. J Nutr Biochem. 2013 Jan;24(1):54–61.
	23.	Merched AJ, Chan L. Nutrigenetics and Nutrigenomics of Atherosclerosis. Curr Atheroscler Rep. 2013 Jun;15(6):328.
	24.	Madden J, Williams CM, Calder PC, Lietz G, Miles EA, Cordell H, et al. The impact of common gene variants on the response of biomarkers of cardiovascular disease (CVD) risk to increased fish oil fatty acids intakes. Annu Rev Nutr. 2011 Aug 21;31:203–34.

- 25. Cave C, Hein N, Smith LM, Anderson-Berry A, Richter CK, Bisselou KS, et al. Omega-3 Long-Chain Polyunsaturated Fatty Acids Intake by Ethnicity, Income, and Education Level in the United States: NHANES 2003–2014. Nutrients [Internet]. 2020 Jul 9 [cited 2020 Oct 27];12(7). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7400855/
- 26. World Health Organization. Joint FAO/WHO Expert Consultation on Fats and Fatty Acids in Human Nutrition [Internet]. 2008. Available from: http://www.who.int/nutrition/topics/FFA_interim_ recommendations/en/
- 27. Fats and Fatty Acids in Human Nutrition | Karger Book [Internet]. [cited 2021 Jan 14]. Available from: https://www.karger.com/Book/Home/251867
- Horne J, Madill J, O'Connor C, Shelley J, Gilliland J. A Systematic Review of Genetic Testing and Lifestyle Behaviour Change: Are We Using High-Quality Genetic Interventions and Considering Behaviour Change Theory? Lifestyle Genomics. 2018;11(1):49–63.
- 29. Corella D, Ordovás JM. Interactions between dietary *n-3* fatty acids and genetic variants and risk of disease. Br J Nutr. 2012 Jun;107(S2):S271–83.
- 30. Grimaldi KA, van Ommen B, Ordovas JM, Parnell LD, Mathers JC, Bendik I, et al. Proposed guidelines to evaluate scientific validity and evidence for genotype-based dietary advice. Genes Nutr. 2017 Dec;12(1):35.
- 31. Khan KS, Kunz R, Kleijnen J, Antes G. Five steps to conducting a systematic review. J R Soc Med. 2003 Mar;96(3):118–21.
- 32. PRISMA. PRISMA: Transparent reporting of systematic reviews and meta-analyses [Internet]. 2015. Available from: http://www.prisma-statement.org/
- 33. Pollock A, Berge E. How to do a systematic review. Int J Stroke. 2018 Feb 1;13(2):138– 56.
- 34. Dekkers OM, Vandenbroucke JP, Cevallos M, Renehan AG, Altman DG, Egger M. COSMOS-E: Guidance on conducting systematic reviews and meta-analyses of observational studies of etiology. PLoS Med [Internet]. 2019 Feb 21 [cited 2020 Apr 9];16(2). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6383865/
- 35. Corella D, Ordovás JM. Interactions between dietary n-3 fatty acids and genetic variants and risk of disease. Br J Nutr. 2012 Jun;107(0 2):S271–83.
- 36. GRADE handbook [Internet]. [cited 2020 Sep 29]. Available from: https://gdt.gradepro.org/app/handbook/handbook.html
- 37. SNiPA a single nucleotide polymorphisms annotator and browser [Internet]. [cited 2020 Aug 20]. Available from: https://snipa.helmholtzmuenchen.de/snipa3/index.php?task=proxy_search

38.	Hosseini-Esfahani F, Mirmiran P, Koochakpoor G, Daneshpour MS, Guity K, Azizi F. Some dietary factors can modulate the effect of the zinc transporters 8 polymorphism on the risk of metabolic syndrome. Sci Rep. 2017 Dec;7(1):1649.
39.	GRADE handbook [Internet]. [cited 2020 Apr 3]. Available from: https://gdt.gradepro.org/app/handbook/handbook.html#h.dce0ghnajwsm
40.	Murad MH, Mustafa RA, Schünemann HJ, Sultan S, Santesso N. Rating the certainty in evidence in the absence of a single estimate of effect. Evid Based Med. 2017 Jun;22(3):85–7.
41.	Ma L-L, Wang Y-Y, Yang Z-H, Huang D, Weng H, Zeng X-T. Methodological quality (risk of bias) assessment tools for primary and secondary medical studies: what are they and which is better? Mil Med Res [Internet]. 2020 Feb 29 [cited 2020 Sep 2];7. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7049186/
42.	Chen Y, Estampador AC, Keller M, Poveda A, Dalla-Riva J, Johansson I, et al. The combined effects of FADS gene variation and dietary fats in obesity-related traits in a population from the far north of Sweden: the GLACIER Study. Int J Obes. 2019 Apr;43(4):808–20.
43.	Ching YK, Chin YS, Appukutty M, Ramanchadran V, Yu CY, Ang GY, et al. Interaction of Dietary Linoleic Acid and α -Linolenic Acids with rs174547 in FADS1 Gene on Metabolic Syndrome Components among Vegetarians. Nutrients. 2019 Jul 23;11(7):1686.
44.	Dumont J, Huybrechts I, Spinneker A, Gottrand F, Grammatikaki E, Bevilacqua N, et al. FADS1 genetic variability interacts with dietary α -linolenic acid intake to affect serum non-HDL-cholesterol concentrations in European adolescents. J Nutr. 2011 Jul;141(7):1247–53.
45.	Dumont J, Goumidi L, Grenier-Boley B, Cottel D, Marécaux N, Montaye M, et al. Dietary linoleic acid interacts with FADS1 genetic variability to modulate HDL-cholesterol and obesity-related traits. Clin Nutr. 2018 Oct 1;37(5):1683–9.
46.	Hellstrand S, Sonestedt E, Ericson U, Gullberg B, Wirfält E, Hedblad B, et al. Intake levels of dietary long-chain PUFAs modify the association between genetic variation in <i>FADS</i> and LDL-C. J Lipid Res. 2012 Jun;53(6):1183–9.
47.	Lu Y, Feskens EJ, Dollé ME, Imholz S, Verschuren WM, Müller M, et al. Dietary $n-3$ and $n-6$ polyunsaturated fatty acid intake interacts with FADS1 genetic variation to affect total and HDL-cholesterol concentrations in the Doetinchem Cohort Study. Am J Clin Nutr. 2010 Jul 1;92(1):258–65.
48.	Standl M, Lattka E, Stach B, Koletzko S, Bauer C-P, von Berg A, et al. FADS1 FADS2 Gene Cluster, PUFA Intake and Blood Lipids in Children: Results from the GINIplus and LISAplus Studies. PLoS ONE [Internet]. 2012 May 21 [cited 2020 Aug 3];7(5). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3357401/
49.	Fontaine-Bisson B, Wolever TMS, Chiasson J-L, Rabasa-Lhoret R, Maheux P, Josse RG, et al. Genetic polymorphisms of tumor necrosis factor-alpha modify the association
between dietary polyunsaturated fatty acids and fasting HDL-cholesterol and apo A-I concentrations. Am J Clin Nutr. 2007 Sep;86(3):768–74.

- 50. Joffe YT, van der Merwe L, Carstens M, Collins M, Jennings C, Levitt NS, et al. Tumor Necrosis Factor-α Gene -308 G/A Polymorphism Modulates the Relationship between Dietary Fat Intake, Serum Lipids, and Obesity Risk in Black South African Women. J Nutr. 2010 May 1;140(5):901–7.
- 51. Joffe YT, van der Merwe L, Evans J, Collins M, Lambert EV, September A, et al. The tumor necrosis factor- α gene -238 G>A polymorphism, dietary fat intake, obesity risk and serum lipid concentrations in black and white South African women. Eur J Clin Nutr. 2012 Dec;66(12):1295–302.
- 52. Tai ES, Corella D, Demissie S, Cupples LA, Coltell O, Schaefer EJ, et al. Polyunsaturated Fatty Acids Interact with the PPARA-L162V Polymorphism to Affect Plasma Triglyceride and Apolipoprotein C-III Concentrations in the Framingham Heart Study. J Nutr. 2005 Mar 1;135(3):397–403.
- 53. Volcik KA, Nettleton JA, Ballantyne CM, Boerwinkle E. Peroxisome proliferator-activated receptor [alpha] genetic variation interacts with n-6 and long-chain n-3 fatty acid intake to affect total cholesterol and LDL-cholesterol concentrations in the Atherosclerosis Risk in Communities Study. Am J Clin Nutr. 2008 Jun;87(6):1926–31.
- 54. Bouchard-Mercier A, Godin G, Lamarche B, Pérusse L, Vohl M-C. Effects of Peroxisome Proliferator-Activated Receptors, Dietary Fat Intakes and Gene–Diet Interactions on Peak Particle Diameters of Low-Density Lipoproteins. J Nutr Nutr. 2011;4(1):36–48.
- 55. Fallaize R, Celis-Morales C, Macready AL, Marsaux CF, Forster H, O'Donovan C, et al. The effect of the apolipoprotein E genotype on response to personalized dietary advice intervention: findings from the Food4Me randomized controlled trial. Am J Clin Nutr. 2016 Sep;104(3):827–36.
- 56. Fontaine-Bisson B, Wolever TMS, Connelly PW, Corey PN, El-Sohemy A. NF-κB –94Ins/Del ATTG polymorphism modifies the association between dietary polyunsaturated fatty acids and HDL-cholesterol in two distinct populations. Atherosclerosis. 2009 Jun;204(2):465–70.
- 57. Jang HB, Hwang J-Y, Park JE, Oh JH, Ahn Y, Kang J-H, et al. Intake levels of dietary polyunsaturated fatty acids modify the association between the genetic variation in *PCSK5* and HDL cholesterol. J Med Genet. 2014 Dec;51(12):782–8.
- 58. Lai C-Q, Corella D, Demissie S, Cupples LA, Adiconis X, Zhu Y, et al. Dietary Intake of n-6 Fatty Acids Modulates Effect of Apolipoprotein A5 Gene on Plasma Fasting Triglycerides, Remnant Lipoprotein Concentrations, and Lipoprotein Particle Size: The Framingham Heart Study. Circulation. 2006 May 2;113(17):2062–70.
- 59. Richardson K, Louie-Gao Q, Arnett DK, Parnell LD, Lai C-Q, Davalos A, et al. The PLIN4 Variant rs8887 Modulates Obesity Related Phenotypes in Humans through Creation of a Novel miR-522 Seed Site. Mailund T, editor. PLoS ONE. 2011 Apr 20;6(4):e17944.

- - 60. Warodomwichit D, Arnett DK, Kabagambe EK, Tsai MY, Hixson JE, Straka RJ, et al. Polyunsaturated Fatty Acids Modulate the Effect of TCF7L2 Gene Variants on Postprandial Lipemia. J Nutr. 2009 Mar 1;139(3):439–46.
 - 61. AlSaleh A, Maniou Z, Lewis FJ, Hall WL, Sanders TAB, O'Dell SD. Genetic predisposition scores for dyslipidaemia influence plasma lipid concentrations at baseline, but not the changes after controlled intake of n-3 polyunsaturated fatty acids. Genes Nutr. 2014 Jul;9(4):412.
 - 62. Harsløf LBS, Damsgaard CT, Hellgren LI, Andersen AD, Vogel U, Lauritzen L. Effects on metabolic markers are modified by PPARG2 and COX2 polymorphisms in infants randomized to fish oil. Genes Nutr. 2014 May;9(3):396.
 - 63. Rudkowska I, Guénard F, Julien P, Couture P, Lemieux S, Barbier O, et al. Genome-wide association study of the plasma triglyceride response to an n-3 polyunsaturated fatty acid supplementation. J Lipid Res. 2014 Jul;55(7):1245–53.
 - 64. Vallée Marcotte B, Guénard F, Cormier H, Lemieux S, Couture P, Rudkowska I, et al. Plasma Triglyceride Levels May Be Modulated by Gene Expression of IQCJ, NXPH1, PHF17 and MYB in Humans. Int J Mol Sci. 2017 Jan 26;18(2).
 - 65. Vallée Marcotte B, Guénard F, Lemieux S, Couture P, Rudkowska I, Calder PC, et al. Fine mapping of genome-wide association study signals to identify genetic markers of the plasma triglyceride response to an omega-3 fatty acid supplementation. Am J Clin Nutr. 2019 Jan 1;109(1):176–85.
 - 66. Vallée Marcotte B, Allaire J, Guénard F, de Toro-Martín J, Couture P, Lamarche B, et al. Genetic risk prediction of the plasma triglyceride response to independent supplementations with eicosapentaenoic and docosahexaenoic acids: the ComparED Study. Genes Nutr. 2020 Dec;15(1):10.
 - 67. Zheng J-S, Chen J, Wang L, Yang H, Fang L, Yu Y, et al. Replication of a Gene-Diet Interaction at CD36, NOS3 and PPARG in Response to Omega-3 Fatty Acid Supplements on Blood Lipids: A Double-Blind Randomized Controlled Trial. EBioMedicine. 2018 May;31:150–6.
 - 68. Vallée Marcotte B, Guénard F, Marquis J, Charpagne A, Vadillo-Ortega F, Tejero M, et al. Genetic Risk Score Predictive of the Plasma Triglyceride Response to an Omega-3 Fatty Acid Supplementation in a Mexican Population. Nutrients. 2019 Mar 29;11(4):737.
 - 69. Roke K, Mutch DM. The Role of FADS1/2 Polymorphisms on Cardiometabolic Markers and Fatty Acid Profiles in Young Adults Consuming Fish Oil Supplements. Nutrients. 2014 Jun 16;6(6):2290–304.
 - 70. Cormier H, Rudkowska I, Paradis A-M, Thifault E, Garneau V, Lemieux S, et al. Association between Polymorphisms in the Fatty Acid Desaturase Gene Cluster and the Plasma Triacylglycerol Response to an n-3 PUFA Supplementation. Nutrients. 2012 Aug 17;4(8):1026–41.

- 71. AbuMweis SS, Panchal SK, Jones PJH. Triacylglycerol-Lowering Effect of Docosahexaenoic Acid Is Not Influenced by Single-Nucleotide Polymorphisms Involved in Lipid Metabolism in Humans. Lipids. 2018;53(9):897–908.
- 72. Carvalho-Wells AL, Jackson KG, Lockyer S, Lovegrove JA, Minihane AM. APOE genotype influences triglyceride and C-reactive protein responses to altered dietary fat intake in UK adults. Am J Clin Nutr. 2012 Dec 1;96(6):1447–53.
- 73. Caslake MJ, Miles EA, Kofler BM, Lietz G, Curtis P, Armah CK, et al. Effect of sex and genotype on cardiovascular biomarker response to fish oils: the FINGEN Study. Am J Clin Nutr. 2008 Sep 1;88(3):618–29.
- 74. Dang TM, Conway V, Plourde M. Disrupted fatty acid distribution in HDL and LDL according to apolipoprotein E allele. Nutrition. 2015 Jun 1;31(6):807–12.
- 75. Jackson KG, Lockyer S, Carvalho-Wells AL, Williams CM, Minihane AM, Lovegrove JA. Dietary fat manipulation has a greater impact on postprandial lipid metabolism than the apolipoprotein E (epsilon) genotype–insights from the SATgenε study. Mol Nutr Food Res. 2012;56(12):1761–70.
- 76. Jackson KG, Lockyer S, Carvalho-Wells AL, Williams CM, Minihane AM, Lovegrove JA. *Apolipoprotein* E (epsilon) genotype has a greater impact on apoB-48 than apoB-100 responses to dietary fat manipulation-insights from the SATgenε study. Mol Nutr Food Res. 2017 Apr;61(4):1600688.
- 77. Minihane AM, Khan S, Leigh-Firbank EC, Talmud P, Wright JW, Murphy MC, et al. ApoE Polymorphism and Fish Oil Supplementation in Subjects With an Atherogenic Lipoprotein Phenotype. Arterioscler Thromb Vasc Biol. 2000 Aug;20(8):1990–7.
- 78. Olano-Martin E, Anil E, Caslake MJ, Packard CJ, Bedford D, Stewart G, et al. Contribution of apolipoprotein E genotype and docosahexaenoic acid to the LDL-cholesterol response to fish oil. Atherosclerosis. 2010 Mar;209(1):104–10.
- 79. Paschos GK, Yiannakouris N, Rallidis LS, Davies I, Griffin BA, Panagiotakos DB, et al. Apolipoprotein E Genotype in Dyslipidemic Patients and Response of Blood Lipids and Inflammatory Markers to Alpha-Linolenic Acid. Angiology. 2005 Jan 1;56(1):49–60.
- Thifault E, Cormier H, Bouchard-Mercier A, Rudkowska I, Paradis A-M, Garneau V, et al. Effects of Age, Sex, Body Mass Index and APOE Genotype on Cardiovascular Biomarker Response to an n-3 Polyunsaturated Fatty Acid Supplementation. J Nutr Nutr. 2013;6(2):73–82.
- 81. Madden J, Carrero J, Brunner A, Dastur N, Shearman C, Calder P, et al. Polymorphisms in the CD36 gene modulate the ability of fish oil supplements to lower fasting plasma triacyl glycerol and raise HDL cholesterol concentrations in healthy middle-aged men. Prostaglandins, Leukotrienes and Essential Fatty Acids. 2008;78:327–35.
- Dawczynski C, Massey KA, Ness C, Kiehntopf M, Stepanow S, Platzer M, et al. Randomized placebo-controlled intervention with n-3 LC-PUFA-supplemented yoghurt: Effects on circulating eicosanoids and cardiovascular risk factors. Clin Nutr. 2013 Oct 1;32(5):686–96.

1	
2	
3 4 5 6	83. Binia A, Vargas-Martínez C, Ancira-Moreno M, Gosoniu LM, Montoliu I, Gámez-Valdez E, et al. Improvement of cardiometabolic markers after fish oil intervention in young Mexican adults and the role of PPARα L162V and PPARγ2 P12A. J Nutr Biochem. 2017
7	May;43:98–106.
8 9 10 11 12	84. Itariu BK, Zeyda M, Hochbrugger EE, Neuhofer A, Prager G, Schindler K, et al. Long-chain n–3 PUFAs reduce adipose tissue and systemic inflammation in severely obese nondiabetic patients: a randomized controlled trial. Am J Clin Nutr. 2012 Nov 1;96(5):1137–49.
13 14 15 16 17	85. Lindi V, Schwab U, Louheranta A, Laakso M, Vessby B, Hermansen K, et al. Impact of the Pro12Ala polymorphism of the PPAR-γ2 gene on serum triacylglycerol response to n–3 fatty acid supplementation. Mol Genet Metab. 2003 May;79(1):52–60.
18 19 20 21	86. Pishva H, Mehdipour P, Eshraghian MR, Mahboob S-A. Effects of Eicosapentaenoic Acid Supplementation on Lipid and Lipoprotein Profile in Hypertriglyceridemic Subjects with Different Proliferator-activated Receptor Alpha Genotypes. :13.
22 23 24 25	87. Caron-Dorval D, Paquet P, Paradis A-M, Rudkowska I, Lemieux S, Couture P, et al. Effect of the PPAR-Alpha L162V Polymorphism on the Cardiovascular Disease Risk Factor in Response to n–3 Polyunsaturated Fatty Acids. J Nutr Nutr. 2008;1(4):205–12.
26 27 28 29 30	88. Binia A, Vargas-Martínez C, Ancira-Moreno M, Gosoniu LM, Montoliu I, Gámez-Valdez E, et al. Improvement of cardiometabolic markers after fish oil intervention in young Mexican adults and the role of PPARα L162V and PPARγ2 P12A. J Nutr Biochem. 2017 May;43:98–106.
31 32 33 34 35 36	89. Dawczynski C, Massey KA, Ness C, Kiehntopf M, Stepanow S, Platzer M, et al. Randomized placebo-controlled intervention with n-3 LC-PUFA-supplemented yoghurt: Effects on circulating eicosanoids and cardiovascular risk factors. Clin Nutr. 2013 Oct;32(5):686–96.
37 38 39 40	90. Kotze M, Brand T, Pretorius J, J van Rensburg S, Luckhoff HK. Apolipoprotein E epsilon-4 as a genetic determinant of Alzheimer's disease heterogeneity. Degener Neurol Neuromuscul Dis. 2015 Jan;9.
41 42 43	91. Marais AD. Apolipoprotein E in lipoprotein metabolism, health and cardiovascular disease. Pathology (Phila). 2019 Feb;51(2):165–76.
44 45 46	92. Kuo C-L, Pilling LC, Atkins JL, Kuchel GA, Melzer D. ApoE e2 and aging-related outcomes in 379,000 UK Biobank participants. Aging. 2020 Jun 8;12(12):12222–33.
47 48 49 50	93. Nawawi HM, Chua Y-A, Watts GF. The brave new world of genetic testing in the management of the dyslipidaemias. Curr Opin Cardiol. 2020;35(3):226–33.
50 51 52 53 54	94. Livingston G, Huntley J, Sommerlad A, Ames D, Ballard C, Banerjee S, et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. The Lancet. 2020 Aug;396(10248):413–46.
55 56 57 58 59	95. Dorszewska J, Prendecki M, Oczkowska A, Dezor M, Kozubski W. Molecular Basis of Familial and Sporadic Alzheimer's Disease. Curr Alzheimer Res. 2016;13(9):952–63.
<i></i>	

96. ACCE Model Process for Evaluating Genetic Tests | CDC [Internet]. 2021 [cited 2021 Feb 15]. Available from: https://www.cdc.gov/genomics/gtesting/acce/index.htm

- 97. Corella D, Coltell O, Portolés O, Sotos-Prieto M, Fernández-Carrión R, Ramirez-Sabio J, et al. A Guide to Applying the Sex-Gender Perspective to Nutritional Genomics. Nutrients. 2018 Dec 20;11(1):4.
- Dellinger RW, Gomez Garcia AM, Meyskens FL. Differences in the Glucuronidation of Resveratrol and Pterostilbene: Altered Enzyme Specificity and Potential Gender Differences. Drug Metab Pharmacokinet. 2014;29(2):112–9.
- 99. Vidaver RM, Lafleur B, Tong C, Bradshaw R, Marts SA. Women Subjects in NIH-Funded Clinical Research Literature: Lack of Progress in Both Representation and Analysis by Sex. J Womens Health Gend Based Med. 2000 Jun 1;9(5):495–504.
- 100. Carvalho-Wells AL, Jackson KG, Lockyer S, Lovegrove JA, Minihane AM. APOE genotype influences triglyceride and C-reactive protein responses to altered dietary fat intake in UK adults. Am J Clin Nutr. 2012 Dec 1;96(6):1447–53.
- 101. Thifault E, Cormier H, Bouchard-Mercier A, Rudkowska I, Paradis A-M, Garneau V, et al. Effects of Age, Sex, Body Mass Index and APOE Genotype on Cardiovascular Biomarker Response to an n-3 Polyunsaturated Fatty Acid Supplementation. Lifestyle Genomics. 2013;6(2):73–82.
- 102. Minihane Anne M., Khan Syrah, Leigh-Firbank Elizabeth C., Talmud Philippa, Wright John W., Murphy Margaret C., et al. ApoE Polymorphism and Fish Oil Supplementation in Subjects With an Atherogenic Lipoprotein Phenotype. Arterioscler Thromb Vasc Biol. 2000 Aug 1;20(8):1990–7.
- 103. Little J, Higgins J, Ioannidis J, Moher D, Gagnon F, von Elm E, et al., editors. STrengthening the REporting of Genetic Association studies (STREGA) - An extension of the STROBE statement. PLoS Med. 2009;6(2):e1000022.
- 104. Strande NT. Evaluating the Clinical Validity of Gene-Disease Associations: An Evidence-Based Framework Developed by the Clinical Genome Resource. The American Journal of Human Genetics. 2017;12.
- 105. Ciesielski TH, Pendergrass SA, White MJ, Kodaman N, Sobota RS, Huang M, et al. Diverse convergent evidence in the genetic analysis of complex disease: coordinating omic, informatic, and experimental evidence to better identify and validate risk factors. BioData Min. 2014 Dec;7(1):10.
- 106. Rudkowska I, Paradis A-M, Thifault E, Julien P, Barbier O, Couture P, et al. Differences in metabolomic and transcriptomic profiles between responders and nonresponders to an n-3 polyunsaturated fatty acids (PUFAs) supplementation. Genes Nutr. 2013 Jul;8(4):411–23.
- 107. Tremblay BL, Cormier H, Rudkowska I, Lemieux S, Couture P, Vohl M-C. Association between polymorphisms in phospholipase A2 genes and the plasma triglyceride response to an n-3 PUFA supplementation: a clinical trial. Lipids Health Dis. 2015 Feb 21;14(1):12.

1	
2	
3	109 Ouellette C. Commiss II. Dudkourska I. Cuénerd F. Lemisury C. Couture D. et al
4	100. Ouellette C, Colliner H, Kutkowska I, Guellai u F, Leinleux S, Colutie F, et al.
5	Polymorphisms in Genes involved in the Trigiyceride Synthesis Pathway and Marine
6	Omega-3 Polyunsaturated Fatty Acid Supplementation Modulate Plasma Triglyceride
7	Levels. Lifestyle Genomics. 2013;6(4–5):268–80.
7	
8	109. Ray-Barruel G. Rickard CM. Helping nurses help PIVCs: decision aids for daily
9	assessment and maintenance Br I Nurs Mark Allen Publ 2018 Apr 26:27(8):S12-8
10	assessment and maintenance. B) from smark mich rubi. 2010 hpr $20,27(0).512$ 0.
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
- 1 0 //7	
+/ 40	
40 40	
49 50	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

BMJ Open

For beer review only

60

through other sources

(n = 4)

Records excluded

(n = 1691)

Full-text articles excluded,

with reasons

(n = 74)

Conference abstract (n = 34)

Dietary intervention or

dietary component analyzed did not meet inclusion

criteria (n = 22)

Outcome did not meet

inclusion criteria (n = 11)

Omega-3 assessed via

plasma only (n = 4)

Comparator did not meet

inclusion criteria (n = 3)

Figure 1: PRISMA 2009 Flow Diagram

Supplementary Tables

Supplementary Table 1: Search Strategy

Em	base
#	Search Strategy
1	omega-3':ti,ab,kw OR pufa\$:ti,ab,kw OR ((acid* NEAR/5 ('n-3' OR polyunsaturated OR linolenic OR eicosapenta\$noic OR timnodonic OR docosahexa\$noic)):ti,ab,kw) OR docosahexaenoate:ti,ab,kw OR epa:ti,ab,kw OR dha:ti,ab,kw OR ala:ti,ab,kw
2	omega 3 fatty acid'/exp
3	#1 OR #2
4	cholesterol*:ti,ab,kw OR hdl:ti,ab,kw OR ldl:ti,ab,kw OR 'high density lipoprotein*':ti,ab,kw OR 'low density lipoprotein*':ti,ab,kw OR 'beta lipoprotein*':ti,ab,kw OR apo*protein*:ti,ab,kw OR apoa:ti,ab,kw OR apob:ti,ab,kw OR apoc:ti,ab,kw OR apod:ti,ab,kw OR apoe:ti,ab,kw OR apoh:ti,ab,kw OR ((apo NEXT/1 (a OR b OR c OR d OR e OR h)):ti,ab,kw) OR triglyceride*:ti,ab,kw OR triacylglycerol*:ti,ab,kw OR (((serum OR plasma) NEXT/1 (lipid* OR tg OR tag)):ti,ab,kw)
5	cholesterol'/exp OR 'lipoprotein'/exp OR 'triacylglycerol'/exp
6	#4 OR #5
7	nutrigenomic*:ti,ab,kw OR nutrigenetic*:ti,ab,kw OR (((nutritional OR expression* OR variation* OR variant*) NEAR/2 (genomic* OR genetic* OR gene OR genes)):ti,ab,kw) OR genotype:ti,ab,kw OR ((('nutrient-gene' OR 'gene-nutrient' OR 'gene-diet') NEXT/1 interaction*):ti,ab,kw) OR 'personali?ed nutrition':ti,ab,kw OR 'precision nutrition':ti,ab,kw
8	nutrigenomics'/exp OR 'nutrigenetics'/exp OR 'genetic variation'/exp OR 'genotype'/exp
9	#7 OR #8
10	#3 AND #6 AND #9
11	[animals]/lim NOT [humans]/lim
12	#10 NOT #11

BMJ Open

Με	edline (Ovid)
#	Search Strategy
1	("omega-3" or PUFA? or (acid* adj5 ("n-3" or polyunsaturated or linolenic or eicosapenta?noic or timnodonic or docosahexa?noic)) or docosahexaenoate or EPA or DHA or ALA).ab.kf.ti.
2	exp Fatty Acids, Omega-3/
3	1 or 2
4	(cholesterol* or HDL or LDL or "high density lipoprotein*" or "low density lipoprotein*" or "beta lipoprotein*" or apo*protein* or apoA or apoB or apoC or apoD or apoE or apoH or (apo adj (A or B or C or D or E or H)) or triglyceride* or triacylglycerol* or ((serum or plasma) adj (lipid* or TG or TAG))).ab,kf,ti.
5	exp Cholesterol/ or exp Lipoproteins/ or exp Triglycerides/
6	4 or 5
7	(nutrigenomic* or nutrigenetic* or ((nutritional or expression* or variation* or variant*) adj2 (genomic* or genetic* or gene or genes)) or genotype or (("nutrient-gene" or "gene-nutrient" or "gene-diet") adj interaction*) or "personali#ed nutrition" or "precision nutrition").ab,kf,ti.
8	Nutrigenomics/ or Genetic Variation/ or Genotype/
9	7 or 8
10	3 and 6 and 9
11	exp animals/ not humans.sh.
12	10 not 11

Web of Science

Indexes = SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, ESCI Timespan =All years

Π	Search Strategy
1	TS=("omega-3" or PUFA\$ or (acid* NEAR/5 ("n-3" or polyunsaturated or linolenic or eicosapenta\$noic or timnodonic or docosahexa\$noic)) or docosahexaenoate or EPA or DHA or ALA)
2	TS=(cholesterol* or HDL or LDL or "high density lipoprotein*" or "low density lipoprotein*" or "beta lipoprotein*" or apo*protein* or apoA or apoB or apoC or apoD or apoE or apoH or (apo NEAR/0 (A or B or C or D or E or H)) or triglyceride* or triacylglycerol* or ((serum or plasma) NEAR/0 (lipid* or TG TAG)))
3	TS=(nutrigenomic* or nutrigenetic* or ((nutritional or expression* or variation* or variant*) NEAR/2 (genomic* or genetic* or gene or genes)) or genoty or (("nutrient-gene" or "gene-nutrient" or "gene-diet") NEAR/0 interaction*) or "personali?ed nutrition" or "precision nutrition")
4	#1 AND #2 AND #3
5	TS=(animals OR animal OR mice OR mus OR mouse OR murine OR woodmouse OR rats OR rat OR murinae OR muridae OR cottonrat OR cottonrat OR hamster OR hamsters OR cricetinae OR rodentia OR rodent OR rodents OR pigs OR pig OR swine OR swines OR piglets OR piglet OR boar OR boars OR "sus scrofa" OR ferrets OR ferret OR polecat OR polecats OR "mustela putorius" OR "guinea pigs" OR "guinea pig" OR cavia OR callithrix OR marmoset OR marmosets OR cebuella OR hapale OR octodon OR chinchilla OR chinchillas OR gerbillinae OR gerbil OR gerbils OR jird OR jirds OR merione OR meriones OR rabbits OR rabbit OR hares OR hare OR diptera OR flies OR fly OR dipteral OR dogs OR dog OR canine OR canine OR canise OR hamatoda OR nematoda OR nematode OR nematodes OR sipunculida OR dogs OR dog OR canine OR canines OR canis OR sheep OR sheeps OR mouflon OR mouflons OR ovis OR goats OR goats OR capra OR capras OR rupicapra OR hominidae OR ape OR apes OF pan OR paniscus OR "pan paniscus" OR bonobo OR bonobos OR troglodytes OR "pan troglodytes" OR gibbon OR gibbons OR siamang OR siamangs OR nomascus OR symphalangus OR chimpanzee OR chimpanzees OR prosimians OR "bush baby" OR prosimian OR bush babies OR galagos OR galago OR pongidae OR gorilla OR gorillas OR pongo OR pygmaeus OR "pongo pygmaeus" OR orangutans OR pygmaeus OR lemur OR lemurs OR lemuridae OR horse OR horses OR pongo OR equus OR cow OR calf OR bull OR chicken OR chickens OR gallus OR alligator OR alligators OR crocoille crocodiles OR turtle OR turtles OR amphibian OR amphibians OR amphibia OR frogs OR squirrel OR squirrel OR squirrel OR salientia OR salientia OR salientia OR solitor OR squirrel OR martens OR martens OR mesel OR badger OR badgers OR ermine OR mink OR minks OR sable OR sable OR guanaco OR guanacos OR chiroptera OR chiropteras OR badger OR badg

				Suppleme	ntary Table 2: S	Summary of ob	servational studi	es	
Author, Year	Study Design	Genetic Approach	Population (sample size included in analyses)	Gene(s), SNP(s)	Cytogenic Location of Gene(s)	Quantity, Source and Type of Omega-3 ¹	Comparators	Plasma Lipid/ Lipoprotein Outcome(s)	Summary of Statistically Significant Study Findings Relevant to the Research Question ²
Bouchard- Mercier et al. 2011 (1)	Cross- Sectional	Single SNP	Healthy Caucasian men and women from INFOGENE study (n=674)	PPARa, L162V (rs1800206) PPARγ, P12A (rs1801282) PPARδ, -87T→ C (rs2016520)	PPARa: 22q13.31 PPARy: 3p25.2 PPARd: 6p21.31	Mean: L162: 2.8 g/day V162: 2.9 g/day (unclear if food and/or supplement sources)	Minor allele carriers vs. Non-carriers	LDL-PPD	LDL-PPD: In a model including age, sex, TG, BMI, energy and omega-3 intakes and PPARα L162V (rs1800206) polymorphism, the interaction of PPARα162V and omega-3 intakes explained 0.62% of the variance in LDL-PPD.
Bodhini et al. 2017 (2)	Cross- Sectional	Single SNP	Adults with normal glucose tolerance (n=821) and adults with type 2 diabetes (n=861)	MC4R, rs17782313 TCF7L2, rs12255372 TCF7L2, rs7903146	<i>MC4R</i> : 18q21.32 <i>TCF7L2</i> : 10q25.2- q25.3	Low: 0.38 g/day ALA Moderate: 0.58 g/day ALA High: 0.89 g/day ALA (means) (food)	Major allele homozygotes vs. Minor allele carriers	HDL-c	HDL-c: 'T' allele carriers of <i>TCF7L2</i> rs12255372 within the lowest tertile of ALA intake (mean=0.38 g/day) exhibited higher levels of HDL-c compared to GG homozygotes in the lowest tertile of ALA intake (mean=0.38 g/day)
Chen et al. 2019 (3)	Cross- Sectional Analysis within a Prospective Cohort	Single SNP, Haplotype and Gene-Centric	Adults of Swedish ancestry from the GLACIER cohort (n=5160)	All variations in the FADS1- FADS2-FADS3 gene cluster and variation within 200kb upstream and downstream of the FADS region	<i>FADS1:</i> 11q12.2 <i>FADS2:</i> 11q12.2 <i>FADS3:</i> 11q12.2	High: >1.6 g/day Low: <1.6 g/day (food)	Entire FADS region gene-centric analysis and Variation in individual FADS cluster SNPs: rs174570, rs174602, rs74771917, rs3168072, rs12577276, rs7115739 and Haplotype analysis	HDL-c LDL-c TG Total-c	 HDL-c: Significant interaction of rs174570 and omega-3 on HDL-c LDL-c: Significant interaction of rs174602 and omega-3 on LDL-c TG: Gene-centric analyses demonstrated a significant interaction between variation in the <i>FADS</i> gene cluster and omega-3 intake on TG Total-c: Significant interaction of rs174602 and omega-3 on total-c ('C' allele carriers exhibited lower total-c with low omega-3 intake, while no such relationship was observed with high omega-3 intake)
Ching et al. 2019 (4)	Cross- Sectional	Single SNP	Vegetarian adults of Malaysian ancestry (n=200)	<i>FADSI,</i> rs174547	<i>FADS1:</i> 11q12.2	Low: ≤0.45 g/day ALA Moderate: 0.46- 0.64 g/day ALA High: >0.64 g/day ALA (means) (food)	Comparison between three genotypes	HDL-c TG	HDL-c: The TT genotype had significantly lower HDL-c when ALA intake was in the moderate intake range, but there were no significant gene-omega-3 interaction on lipid levels
Dumont et al. 2011 (5)	Cross- Sectional	Single SNP	Adolescents of European ancestry (n=573)	FADSI, rs174547	<i>FADS1:</i> 11q12.2	High: >1.4 g/day ALA Low: ≤1.4 g/day ALA (unclear if food and/or supplement sources)	Major allele homozygotes vs. Minor allele carriers	HDL-c LDL-c TG Total-c	Total-c: Significant interaction whereby the minor allele (CT+TT genotype) was associated with lower total-c when ALA intake is high as compared to when intake is low. This remained significant after assessing the interaction using ALA intake as a continuous variable.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page	47	of	73
------	----	----	----

Dumont et al. 2018 (6)	Cross- Sectional	Single SNP	Men and women aged 35 to 74 years from the MONA LISA Study of three French populations (n=3069)	<i>FADSI,</i> rs174547	<i>FADS1:</i> 11q12.2	Low: 0.6 g/day ALA (mean) Median: 0.8 g/day ALA (stratified by median for analyses) High: 1.3 g/day ALA (mean) (food and supplement)	Comparison between three genotypes	HDL-c LDL-c TG Total-c	
Fallaize et al. 2016 (7)	Cross- Sectional (Baseline) and Longitudinal Analyses within a Randomized Intervention	Single SNP*	Healthy adults enrolled in the Food4Me European trial (n=1466)	<i>APOE</i> , rs429358, rs7412	<i>APOE:</i> 19q13.32	High: >0.67 %kcal Low: <0.67 %kcal Increased Intake: reduced omega-3 intake from baseline Decreased Intake: decreased omega-3 intake from baseline (unclear if food and/or supplement sources)	APOE-E4- vs. APOE-E4+	Total-c	Total-c: Cross-sectional (baseline) analysis demonstrat significant genotype effect for <i>APOE</i> , omega-3 intake, total-c. Longitudinal analysis (baseline to month 6) demonstrated a significant genotype effect for <i>APOE</i> , cha omega-3 intake (increase or decrease) and total-c.
Fontaine- Bisson and El- Sohemy 2007 (8)	Cross- Sectional	Genetic Score	Men and women aged 20-29 years (n=595)	<i>TNFa,</i> rs361525, rs1800629	TNFa: 6p21.33	Intake range: 0.2- 4.6 %kcal (mean intakes were 0.7 %kcal for 0/0, 0.7% kcal for 0/1 and 0.6%kcal for 1/0) (food)	No minor allele ('A') for both SNPs (0/0) vs. One minor allele for rs361525 (1/0) vs. One minor allele for rs1800625 (0/1)	HDL-c	
Fontaine- Bisson et al. 2009 (9)	Cross- Sectional	Single SNP	Healthy men and women aged 20-29 years (n=593)	<i>NF-κB</i> -94Ins/Del ATTG (rs28362491)	<i>NF-кВ:</i> 4q24	Mean intake: 0.7 %kcal (unclear if food and/or supplement sources)	Ins/Ins vs. Ins/Del vs. Del/Del	HDL-c	HDL-c: Significant interaction between <i>NF-kB</i> genotyp omega-3 intake on HDL-c
Hellstrand et al. 2012 (10)	Cross- Sectional	Single SNP	Healthy men and women aged 45-68 years from Sweden (n=4635)	<i>FADS,</i> rs174547	<i>FADS:</i> 11q12.2	Low: ≤0.14 %kcal long-chain omega- 3 Moderate: 0.14- 0.28 %kcal long- chain omega-3 High: >0.28 %kcal long-chain omega-3 (tertiles of intake reported only for certain significant findings) (food and supplement)	TT vs. TC vs. CC	HDL-c LDL-c TG	LDL-c: Significant interaction between <i>FADS</i> rs174: genotype and long-chain omega-3 on LDL-c whereby the allele was significantly associated with lower LDL-c v long-chain omega-3 intake was in the lowest tertile (but the moderate or highest tertile). High long-chain omeg- intake was associated with significantly higher LDL-c f and TC genotypes but not TT genotypes. Stratified and based on sex demonstrated that these significant interac remained for men, but not women, however there was significant difference in interactions by sex.
Hosseini- Esfahani et al. 2017 (11)	Nested Case- Control	Single SNP	Healthy men and women aged ≥18 years from Iran	<i>ZNT8,</i> rs13266634	ZNT8: 8q24.11	Supplement) <u>Tertiles for</u> <u>omega-3:</u> Low: <0.38 %kcal	CC vs. CT+TT	HDL-c TG	HDL-c: Significant interaction between ZNT8 rs1326 genotype and omega-3 intake on the risk of low HDD whereby CC genotypes exhibited a decreased risk of low c with increasing intake of omega-3; this was not obser

			(n=1634)			0.54 %kcal High: >0.54 %kcal (food)			the CT+TT genotype group. TG: Significant interaction between ZNT8 rs13266634 genotype and omega-3 intake on the risk of high TG whereby CC genotypes exhibited a decreased risk of high TG with increasing intake of omega-3; this was not exhibited in the CT+TT genotype group
Jang et al. 2014 (12)	Cross- Sectional	Single SNP	Adult: Men and women aged 40-69 from Korea (n=4205) Children: Boys and girls aged 8-13 years from Korea (n=1548)	PCSK5, rs1029035	<i>PCSK5:</i> 9q21.13	Based on overall median intake (further detailed elsewhere (12)): Low: <0.4 %kcal High: >0.4 %kcal (food)	CC vs. CA vs. AA	HDL-c	HDL-c: Significant interaction between <i>PCSK5</i> rs1029035 and omega-3 on HDL-c in male children and male adults. 'C' allele carriers exhibit a tendency to decrease HDL-c with omega-3, while AA genotypes exhibit the opposite effect.
Joffe et al. 2010 (13)	Cross- Sectional	Single SNP	Black women from South Africa, normal weight or with obesity (n=138)	<i>TNFa,</i> rs1800629	<i>TNFα:</i> 6p21.33	ALA (amount not reported/cannot determine) (food)	GG vs. GA+AA	HDL-c LDL-c TG Total-c Total-c:HDL-c	Total-c:HDL-c ratio: Significant interaction between <i>TNFα</i> , rs1800629 genotypes and %kcal from ALA whereby increasing %kcal from ALA was associated with increases in Total-c:HDL-c for GG genotypes but decreases in Total-c:HDL-c ratio for GA+AA genotypes
Joffe et al. 2012 (14)	Cross- Sectional	Single SNP	Black and white women from South Africa, normal weight or with obesity (n=263)	<i>TNFa,</i> rs361525	TNFa: 6p21.33	Median Intakes: omega-3: 0.28- 0.36 % kcal ALA: 0.21-0.26 %kcal EPA: 0.02 %kcal DHA: 0.04-0.08 %kcal (food)	GG vs. GA(+AA for one participant: black, normal weight)	HDL-c LDL-c TG Total-c Total-c:HDL-c	 LDL-c: Significant interaction for Caucasian women whereby LDL-c decreased with increasing %kcal from EPA in the GG genotype but not the GA genotype of <i>TNFa</i>, rs361525. Total-c: Significant interaction for white women whereby total-c decreased with increasing EPA and DHA intakes in the GG genotype group but not the GA genotype group of <i>TNFa</i> rs361525 but individual rates were not significant. Total-c:HDL-c ratio: Significant interaction for black women whereby Total-c:HDL-c decreased within increasing %kcal from omega-3 in the GA genotype group but not GG of <i>TNFa</i> rs361525.
Joffe et al. 2014 (15)	Cross- Sectional	Single SNP	Black and white women from South Africa, normal weight or with obesity (n=268)	<i>IL-6,</i> -174 G>C, IVS3 (rs1800795), +281 G>T, IVS4 (rs1554606), +869 A>G (rs2069845)	<i>IL-6:</i> 7p15.3	Black Women (%kcal/day): 0.28 omega-3, 0.21 ALA, 0.02 EPA, 0.04 DHA (normal weight); 0.36 omega-3, 0.22 ALA, 0.04 EPA, 0.08 DHA (obesity) White Women (%kcal/day): 0.33 omega-3, 0.26 ALA, 0.01 EPA, 0.05 DHA (normal weight); 0.32 omega-3, 0.25 ALA, 0.02 EPA, 0.05 DHA (food)	Major allele homozygotes vs. Minor allele carriers <i>or</i> Comparison between three genotypes	HDL-c LDL-c TG Total-c Total-c:HDL-c	 The following results were statistically significant only in white women, but not in black women³: HDL-c: Significant interaction whereby HDL-c increased with: increasing omega-3 and/or DHA and/or ALA intake in <i>IL-6</i> rs1800795 C allele carriers and increasing ALA intake in <i>IL-6</i> rs1554606 T allele carriers. HDL-c decreased with: increasing EPA and/or DHA intake in <i>IL-6</i> rs2069845 G allele carriers. TG: Significant interaction whereby TG reduced with increasing EPA intake in <i>IL-6</i> rs1800795 C allele carriers Total-c:HDL-c: Significant interaction whereby total-c:HDL-c ratio decreased with: increasing EPA intake in <i>IL-6</i> rs1800795 C genotypes, increasing DHA intake in <i>IL-6</i> rs1554606 TT genotypes.
Lai et al. 2006 (16)	Cross- Sectional	Single SNP	Men and women from the Framingham	APOA5, rs662799, rs651821, rs3135506,	APOA5: 11q23.3	Mean Intake: 0.69 %kcal omega-3 Tertiles for	Major allele homozygotes vs. Minor allele carriers	TG	

			(n=2148)	rs22/2560, rs2266788		omega-3: Low: <0.58 %kcal Moderate: 0.58- 0.74 %kcal High: >0.74 %kcal (unclear if food and/or supplement sources)			
Lu et al. 2010 (17)	Cross- Sectional	Single SNP	Men and women of Doetinchem Cohort Study (n=3575)	<i>FADS</i> , rs174546, rs482548, rs174570	FADS: 11q12.2	Mean intake: 0.5 %kcal (food)	Comparison between three genotypes	HDL-c Total-c	Total -c : In high omega-3 intake group, total-c w significantly higher with each added minor 'C' alle rs174546
Nettleton et al. 2009 (18)	Cross- Sectional	Single SNP	Men and women of Caucasian ancestry (n=8511)	<i>ANGPTL4</i> E40K (rs116843064)	ANGPTL4: 19p13.2	Not Reported/Cannot Determine (food)	Minor allele carriers vs. Non-allele carriers	HDL-c TG	
Richardson et al. 2011 (19)	Meta-analysis of the Framingham Offspring Study (FOS) and the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN)	Single SNP	Men and women from FOS and GOLDN studies (n=3605)	PLIN4, rs8887, rs11673616, rs892158, rs7250947, rs8102428, rs1609717, rs884164	PLIN4: 19p13.3	Mean intakes: FOS Men: 1.43 g/d FOS Women: 1.37 g/d GOLDN Men: 1.83 g/d GOLDN Women: 1.48 g/d (food and supplement)	Minor allele carriers vs. Non-allele carriers	TG HDL-c	TG: Significant interactions for <i>PLIN4</i> , rs884164 whe levels increased in minor allele carriers with higher o intake for males and females combined, and males indi
Standl et al. 2012 (20)	Cross- Sectional Analysis (10- year time point) within a 10-year longitudinal cohort study	Single SNP	10 year-old children of the GINIplus and LISAplus birth cohort studies (n=1697)	FADS1/FADS2, rs174545, rs174546, rs174556, rs174561, rs174575, rs3834458	<i>FADS1/2:</i> 11q12.2	Median intake: 0.14 mg/MJ omega-3 (ALA+EPA+DPA +DHA) (food and supplement)	Comparison between three genotypes	HDL-c LDL-c Total-c TG	
Tai et al. 2005 (21)	Cross- Sectional	Single SNP	Framingham Cohort, men and women (<i>n</i> =2106)	<i>PPARa</i> , L162V (rs1800206)	<i>PPARα</i> : 22q13.31	High: >0.69 %kcal Low: <0.69 %kcal (food)	PPARa: 162V carriers vs. 162L/162L homozygotes	TG apoC-III	 TG: 167V carriers had lower TG with high omega-3 compared to low omega-3 intake (gene-diet-interaction were NS) apoC-III: Significant gene-diet interactions; Higher a in 162V carriers with low omega-3 intake compared t carriers with high omega-3 intake and 162L homozygo low omega-3 intake
Volcik et al. 2008 (22)	Cross- Sectional (Baseline) Analysis within a Prospective Cohort	Single SNP	African American (n=3480) and Caucasian $(n=10\ 134)$ men and women (N=13,614)	PPARa, L162V (rs1800206), 3'UTR G>A (rs6008259), 3'UTR C>T (rs3892755)	PPARa: 22q13.31	African American: High: >0.32 g/d EPA+DHA Low: ≤0.32 g/d EPA+DHA Caucasian: High: >0.22 g/d EPA+DHA Low: ≤0.22 g/d EPA+DHA (food)	Comparison between three genotypes for each SNP	HDL-c LDL-c TG Total-c	Total-c, LDL-c: African Americans (but not Cauca homozygous for $PPARa$ (rs3892755) TT genotype w EPA+DHA intake had significantly lower total-c and compared to CT and TT genotypes (both high and EPA+DHA intake)

BMJ Open

2										
} + 5 7	Warodomwich it et al. 2009 (23)	Cross-sectional with fasting and postprandial measures	Single SNP	Men and women of GOLDN study (n=1083)	<i>TCF7L2</i> rs7903146, rs12255372	<i>TCF7L2:</i> 10q25.2-25.3	N/A (Median omega-3: 0.67% of kcal) (food)	Major allele homozygotes vs. Minor allele carriers	HDL-c LDL-c LDL-c particle size TG Total-c	
3 9 10 11 12 13 14 15 16	ALA not a 1. Ir 2. A Part 3. T and '' in *Hu	: alpha-linolenic applicable, NS: N takes are total or ll other (not listed cipants are descri- nese results were un-stratified by et ndicates that all of man <i>APOE</i> is pol	acid, Apo: apolipo on-significant, sdL nega-3 unless other l) gene/omega-3/lip ibed as "healthy" ft taken from the full- thnicity. Note: Ther f the completed ger ymorphic at two sin	protein, DHA: doc DL-c: small, denswise specified pid/lipoprotein resu- or studies that inco- text manuscript's re were no correct ne/omega-3/lipid/l ngle nucleotides (n	cosahexaenoic ac e, low-density lip ults of interest to orporated exclusio summary table c ions for multiple ipoprotein analys rs429358 and rs7	the present review v on criteria for certain of IL-6 results. Refer testing in the statisti ses were NS 412) resulting in thr	aenoic acid, HDL: h , SNP: single nucled vere NS 1 conditions, blood l to Supplementary l cal analyses. ee different alleles (igh-density lipoprotei otide polymorphism, T lipid levels, etc. and w Γables S8-S13 in Joffe ε2, ε3 and ε4)	n cholesterol, LD "G: triglycerides hen studies descri e et al. 2014 (15) f	L: low-density lipoprotein cholesterol, N/A: ibed the population as "healthy." for several other significant results, stratified
17 18 19 20										
21										
22										
23										
24 25										
26										
27										
28										
29										
30										
31										
32										
33 24										
54 25										
36										
37										
38										
39										
40										
41										
42										
43										

Page 51 of 73

BMJ Open

3 4 5 6	Supplementary Table 3: Summary of interventional studies													
7 8 Author, Year 9	Study Design	Genetic Approach	Population (sample size included in analyses)	Intervention Duration	Gene(s), SNP(s)	Cytogenic Location of Gene(s)	Quantity, Source and Type of Omega-3	Comparators	Plasma Lipid/ Lipoprotein Outcome(s)	Summary of Statistically Significant Study Findings Relevant to the Research Question ¹				
11 12 13 14 15 16 17 ^{AbuMweis et} 17 ^{AbuMweis et} 17 ^{AbuMweis et} 19 20 21 22 23	Randomized, Crossover Controlled Intervention	Single SNP*	Adults with at least one cardiovascular risk factor (n=129)	4 weeks	<i>FADSI</i> , rs174561 <i>FADS2</i> , rs174583 <i>ELOVL2</i> , rs953413 <i>ELOVL5</i> , rs2397142 <i>CETP</i> , rs5882 <i>SCD1</i> , rs2234970, <i>PPARa</i> , rs6008259 <i>LIPF</i> , rs814628 and <i>APOE</i> , rs429358, rs7412	<i>FADS1/2:</i> 11q12.2 <i>ELOVL2:</i> 6p24.2 <i>ELOVL5:</i> 6p12.1 <i>CETP:</i> 16q13 <i>SCD1:</i> 10q24.31 <i>PPARa:</i> 22q13.31 <i>LIPF:</i> 10q23.31 <i>APOE:</i> 19q13.32	Intake range: 1.0 – 2.5 g/day DHA (supplement)	Comparison between three genotypes for each single SNP (except PPARA and <i>LIPF</i> whereby analyses were major allele homozygotes vs. minor allele carriers) and <i>APOE</i> -E2 vs. <i>APOE</i> -E3 vs. <i>APOE</i> -E4	apoA1 apoB HDL-c LDL-c TG Total-c					
24 25 26 27 28 29 30 31 32 _{Alsaleh et al.} 33 2014 (25) 34 35 36 37 38 39 40 41	Randomized Controlled Intervention	Single SNP and Polygenic	Healthy men and women (n=310)	12 months	CETP, rs3764261, <i>LIPC</i> , rs1532085 <i>APOB</i> , rs1367117 <i>ABCG5/ABCG</i> , rs4299376 <i>TIMD4/HAVCR</i> <i>I</i> , rs6882076 <i>GCKR</i> , rs1260326 <i>TRIB1</i> , rs2954029 <i>ANGPTL3/DO</i> <i>CK7</i> , rs2131925 <i>FADS1/2/3</i> , rs174546 <i>GALNT2</i> , rs4846914 <i>ABCA1</i> , rs4149268 <i>APOE/APOC1/</i> <i>APOC2</i> , rs439401	CETP: 16q13 LIPC: 15q21.3 APOB: 2p24.1 ABCG5/ABCG8: 2p.21 TIMD4/HAVCR1: 5q33.3 GCKR: 2p23.3 TRIB1: 8q24.13 ANGPTL3/DOCK 7: 1p31.3 FADS: 11q12.2 GALNT2: 1q42.13 ABCA1: 9q31.1 APOE/APOC1/AP OC2: 19q13.32	Low Dose: 0.5 g/day EPA and DHA Moderate Dose: 0.9 g/day EPA and DHA High Dose: 1.8 g/day EPA and DHA (supplement)	Effect sizes per GRS risk allele after omega-3 treatment and Risk allele carriers vs. non-risk allele carriers	HDL-c LDL-c TG Total-c	TG: significant interaction whereby 1.8 g/day EPA and DHA significantly reduced TG in T allele carriers (21.6% reduction) vs. CC genotypes (3.5% reduction) of <i>FADS1</i> rs174546				

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1	
2	

F

Armstrong et al. 2012 (26)	Double-Blind, Placebo- Controlled Randomized Intervention	Single SNP (deletion polymorphism)	Healthy adults of African ancestry (n=98)	6 weeks	ALOX5, dd (33, 34 or 44), d5 (35, 45) and 55 (control) genotypes	<i>ALOX5:</i> 10q11.21	Fish oil: 5.0 g/day containing 2.0 g/day EPA and 1.0 g/day DHA Control oil: 5.0 g/day corn/soy oil (supplement)	dd vs. d5 vs. 55	TG Mean lipoprotein particle diameter, total number of particles and particle concentration for: HDL-c and LDL-c	 TG: significant interaction whereby decreases in TG from omega-3 supplementation were specific to d5 genotype group HDL-c particle concentration: significant decrease with omega-3 intervention in the d5 and 55 genotype groups compared to placebo, but no decreases in the dd genotype group Medium HDL-c particles and HDL-c (mmol/L): significant gene-treatment interaction but no significant differences after post-hoc analysis for comparisons among genotypes
1 2 3 Binia et al. 2017 (27) 4 5	Single-Arm Clinical Trial	Single SNP	Mexican adults 18-40 years (n=191)	6 weeks	PPARa, L162V (rs1800206), PPARy2, P12A (rs1801282)	<i>PPARa</i> : 22q13.31 <i>PPARy2</i> : 3p25.2	Fish oil: 2.7 g/day containing 1.9 g/d EPA and 0.8 g/day DHA (supplement)	Major allele homozygotes vs. Minor allele carriers	HDL-c LDL-c TG Total-c	LDL-c: significant increase in LDL-c among minor allele carriers (PPARγ2 Pro12Ala and Ala12Ala) only vs. PPARγ2 Pro12Pro genotypes only for individuals with BMI>25.0 kg/m ² Total-c: significant increase in total-c among minor allele carriers (PPARγ2 Pro12Ala and Ala12Ala) only vs. PPARγ2 Pro12Pro genotypes only for individuals with BMI>25.0 kg/m ²
6 7 8 9 20 21 Bouchard 1 Mercier et al. 2 2013 (28) 23 24 25 26	Single Arm Clinical Trial	Single SNP	Healthy adults aged 18-50 years (n=208)	6 weeks	SREBF1, rs4925115, rs4925118, rs12953299 ACLY, rs8071753, rs8065502, rs2304497 ACACA rs2017571, rs29221368, rs9906044, rs2229416, rs1714987, rs1266175, rs3815059, rs815059, rs829165	<i>SREBF1:</i> 17p11.2 <i>ACLY:</i> 17q21.2 <i>ACACA:</i> 17q12	Fish oil: 5.0 g/day containing 1.9-2.2 g/day EPA and 1.1 g/day DHA (supplement)	Major allele homozygotes vs. Minor allele carriers <i>or</i> Comparison between three genotypes (when minor allele frequencies were >0.05)	TG	TG: Significant gene-diet interaction whereby individuals with the GG genotype of <i>ACLY</i> rs8071753 and individuals with the GG or CG genotype of <i>ACACA</i> rs1714987 exhibited greater TG lower effects following omega-3 supplementation; these two SNPs explained approximately 8% of the variance in plasma TG responses to omega-3 supplementation. There were significant differences in genotype frequencies of <i>ACLY</i> rs8071753 for responders and non-responders to omega-3 for TG lowering.
28 29 30 31 Bouchard- 32 ^{Mercier et al.} 32 34 35 36	Single Arm Clinical Trial	Single SNP	Healthy men and women aged 18-50 years (n=208)	6 weeks	RXRA (12 SNPs), CPTIA (9 SNPs), ACADVL (1 SNP), ACAA2 (6 SNPs), ABCD2 (8 SNPs), ACOXI (8 SNPs), ACOXI (8 SNPs), ACAA1 (3 SNPs) [outlined in Supplementary Table 5]	RXRA: 9q34.2 CPTIA: 11q13.3 ACADVL: 17p13.1 ACAA2: 18q21.1 ABCD2: 12q12 ACOXI: 17q25.1 ACAA1: 3p22.2	Fish oil: 5.0 g/day containing 1.9-2.2 g/day EPA and 1.1 g/day DHA (supplement)	Major allele homozygotes vs. Minor allele carriers <i>or</i> Comparison between three genotypes (when minor allele frequencies were >0.05)	TG	TG: There were significant gene-diet interaction effects on TG responses to omega-3 for RXRA rs11185660 genotype dependent on total fat intake, RXRA rs10881576, rs12339187 and rs11185660 genotypes dependent on saturated fat intake, and ACOX1 rs17583163 dependent on total polyunsaturated fat intake
37 38 Bouchard- 39 Mercier et al. 2014 (30) 40	Single Arm Clinical Trial	Single SNP	Healthy men and women aged 18-50 years (n=208)	6 weeks	GCK (13 SNPs) [outlined in Supplementary Table 5]	GCK: 7p13	Fish oil: 5.0 g/day containing 1.9-2.2 g/day EPA and 1.1 g/day DHA (supplement)	Major allele homozygotes vs. Minor allele carriers <i>or</i> Comparison between three genotypes	TG	TG: CC genotypes of <i>GCK</i> rs741038 exhibited significantly greater TG reduction in response to omega-3 when their carbohydrate intake was high (>48.6%kcal) compared to those with the CC genotype of rs741038 with low carbohydrate intake (≤48.6%kcal) and compared to CT or TT genotypes with either high or low carbohydrate intake.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 53 of 73

BMJ Open

1	
2	

В 4								(when minor allele frequencies were >0.05)		
6 Caron-Dorval 7 et al. 2008 (31)	Single Arm Clinical Trial	Single SNP	Healthy men of Caucasian ancestry aged 18-55 years (n=28)	6 weeks	<i>PPARa</i> , L162V (rs1800206)	<i>PPARα</i> : 22q13.31	Fish oil: 5.0 g/day containing 1.9 g/day EPA and 1.1 g/day DHA (supplement)	V162 carriers vs. non-carriers	apoB-100 HDL-c LDL-c TG Total-c Total-C:HDL-c	
9 10 11 12 13 14 _{Carvalho-} 15 Wells et al. 16 ^{2012 (32)} 17 18 19 20	Sequential Non- Randomized, Cross-Over Dietary Intervention	Single SNP*	Healthy men and women aged 35-70 years (n=88)	8 weeks per diet	<i>APOE</i> , rs429358, rs7412	<i>APOE:</i> 19q13.32	Low-Fat: 4.0 mg/day EPA, 10.6 mg/d DPA, 11.7 mg/d DHA High-SFA: 20.2 mg/d EPA, 27.1 mg/d DPA, 15.4 mg/d DHA High-SFA+DHA: 524.3 mg/d EPA, 215.5 mg/d DPA, 3017.3 mg/d DHA [actual intakes reported (33)] (supplemental DHA for High- SFA+DHA; others from food sources)	<i>APOE</i> -E3/3 vs. <i>APOE</i> -E3/4	apoB apoC-III apoE HDL-c LDL-c sdLDL-c TG Total-c	TG: Significant diet x genotype interaction for TG; greater TG lowering response to high-SFA+DHA diet in <i>APOE</i> -E3/4 carriers (compared to high-SFA diet alone)
22 23Caslake et al. 24 ^{2008 (34)} 25	Double-Blind, Randomized, Placebo- Controlled, Crossover Intervention	Single SNP*	Healthy men and women aged 20-70 years (<i>n</i> =312)	8 weeks per diet	<i>APOE</i> , rs429358, rs7412	APOE: 19q13.32	Control oil: 0.0 g/d EPA and DHA Fish oil: 0.7 g/d EPA and DHA Fish oil: 1.8 g/d EPA and DHA (supplement)	APOE-E2/E2 + E2/E3 vs. APOE-E3/E3 vs. APOE-E3/E4 + E4/E4	HDL-c LDL-c TG Total-c	TG: Significant interaction between treatment x sex x genotype whereby <i>APOE</i> -E3/E4 + E4/E4 males exhibited the greatest TG reductions with both 0.7 g/d EPA and DHA as well as 1.8 g/d EPA and DHA compared to other genotypes
26 27 _{Cormier et al.} 28 2012 (35) 29	Single Arm Clinical Trial	Single SNP	Healthy men and women aged 18-50 years (n=208)	6 weeks	FADS gene cluster (19 SNPs) [outlined in Supplementary Table 5]	FADS: 11q12.2	Fish oil: 5.0 g/day containing 1.9 g/day EPA and 1.1 g/day DHA (supplement)	Major allele homozygotes vs. Minor allele carriers	TG	
80 81 Dang et al. 2015 (36) 82	Single Arm Clinical Trial	Single SNP*	Healthy men and women aged 20-35 years (n=80)	4 weeks	<i>APOE</i> , rs429358, rs7412	APOE: 19q13.32	Fish oil containing 900 mg EPA and 680 mg DHA (supplement)	APOE-E4+ vs. APOE-E4-	HDL-c LDL-c TG Total-c	
83 84 85 86 87 al. 2013 (37) 88 89 40 41	Randomized, Placebo- Controlled, Double-Blind Intervention	Single SNP	Men and women with $TG \ge 1.7$ mmol/L, otherwise healthy (n=47)	10 weeks	CD36, rs1761667, rs1049673	<i>CD36: 7</i> q21.11	Yogurt with lower dose fish oil: 0.8g/day omega-3 containing 0.01g ALA, 0.44g EPA, 0.06g DPA and 0.31g DHA (fish oil) Yogurt with higher dose fish oil: 3.0 g/day omega-3	Comparison between three genotypes	HDL-c TG	 HDL-c: In response to omega-3 supplementation (0.8-3.0 g/day), HDL-c increased in GA genotype of <i>CD36</i> rs1761667 and CG genotype of <i>CD36</i> rs1049673. TG: In response to omega-3 supplementation (0.8-3.0 g/day), TG decreased in GA genotype of <i>CD36</i> rs1761667.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Page	54	of	73
rayc	7	UI.	15

1 2										
в 4 5 6							containing 0.07g ALA, 1.59g EPA, 0.23g DPA and 1.12g DHA (fish oil)			
7 8 9							Control yogurt: commercial whole fruit yogurt with 3.5% milk fat			
10							(food)			
12 13 14 ^f erguson et al. 15 ^{2010 (38)} 16 17	Randomized Intervention and Cross- Sectional (Baseline) Analysis	Single SNP	Men and women with metabolic syndrome from LIPGENE cohort (<i>n</i> =450)	12 weeks	NOS3, rs11771443, rs1800783, rs1800779, rs1799983, rs3918227, rs743507	<i>NOS3:</i> 7q36.1	1.24 g/d EPA+DHA supplement (intervention); quantity of omega- 3 not reported for observational analyses	Major allele homozygotes vs. Minor allele carriers	apoA-1 apoB apoB-48 apoC-III apoC-III apoE HDL-c LDL-c TG Total-c	TG: For <i>NOS3</i> rs1799983 minor-allele (A) carriers only, the observational analysis indicated higher TG with lower EPA+DHA intake (and lower TG with higher EPA+DHA intake). Post-intervention with omega-3 supplementation indicated that only minor-allele (A) carriers exhibited significant TG reduction (accompanied by increases in plasma omega-3).
18 19 20 21 22 23 24 25 ^{Harslof} et al. 25 ^{U14} (39) 26 27 28 29 30 31 32	Randomized, Controlled Intervention	Single SNP and Genetic Score	Infants of Danish ancestry (n=133)	9 months	PPARy2, Pro12Ala (rs1801282), FADS2, rs174575, FADS3, rs174448 COX2, rs5275, rs689466	<i>PPARy2</i> : 3p25.2 <i>FADS</i> : 11q12.2 <i>COX2</i> : 1q25.2- q25.3	5.0 mL/day fish oil (median reported intake: 3.8 g/day containing 630 mg/day EPA and 620 mg/day DHA) (supplement)	PPARy2 genotype analyses were by major allele homozygotes vs. heterozygotes and FADS genotype analyses were by the number of DHA- increasing alleles and COX2 genotype analyses were by major allele homozygotes vs. heterozygotes vs.	HDL-c LDL-c TG Total-c	TG: <i>PPAR</i> ₇ 2 heterozygotes exhibited reduced TG in response to omega-3 when compared to <i>PPAR</i> ₇ 2 heterozygotes in the control (sunflower oil) group
33 34 _{Itariu et al.} 35 2012 (40) 36 87	Randomized, Controlled Intervention	Single SNP	Men and women without diabetes with a BMI ≥40 kg/m ² aged 20- 65 years (n=55)	8 weeks	<i>PPARγ2</i> , Pro12Ala (rs1801282)	<i>PPARy2</i> : 3p25.2	Fish oil containing 3.4 g/day EPA + DHA (supplement)	PPARγ2, Ala12 carriers vs. Pro12Pro	apoB HDL-c LDL-c TG Total-c	 apoB: Significant increases in apoB with omega-3 intervention in Ala12 carriers when compared to Pro12 carriers. Total-c: Significant interaction effect whereby increases in total-c were exhibited with omega-3 intervention in Ala12 carriers when compared to the Pro12Pro genotype.
38 39Jackson et al. 40 41	Non- Randomized Intervention	Single SNP*	Healthy men aged 35-70 years (n=23)	8 weeks and 480-min postprandial	АРОЕ, rs429358, rs7412	APOE: 19q13.32	Fish oil containing 3.45 g/day DHA (supplement)	APOE-E3/3 vs. APOE-E3/4	apoB apoC-III apoE HDL-c LDL-c TG	TG: APOE-E3/E4 exhibited reduced fasting TG in response to a high saturated fat + DHA intervention when compared to the high saturated fat diet alone. There was also a significant interaction (meal x time x genotype) for the postprandial TG lowering response whereby APOE-E3/4 consuming a high saturated fat + DHA intervention exhibited significantly lower

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1	
2	2

								Total-c	postprandial TG, TG area under the curve, and TG maximum concentration compared to those consuming the high saturated fat diet alone.
Non- Randomized Intervention	Single SNP*	Healthy men aged 35-70 years (n=23)	480-min postprandial	<i>APOE</i> , rs429358, rs7412	APOE: 19q13.32	Fish oil containing 3.45 g/day DHA (supplement)	APOE-E3/3 vs. APOE-E3/4	apoB-48 apoB-100	
Randomized Intervention	Single SNP	Healthy men and women aged 30-65 years (<i>n</i> =150)	3 months	<i>PPARγ2</i> , Pro12Ala (rs1801282)	<i>PPARy2</i> : 3p25.2	Fish oil containing 2.4 g/d EPA + DHA (supplement)	PPARy2, Ala12 carriers vs. Pro12Pro	HDL-c LDL-c TG Total-c	TG: Compared to Pro12Pro, Ala12 carriers exhibited significantly greater TG reductions in response to omega-3 supplementation only when total fat intake was ≤37 %kcal or SFA intake was ≤10 %kcal
Randomized, Controlled Intervention	Single SNP	Men at high risk of cardiovascular disease aged 65-75 years (n=204)	6 months	<i>FVII</i> , rs6046	<i>FVII:</i> 13q34	Fish oil containing 2.4 g/d EPA + DHA Dietary advice including recommendations to increase omega- 3 (supplement and food)	Major allele homozygotes vs. Minor allele carriers	TG	
Non- Randomized Intervention	Single SNP	Healthy men aged 43-84 years (<i>n</i> =111)	12 weeks	<i>CD36</i> , rs1527483, rs1049673, rs1761667, rs1984112	CD36: 7q21.11	Fish oil containing 1.02 g/d EPA and 0.69 g/d DHA (supplement)	For each SNP: AA vs. AG vs. GG	HDL-c LDL-c LDL-c:HDL-c TG	TG: In response to omega-3 supplementation, TG significantly reduced only in individuals with the GG genotype, for each SNP individually (i.e. for rs1527483, rs1049673, rs1761667 and rs1984112 individually) LDL-c: In response to omega-3 supplementation, LDL-c increased only in individuals with the rs1761667 AA genotype as well as for individuals with the rs1984112 AA genotype HDL-c: In response to omega-3 supplementation, HDL-c significantly increased in individuals with rs1761667 AA or AG as well as for individuals with the CC or CG genotype for either rs1984112, rs1527483 and/or rs1049673; NOTE: rs1527483 results should be interpreted with caution due to low sample sizes for AA and AG genotypes thus reducing statistical power)
Single-Arm Clinical Trial	Single SNP	Healthy men (n=159)	12 weeks	<i>TNFa</i> , -308 (rs1800629) <i>LT-a</i> , +252 (rs909253) <i>IL-1β</i> , -511 (rs16944) <i>IL-6</i> , -174 (rs1800795)	<i>TNFa:</i> 6p21.33 <i>LT-a:</i> 6p21.33 <i>IL-1β:</i> 2q14.1 <i>IL-6:</i> 7p15.3	Fish oil containing 1.8 g/d EPA+DHA (supplement)	Major allele homozygotes vs. Minor allele carriers <i>or</i> Comparison between three genotypes (depending on allele frequencies)	TG	TG: Significant negative correlation between pre- supplementation TG and change of TG during omega-3 supplementation for all genotypes of genes studied except for LT - α rs909253 GG genotype and IL - $I\beta$ rs16944 TT genotype. In LT - α rs909253 AA genotype and $TNF\alpha$ rs1800629 AA genotype, signification association between BMI (divided in tertiles) and TG changes.
Crossover Intervention	Single SNP	Healthy post- menopausal women (n=16)	8 weeks per diet	<i>FABP2,</i> rs1799883	<i>FABP2:</i> 4q26	High-Fat: 50 %kcal from dietary fat Low-Fat: 20 %kcal from dietary fat Low-Fat + omega-3: 23% kcal from dietary fat with 3 %kcal from omega-3 (food)	Major allele homozygotes vs. Minor allele carriers	TG	
_	Non-Randomized Intervention Randomized Intervention Randomized, Controlled Intervention Non- Randomized Intervention Single-Arm Clinical Trial Crossover Intervention	Non-Randomized Single SNP* Randomized Single SNP Randomized Single SNP Randomized, Single SNP Randomized, Single SNP Randomized, Single SNP Intervention Single SNP Non-Randomized Single SNP Intervention Single SNP Single-Arm Single SNP Clinical Trial Single SNP Crossover Single SNP Intervention Single SNP	Non- Randomized InterventionSingle SNP*Healthy men aged 35-70 years (n=23) Healthy men and women aged 30-65 years (n=150)Randomized InterventionSingle SNPMen at high risk of cardiovascular disease aged 65-75 years (n=204)Non- Randomized InterventionSingle SNPMen at high risk of cardiovascular disease aged 65-75 years (n=204)Non- Randomized InterventionSingle SNPHealthy men aged 43-84 years (n=111)Non- Randomized InterventionSingle SNPHealthy men aged 43-84 years (n=111)Single-Arm Clinical TrialSingle SNPHealthy men (n=159)Crossover InterventionSingle SNPHealthy men (n=159)Crossover InterventionSingle SNPHealthy post- menopausal women (n=16)	Non- Randomized InterventionSingle SNP*Healthy men aged 35-70 years (n=23)480-min postprandialRandomized InterventionSingle SNPHealthy men aged 30-65 years (n=150)3 monthsRandomized, Controlled InterventionSingle SNPMen at high risk of cardiovascular (n=204)6 monthsNon- Randomized InterventionSingle SNPMen at high risk of cardiovascular (n=204)6 monthsNon- Randomized InterventionSingle SNPHealthy men aged 43-84 years (n=111)12 weeksNon- Randomized InterventionSingle SNPHealthy men aged 43-84 years (n=111)12 weeksSingle-Arm Clinical TrialSingle SNPHealthy men (n=159)12 weeksCrossover InterventionSingle SNPHealthy post- menopausal women (n=16)8 weeks per diet	Non- Randomized InterventionSingle SNP*Healthy men aged 35-70 years (n=23)480-min postprandialAPOE, rs429358, rs7412Randomized InterventionSingle SNPHealthy men aged 30-65 years (n=150)3 monthsPPARy2, Pro12Ala (s1801282)Randomized, Controlled InterventionSingle SNPMen at high risk of cardiovascular disease aged 65-75 years (n=204)6 monthsFVII, rs6046Non- Randomized, InterventionSingle SNPHealthy men aged 43-84 years (n=111)6 monthsFVII, rs6046Non- Randomized InterventionSingle SNPHealthy men aged 43-84 years (n=111)12 weeksCD36, rs1527483, rs164667, rs1984112Non- Randomized InterventionSingle SNPHealthy men aged 43-84 years (n=111)12 weeksCD36, rs16049673, rs161667, rs1984112Single-Arm Clinical TrialSingle SNPHealthy men (n=159)12 weeksTNFca, -308 (rs1800629) I.T-a, +322 (rs1800629) I.T-a, +321 (rs169044) I.t-6, 174 (rs1800795)Crossover InterventionSingle SNPHealthy men (n=16)8 weeks per dietFABP2, rs1799883	Non- Rundomized Intervention Single SNP* Healthy men aged 35-70 years (n=23) 480-min postprandial APOE: rs429358, rs412 APOE: 19q13.32 Randomized Intervention Single SNP Healthy men and women and women aged 30-65 years (n=150) 3 months PPARp2; Pro12Ala (rs1801282) PPARp2: 3p25.2 Randomized Intervention Single SNP Men at high risk of cardiovascular (a=204) 6 months FVII, rs6046 FVII: 13q34 Non- Randomized Intervention Single SNP Healthy men aged 43-84 years (n=111) 6 months FVII, rs6046 FVII: 13q34 Non- Randomized Intervention Single SNP Healthy men aged 43-84 years (n=111) 12 weeks CD36, rs1527483, rs1049673, rs1049673, rs1984112 CD36: 7q21.11 Single-Arm Clinical Trial Single SNP Healthy men (n=159) 12 weeks TNFa: 6p21.33 IL-IB: 214.1 IL-6: 7p15.3 Crossover Intervention Single SNP Healthy post- menopausal women (n=16) 8 weeks per dict FABP2; rs179983 FABP2: 4q26	Non- Randomized InterventionSingle SNP*Healthy men aged 35-70 vest (r-23)480-min postprandial postprandial <i>APOE</i> , rs429358, rs7412 <i>APOE</i> : 19q13.32Fish oil containing 3.45 g/day DHA supplement)Randomized InterventionSingle SNPHealthy men aged 30.65 years (r=150)3 months <i>PPAR7</i> , Pro12A1a (s1801282) <i>PPAR72</i> : 3p25.2Fish oil containing 2.4 g/ EPA + DHARandomized InterventionSingle SNPMen at high risk of cardiovascular disease aged (n=204)6 months <i>FVII</i> , rs6046 <i>FVII</i> : 13q34Fish oil containing 2.4 g/ EPA + DHA + D	Non- Randomized Intervention Single SNP Healthy men aged 35-70 years (n=23) 480-min postprandial <i>APOE</i> : 172338, ne23238, ne23238, ne23238, ne23238, ne24238, ne24238, ne24238, ne24238, ne24238, ne24238, ne24238, ne24238, ne24238, ne24238, ne24238, ne24238, ne24238, ne19482, per network Fish oil containing 2-4 g d EPA + Distance single SNP <i>APOE</i> : 1933 No. <i>PrARp</i> , 744 Randomized Intervention Single SNP Healthy men and source years (n=150) 3 months (next of single SNP <i>PrARp</i> , 744	Non- Randomized InterventionSingle SNPHealthy men aged 35-70 aged 35-70 method marked bare pestprandial intervention $APOE:$ pestprandial model pestprandial model model model pestprandial model $APOE:$ model model model model model model model model model model model model model $APOE:$ model model

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2										
8 4 5 Minihane et al. 2000 (48) 6	Double-Blind, Randomized, Placebo- Controlled, Crossover Intervention	Single SNP*	Healthy men aged 30-70 years at risk of atherogenic lipoprotein phenotype (n=50)	6 weeks per diet and 480 minute postprandial	APOE, rs429358, rs7412	APOE: 19q13.32	Fish oil containing 3.0 g/d EPA and DHA, Control oil: 6.0 g/d olive oil capsule (supplement)	APOE-E2/E3 vs. APOE-E3/E3 vs. APOE-E3/E4 + E4/E4	HDL-c LDL-c TG Total-c Total-c:HDL	TG: Postprandial: Significantly greater reduction in TG incremental area under postprandial TG curve in APOE-E2/E3 relative to other APOE genotype categories Total-c: 6-week: APOE-E3/E4 + E4/E4 genotype group exhibited significantly different changes in total-c (increase), relative to other APOE genotypes, whereby reductions in total-c occurred
8 9 10 ^{Olano-Martin} et al. 2010 11 (49) 12 13	Randomized, Cross-Over Intervention	Single SNP*	Healthy normolipidemi c men (n=38)	4 weeks per diet	<i>APOE</i> , rs429358, rs7412	<i>APOE:</i> 19q13.32	EPA-rich fish oil: 3.3 g/d EPA DHA-rich fish oil: 3.7 g/d DHA Control oil: 80:20 palm olein:soyabean (supplement)	APOE-E3/3 vs. APOE-E3/4 (carriers)	apoB apoE HDL-c LDL-c TG TG:HDL-c Total-c	 apoB, LDL-c: In APOE-E4 carriers only, DHA-rich oil treatment resulted in significant increases in apoB and LDL-c TG: Significant reduction in TG in response to both EPA and DHA in APOE-E3/E3 group; significant reduction in TG in APOE-E4 carriers with EPA only. No significant interactions. Total-c: Significant genotype x treatment interaction whereby APOE-E4 carriers exhibit total-c reductions in response to EPA-rich oil.
14 15 16)uellette et al. 17 ^{2013 (50)} 18 19	Single-Arm Clinical Trial	Single SNP	Healthy men and women aged 18-50 (n=210)	6 weeks	GPAM (3 SNPs), AGPAT3 (13 SNPs), AGPAT4 (35 SNPs) [outlined in Supplementary Table 5]	GPAM: 10q25.2 AGPAT3: 21q22.3 AGPAT4: 6q26	Fish oil containing 1.9-2.2 g/d EPA + 1.1 g/d DHA (supplement)	Major allele homozygotes vs. Minor allele carriers <i>or</i> Comparison between three genotypes (depending on allele frequencies)	HDL-c LDL-c TG Total-c	 LDL-c: Significant <i>GPAM</i>, rs2792751 genotype x supplementation interaction on LDL-c TG: Significant genotype x supplementation interaction on TG for <i>GPAM</i>, rs2792751 and rs17129561 as well as <i>AGPAT4</i>, rs9458172 and rs3798943
20 21 22 23 24 ² 014 (51) 25 26 27 28	Single-Arm Clinical Trial	Single SNP	Healthy men and women 18- 50 years (n=208)	6 weeks	MGLL (18 SNPs) [outlined in Supplementary Table 5]	MGLL: 3q21.3	Fish oil containing 1.9-2.2 g/d EPA + 1.1 g/d DHA (supplement)	Major allele homozygotes vs. Minor allele carriers <i>or</i> Comparison between three genotypes (depending on allele frequencies)	apoB HDL-c LDL-c LDL particle size TG Total-c	 LDL-c: Significant interactions for MGLL rs6776142, rs555183, rs782444, rs6787155 and rs1466571 whereby omega-3 supplementation modulated LDL-c levels; rs782444 and rs555183 minor allele homozygotes more likely to be negative responders to omega-3 supplementation (i.e. exhibit reduced LDL-c); rs6780384, rs782444 and rs6787155 major allele homozygotes more likely to be negative responders to omega-3 supplementation LDL particle size: Significant interactions for MGLL rs782440, rs13076543 and rs9877819 whereby omega-3 supplementation modulated LDL particle size; rs549662 minor allele homozygotes more likely to be positive responders to omega-3 supplementation (i.e. exhibit increased LDL particle size)
29 30 _{Paschos et al.} 31 2005 (52) 32	Single-Arm Clinical Trial	Single SNP*	Men with dyslipidemia, aged 35 to 67 years (n=50)	12 weeks	<i>APOE</i> , rs429358, rs7412	APOE: 19q13.32	8.1 g/day ALA (via 15 ml of Flaxseed oil supplementation)	APOE-E2/E3 vs. APOE-E3/E3 vs. APOE-E3/E4	ApoA-I ApoB HDL-c LDL-c TG Total-c	ApoA-I: Significant decrease in E3/E3 HDL-c: Significant decrease in E3/E3
 \$3 34 35 36 37 ²⁰¹⁰ (53) 38 39 40 	Single-Arm Clinical Trial	Single SNP	Adults with hypertriglyceri demia (n=46)	8 weeks	<i>FABP2,</i> Ala54Thr (rs1799883)	<i>FABP2:</i> 4q26	2.0 g/day pure EPA (supplement)	Ala54Ala (GG) vs. Thr54 carriers (GT+TT)	ApoB ApoC-III HDL-c LDL-c TG Total-c	 ApoC-III: In response to EPA supplementation, significantly greater reductions in ApoC-III in GT+TT genotypes of rs1799883 compared to GG genotype. HDL-c: In response to EPA supplementation, significantly greater increases in HDL-c in GT+TT genotypes of rs1799883 compared to GG genotype. LDL-c: In response to EPA supplementation, LDL-c significantly decreased in GG genotypes of rs1799883 but not GT+TT genotypes. TG: In response to EPA supplementation, significantly greater reductions in TG in GT+TT genotypes of rs1799883 compared to GG genotype.
Pishva et al.	Single-Arm	Single SNP	Adults with	8 weeks	PPARa.	PPARa: 22g13.31	2.0 g/day pure	Leu162	ApoB	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	
2	

8 2014 (54) 4 5 6	Clinical Trial		hypertriglyceri demia (n=46)		Leu162Val (rs1800206) <i>PPARa</i> , Intron 7 SNP		EPA (supplement)	vs. Val162 carriers and Intron 7 GG	ApoCIII HDL-c LDL-c TG Total-c	
7								vs Intron 7 GC		
9 10 11 _{Mutch} , 2014 12 (55) 13 14	Single-Arm Clinical Trial	Single SNP	Men aged 18- 25 years (n=12)	12 weeks (+8 week washout)	FADS1, rs174537 FADS2, rs174576 (LD=1.0 therefore presented results for rs174537)	<i>FADS1/2:</i> 11q12.2	Fish oil containing 1.8 g/d EPA+DHA (supplement)	Major allele homozygotes vs. Minor allele carriers	HDL-c LDL-c TG Total-c Total-c:HDL-c	
15 16 1 Audkowska et 18 ^{al. 2014 (56)} 19 20	Single-Arm Clinical Trial	Single SNP	Healthy men and women aged 18-50 (<i>n</i> =210)	6 weeks	SCD1, rs1502593, rs522951, rs11190480, rs3071, rs3829160, rs2234970, rs10883463, rs508384	<i>SCD1 :</i> 10q24.31	Fish oil containing 1.9-2.2 g/d EPA + 1.1 g/d DHA (supplement)	Comparison between three genotypes	HDL-c LDL-c TG Total-c Total-c:HDL-c	TG: For <i>SCD1</i> rs508384, AA genotype was associated with lower TG than CA and CC genotypes both pre- and post-supplementation.
21 22 23 24 25 Rudkowska et 26al. 2014 (57) 27 28 29 30 81	Single-Arm Clinical Trial	Nutrigenomic GWAS	Healthy men and women aged 18-50 (n=141) + Replication of GRS in FINGEN study (n=310)	6 weeks	Genetic Risk Score including: IQCJ-SCHIP1 (4 SNPs), SLIT2 (3 SNPs), PHF17 (3 SNPs), MYB (1 SNP), NXPH1 (1 SNP), NELL1 (1 SNP) [outlined in Supplementary Table 5]	IQCJ-SCHIP1: 3q25.32 SLIT2: 4p15.31 PHF17: 4q28.2 MYB: 6q23.3 NXPH1: 7p21.3 NELL1: 11p15.1	Fish oil containing 1.9-2.2 g/d EPA + 1.1 g/d DHA (supplement)	Responders versus non-responders (i.e. TG response) to supplementation	TG	 Thirteen SNPs were associated with TG response to omega-3 supplementation and 10 were used in the GRS calculation. The GRS was significantly associated with TG response. TG: The GRS explained 21.5% of the variation in TG response when adjusted for age, sex and BMI. Replication of this GRS in the FINGEN study: the GRS explained 2.0% of the TG change but the association as NS (adjusted for age, sex and BMI).
32 33scorletti et al. 34 ²⁰¹⁵ (58) 35	Randomized, Placebo- Controlled, Double-Blind Intervention	Single SNP	Men and women with non-alcoholic fatty liver disease (n=95)	15-18 months	PNPLA3, 1148M (rs738409) TM6SF2, E167K (rs58542926)	PNPLA3: 22q13.31 TM6SF2: 19p13.11	1.8 g/day EPA+ 1.5 g/day DHA (supplement)	Comparison between three genotypes <i>and</i> Major allele homozygotes vs. Minor allele carriers	TG	
86 37 38Thifault et al. 39 ^{2013 (59)} 40	Single-Arm Clinical Trial	Single SNP*	Healthy men and women with overweight or obesity aged 18-50 (n=210)	6 weeks	<i>APOE</i> , rs429358, rs7412	<i>APOE:</i> 19q13.32	Fish oil containing 1.9-2.2 g/d EPA and 1.1 g/d DHA (supplement)	APOE-E2 vs. APOE-E3 vs. APOE-E4	apoB HDL-c LDL-c TG Total-c	
41 Tremblay et	Single-Arm	Single SNP	Healthy men	6 weeks	PLA2G2A (5	PLA2G2A:	Fish oil containing	Major allele	apoB-100	TG: omega-3 supplementation significantly reduced TG in

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

	1
2	2

R 1 2015 ((0)						1 26 12	10 (1554 - 11		UDI	DL (2005 1005010 UL DL (2007 1 10550050
4 5 6 7 8 9 10 11 12 13	Clinical Irial		and women aged 18-50 years (<i>n</i> =208)	\$	SNPs), PLA2G2C (6 SNPs), PLA2G2D (8 SNPs), PLA2G2F (6 SNPs), PLA2G4 (22 SNPs), PLA2G6 (5 SNPs), PLA2G7 (9 SNPs) [outlined in Supplementary Table 5]	Ip36.13 PLA2G2C: Ip36.13 PLA2G2D: Ip36.12 PLA2G2F: Ip36.12 PLA2G4A: 1q31.1 PLA2G6: 22q13.1 PLA2G7: 6p12.3	1.9 g/d EPA + 1.1 g/d DHA (supplement)	homozygotes vs. Minor allele carriers <i>or</i> Comparison between three genotypes (depending on allele frequencies)	HDL-c LDL-c TG Total-c	PLA2G / rs1805018 as well as PLA2G4A rs10/529/9, rs10737277, rs7540602 and rs3820185; in the linear regression model, PLA2G6 rs132989, PLA2G7 rs679667, PLA2G2D rs12045689, PLA2G4A rs 10752979 and rs1160719 together explained 5.9% of post-supplementation TG levels
14 15 16 17 18 Vallée 19 Marcotte et al. 20 2016 (61) 21 22 23 24	Single-Arm Clinical Trial	Nutrigenomic GWAS	Men and woman aged 18-50 years (n=208)	6 weeks	<i>IQCJ</i> (16 SNPs), <i>NXPH1</i> (34 SNPs), <i>PHF17</i> (8 SNPs), <i>MYB</i> (9 SNPs) [outlined in Supplementary Table 5]	IQCJ: 3q25.32 NXPH1: 7p21.3 PHF17: 4q28.2 MYB: 6q23.3	Fish oil containing 1.9-2.2 g/d EPA + 1.1 g/d DHA (supplement)	Comparison between three genotypes	TG	TG: Significant gene-diet interaction on TG levels pre- vs. post-supplementation for the following SNPs: <i>IQCJ</i> (10 SNPs: rs2044704, rs1962071, rs6800211, rs17782879, rs1868414, rs2595260, rs9827242, rs1449009, rs2621309, rs61332355), <i>NXPHI</i> (4 SNPs: rs7806226, rs7805772, rs2349780, rs6974252), <i>MYB</i> (3 SNPs: rs9321493, rs11154794, rs210962). Four SNPs were still significant after applying the false discovery rate to account for multiple testing: rs1449009, rs2621309, rs61332355 in <i>IQCJ</i> ; rs7805772 in <i>NXPHI</i> . There were four dominant SNPs driving the association with the TG response: rs61332355 and rs9827242 in <i>IQCJ</i> , rs7805772 in <i>NXPHI</i> and rs11154794 in <i>MYB</i> . Significant differences in genotype frequencies between positive and negative responders to omega-3 for TG changes for <i>IQCJ</i> rs2044704, rs1962071, rs17782879, rs1868414, rs2595260, rs9827242, rs1449009, rs2621309, rs61332355, <i>NXPHI</i> rs7806226, rs7805772, <i>MYB</i> rs11154794 and rs210936.
26 27 28 Vallée 29 ^{Marcotte} et al. 2019 (62) 30 31 32	Single-Arm Clinical Trial (replication of GRS in a novel cohort)	Nutrigenomic GWAS	Healthy adults of Mexican descent aged 18-40 years (n=191)	6 weeks	Genetic Risk Score including 103 SNPs: [outlined in Supplementary Table 5]	NA	Fish oil containing 1.9 g/day EPA + 0.8 g/day DHA (supplement)	Responders versus non-responders (i.e. TG response) to supplementation	TG	TG: A first 7-SNP GRS [SNPs selected based on previously developed GRS (57,61)] did not explain TG variation. A second GRS calculated from 103 SNPs significantly explained 4.4% of TG variation. A third GRS including the 5 most relevant SNPs significantly explained 11.0% of TG variation (<i>NXPH1</i> rs10265408, rs10486228, rs10486228, rs17150341, rs6974252 and <i>IQCJ-SCHIP1</i> rs2595241). When subjects with the lowest TG change were not included, this third GRS explained more TG variation. Including only the 28 responders and 28 non-responders with the greatest TG variation, this third GRS explained 29.1% of TG variation.
33 34 Vallée 35 ^{Marcotte} et al. 2019 (63) 36 37	Single-Arm Clinical Trial	Nutrigenomics GWAS (polygenic)	Men and woman aged 18-50 years with overweight or obesity (n=208)	6 weeks	GWAS; GRS included 31 SNPs [outlined in Supplementary Table 5]	NA	Fish oil containing 1.9-2.2g/d EPA + 1.1g/d DHA (supplement)	Responders to omega-3 supplementation for TG reduction vs. Non-Responders	TG	TG: 31 SNPs associated with TG response to omega-3 supplementation and used in GRS calculation; Lower GRSs were significantly more responsive to omega-3 supplementation for TG reduction compared to higher GRS (GRS accounted for 49.7% of TG responses); These findings were replicated in the FINGEN study with 23 SNPs (GRS accounted for 3.7% of TG responses).
38 Vallée 39Marcotte et al. 40 2020 (64) 41	Double-Blind, Randomized, Controlled, Crossover Intervention	Nutrigenomics GWAS (polygenic)	Men and women with abdominal obesity and elevated CRP aged 18-70	10 weeks per diet	GRS included 30 SNPs [outlined in Supplementary Table 5]	NA	Control oil: 3 g/d corn oil Pure EPA: 2.7 g/d Pure DHA: 2.7 g/d (supplement)	Responders to different types of omega-3 supplementation for TG reduction vs.	TG	TG: The GRS was significantly associated with responsiveness to EPA for TG reduction when comparing responders vs. non-responders vs. adverse responders (trend, p=0.08, for DHA). The GRS was significantly associated with responsiveness to both EPA and DHA for TG reduction when comparing responders vs. adverse responders.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2										
в 4 5 6 7			years (n=122)					Non-Responders vs. Adverse Responders <i>and</i> Responders vs. Adverse Responders		
8 9 Wu et al. 2014 10 (65) 11	Double-Blind, Randomized, Placebo- Controlled, Crossover Intervention	Single SNP	Men and women with moderate risk of CVD (n=84)	8 weeks	<i>eNOS</i> Glu298Asp (rs1799983)	<i>NO\$3:</i> 7q36.1	Fish oil containing 0.9 g/day EPA + 0.6 g/day DHA (supplement)	Major allele homozygotes (GG) vs. Minor allele carriers (GT+TT)	LDL-c HDL-c TG Total-c	
12 13 14 15 Zheng et al. 16 ^{2018 (66)} 17 18	Double-Blind, Randomized, Controlled Intervention	Single SNP and Polygenic	Men and women with type 2 diabetes aged 35-80 years for men or postmenopausa 1 and 80 years for women (n=139)	25 weeks	CD36, rs1527483 NOS3, rs1799983 PPARy2, rs1801282	CD36: 7q21.11 NOS3: 7q36.1 PPARy2: 3p25.2	Fish oil: 2.0 g/d EPA and DHA Flaxseed oil: 2.5 g/d ALA Control oil: corn oil (supplement)	Major allele homozygotes vs. Minor allele carriers and High vs. low genetic score calculated based on three SNPs	HDL-c LDL-c TG Total-c:HDL-c Total-c	 LDL-c: significant interaction for PPARy2 rs1801282 genotype, intervention group and LDL-c change; but increased LDL-c in G allele carriers of PPARy2 rs1801282 compared to CC genotype only in the control (corn oil) group TG: omega-3 fish oil (but not flaxseed oil) supplementation reduced TG for individuals with the CD36 rs1527483 GG genotype (significant interaction); significant interaction between genetic score and omega-3 on TG levels whereby omega-3 (fish oil and flaxseed oil) supplementation significantly reduced TG levels compared to control only in individuals with high genetic scores

ALA: alpha-linolenic acid, Apo: apolipoprotein, DHA: docosahexaenoic acid, EPA: eicosapentaenoic acid, HDL: high-density lipoprotein cholesterol, LDL: low-density lipoprotein cholesterol, NA: not applicable, NS: Non-significant, sdLDL-c: small, dense, low-density lipoprotein cholesterol, SNP: single nucleotide polymorphism, TG: triglycerides 1. All other (not listed) gene/omega-3/lipid/lipoprotein results of interest to the present review were NS

Participants are described as "healthy" for studies that incorporated exclusion criteria for certain conditions, blood lipid levels, etc. and when studies described the population as "healthy."

'--' indicates that all the completed gene/omega-3/lipid/lipoprotein analyses were NS

*Human APOE is polymorphic at two single nucleotides (rs429358 and rs7412) resulting in three different alleles ($\varepsilon 2$, $\varepsilon 3$ and $\varepsilon 4$)

Gene, SNP(s)	Outcome	Studies
		AbuMweis et al. 2018 (2
		Carvalho-Wells et al. 2012
		Caslake et al. 2008 (34
		Dang et al. 2015 (36)
APOE: rs429358, rs7412 (Genotype)	TG	Jackson et al. 2012 (4)
		Olano-Martin et al. 2010
		Minihane et al. 2000 (4
		Paschos et al. 2005 (52
		Thifault et al. 2013 (59
		Fallaize et al. 2016 (7
		AbuMweis et al. 2018 (
		Carvalho-Wells et al. 2012
		Caslake et al. 2008 (34
APOE: rs429358, rs7412	Total-c	Dang et al. 2015 (36)
		Jackson et al. 2012 (4)
		Olano-Martin et al. 2010
		Paschos et al. 2005 (52
		Thifault et al. 2013 (59
		Binia et al. 2017 (27)
		Harsløf et al. 2014 (39
<i>PPARv2</i> : rs1801282	LDL-c	Itariu et al. 2012 (40)
,		Lindi et al. 2003 (43)
		Zheng et al. 2018 (66
		Binia et al. 2017 (27)
		Harsløf et al. 2014 (39
<i>PPARv2</i> : rs1801282	Total-c	Itariu et al. 2012 (40)
		Lindi et al. 2003 (43)
		Zheng et al. 2018 (66
		Binia et al. 2017 (27)
		Harsløf et al. 2014 (39
<i>PPARv2</i> : rs1801282	TG	Itariu et al. 2012 (40)
,		Lindi et al. 2003 (43)
		Zheng et al. 2018 (66
	UDI	Dawczynski et al. 2013 (
<i>CD36</i> : rs1/6166/	HDL-c	Madden et al. 2008 (45
	TO	Dawczynski et al. 2013 (
CD30. rs1/0100/	10	Madden et al. 2008 (45
CD2(1040(72		Dawczynski et al. 2013 (
CD30: rs10496/3	HDL-c	Madden et al. 2008 (45
CD26. ma1527492	TO	Madden et al. 2008 (45
CD30: IS132/483	10	Zheng et al. 2018 (66)
		Dumont et al. 2011 (5
		Dumont et al. 2018 (6
		Lu et al. 2010 (17)
FADS: rs174547*	Total-c	Standl et al. 2012 (20)
		Alsaleh et al. 2014 (25
		AbuMweis et al. 2018 (2
		Roke et al. 2014 (55)
	TO	Vallée Marcotte et al. 2019
31-SINP Genetic Risk Score	16	Vallée Marcotte et al. 2020

Supplementary Table 4: Genes, SNPs, lipid/lipoprotein outcomes and studies included in

Study	Gene(s), SNP(s)
	<i>FADS2</i> , rs174599, rs174601, rs556656, rs11501631, rs74771917, rs3168072, rs182008711, rs73487492, rs174602, rs12577276
Chen et al. Int J Obes;43:808-820 (2019)	<i>FADS3</i> , rs191972868, rs115905177, rs174635, rs174634, rs174454, rs12292968, rs174570, rs7930349, rs116672159, rs116139751, rs7942717, rs7115739, rs174450, rs74626285 <i>RAB3IL1</i> , rs741887, rs2521561, rs2727258, rs2524288, rs117518711, rs74957100, rs77071864, rs78243280, rs741888, rs2524287, rs12420625, rs77229376, rs187943834, rs78156005, rs190738753, rs11230827, rs76133863, rs116985542, rs73491252
Cormier et al. 2012	<i>FADS</i> gene cluster rs174456, rs174627, rs482548, rs2072114, rs12807005, rs174448, rs2845573, rs7394871, rs7942717, rs74823126, rs174602, rs498793, rs7935946, rs174546, rs174570, rs174579, rs174611, rs174616, rs968567
Vallée Marcotte et al. Am J Clin Nutr;109:176–185 (2019)	<i>IQCJ-SCHIP1</i> , rs7639707, rs62270407 NXPH1, rs61569932, rs1990554, rs6463808, rs6966968, rs28473103, rs28673635, rs12702829, rs78943417, rs293180, rs1837523 <i>PHF17</i> , rs1216346, rs114348423, rs75007521 <i>MYB</i> , rs72560788, rs72974149, rs210962, rs6933462 <i>NELL1</i> , rs79624996, rs1850875, rs78786240, rs117114492

Supplementary Table 5: Additional list of gene(s) and SNP(s) tested in studies

	<i>W1D</i> , 1872300786, 1872374149, 18210902, 180933402
	NELL1, rs79624996, rs1850875, rs78786240, rs117114492
	<i>SLIT2</i> , rs184945470, rs143662727, rs10009109, rs10009535, rs61790364, rs73241936, rs16869663, rs76015249
	<i>PLA2G2A</i> , rs876018, rs955587, rs3753827, rs11573156, rs11573142
Tremblay et al. Lipids in Health	<i>PLA2G2C</i> , rs6426616, rs12139100, rs10916716, rs2301475, rs10916712, rs10916718
and Disease (2015) 14:12	<i>PLA2G2D</i> , rs578459, rs16823482, rs3736979, rs584367, rs12045689, rs679667, rs17354769, rs1091671
	DI ACCCE = 12065695 = 16657574 = 11592551 = 1919571

PLA2G2F, rs12065685, rs6657574, rs11582551, rs818571, rs631134, rs11583904

	<i>PLA2G4A</i> , rs979924, rs2076075, rs3736741, rs10911949, rs10752979, rs1160719, rs10737277, rs12720702, rs7522213, rs7540602, rs10157410, rs12720497, rs4651331, rs1569480, rs10911935, rs12353944, rs11576330, rs10489410, rs10911946, rs3820185, rs12746200, rs11587539
	<i>PLA2G6</i> , rs5750546, rs132989, rs133016, rs2235346, rs2284060
	<i>PLA2G7</i> , rs12195701, rs12528807, rs1421368, rs1421378, rs17288905, rs1805017, rs1805018, rs6929105, rs7756935
	<i>GPAM</i> , rs17129561, rs10787428, rs2792751
	<i>AGPAT3</i> , rs999519, rs2838440, rs2838445, rs2838458, rs4818873, rs9978441, rs9982600, rs11700575, rs17004619, rs2838452, rs2838456, rs3788086, rs2838429
Ouellette et al. J Nutrigenet Nutrigenomics;6:268–280 (2013)	<i>AGPAT4</i> , rs746731, rs747866, rs1125640, rs2277092, rs2293286, rs3757025, rs3798225, rs3798920, rs3798924, rs3798929, rs3798943, rs3798945, rs3822853, rs3823058, rs4709501, rs6906489, rs6923835, rs7750302, rs7769321, rs9458172, rs10945713, rs10945719, rs11965825, rs12202278, rs17627837, rs12524665, rs1001422, rs6455711, rs9456642, rs2064721, rs3778227, rs3798922, rs11967514, rs7768457, rs12662114
Ouellette et al. Lipids in Health and Disease, 13:86 (2014)	<i>MGLL</i> , rs782440, rs16826716, rs6776142, rs9877819, rs555183, rs6780384, rs13076593, rs605188, rs6765071, rs782444, rs549662, rs3773155, rs541855, rs6439081, rs6439082, rs6787155, rs1466571, rs893294
Bouchard-Mercier et al. Genes Nutr 9:395 (2014)	<i>GCK</i> , rs2268573, rs2908297, rs2971676, rs758989, rs12673242, rs2908290, rs2284777, rs2300584, rs1990458, rs741038, rs1799884, rs2908277, rs3757838
	<i>RXRA</i> , rs10881576, rs7871655, rs12339187, rs11185660, rs11103473, rs10776909, rs12004589, rs3132301, rs1805352, rs3132294, rs1805343, rs1045570
	<i>CPT1A</i> , rs3019598, rs897048, rs7942147, rs4930248, rs11228364, rs11228368, rs10896371, rs1017640, rs613084
Bouchard-Mercier et al. Nutrients, 6, 1145-1163 (2014)	ACADVL, rs2017365
	ACAA2, rs529556, rs10502901, rs631536, rs1942421, rs2276168, rs7237253
	<i>ABCD2</i> , rs4072006, rs10877201, rs12582802, rs4294600, rs11172696, rs10877173, rs7133376, rs7968837
	ACOX1, rs10852766, rs3744033, rs12430, rs8065144,

	rs11651351, rs3643, rs7213998, rs17583163
	ACAA1, rs2239621, rs156265, rs5875
	<i>CETP</i> , rs3764261, rs247616, rs7205804
	<i>LIPC</i> , rs1532085
	APOB, rs1367117
	ABCG5, ABCG8, rs4299376
	<i>TIMD4, HAVCR1</i> , rs6882076, rs1501908, rs1553318
	GCKR, rs1260326, rs780094
(2014) AlSaleh et al. Genes Nutr 9:412	TRIB1, rs2954022, rs10808546, rs2954029
	ANGPTL3, DOCK7, rs3850634, rs1167998, rs2131925
	<i>FADS1, FADS2, FADS3</i> , rs174550, rs174547, rs174546, rs174583
	<i>GALNT2</i> , rs4846914, rs1321257
	<i>ABCA1</i> , rs4149268
	APOE, APOC1, APOC2, rs439401
	<i>IQCJ-SCHIP1</i> , rs7639707, rs62270407
	NXPH1, rs61569932, rs1990554, rs6463808, rs6966968, rs28473103, rs28673635, rs12702829, rs78943417, rs293180 rs1837523
Vallée Marcotte et al. Genes &	PHF17, rs1216346, rs114348423, rs75007521
Nutrition $15:10(2020)$	<i>MYB</i> , rs72560788, rs72974149, rs210962, rs6933462
	NELL1, rs79624996, rs1850875, rs78786240, rs117114492
	<i>SLIT2</i> , rs184945470, rs143662727, rs10009109, rs10009535 rs61790364, rs73241936, rs16869663, rs76015249
Rudkowska et al. Journal of Lipid Research 55 (2014)	<i>IQCJ-SCHIP1, MYB, NELL1, NXPH1, PHF17, SLIT2,</i> rs2621308, rs1449009, rs61332355, rs2621309, rs2952724, rs2629715, rs1216352, rs1216365, rs931681, rs6920829, rs6463808, rs752088
Vallée Marcotte et al. J Nutrigenet Nutrigenomics;9 :1-11 (2016)	<i>IQCJ</i> , rs12497650, rs4501157, rs13091349, rs2044704, rs1062071, rs7634829, rs2621294, rs6800211, rs17782879, rs1868414, rs2595260, rs6763890, rs9827242, rs1449009, rs2621309, rs61332355

	 NXPH1, rs6956210, rs2107779, rs10273195, rs12216689, rs6963644, rs17150341, rs1013868, rs12537067, rs4318981, rs17153997, rs7801099, rs4725120, rs1859275, rs10238726, rs1012960, rs11767429, rs4333500, rs7793115, rs7799856, rs7806226, rs13221144, rs17406479, rs10486228, rs17154569, rs4141002, rs7805772, rs2349780, rs2107474, rs11769942, rs6952383, rs6974252, rs10265408, rs2189904, rs2057862 PHF17, rs2217023, rs4975270, rs11722830, rs12505447, rs6534704, rs13148510, rs13143771, rs13142964 MYB, rs9321493, rs11154794, rs210798, rs210936, rs7757388, rs210962, rs17639758, rs1013891, rs2179308
Vallée Marcotte et al. Nutrients; 11, 737 (2019)	<i>IQCJ-SCHIP1</i> , rs12497650, rs4501157, rs13091349, rs2044704, rs1962071, rs7634829, rs2621294, rs6800211, rs17782879, rs1868414, rs2595260, rs6763890, rs1449009, rs61332355, rs12485627, rs2595242, rs7639937, rs9820807, rs1375409, rs1967363, rs9824310, rs11915303, rs9835214, rs11921343, rs13066560, rs1675497, rs9839862, rs16829875, rs17795566, rs9860588, rs16830408, rs17798579, rs2364930, rs9865997, rs2595241, rs7632574, rs2621308 <i>NXPH1</i> , rs6956210, rs2107779, rs10273195, rs12216689, rs6963644, rs17150341, rs1013868, rs4318981, rs17153997, rs7801099, rs4725120, rs10238726, rs1012960, rs11767429, rs4333500, rs7793115, rs7799856, rs7806226, rs13221144, rs17406479, rs10486228, rs17154569, rs4141002, rs7805772, rs2349780, rs2107474, rs1176942, rs6952383, rs6974252, rs10265408, rs2189904, rs2057862, rs6463808 <i>PHF17</i> , rs2217023, rs4975270, rs11722830, rs12505447, rs6534704, rs13148510, rs13143771, rs13142964, rs1216352, rs1216365
	rs17639758, rs1013891, rs2179308, rs6920829, <i>SLIT2</i> , rs2952724 <i>NELL1</i> , rs752088

Gene, rs Number	Alleles ¹	Associated Points
<i>IQCJ-SCHIP1</i> , rs7639707	<u>A</u> /G	+1
<i>IQCJ-SCHIP1</i> , rs62270407	C/ <u>T</u>	-1
NXPH1, rs61569932,	<u>G</u> /T	+1
NXPH1, rs1990554	<u>A</u> /C	+1
NXPH1, rs6463808	<u>A</u> /G	+1
NXPH1, rs6966968	A/ <u>G</u>	+1
NXPH1, rs28473103	A/G	-1
NXPH1, rs28673635	<u>A</u> /G	+1
NXPH1, rs12702829	<u>C</u> /T	+1
NXPH1, rs78943417	A/T	-1
NXPH1, rs293180	G/T	+1
NXPH1, rs1837523	$\underline{C}/\overline{T}$	-1
<i>PHF17</i> , rs1216346	<u>C</u> /T	+1
<i>PHF17</i> , rs114348423	<u>A</u> /G	+1
<i>PHF17</i> , rs75007521	<u>G</u> /T	-1
MYB, rs72560788	$\overline{C/T}$	-1
MYB, rs72974149	A/ <u>G</u>	-1
MYB, rs210962	C/ <u>T</u>	-1
MYB, rs6933462	<u>C/G</u>	+1
NELL1, rs79624996	<u>A</u> /G	+1
NELL1, rs1850875	C/T	+1
NELL1, rs78786240	C/T	-1
NELL1, rs117114492	<u>G</u> /T	+1
<i>SLIT2</i> , rs184945470	C/T	+1
SLIT2, rs143662727	A/G	-1
SLIT2, rs10009109	<u>C</u> /T	+1
<i>SLIT2</i> , rs10009535	Ā/G	+1
SLIT2, rs61790364	<u>A</u> /G	+1
SLIT2, rs73241936	<u> </u>	+1
<i>SLIT2</i> , rs16869663		+1
<i>SLIT2</i> , rs76015249	<u>A</u> / G	+1

Supplementary Table 6: 31-SNP Nutri-GRS

1. Minor alleles are underlined

For individuals carrying one or two minor alleles, provide the associated number of points (either +1 or -1). For individuals homozygous for the major allele, provide 0 points. Count the overall number of points. Individuals with lower nutri-GRS are more likely to respond to approximately 3.0 g/day EPA+DHA for TG lowering.

References

- 1. Bouchard-Mercier A, Godin G, Lamarche B, Pérusse L, Vohl M-C. Effects of Peroxisome Proliferator-Activated Receptors, Dietary Fat Intakes and Gene–Diet Interactions on Peak Particle Diameters of Low-Density Lipoproteins. J Nutrigenet Nutrigenomics. 2011;4(1):36–48.
- 2. Bodhini D, Gaal S, Shatwan I, Ramya K, Ellahi B, Surendran S, et al. Interaction between TCF7L2 polymorphism and dietary fat intake on high density lipoprotein cholesterol. Li S, editor. PLoS ONE. 2017 Nov 28;12(11):e0188382.
- 3. Chen Y, Estampador AC, Keller M, Poveda A, Dalla-Riva J, Johansson I, et al. The combined effects of FADS gene variation and dietary fats in obesity-related traits in a population from the far north of Sweden: the GLACIER Study. International Journal of Obesity. 2019 Apr;43(4):808–20.
- Ching YK, Chin YS, Appukutty M, Ramanchadran V, Yu CY, Ang GY, et al. Interaction of Dietary Linoleic Acid and α-Linolenic Acids with rs174547 in FADS1 Gene on Metabolic Syndrome Components among Vegetarians. Nutrients. 2019 Jul;11(7):1686.
- 5. Dumont J, Huybrechts I, Spinneker A, Gottrand F, Grammatikaki E, Bevilacqua N, et al. FADS1 genetic variability interacts with dietary α-linolenic acid intake to affect serum non-HDL-cholesterol concentrations in European adolescents. J Nutr. 2011 Jul;141(7):1247–53.
- 6. Dumont J, Goumidi L, Grenier-Boley B, Cottel D, Marécaux N, Montaye M, et al. Dietary linoleic acid interacts with FADS1 genetic variability to modulate HDL-cholesterol and obesity-related traits. Clinical Nutrition. 2018 Oct 1;37(5):1683–9.
- Fallaize R, Celis-Morales C, Macready AL, Marsaux CF, Forster H, O'Donovan C, et al. The effect of the apolipoprotein E genotype on response to personalized dietary advice intervention: findings from the Food4Me randomized controlled trial. Am J Clin Nutr. 2016 Sep;104(3):827–36.
- Fontaine-Bisson B, El-Sohemy A. Genetic polymorphisms of tumor necrosis factor-alpha modify the association between dietary polyunsaturated fatty acids and plasma high-density lipoproteincholesterol concentrations in a population of young adults. J Nutrigenet Nutrigenomics. 2008;1(5):215–23.
- Fontaine-Bisson B, Wolever TMS, Connelly PW, Corey PN, El-Sohemy A. NF-κB –94Ins/Del ATTG polymorphism modifies the association between dietary polyunsaturated fatty acids and HDLcholesterol in two distinct populations. Atherosclerosis. 2009 Jun;204(2):465–70.
- Hellstrand S, Sonestedt E, Ericson U, Gullberg B, Wirfält E, Hedblad B, et al. Intake levels of dietary long-chain PUFAs modify the association between genetic variation in FADS and LDL-C. J Lipid Res. 2012 Jun;53(6):1183–9.
- 11. Hosseini-Esfahani F, Mirmiran P, Koochakpoor G, Daneshpour MS, Guity K, Azizi F. Some dietary factors can modulate the effect of the zinc transporters 8 polymorphism on the risk of metabolic syndrome. Sci Rep. 2017 Dec;7(1):1649.

1 2	
3	
4 5	
6	
7 8	
9 10	
11	
12	
14 15	
16	
17 18	
19 20	
21	
22 23	
24 25	
26	
27 28	
29 30	
31 32	
33	
34 35	
36 37	
38	
39 40	
41 42	
43	
45	
46 47	
48 49	
50	
51 52	
53 54	
55	
56 57	
58 59	
60	

- Jang HB, Hwang J-Y, Park JE, Oh JH, Ahn Y, Kang J-H, et al. Intake levels of dietary polyunsaturated fatty acids modify the association between the genetic variation in *PCSK5* and HDL cholesterol. J Med Genet. 2014 Dec;51(12):782–8.
- Joffe YT, van der Merwe L, Carstens M, Collins M, Jennings C, Levitt NS, et al. Tumor Necrosis Factorα Gene -308 G/A Polymorphism Modulates the Relationship between Dietary Fat Intake, Serum Lipids, and Obesity Risk in Black South African Women. The Journal of Nutrition. 2010 May 1;140(5):901–7.
- Joffe YT, van der Merwe L, Evans J, Collins M, Lambert EV, September A, et al. The tumor necrosis factor-α gene -238 G>A polymorphism, dietary fat intake, obesity risk and serum lipid concentrations in black and white South African women. Eur J Clin Nutr. 2012 Dec;66(12):1295–302.
- 15. Joffe YT, van der Merwe L, Evans J, Collins M, Lambert EV, September A, et al. Interleukin-6 Gene Polymorphisms, Dietary Fat Intake, Obesity and Serum Lipid Concentrations in Black and White South African Women. Nutrients. 2014 Jun 24;6(6):2436–65.
- Lai Chao-Qiang, Corella Dolores, Demissie Serkalem, Cupples L. Adrienne, Adiconis Xian, Zhu Yueping, et al. Dietary Intake of n-6 Fatty Acids Modulates Effect of Apolipoprotein A5 Gene on Plasma Fasting Triglycerides, Remnant Lipoprotein Concentrations, and Lipoprotein Particle Size. Circulation. 2006 May 2;113(17):2062–70.
- 17. Lu Y, Feskens EJ, Dollé ME, Imholz S, Verschuren WM, Müller M, et al. Dietary n–3 and n–6 polyunsaturated fatty acid intake interacts with FADS1 genetic variation to affect total and HDL-cholesterol concentrations in the Doetinchem Cohort Study. The American Journal of Clinical Nutrition. 2010 Jul 1;92(1):258–65.
- 18. Nettleton JA, Volcik KA, Hoogeveen RC, Boerwinkle E. Carbohydrate intake modifies associations between ANGPTL4[E40K] genotype and HDL-cholesterol concentrations in White men from the Atherosclerosis Risk in Communities (ARIC) study. Atherosclerosis. 2009 Mar;203(1):214–20.
- 19. Richardson K, Louie-Gao Q, Arnett DK, Parnell LD, Lai C-Q, Davalos A, et al. The PLIN4 Variant rs8887 Modulates Obesity Related Phenotypes in Humans through Creation of a Novel miR-522 Seed Site. PLOS ONE. 2011 Apr 20;6(4):e17944.
- 20. Standl M, Lattka E, Stach B, Koletzko S, Bauer C-P, von Berg A, et al. FADS1 FADS2 Gene Cluster, PUFA Intake and Blood Lipids in Children: Results from the GINIplus and LISAplus Studies. PLoS One [Internet]. 2012 May 21 [cited 2020 Aug 3];7(5). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3357401/
- 21. Tai ES, Corella D, Demissie S, Cupples LA, Coltell O, Schaefer EJ, et al. Polyunsaturated Fatty Acids Interact with the PPARA-L162V Polymorphism to Affect Plasma Triglyceride and Apolipoprotein C-III Concentrations in the Framingham Heart Study. J Nutr. 2005 Mar 1;135(3):397–403.
- 22. Volcik KA, Nettleton JA, Ballantyne CM, Boerwinkle E. Peroxisome proliferator—activated receptor alpha genetic variation interacts with n-6 and long-chain n-3 fatty acid intake to affect total cholesterol and LDL-cholesterol concentrations in the Atherosclerosis Risk in Communities Study. Am J Clin Nutr. 2008;87:1926–31.

23. Warodomwichit D, Arnett DK, Kabagambe EK, Tsai MY, Hixson JE, Straka RJ, et al. Polyunsaturated Fatty Acids Modulate the Effect of TCF7L2 Gene Variants on Postprandial Lipemia. The Journal of Nutrition. 2009 Mar 1;139(3):439–46.

- 24. AbuMweis SS, Panchal SK, Jones PJH. Triacylglycerol-Lowering Effect of Docosahexaenoic Acid Is Not Influenced by Single-Nucleotide Polymorphisms Involved in Lipid Metabolism in Humans. Lipids. 2018;53(9):897–908.
- 25. AlSaleh A, Maniou Z, Lewis FJ, Hall WL, Sanders TAB, O'Dell SD. Genetic predisposition scores for dyslipidaemia influence plasma lipid concentrations at baseline, but not the changes after controlled intake of n-3 polyunsaturated fatty acids. Genes Nutr. 2014 Jul;9(4):412.
- 26. Armstrong P, Kelley DS, Newman JW, Staggers FE, Hartiala J, Allayee H, et al. Arachidonate 5-Lipoxygenase Gene Variants Affect Response to Fish Oil Supplementation by Healthy African Americans1234. J Nutr. 2012 Aug;142(8):1417–28.
- Binia A, Vargas-Martínez C, Ancira-Moreno M, Gosoniu LM, Montoliu I, Gámez-Valdez E, et al. Improvement of cardiometabolic markers after fish oil intervention in young Mexican adults and the role of PPARα L162V and PPARγ2 P12A. The Journal of Nutritional Biochemistry. 2017 May;43:98–106.
- Bouchard-Mercier A, Rudkowska I, Lemieux S, Couture P, Vohl M-C. Polymorphisms, de novo lipogenesis, and plasma triglyceride response following fish oil supplementation. J Lipid Res. 2013 Oct;54(10):2866–73.
- Bouchard-Mercier A, Rudkowska I, Lemieux S, Couture P, Vohl M-C. Polymorphisms in Genes Involved in Fatty Acid β-Oxidation Interact with Dietary Fat Intakes to Modulate the Plasma TG Response to a Fish Oil Supplementation. Nutrients. 2014 Mar 18;6(3):1145–63.
- 30. Bouchard-Mercier A, Rudkowska I, Lemieux S, Couture P, Vohl M-C. An interaction effect between glucokinase gene variation and carbohydrate intakes modulates the plasma triglyceride response to a fish oil supplementation. Genes Nutr. 2014 May;9(3):395.
- 31. Caron-Dorval D, Paquet P, Paradis A-M, Rudkowska I, Lemieux S, Couture P, et al. Effect of the PPAR-Alpha L162V Polymorphism on the Cardiovascular Disease Risk Factor in Response to n–3 Polyunsaturated Fatty Acids. J Nutrigenet Nutrigenomics. 2008;1(4):205–12.
- 32. Carvalho-Wells AL, Jackson KG, Lockyer S, Lovegrove JA, Minihane AM. APOE genotype influences triglyceride and C-reactive protein responses to altered dietary fat intake in UK adults. The American Journal of Clinical Nutrition. 2012 Dec 1;96(6):1447–53.
- Lockyer S, Tzanetou M, Carvalho-Wells AL, Jackson KG, Minihane AM, Lovegrove JA. SATgene dietary model to implement diets of differing fat composition in prospectively genotyped groups (apoE) using commercially available foods. British Journal of Nutrition. 2012 Nov;108(9):1705–13.
- 34. Caslake MJ, Miles EA, Kofler BM, Lietz G, Curtis P, Armah CK, et al. Effect of sex and genotype on cardiovascular biomarker response to fish oils: the FINGEN Study. The American Journal of Clinical Nutrition. 2008 Sep 1;88(3):618–29.

2	
3	
4	
5	
5	
0	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
17	
10	
19	
20	
21	
22	
23	
24	
25	
26	
27	
27	
20	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
10	
-+∪ ∕/1	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
55 Γ 4	
54	
55	
56	
57	
58	
59	
60	

- 35. Cormier H, Rudkowska I, Paradis A-M, Thifault E, Garneau V, Lemieux S, et al. Association between Polymorphisms in the Fatty Acid Desaturase Gene Cluster and the Plasma Triacylglycerol Response to an n-3 PUFA Supplementation. Nutrients. 2012 Aug;4(8):1026–41.
- 36. Dang TM, Conway V, Plourde M. Disrupted fatty acid distribution in HDL and LDL according to apolipoprotein E allele. Nutrition. 2015 Jun 1;31(6):807–12.
- Dawczynski C, Massey KA, Ness C, Kiehntopf M, Stepanow S, Platzer M, et al. Randomized placebocontrolled intervention with n-3 LC-PUFA-supplemented yoghurt: Effects on circulating eicosanoids and cardiovascular risk factors. Clinical Nutrition. 2013 Oct 1;32(5):686–96.
- 38. Ferguson JF, Phillips CM, McMonagle J, Pérez-Martínez P, Shaw DI, Lovegrove JA, et al. NOS3 gene polymorphisms are associated with risk markers of cardiovascular disease, and interact with omega-3 polyunsaturated fatty acids. Atherosclerosis. 2010 Aug 1;211(2):539–44.
- 39. Harsløf LBS, Damsgaard CT, Hellgren LI, Andersen AD, Vogel U, Lauritzen L. Effects on metabolic markers are modified by PPARG2 and COX2 polymorphisms in infants randomized to fish oil. Genes Nutr. 2014 May;9(3):396.
- 40. Itariu BK, Zeyda M, Hochbrugger EE, Neuhofer A, Prager G, Schindler K, et al. Long-chain n–3 PUFAs reduce adipose tissue and systemic inflammation in severely obese nondiabetic patients: a randomized controlled trial. The American Journal of Clinical Nutrition. 2012 Nov 1;96(5):1137–49.
- Jackson KG, Lockyer S, Carvalho-Wells AL, Williams CM, Minihane AM, Lovegrove JA. Dietary fat manipulation has a greater impact on postprandial lipid metabolism than the apolipoprotein E (epsilon) genotype–insights from the SATgene study. Molecular Nutrition & Food Research. 2012;56(12):1761–70.
- Jackson KG, Lockyer S, Carvalho-Wells AL, Williams CM, Minihane AM, Lovegrove JA. Apolipoprotein E (epsilon) genotype has a greater impact on apoB-48 than apoB-100 responses to dietary fat manipulation—insights from the SATgene study. Molecular Nutrition & Food Research. 2017;61(4):1600688.
- Lindi V, Schwab U, Louheranta A, Laakso M, Vessby B, Hermansen K, et al. Impact of the Pro12Ala polymorphism of the PPAR-γ2 gene on serum triacylglycerol response to n-3 fatty acid supplementation. Molecular Genetics and Metabolism. 2003 May;79(1):52–60.
- 44. Lindman AS, Pedersen JI, Hjerkinn EM, Arnesen H, Veierød MB, Ellingsen I, et al. The effects of longterm diet and omega-3 fatty acid supplementation on coagulation factor VII and serum phospholipids with special emphasis on the R353Q polymorphism of the FVII gene. Thromb Haemost. 2004 Jun;91(6):1097–104.
- 45. Madden J, Carrero J, Brunner A, Dastur N, Shearman C, Calder P, et al. Polymorphisms in the CD36 gene modulate the ability of fish oil supplements to lower fasting plasma triacyl glycerol and raise HDL cholesterol concentrations in healthy middle-aged men. Prostaglandins, Leukotrienes and Essential Fatty Acids. 2008;78:327–35.
- 46. Markovic O, O'Reilly G, Fussell HelenM, Turner SJ, Calder PC, Howell WM, et al. Role of single nucleotide polymorphisms of pro-inflammatory cytokine genes in the relationship between serum
lipids and inflammatory parameters, and the lipid-lowering effect of fish oil in healthy males. Clinical Nutrition. 2004 Oct 1;23(5):1084–95.

- 47. McColley SP, Georgopoulos A, Young LR, Kurzer MS, Redmon JB, Raatz SK. A high-fat diet and the threonine-encoding allele (Thr54) polymorphism of fatty acid–binding protein 2 reduce plasma triglyceride–rich lipoproteins. Nutrition Research. 2011 Jul 1;31(7):503–8.
- Minihane Anne M., Khan Syrah, Leigh-Firbank Elizabeth C., Talmud Philippa, Wright John W., Murphy Margaret C., et al. ApoE Polymorphism and Fish Oil Supplementation in Subjects With an Atherogenic Lipoprotein Phenotype. Arteriosclerosis, Thrombosis, and Vascular Biology. 2000 Aug 1;20(8):1990–7.
- 49. Olano-Martin E, Anil E, Caslake MJ, Packard CJ, Bedford D, Stewart G, et al. Contribution of apolipoprotein E genotype and docosahexaenoic acid to the LDL-cholesterol response to fish oil. Atherosclerosis. 2010 Mar;209(1):104–10.
- 50. Ouellette C, Cormier H, Rudkowska I, Guénard F, Lemieux S, Couture P, et al. Polymorphisms in Genes Involved in the Triglyceride Synthesis Pathway and Marine Omega-3 Polyunsaturated Fatty Acid Supplementation Modulate Plasma Triglyceride Levels. LFG. 2013;6(4–5):268–80.
- 51. Ouellette C, Rudkowska I, Lemieux S, Lamarche B, Couture P, Vohl M-C. Gene-diet interactions with polymorphisms of the MGLL gene on plasma low-density lipoprotein cholesterol and size following an omega-3 polyunsaturated fatty acid supplementation: a clinical trial. Lipids Health Dis. 2014 May 24;13:86.
- 52. Paschos GK, Yiannakouris N, Rallidis LS, Davies I, Griffin BA, Panagiotakos DB, et al. Apolipoprotein E Genotype in Dyslipidemic Patients and Response of Blood Lipids and Inflammatory Markers to Alpha-Linolenic Acid. Angiology. 2005 Jan 1;56(1):49–60.
- 53. Pishva H, Mahboob S-A, Mehdipour P, Eshraghian MR, Mohammadi-Asl J, Hosseini S, et al. Fatty acid–binding protein-2 genotype influences lipid and lipoprotein response to eicosapentaenoic acid supplementation in hypertriglyceridemic subjects. Nutrition. 2010 Nov 1;26(11):1117–21.
- 54. Pishva H, Mehdipour P, Eshraghian MR, Mahboob S-A. Effects of Eicosapentaenoic Acid Supplementation on Lipid and Lipoprotein Profile in Hypertriglyceridemic Subjects with Different Proliferator-activated Receptor Alpha Genotypes. Int J Prev Med. 2014 Mar;5(3):333–40.
- 55. Roke K, Mutch DM. The Role of FADS1/2 Polymorphisms on Cardiometabolic Markers and Fatty Acid Profiles in Young Adults Consuming Fish Oil Supplements. Nutrients. 2014 Jun 16;6(6):2290–304.
- 56. Rudkowska I, Julien P, Couture P, Lemieux S, Tchernof A, Barbier O, et al. Cardiometabolic risk factors are influenced by Stearoyl-CoA Desaturase (SCD) –1 gene polymorphisms and n-3 polyunsaturated fatty acid supplementation. Molecular Nutrition & Food Research. 2014;58(5):1079–86.
- Rudkowska I, Guénard F, Julien P, Couture P, Lemieux S, Barbier O, et al. Genome-wide association study of the plasma triglyceride response to an n-3 polyunsaturated fatty acid supplementation. J Lipid Res. 2014 Jul;55(7):1245–53.

1 2	
2 3 4 5 6	58. Scorletti E, West AL, Bhatia L, Hoile SP, McCormick KG, Burdge GC, et al. Treating liver fat and serum triglyceride levels in NAFLD, effects of PNPLA3 and TM6SF2 genotypes: Results from the WELCOME trial. Journal of Hepatology. 2015 Dec 1;63(6):1476–83.
7 8 9 10	59. Thifault E, Cormier H, Bouchard-Mercier A, Rudkowska I, Paradis A-M, Garneau V, et al. Effects of Age, Sex, Body Mass Index and APOE Genotype on Cardiovascular Biomarker Response to an n-3 Polyunsaturated Fatty Acid Supplementation. LFG. 2013;6(2):73–82.
12 13 14 15	60. Tremblay BL, Cormier H, Rudkowska I, Lemieux S, Couture P, Vohl M-C. Association between polymorphisms in phospholipase A2 genes and the plasma triglyceride response to an n-3 PUFA supplementation: a clinical trial. Lipids in Health and Disease. 2015 Feb 21;14(1):12.
16 17 18 19	61. Bastien Vallée Marcotte, Cormier H, Guénard F, Rudkowska I, Lemieux S, Couture P, et al. Novel Genetic Loci Associated with the Plasma Triglyceride Response to an Omega-3 Fatty Acid Supplementation. J Nutigenet Nutrigenomics. 2016;9:1–11.
20 21 22 23 24 25	62. Vallée Marcotte B, Guénard F, Marquis J, Charpagne A, Vadillo-Ortega F, Tejero ME, et al. Genetic Risk Score Predictive of the Plasma Triglyceride Response to an Omega-3 Fatty Acid Supplementation in a Mexican Population. Nutrients [Internet]. 2019 Mar 29 [cited 2020 Aug 3];11(4). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6521301/
26 27 28 29	63. Vallée Marcotte B, Guénard F, Lemiux S, Couture P, Rudkowska I, Calder PC, et al. Fine mapping of genome-wide association study signals to identify genetic markers of the plasma triglyceride response to an omega-3 fatty acid supplementation.
30 31 32 33 34 35	64. Vallée Marcotte B, Allaire J, Guénard F, de Toro-Martín J, Couture P, Lamarche B, et al. Genetic risk prediction of the plasma triglyceride response to independent supplementations with eicosapentaenoic and docosahexaenoic acids: the ComparED Study. Genes Nutr. 2020 Dec;15(1):10.
36 37 38 39	65. Wu S-Y, Mayneris-Perxachs J, Lovegrove JA, Todd S, Yaqoob P. Fish-oil supplementation alters numbers of circulating endothelial progenitor cells and microparticles independently of eNOS genotype. The American Journal of Clinical Nutrition. 2014 Nov 1;100(5):1232–43.
40 41 42 43	66. Zheng J-S, Chen J, Wang L, Yang H, Fang L, Yu Y, et al. Replication of a Gene-Diet Interaction at CD36, NOS3 and PPARG in Response to Omega-3 Fatty Acid Supplements on Blood Lipids: A Double-Blind Randomized Controlled Trial. EBioMedicine. 2018 Apr 17;31:150–6.
44 45 46 47 48 49 50	67. Vallée Marcotte B, Guénard F, Lemieux S, Couture P, Rudkowska I, Calder PC, et al. Fine mapping of genome-wide association study signals to identify genetic markers of the plasma triglyceride response to an omega-3 fatty acid supplementation. The American Journal of Clinical Nutrition. 2019 Jan 1;109(1):176–85.
51 52 53 54 55 56	
57 58	

PRISMA 2009 Checklist

Section/topic	#	Checklist item	Reported on page #	
TITLE				
Title	1	Identify the report as a systematic review, meta-analysis, or both.	1	
ABSTRACT				
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	2	
INTRODUCTION				
Rationale	3	Describe the rationale for the review in the context of what is already known.	3-5	
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	5-6	
METHODS	METHODS			
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	5	
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	5-6	
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	5, 7	
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	Suppl. T1	
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	6-7	
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	6-7	
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	5-7	
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	8-9	
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	9	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 73 of 73

BMJ Open

PRISMA 2009	Checklist
-------------	-----------

ynthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of	NA (meta-
	consistency (e.g., I ²) for each meta-analysis.	consistency (e.g., I ²) for each meta-analysis.	analysis not
			appropriate)

		Page 1 of 2	
Section/topic	#	Checklist item	Reported on page #
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	Table 4
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	11-12
RESULTS			
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	Figure 1
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	Tables 1 and 2
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	Table 4
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	Tables 1 and 2
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	NA
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	Table 4
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	11-12, Table 3
DISCUSSION			
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	Table 3, 34-39
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	45-46
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	40-47
FUNDING		1	

systematic review. , terns for Systet. For more informa. From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(7): e1000097. doi:10.1371/journal.pmed1000097

Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the

 Funding

BMJ Open

A systematic review of nutrigenetics, omega-3 and plasma lipids/lipoproteins/apolipoproteins with evidence evaluation using the GRADE approach

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-054417.R2
Article Type:	Original research
Date Submitted by the Author:	06-Dec-2021
Complete List of Authors:	Keathley, Justine; Université Laval, Centre Nutrition, Santé et Société (NUTRISS), Institut sur la Nutrition et les Aliments Fonctionnels (INAF) Quebec, QC, CAN; Universite Laval, School of Nutrition Quebec, QC, CAN Garneau, Véronique; Université Laval, Centre Nutrition, Santé et Société (NUTRISS), Institut sur la Nutrition et les Aliments Fonctionnels (INAF); Universite Laval, School of Nutrition Marcil, Valérie ; University of Montreal, Department of Nutrition; Sainte- Justine University Health Centre, Research Centre Mutch, David; University of Guelph, Department of Human Health and Nutritional Sciences Robitaille, Julie; Laval University, Centre Nutrition, Santé et Société (NUTRISS), Institut sur la Nutrition et les Aliments Fonctionnels (INAF); Laval University, School of Nutrition Rudkowska, Iwona; Université Laval, Department of Kinesiology; Centre de recherche du CHU de Quebec-Universite Laval, Endocrinology and Nephrology Unit Sofian, Gabriela; Université Laval, Library Desroches, Sophie; Université Laval, Centre Nutrition, Santé et Société (NUTRISS), Institut sur la Nutrition et les Aliments Fonctionnels (INAF); Université Laval, Library Desroches, Sophie; Université Laval, Centre Nutrition, Santé et Société (NUTRISS), Institut sur la Nutrition et les Aliments Fonctionnels (INAF); Université Laval, Centre Nutrition, Santé et Société (NUTRISS), Institut sur la Nutrition et les Aliments Fonctionnels (INAF); Université Laval, School of Nutrition
Primary Subject Heading :	Nutrition and metabolism
Secondary Subject Heading:	Cardiovascular medicine, Genetics and genomics, Nutrition and metabolism
Keywords:	NUTRITION & DIETETICS, GENETICS, Lipid disorders < DIABETES & ENDOCRINOLOGY

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	A systematic review of nutrigenetics, omega-3 and plasma
2	GRADE approach
4 5 6	Justine Keathley, PhD, RD ^{1,2} ; Véronique Garneau, MSc, RD ¹ ; Valérie Marcil ^{3,4} , PhD, David M Mutch, PhD ⁵ , Julie Robitaille, PhD, RD ^{1,2} , Iwona Rudkowska, PhD, RD ^{6,7} , Gabriela Sofian, MSI ⁸ , Sophie Desroches, PhD, RD ^{1,2} ; Marie-Claude Vohl, PhD^{1,2**}
7 8	¹ Centre Nutrition, Santé et Société (NUTRISS), Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Université Laval, Québec City, Québec, G1V 0A6, Canada
9	² School of Nutrition, Université Laval, Québec City, Québec, G1V 0A6, Canada
10	³ Research Centre, Sainte-Justine University Health Centre, Montréal, Québec, H3T 1C5, Canada
11	⁴ Department of Nutrition, Université de Montréal, Montréal, Québec, H3T 1J4, Canada
12 13	⁵ Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
14 15	⁶ Endocrinology and Nephrology Unit, CHU de Québec-Université Laval Research Center, Québec City, Québec, G1V 0A6, Canada
16	⁷ Department of Kinesiology, Université Laval, Québec City, Québec, G1V 0A6, Canada
17	⁸ Library, Université Laval, Québec City, Québec, G1V 0A6, Canada
18	**Corresponding Author: marie-claude.vohl@fsaa.ulaval.ca; Tel.: +1-418-656-2131 (ext.
19	404676)
20 21 22 23 24 25 26 27 28	Ethics Approval Statement: No ethics approval was required for a systematic review. Running Head: Nutrigenetics, omega-3 and lipids/lipoproteins Data described in the manuscript will be made available upon request pending approval from the corresponding author. Abbreviations: ALA (alpha-linolenic acid); CV (coefficient of variation); DHA (docosahexaenoic acid); EPA (eicosapentaenoic acid); FDA (Food and Drug Administration); GRADE (Grading of Recommendations Assessment, Development and Evaluation); HCP (healthcare professional); LD (linkage disequilibrium); nutri-GRS (nutrigenetic risk score); SNP (single nucleotide polymorphism)
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

29 ABSTRACT

30 Objectives: Despite the uptake of nutrigenetic testing through direct-to-consumer 31 services and healthcare professionals, systematic reviews determining scientific validity 32 are limited in this field. The objective of this review was to: retrieve, synthesize and 33 assess the quality of evidence (confidence) for nutrigenetic approaches related to the 34 effect of genetic variation on plasma lipid, lipo- and apolipoprotein responsiveness to 35 omega-3 fatty acid intake.

Design: A systematic review was conducted using three search engines (Embase, Web of Science and Medline) for articles published up until August 1, 2020. We aimed to systematically search, identify (select), and provide a narrative synthesis of all studies that assessed nutrigenetic associations/interactions for genetic variants (comparators) influencing the plasma lipid, lipoprotein and/or apolipoprotein response (outcomes) to omega-3 fatty acid intake (intervention/exposure) in humans - both pediatric and adult populations (population). We further aimed to assess the overall quality of evidence for specific priority nutrigenetic associations/interactions based on the following inclusion criteria: nutrigenetic associations/interactions reported for the same genetic variants (comparators) influencing the same plasma lipid, lipoprotein and/or apolipoprotein response (outcomes) to omega-3 fatty acid intake (intervention/exposure) in humans – both pediatric and adult populations (population) in two independent studies, irrespective of the findings. Risk of bias was assessed in individual studies. Evidence was evaluated using the GRADE approach. This systematic review was registered with PROSPERO (CRD42020185087).

Results: Out of 1830 articles screened, 65 met the inclusion criteria for the narrative synthesis (n=23 observational, n=42 interventional); of these, 25 met the inclusion criteria for evidence evaluation using GRADE. Overall, current evidence is insufficient for gene-diet associations related to omega-3 fatty acid intake on plasma apolipoproteins, total cholesterol, HDL-cholesterol, LDL-cholesterol and LDL particle size. However, there is strong (GRADE rating: moderate quality) evidence to suggest that male APOE-E4 carriers (rs429358, rs7412) exhibit significant triglyceride reductions in response to omega-3-rich fish oil with a dose-response effect. Moreover, strong (GRADE rating: high quality) evidence suggests that a 31-SNP nutrigenetic risk score can predict plasma triglyceride responsiveness to omega-3-rich fish oil in adults with overweight/obesity from various ethnicities.

Conclusions: Most evidence in this area is weak, but two specific nutrigenetic 63 interactions exhibited strong evidence, with limited generalizability to specific 64 populations.

Keywords: nutrigenomics, nutrigenetics, nutritional genomics, genetic risk score,
nutrigenetic risk score, triglycerides, lipids, lipoproteins, omega-3 fatty acid, *APOE*

Strength: Comprehensive systematic review guided by PRISMA

67 STRENGTHS AND LIMITATIONS

69 70 71 72 73	 Strength: Critical appraisal of the evidence guided by GRADE Limitation: Inability to conduct a meta-analysis given the comprehensive overview of studies and thus heterogeneity Limitation: Several included studies without replication; most evidence was low or very low quality according to GRADE

BMJ Open

74 INTRODUCTION

Cardiometabolic disease is a health concern worldwide (1). Nutrigenetic research demonstrates that there is significant inter-individual variability in cardiometabolic risk factor levels, in part based on a combination of genetic and nutrition-related risk factors (2,3). For example, protein intake has consistently been shown to influence measures of body weight and composition dependent on FTO genotype (rs9939609 or loci in strong linkage disequilibrium) (4,5). Consumers indicate great interest in personalized nutrition based on genetics (6,7), however, a lack of industry oversight (8,9) has led to highly variable scientific validity of nutrigenetic tests available to consumers. While recognizing that some groups question whether genetic testing for personalized nutrition is ready for 'prime time', Gorman and colleagues suggested that there are certain specific nutrigenetic interactions with strong evidence that could be considered for implementation into clinical practice by expert committees who are responsible for creating dietary guidelines (10). With this in mind, systematic reviews that include an evaluation of levels of evidence are urgently needed in order to determine if there are any nutrigenetic associations that may warrant potential implementation into practice. The dominant omega-3 polyunsaturated fatty acids are eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which typically come from marine sources (e.g. fish oil), and alpha-linolenic acid (ALA), which are rich in plant sources (e.g., canola oil) (11,12). It is well established that higher intakes of omega-3 fatty acids from foods or supplements (herein after referred to collectively as "omega-3s"), particularly from long-chain EPA and DHA, tend to improve indicators of cardiometabolic health (12,13). In

97	terms of their lipid and lipoprotein lowering effects, omega-3s have consistently
98	demonstrated an impact on triglycerides (TG) (14). High-quality evidence from
99	population-based studies suggests that long-chain omega-3s (EPA and DHA) reduce
100	plasma TG by about 15% (14). There is also high-quality evidence suggesting that EPA
101	and DHA can raise high-density lipoprotein (HDL) cholesterol (14). Other studies have
102	further demonstrated a relationship between omega-3 and HDL-cholesterol (15), low-
103	density lipoprotein (LDL)-cholesterol (15), total cholesterol (16-18), apolipoproteins
104	(19), and LDL particle size (20). Despite several studies with significant findings for
105	these outcomes, when reviewing the evidence, studies have demonstrated conflicting
106	results for the impact of omega-3 on many lipid profile outcomes (14). Genetic variation
107	could explain this heterogeneity. EPA and DHA have been shown to significantly impact
108	the expression of thousands of genes including those involved in inflammatory and
109	atherogenic pathways (21,22). Evidence now demonstrates that the health impacts of
110	omega-3 intake could differ based on genetic variation (23,24). Despite the potential for
111	omega-3s to have a significant positive impact on health outcomes, population intakes of
112	omega-3s tend to be low (25). While the World Health Organization's Adequate Intake
113	level for adults is 200-250 mg EPA+DHA daily (26,27), the mean reported intake of
114	EPA+DHA in the United States is only approximately 100 mg daily (25). Nutrigenetic
115	interventions have the potential to motivate improvements in dietary intake beyond
116	population-based interventions (28). Additionally, evidence suggests that genetic
117	variability affects health responses to omega-3s (23). Thus, critically appraising and
118	grading the evidence for nutrigenetic interactions related to omega-3s and plasma lipids,
119	lipoproteins and apolipoproteins is an important research priority. The most recent

Page 7 of 75

59

60

BMJ Open

	~
	•
۰.	

120	systematic review on nutrigenetic interactions related to omega-3s and intermediate
121	phenotypes of cardiovascular disease was conducted nearly a decade ago, and this study
122	did not evaluate the quality of evidence using an established methodology (29).
123	Therefore, we aimed to provide a comprehensive summary of current evidence related to
124	inter-individual variability in plasma lipid, lipoprotein and apolipoprotein responses to
125	omega-3 intake (plant and marine sources) based on genetic variations. Overall, the
126	specific objectives of this study were as follows:
127	Objective 1. Systematically search, identify (select), and provide a narrative
128	synthesis of all studies that assessed nutrigenetic associations/interactions for genetic
129	variants (comparators; i.e. outcomes in those with a specific genotype for a genetic
130	variant compared to a different genotype) influencing the plasma lipid, lipoprotein
131	and/or apolipoprotein response (outcomes) to omega-3 fatty acid intake
132	(intervention/exposure) in humans – both pediatric and adult populations
133	(population).
134	Objective 2. Assess the overall quality of evidence for specific priority nutrigenetic
135	associations/interactions based on the following inclusion criteria: nutrigenetic
136	associations/interactions reported for the same genetic variants (comparators)
137	influencing the same plasma lipid, lipoprotein and/or apolipoprotein response
138	(outcomes) to omega-3 fatty acid intake (intervention/exposure) in humans - both
139	pediatric and adult populations (population) in two independent studies, irrespective
140	of the findings.
141	
	120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 132 133 134 135 136 137 138 139 140

142 143 144	Methods Patient and Public Involvement: No patient involvement.
145	Literature Search
146	The systematic review protocol was registered with PROSPERO (CRD42020185087).
147	The review process was guided by previously established methods, including a
148	previously outlined five-step systematic review process (30,31). The search engines
149	Embase, Web of Science and Medline OVID were used to conduct the search starting in
150	May 2020 and screen for articles meeting inclusion criteria, using the comprehensive
151	search terms outlined in Supplementary Table 1, properly combined by Boolean
152	operators. The literature was searched up until August 1, 2020 (there was no minimum
153	start date; any article published prior to this date was included in the search). A PRISMA
154	diagram (Figure 1) guided the article screening process (32).
155	Inclusion and Exclusion Criteria
156	Original studies were included if they were written in English or French. Inclusion
157	criteria were developed using the Population, Intervention, Comparison, Outcomes,
158	(PICO) and Population, Exposure, Comparison, Outcomes (PECO) methods (33,34) for
159	interventional and observational research, respectively. These are detailed in Table 1 for
160	each study objective.
161	Table 1. PICO/PECO for Study Objectives

	PICO/PECO for Objective 1:
Population	Human studies (adult and pediatric)
Intervention/	Omega-3s (total omega-3 or various types; supplemental and/or dietary
Exposure	intake)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

'5		BMJ Open
		8
	Comparison	Genetic variation
	Outcomes	HDL-cholesterol, LDL-cholesterol, LDL particle size, total
		cholesterol, apolipoproteins, and/or IG
	Population	Human studies (adult and pediatric)
	Intervention/	Omega-3s (total omega-3 or various types: supplemental and/or dietary
	Exposure	intake)
	Comparison	Genetic variation in the same genetic location [gene(s) and SNP(s)]
	Outcomes	The same outcome of interest among studies with the same genetic comparators: HDL-cholesterol, LDL-cholesterol, LDL particle size, total cholesterol, apolipoproteins, and/or TG
162	*Nutrigenetic ass	sociations/interactions were included in objective 2, in the evidence grading
163	process, irrespec	tive of the findings, provided that they had been reported in at least two
164	independent stud	tes on the same gene(s) and SNP(s), and the same plasma outcome.
165	There were no l	imitations to the population characteristics (all populations/patient
166	samples were in	cluded). Animal studies were excluded. Dietary interventions and
167	observational st	udies involving omega-3s (total omega-3 or various types; supplemental
168	and/or dietary in	ntake) and comparing lipid and/or lipoprotein and/or apolipoprotein
169	outcomes betwe	een different genetic variations based on omega-3 dietary or supplemental
170	intake (and not	blood fatty acid levels; e.g. EPA and DHA in red blood cells) were
171	included in the	narrative synthesis. In included studies, samples had to be stratified on the
172	basis of genetic	variation. Specific lipid and lipoprotein outcomes of interest were: HDL-
173	cholesterol, LD	L-cholesterol, LDL particle size, total cholesterol, apolipoproteins, and
174	triglycerides (Te	G). Studies that reported ratios of the aforementioned lipid parameters
175	(e.g. HDL-chole	esterol to total cholesterol ratio) were also included. Both observational
176	and interventior	hal studies were included, as well as single-gene, polygenic and genome-
177	wide association	n studies (GWAS). Differences in study designs and methods were
178	considered whe	n developing the overall evidence grades, as further detailed below.
179	Associations/int	teractions reported in two independent studies formed the basis of the
180	inclusion criteri	a for objective 2, in which nutrigenetic associations/interactions were

prioritized for evidence grading. This is further detailed in Table 1 and the section belowentitled "Evidence Grading."

183 Article Selection and Data Extraction

Two independent investigators (JK and VG) screened articles using the computer software *Covidence* (including title, abstract, and full-text screening) and extracted data from the included articles. Reference lists of included articles and of a systematic review on a similar topic (35) were also screened for relevant articles. Data extraction templates were piloted by two independent investigators (JK and VG) on ten included studies and revised accordingly. The final data extraction templates included the following components for each study: first author name and year, study design, genetic approach, population and sample size, study duration (interventional studies only), genes and single nucleotide polymorphisms (SNPs) analyzed with rs numbers, quantity and type of omega-3, comparisons (e.g. a control group or different amount/type of omega-3s as well as genetic grouping), lipid/lipoprotein outcome(s), whether or not the study reported that they followed STREGA guidelines and a summary of statistically significant study findings relevant to the research question. Corresponding authors of included studies were contacted as needed to provide clarity and/or additional information about the included studies.

199 Evidence Grading

Upon reading all full-text articles included, and summarizing the body of evidence
(Tables 2 and 3), SNPs/nutrigenetic risk scores (nutri-GRSs) and subsequent
lipid/lipoprotein/apolipoprotein outcomes were systematically prioritized and selected for

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 11 of 75

1

60

BMJ Open

1

2		
3 4	203	evidence grading, if a specific nutrigenetic association/interaction was reported in at least
5 6	204	two independent studies. To clarify, this refers to the same SNP(s)/nutri-GRS [or SNPs
7 8	205	in strong linkage disequilibrium (LD)] being assessed and influencing the same
9 10 11	206	lipid/lipoprotein outcome in at least two studies. For these nutrigenetic
12 13	207	associations/interactions, we proceeded with evidence grading, while including all
14 15	208	studies relevant to the particular nutrigenetic association/interaction, irrespective of the
16 17	209	findings. Consistency of results was then one of several factors considered when grading
18 19 20	210	the body of evidence. The Grading of Recommendations Assessment, Development and
21 22	211	Evaluation (GRADE) approach indicates that a single study rarely (if ever) results in
23 24	212	strong evidence, but two studies (typically RCTs) can indicate strong evidence if they are
25 26 27	213	graded highly using the GRADE criteria (36). Prior to selecting the nutrigenetic
27 28 29	214	associations/interactions (genetic variants and lipid/lipoprotein/apolipoprotein outcomes)
30 31	215	for evidence grading, LD was assessed using the SNIPA SNP Annotator Software (37)
32 33	216	for genes located on the same chromosome and arm (determined using the Online
34 35 26	217	Mendelian Inheritance in Man [®] [OMIM] database) as outlined in the summary of
30 37 38	218	results' tables in the column labelled 'Cytogenic Location of Gene(s)' (Tables 1 and 2).
39 40	219	Strong LD was defined as $r^{2}>0.8$ and location <250 kb away from the index SNP
41 42		
43	220	location. SNPs in strong LD were considered together for the purposes of evidencing
44 45 46	221	grading.
47 48	222	Based on our abovementioned predetermined criteria for specific nutrigenetic topic
49 50	223	selection for evidence grading, nutrigenetic associations/interactions that were not
51 52 53	224	included in the evidence grading process likely have weak evidence (at minimum due to
55		
55 56	225	lack of replication, for example, ZNT8 rs13266634 and HDL-c or TG responsiveness to
57		
58 59		

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

226	omega-3, which has only been assessed in a single study (38)). According to the GRADE
227	guidelines, when only a single study exists indicating significant findings for an outcome
228	of interest (especially when the study is observational), the overall quality of the evidence
229	is generally rated to be low or very low (39). Therefore, our process for prioritizing
230	nutrigenetic topics for evidence grading aimed to filter out specific nutrigenetic
231	associations/interactions that would likely be deemed low or very low quality (based on,
232	at minimum, lack of replication). Two authors (JK and VG) critically appraised the
233	selected nutrigenetic interactions using the GRADE methodology (39,40). Nutrigenetic
234	interactions were grouped according to studies assessing the same SNP(s)/nutri-GRS and
235	lipid/lipoprotein/apolipoprotein outcome, and the quality of the body of evidence (studies
236	with significant and non-significant results) was rated; this process was guided by the
237	GRADE Evidence Profile, which included consideration of risk of bias, inconsistency,
238	indirectness, imprecision, publication bias, plausible confounding, dose-response and
239	other factors (39). For example, different sources of omega-3s (e.g. EPA+DHA vs. ALA;
240	food sources vs. supplementation) were taken into consideration when grading the
241	evidence through the analysis of indirectness within the GRADE approach (39,40). Risk
242	of bias was assessed in each of the included interventional and observational studies
243	using the National Institutes of Health Study Quality Assessment Tools, in line with
244	recently published recommendations for risk of bias assessments (41). To assess
245	measures of precision, coefficients of variation (CV) were calculated based on outcome
246	means (mean change or absolute values - whichever was used for the analyses) and
247	standard deviations. In cases where standard errors of the mean were reported, these were
248	converted to standard deviations to calculate the CV. The nutrigenetic interactions were

BMJ Open

each given an evidence grade of high, moderate, low or very low.

250	Results
251 252	Figure 1 outlines the PRISMA Flow Diagram, which was used to guide the systematic
253	review. Supplementary Tables 2 and 3 provide a summary of the 65 included studies. The
254	results columns of Supplementary Tables 2 and 3 (far right) indicate nutrigenetic findings
255	that were statistically significant. Any results related to the studies' analyzed SNPs and
256	outcomes of interest that were not statistically significant are not indicated in the results
257	column. No studies explicitly reported that they followed STREGA guidelines. LD
258	analysis of SNPs tested in different studies revealed strong LD in several SNPs from the
259	FADS gene cluster (see Table 2 footnote). As such, LD was taken into consideration in
260	the selection of nutrigenetic interactions selected for evidence grading.
261	Observational Studies

Observational Studies

Of the 65 included studies, 23 were observational with the majority of these being cross-sectional, as outlined in Supplementary Table 2. A total of 62,221 participants were included in the observational studies. These studies assessed correlations among a number of different genetic variations and outcomes, with several studies assessing genetic variations in the FADS gene cluster (42–48), $TNF\alpha$ (49–51) and $PPAR\alpha$ (52–54). Most studies (n=13) assessed total omega-3s (38,42,47–49,51,54–60). The intake and type of omega-3s, lipid/lipoprotein/apolipoprotein outcomes and associations revealed from these studies were variable as further detailed in Supplementary Table 2. In the observational studies assessing genetic variation in the FADS gene cluster, some studies indicated significant gene-diet findings related to HDL-cholesterol, LDL-cholesterol, TG,

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
27	
25	
20	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
30	
10	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
55	
54	
55	
56	
57	
58	
59	
60	

1

272 total-cholesterol while other studies demonstrated no significant gene-diet interactions for 273 these outcomes thus indicating notable inconsistency among the results, while considering that SNPs differed by studies (42-48). In the observational studies focused 274 275 on genetic variation in the $TNF\alpha$ gene, there was some evidence of a gene-diet 276 relationship for omega-3 and LDL-cholesterol, total-cholesterol and total-277 cholesterol:HDL-cholesterol ratio, but again, results differed between studies (49–51). For gene-diet relationships and PPAR α genetic variation, individual studies indicated 278 279 significant findings related to total-cholesterol, LDL-cholesterol, TG, apoC-III and LDL 280 peak particle diameter (52–54). Comprehensive details of the observational studies are outlined in Supplementary Table 2. 281

282 Interventional Studies

283 Of the 65 included studies, 42 were interventional including 16 randomized trials. Non-284 randomized studies included single arm clinical trials and sequential non-randomized 285 cross-over interventions. For interventional studies, n=6,225 participants upon combining all sample sizes of the included studies. Again, these studies assessed relationships 286 287 between a number of different genetic variants and study outcomes. In more recent years, 288 several studies (n=8) used a nutri-GRS or polygenic approaches (61–68) given the 289 plausibility that many gene-lipid/lipoprotein/apolipoprotein and omega-3 interactions are 290 polygenic in nature. Numerous studies assessed genetic variations in the FADS gene 291 cluster (61,62,69–71), APOE (61,71–80), CD36 (67,81,82), PPARy2 (62,67,83–85) and 292 $PPAR\alpha$ (83,86,87). Among these studies, results related to significant gene-diet (omega-293 3) associations influencing lipid/lipoprotein outcomes were generally inconsistent except 294 for APOE (rs429358 and rs7412), omega-3 and TG in males only (71-75,77-80), and for

BMJ Open

a 31-SNP nutri-GRS, omega-3 and TG (65,66). There was also consistent evidence to indicate a lack of association among *PPARy2* (rs1801282) genetic variation, EPA+DHA and LDL cholesterol (62,67,84,85,88). Most studies (n=40) used supplemental EPA and/or DHA sources of omega-3s for the dietary intervention (see Supplementary Table 3). The dosage/intake and type of omega-3s were variable with EPA and/or DHA dosages ranging from 0.5-3.7 g/day across different studies, and one study with an ALA intervention dosage of 8.1 g/day, as further detailed in Table 3. Levels of Evidence Using GRADE A total of 25 articles were included in the evidence grading process, representing 11 unique nutrigenetic associations/interactions as outlined in Tables 2 and 3, and Supplementary Table 4. Through the GRADE process, it was determined that there is strong evidence (GRADE rating: moderate quality) for APOE genotypes (rs7412, rs429358), omega-3s and TG lowering in male adults only (71–75,77–80). This evidence suggests that adult males (but not females) with the APOE-E3/E4 or E4/E4 genotype (rs429358, rs7412) tend to experience significant reductions in TG in response to 0.7-3.7 g/day of EPA and/or DHA, with higher dosages demonstrating greater TG lowering effects (71–75,77–80). Furthermore, it was determined that there is strong evidence (GRADE rating: high quality) for using a 31-SNP nutri-GRS (detailed in Supplementary Tables 5 and 6) to assess the effectiveness of omega-3s for TG lowering in adults with overweight/obesity in various ethnicities (65,66). The evidence suggests that in adults with overweight/obesity, lower genetic risk scores demonstrate greater responsiveness to omega-3 supplementation (65,66).

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

- 317 All other evidence that was evaluated was determined to be weak (GRADE rating: low or
- 318 very low quality), as further detailed in Table 2. Imprecision, indirectness, and
- 319 inconsistency were common reasons for downgrading the evidence (refer to Table 2
- 320 footnote). There was evidence for a plausible mechanism of action for most of the
- 321 nutrigenetic interactions that were graded; evidence of a dose response was less common.

to beer to lie work

Table 2. GRADE Evidence Profile: Genetic Variation, Omega-3 and Lipids

⁹ Nutrigenetic interactions for omega-3 and plasma lipid/lipoprotein outcomes

Patient or Population: adults

Antervention/Exposure: dietary or supplemental omega-3 (EPA and/or DHA and/or ALA) Comparison/Control: genetic variation, different omega-3 intakes

Outcomes: plasma lipids and lipoproteins

7 <i>Gene</i> rs Number and 18 Lipid: Number and 10 Type of Studies (total <i>n</i>)	Limitations	Inconsistency	Indirectness	Imprecision	Publication Bias	Dose Response	Biological Plausibility*	Quality	Conclusion
20 <i>CD36</i> rs1761667 and 21 HDL-c: 22 1 RCT and 1 single arm trial (<i>n</i> =115) (81,89) 23	Serious limitations ^a	Serious inconsistency ^b	Serious indirectness ^c	Serious imprecision ^d	Undetected	No evidence of a gradient	Evidence of a mechanism of action	⊕⊕⊖⊖ (Low)	Weak evidence suggests that possessing the GA or possibly the AA genotype of <i>CD36</i> rs1761667 could lead to significant increases in HDL-c in response to 0.8-3.0 g/day of omega-3s.
24 CD36 rs1761667 and 25 TG: 26 1 RCT and 1 single arm 27 trial (n=115) (81,89)	Serious limitations ^a	Serious inconsistency ^b	Serious indirectness ^c	Serious imprecision ^e	Undetected	No evidence of a gradient	Evidence of a mechanism of action	$\begin{array}{c} \oplus \oplus \ominus \ominus \\ \text{(Low)} \end{array}$	Weak evidence suggests that possessing the GA or possibly the GG genotype of <i>CD36</i> rs1761667 could lead to significant reductions in TG in response to 0.8-3.0 g/day of omega-3s.
28 29 <i>CD36</i> rs1049673 and 9 HDL-c: 30 1 RCT and 1 single arm 31 trial (<i>n</i> =115) (81,89) 22	Serious limitations ^a	Serious inconsistency ^b	Serious indirectness ^c	No serious imprecision	Undetected	No evidence of a gradient	Evidence of a mechanism of action	⊕⊕⊝⊝ (Low)	Weak evidence suggests that possessing the CG or possibly the CC genotype of <i>CD36</i> rs1049673 could lead to significant increases in HDL-c in response to 0.8-3.0 g/day of omega-3s.
33 CD36 rs1527483 and 34 TG: 35 1 RCT and 1 single arm 36 trial (n=250) (67,81)	Serious limitations ^f	No serious inconsistency	Serious indirectness ^g	Very serious imprecision ^e	Undetected	No evidence of a gradient	Evidence of a mechanism of action	⊕⊕⊖⊖ (Low)	Weak evidence suggests that possessing the GG genotype of <i>CD36</i> rs1527483 could lead to significant decreases in TG in response to approximately 2.0 g/day of EPA+DHA (but not ALA).
74POE rs429358, rs7412 8 and TG: 4 RCTs and 5 9 single arm trials (1 single 10 arm trial consisted of a	No serious limitations	No serious inconsistency	Serious indirectness ^h	No serious imprecision	Undetected	Evidence of a gradient	Evidence of a mechanism of action	⊕⊕⊕⊖ (Moderate)	Strong evidence suggests that adult males (but not females) with the <i>APOE</i> -E3/E4 or E4/E4 genotype (rs429358, rs7412) experience significant reductions in TG in

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2									
3	1	1	1		1	1	1	1	
subset sample of another single arm trial)									DHA. Higher dosages may have greater TG
(n=980)(71-75,77-80)									lowering effects.
<i>APOE</i> rs429358, rs7412								$\Theta \Theta \Theta \Theta$	In males and females combined, strong
and Total-c: 4 RC1s, 5								(Moderate:	evidence suggests that there is no nutrigenetic
9 single arm trials (1 single							Look of	Males and	(red20258, re7412) and total a There is no
10 arm trial consisted of a	No sorious	Sorious	Sorious	No sorious		No avidance	Lack of	Females)	(IS429358, IS7412) and total-c. There is no
single arm trial) 1 cross-	limitations	inconsistency	indirectnessh	imprecision	Undetected	of a gradient	mechanism of	and	$\Delta I \Delta APOF$ (rs429358 rs7412) and total-c
sectional and longitudinal	minutions	meonsistency	indirectiless	mprecision		of a gradient	action	and	In male subgroups weak evidence suggests
³ analysis within an RCT							uuuuu		that there is no nutrigenetic interaction
4(n=2,446)(55,71-75,77-								(Low:	between ALA or EPA and/or DHA, APOE
15 80)								Males)	(rs429358, rs7412) and total-c.
16									Strong evidence suggests that in adults with
1731-SNP Nutri-GRS and									overweight/obesity, a 31-SNP genetic risk
18 TG:	No serious	No serious	Serious	No serious		Evidence of	Some evidence	••••	score can predict TG responsiveness to
191 RCT, 1 single arm trial	limitations	inconsistency	indirectness ^j	imprecision	Undetected	a gradient ^k	of a mechanism	High	EPA+DHA supplementation. Individuals
20 (n=330) (65,66)		5					of action ¹		with lower genetic risk scores demonstrate
21									lowering
22PPARg2 rs1801282 and							Lack of		Strong evidence suggests that genetic
23LDL-c: 4 RCTs. 1 single	No serious	No serious	Serious	Serious		No evidence	evidence of a	0000	variation in <i>PPARg2</i> (rs1801282) does not
arm trial $(n=670)$	limitations	inconsistency	indirectnessm	imprecision ⁿ	Undetected	of a gradient	mechanism of	(Moderate)	influence LDL-c responses to omega-3s
(62,67,84,85,88)		5		1			action	, , , , , , , , , , , , , , , , , , ,	(EPA+DHA).
26									Weak evidence suggests that possessing the
77PP4Ra2 rs1801282 and							Lack of		CG or GG genotype of <i>PPARg2</i> (rs1801282)
oTotal-c: 4 RCTs 1 single	No serious	Serious	Serious	Serious		No evidence	evidence of a		could lead to significant increases in total-c in
arm trial $(n=670)$	limitations	inconsistencyo	indirectness ^m	imprecision ⁿ	Undetected	of a gradient	mechanism of	(Low)	response to approximately 3 g/day of omega-
(62,67,84,85,88)						0.000	action	()	3s (EPA+DHA) in individuals with
BO CONTRACTOR									overweight or obesity, but not for individuals
<u>B1</u>									Weak evidence suggests that genetic variation
B2 PP4Rg2 rs1801282 and									in $PPAR\sigma^2$ (rs1801282) does not influence
3 TG: 4 RCTs. 1 single arm	No serious	Very serious	Serious	Serious		No evidence	Evidence of a		total-c responses to omega-3s (EPA+DHA).
$\frac{34}{\text{trial}(n=670)}$	limitations	inconsistency ^p	indirectness ^m	imprecision ⁿ	Undetected	of a gradient	mechanism of	(Low)	but when dietary total fat and saturated fat
35 (62,67,84,85,88)				1			action		intake are low, nutrigenetic interactions may
36									exist.
37 <i>FADS</i> (rs174547**) and	Very serious	No serious	Very serious	Serious		No evidence	Evidence of a		Weak evidence suggests that genetic variation
38 Total-c: 2 RCTs, 1	risk of bias ^q	inconsistency	indirectness ^r	imprecision ⁿ	Undetected	of a gradient	mechanism of	(Very Low)	in <i>FADS</i> (rs174547**) does not influence
39 ^{single-arm trial, 4 cross-}				- r			action	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	total-c responses to omega-3.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	
T	

1											T
2											
3											
1											
- sectional studie	s (n=9365)									
(44,45,47,48,	61,69,71)	,									
6	*Direct	mechanisms of act	tion were conside	red	-	•		•	•	-	
/											
8	**FADS	s rs174547 was in	strong LD with th	ne following SN	Ps from other inclu	uded studies and	therefore these \$	SNPs were also inc	cluded in the sele	ection of studies asses	sing FADS genetic
9	variation	i, n-3 intake and L	DL-c: rs174546,	rs174599, rs174	601, rs174583, rs1	1353, rs174561, r	s174556, rs1745	545, rs174537 and	rs174576.		
10						1.1. 1.70					
11	HDL-c:	high-density lipop	rotein cholestero	l, LDL-c: low-de	ensity lipoprotein o	cholesterol, TG: 1	riglycerides, tot	al-c: total choleste	rol		
12	9	Small cample sizes	especially among h	omozugous group	in the PCT (with a	larger heterozygou	s group potential	ly affecting the result	ta)		
13	a. b	Some variation in re	sults by genotype	omozygous group	s in the RC1 (with a	larger neterozygou	s group, potential	ly affecting the result	(5)		
14	с.	One study sample co	onsisted of all male	s while the other sa	umple consisted of b	oth men and wome	n; differences in a	ge and n-3 dosages (with some overlap))	
15	d.	Coefficient of variat	ion >1 for all signif	icant values	1		,	6 6 (1	,	
16	e.	Coefficient of variat	ion substantially >1	for several values							
17	f.	Small sample size w	ithin genotype grou	ips for minor allele	homozygote and he	eterozygote groups	in the RCT	-			
18	g.	One study sample co	onsisted of all men	while the other cor	isisted of men and p	ostmenopausal wor	nen with type 2 di	abetes	. 1 1		1 (1
19	n.	samples	omega-3 dosages, a	nd types (with som	le overlap), and dieta	ary interventions ev	en when consider	ing studies with male	e study samples se	parate from male + fema	le study
20	i.	Serious inconsistent	v for men subgrou	only: men + won	en samples were co	nsistent					
20	j.	EPA and DHA sepa	rate on one study a	nd EPA+DHA in th	ne other, sample stra	tified into two grou	ips in one study (r	esponders and non-re	esponders) and sep	parated into three groups	(responders,
21	U U	non-responders and	adverse responders)	· •				. , .	•	· • ·
22	k.	Evidence of a gradie	ent for GRS and TG	responsiveness to	omega-3 supplement	ntation	•				
23	l.	Some evidence of a	potential mechanis	n of action for <i>IQ</i>	CJ-SCHIP1, NXPH1	, PHF17, MYB and	NELLI as discus	sed by Rudkowska e	t al. (63), Vallée N	larcotte et al. (64)	
24	m.	Differences in popul	lation (healthy adul	is, adults with chro	nic disease or obesit	ty, infants), some v	ariation in length	of follow-up nd SD/SEM			
25	11. 0	Some variation in re	sults even when co	nsidering difference	es in BMI and popul	lations among stud	ies	IIG SD/SEW			
26	р.	Major variability in	results even when c	onsidering differe	nces in BMI and popul	oulations among stu	idies				
27	q.	Risk of bias detected	l in every study exc	ept one							
28	r.	Major differences in	populations, types	and amounts of or	nega-3 and follow-u	p for interventional	studies				
29											
30											
31											
32											
33											
34											
35											
36											
37											
38											
39											
40											
41											
42											
43											
44											
45				For peer revie	w only - http://	bmjopen.bmj.o	:om/site/abou	ıt/guidelines.xht	ml		
46											

Study	Risk of Rios
Dawczynski et al. 2013	
Maddan at al. 2015	0
CD_{36} rs17	61667 and TC
Study	Risk of Bias
Dawczynski et al 2013	
Madden et al 2008	9
<i>CD36</i> , rs1049	0673 and HDL-c
Study	Risk of Bias
Dawczynski et al. 2013	Θ
Madden et al. 2008	θ
<i>CD36</i> , rs15	27483 and TG
Study	Risk of Bias
Zheng et al. 2018	Φ
Madden et al. 2008	Θ
<i>ApoE</i> , rs42935	8, rs7412 and TG
Study	Risk of Bias
AbuMweis et al. 2018	Θ
Carvalho-Wells et al. 2012	\oplus
Caslake et al. 2008	\oplus
Dang et al. 2015	\oplus
Jackson et al. 2012	Θ
Minihane et al. 2000	\oplus
Olano-Martin et al. 2010	\oplus
Paschos et al. 2005	Θ
Thifault et al. 2013	\oplus (
<i>ApoE</i> , rs429358,	rs7412 and Total-c
Study	Risk of Bias
AbuMweis et al. 2018	Θ
Carvalho-Wells et al. 2012	\oplus
Caslake et al. 2008	\oplus
Dang et al. 2015	\oplus
Fallaize et al. 2016	Θ
Jackson et al. 2012	Θ
Minihane et al. 2000	\oplus
Olano-Martin et al. 2010	\oplus
Paschos et al. 2005	Θ
Thifault et al. 2013	\oplus
31-SNP Nutr	ri-GRS and TG
Study	Risk of Bias
Allée Marcotte et al. 2019	θ

Table 3. Summary of Risk of Bias Across SNPs and Outcomes Following Omega-3Exposure/Intervention

DD1Da7 vs181	1282 and I DI
Study	Risk of Bias
Binia et al 2017	
Harslof et al 2014	
Itariu et al 2012	¥
Lindi et al 2003	
Zheng et al 2018)
<i>PPARg2</i> , rs180	1282 and Total-c
Study	Risk of Bias
Binia et al. 2017	Θ
Harslof et al. 2014	\oplus
Itariu et al. 2012	\oplus
Lindi et al. 2003	Θ
Zheng et al. 2018	\oplus
PPARg2, rs18	801282 and TG
Study	Risk of Bias
Binia et al. 2017	Θ
Binia et al. 2017 Harslof et al. 2014	Θ
Binia et al. 2017 Harslof et al. 2014 Itariu et al. 2012	
Binia et al. 2017 Harslof et al. 2014 Itariu et al. 2012 Lindi et al. 2003	Ο Φ Φ Ο
Binia et al. 2017 Harslof et al. 2014 Itariu et al. 2012 Lindi et al. 2003 Zheng et al. 2018	
Binia et al. 2017 Harslof et al. 2014 Itariu et al. 2012 Lindi et al. 2003 Zheng et al. 2018 <i>FADS</i> , rs1745	⊖ ⊕ ⊕ ⊖ ⊖ ⊖ ⊕ 547 and Total-c
Binia et al. 2017 Harslof et al. 2014 Itariu et al. 2012 Lindi et al. 2003 Zheng et al. 2018 FADS, rs1745 Study	 ⊖ ⊕ ⊕ ⊖ ⊖ ⊕ 547 and Total-c Risk of Bias
Binia et al. 2017 Harslof et al. 2014 Itariu et al. 2012 Lindi et al. 2003 Zheng et al. 2018 FADS, rs1745 Study AbuMweis et al. 2018	⊖ ⊕ ⊕ 0 0 0 0 0 0 0 0 0 0 0 0 0
Binia et al. 2017 Harslof et al. 2014 Itariu et al. 2012 Lindi et al. 2003 Zheng et al. 2018 FADS, rs1745 Study AbuMweis et al. 2018 Alsaleh et al. 2014	 ⊖ ⊕ ⊕ ⊖ ⊕ 547 and Total-c Risk of Bias ⊖ ⊕ ⊕
Binia et al. 2017 Harslof et al. 2014 Itariu et al. 2012 Lindi et al. 2003 Zheng et al. 2018 FADS, rs1745 Study AbuMweis et al. 2014 Lu et al. 2010	⊖ ⊕ ⊖ ⊕ 547 and Total-c Risk of Bias ⊖ ⊕ ⊕
Binia et al. 2017 Harslof et al. 2014 Itariu et al. 2012 Lindi et al. 2003 Zheng et al. 2018 FADS, rs1745 Study AbuMweis et al. 2018 Alsaleh et al. 2014 Lu et al. 2010 Standl et al. 2012	 ⊖ ⊕ ⊕ ⊕ 47 and Total-c Risk of Bias ⊖ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
Binia et al. 2017 Harslof et al. 2014 Itariu et al. 2012 Lindi et al. 2003 Zheng et al. 2018 FADS, rs1745 Study AbuMweis et al. 2018 Alsaleh et al. 2014 Lu et al. 2010 Standl et al. 2012 Dumont et al. 2011	 □ □ □ □ □ □ 0
Binia et al. 2017 Harslof et al. 2014 Itariu et al. 2012 Lindi et al. 2003 Zheng et al. 2018 FADS, rs1745 Study AbuMweis et al. 2018 Alsaleh et al. 2010 Standl et al. 2012 Dumont et al. 2011 Dumont et al. 2018	 □ □ □ □ □ 0 0

 \oplus no serious risk of bias; \ominus serious risk of bias; $\ominus \ominus$ very serious risk of bias (for study design type using NIH Study Quality Assessment Tools)

HDL-c: high-density lipoprotein cholesterol, LDL-c: low-density lipoprotein cholesterol, TG: triglycerides, total-c: total cholesterol

2		
3 4	271	DISCUSSION
5 6	272	Overall, this sys
7 8	274	high quality evi
9 10 11	275	(rs429358 and r
12 13	276	SNP nutri-GRS
14 15	277	Limited evidence
16 17 18	278	apolipoprotein a
19 20	279	review meeting
21 22	280	replication stud
23 24	281	other lipid outco
25 26 27	282	nutrigenetic inte
28 29	283	needed related t
30 31	284	nutrigenetic inte
32 33 34	285	same type and a
35 36	286	similar characte
37 38	287	should then seel
39 40	288	the effectivenes
41 42 43	289	omega-3s). The
44 45	290	to date often res
46 47	291	also be noted th
48 49 50	292	Thus, the GRAI
50 51 52	293	that this approa
53 54		
55		
57		
58 59		-
60		For

1

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

272	Overall, this systematic review found strong evidence (i.e. GRADE ratings: moderate and
274	high quality evidence) for only a limited amount of evidence in this area: APOE
275	(rs429358 and rs7412) genotypes and TG responsiveness to omega-3s in men, and a 31-
276	SNP nutri-GRS and TG responsiveness to omega-3s in adults with overweight/obesity.
277	Limited evidence exists for individual genetic-based responsiveness of omega-3s on
278	apolipoprotein and/or LDL particle size, with no studies from the present comprehensive
279	review meeting the criteria for evidence grading. This highlights the need for more
280	replication studies in this area. While more research exists on omega-3 responsiveness for
281	other lipid outcomes such as total-c, HDL-c and LDL-c, the level of evidence for
282	nutrigenetic interactions related to these outcomes remains low. Again, more studies are
283	needed related to these outcomes, including replication studies of previously identified
284	nutrigenetic interactions. These studies should first replicate the interventions (i.e. use the
285	same type and amount of omega-3s as the original study), and recruit samples with
286	similar characteristics to the original study. Once replication is established, research
287	should then seek to expand the population studied to improve generalizability and explore
288	the effectiveness of different interventions (i.e. different formulations and doses of
289	omega-3s). The variability of the interventions and sample sizes in the studies conducted
290	to date often resulted in the quality of evidence being downgraded (see Table 2). It should
291	also be noted that study heterogeneity precluded the ability to conduct a meta-analysis.
292	Thus, the GRADE approach worked well for evaluating the quality of the evidence given
293	that this approach takes into consideration several factors when determining the quality of

BMJ Open

2

÷	
2	
3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
11	
12	
13	
14	
15	
16	
10	
17	
18	
19	
20	
21	
∠ I つつ	
22	
23	
24	
25	
26	
20	
27	
28	
29	
30	
31	
21	
32	
33	
34	
35	
36	
27	
5/	
38	
39	
40	
41	
41 42	
+Z	
43	
44	
45	
46	
17	
47	
48	
49	
50	
51	
52	
52	
23 -	
54	
55	
56	
57	
57	
28	
59	
60	

294	evidence such as risk of bias, indirectness of evidence, inconsistency or results,
295	imprecision and publication bias (39).

296

297 It is important to note that our results demonstrating strong evidence for interactions 298 between APOE genotypes and lipid responses to omega-3s have notable ethical 299 implications. Compared to non-carriers, carriers of APOE-E4 have a 15 times greater risk of developing Alzheimer's disease (90). Moreover, APOE genotypes are significantly 300 301 associated with CVD risk including risk of coronary artery disease and hyperlipidemia 302 (91–93). Interestingly, the pathology of Alzheimer's disease has been linked to 303 cardiovascular mechanisms (90). Future research should explore nutrigenetic interactions, 304 with risk of developing Alzheimer's disease as the study endpoint/outcome of interest. 305 Despite the current lack of knowledge about how diet may play a role in mitigating the 306 genetic-based risk of Alzheimer's disease, several potentially modifiable risk factors 307 account for around 40% of dementia and Alzheimer's disease globally (94), and the link 308 between Alzheimer's disease risk and APOE is well-established (95). Therefore, despite 309 the strong scientific validity identified in the present review, there are other factors that 310 must be considered before this test can be recommended for implementation in a practice setting; this includes ethical, legal and social implications (96). 311

312

In addition, our finding of strong evidence for *APOE* genotypes and TG responsiveness to omega-3s in men but not women speaks to the importance of taking biological sex into account in nutrigenetics research. The importance of this has been further highlighted elsewhere, where it has been noted that the results of nutrition and nutrigenetic research

317	may differ in men and women (97). For example, UDP-glucuronidation isoenzyme
318	expression profiles have been demonstrated to be regulated by sex hormones, and thus
319	sex-specific differences in glucuronidation of resveratrol have been observed (98). As
320	more studies are completed, researchers may find that certain nutrigenetic interactions
321	differ depending on biological sex, ethnicity, age or other factors, similar to our findings
322	on APOE, omega-3s and TG in which there was robust evidence of a nutrigenetic
323	interaction in males only. Researchers may also find explanations for this, which are
324	currently poorly understood. In general, it is becoming increasingly recognized that
325	health-related responses to different interventions may vary based on biological sex; this
326	is an important consideration of personalized nutrition (97). Nutrigenetic research often
327	groups men and women together, but stratifying based on biological sex could provide
328	further insights for specific nutrigenetic interactions and could also help explain why
329	some replication studies have had conflicting findings (97). Moreover, biomedical
330	research in general historically has been conducted more in men than women; yet such
331	research findings are often generalized to women despite limited research conducted in
332	samples of women, which is problematic for a number of reasons (99). In the present
333	review, the evidence was strong for the APOE findings in men only, but not women in
334	part because there were more studies conducted in men. Specifically, there were five
335	studies conducted in men and women (combined) (71,73,74,100,101), and four studies
336	conducted in samples of only men (75,78,79,102), yet no studies conducted in samples of
337	only women. This brings to light important issues of equity and warrants further
338	discussion and consideration.
339	

Page 25 of 75

BMJ Open

340	As research continues to develop, it appears likely that lipid and lipoprotein responses are
341	polygenic in nature. Therefore, future research should consider using nutri-GRSs or other
342	polygenic methods of assessing responsiveness to nutrition interventions. This work
343	should use unbiased approaches or non-hypothesis driven approach to derive nutri-GRSs,
344	such as establishing them from genetic-wide association studies. In addition to the two
345	studies meeting the criteria for evidence grading (65,66), a modified version of the 31-
346	SNP GRS was tested in men and women in the FINGEN study, using 23 of the 31 SNPs
347	(65). While this did not meet our inclusion criteria for evidence grading given that a
348	different GRS was used, the 23-SNP GRS was significantly associated with TG
349	responsiveness to omega-3 supplementation in this population as well, providing further
350	evidence for the scientific validity of this nutrigenetic interaction (65).
351	
352	While we used the GRADE approach to evaluate the body of evidence, several tools are
353	available for evaluating the quality of scientific evidence, though no generally accepted
354	methods exist for nutrigenetic research specifically. In 2017, Grimaldi et al. proposed a
355	set of guidelines to assess the scientific validity of genotype-based dietary advice (30).
356	While we originally intended to use these guidelines for assessing the evidence, we came
357	across some limitations that ultimately led us to use the GRADE guidelines. Specifically,
358	Grimaldi et al. (2017) suggested that only studies that include STREGA guidelines
359	should be included in the assessment of scientific validity (30). However, limiting the
360	evidence to only these studies could result in several important studies being missed. In
361	the present review, none of the included studies explicitly indicated that they followed
362	STREGA guidelines. In addition, it was recommended by Grimaldi et al. to use STREGA

guidelines to assess risk of bias (30). However, the STREGA checklist is only intended for observational genetic association studies - not interventional research (103). In the present review, 42 of the 65 included studies were interventional (65%) (Supplementary Table 3). In addition, the STREGA guidelines are intended to improve the transparency and adequate reporting of genetic association studies, but it is not intended to be used as a study quality assessment tool (103). However, Grimaldi et al. nicely highlighted the importance of understanding the nature of the genetic variation, at a functional level, when assessing scientific validity (30). This is not included in the standard GRADE approach but is an important niche component of nutrigenetic research. As such, an analysis of functional SNPs (biological plausibility) was included as an additional component of the standard GRADE process, as indicated in the methods section above. Overall, we found that the methods used in this systematic review were effective and can be used to synthesize and evaluate nutrigenetic studies assessing other gene-nutrient-health outcome interactions. The additional consideration of functional SNPs to the standard GRADE approach helped to strengthen this review, as biological mechanistic evidence can help ensure that study findings did not occur by chance alone, and this is a component of evidence evaluation frameworks in medical genetics (104,105). Transcriptomic and pathway analyses can help inform the direction of future nutrigenetic studies by generating hypotheses about the impact of specific genetic variations on varying responses to nutrition on health-related outcomes. For example, using transcriptomics and pathway analyses to identify changes in lipid metabolism following omega-3 supplementation, Rudkowska and

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 27 of 75

BMJ Open

386	colleagues identified six genes expressed in opposite directions between responders and
387	non-responders to omega-3 supplementation for TG lowering: FADS2, PLA2G4A,
388	ALOX15, PEMT, MGLL and GPAM (106). Tremblay et al. then built on this knowledge
389	and discovered that PLA2G6 rs132989, PLA2G7 rs679667, PLA2G2D rs12045689,
390	PLA2G4A rs10752979 and rs1160719 together explained 5.9% of post- omega-3
391	supplementation TG levels, with several individual PLA2G4A SNPs also having a
392	significant impact on the TG lowering effect of omega-3 supplementation (107). Others
393	have built on this mechanistic knowledge as well (108). Future research should now seek
394	to replicate this work given that we found that there have been no replication studies
395	completed and thus, this research (107,108) did not meet the criteria for evidence
396	grading.
397	
398	In the current body of literature, there are some limitations that should be highlighted.
399	Given the variability in allele frequencies for each SNP, it should be noted that study
400	limitations can arise with small sample sizes whereby some genotype groups may not be
401	adequately powered to detect significant differences. For example, Dawczynski et al.
402	(2013) detected significant changes in TG among the GA genotype group of CD36
403	rs1761667 (n=18) in response to omega-3s but neither of the homozygote groups (AA:
404	n=8, GG: n=7) exhibited a significant difference, despite similar directions and
405	magnitudes of effect among the GA and GG genotypes (82). It is thus possible that this
406	study was not adequately powered. Some researchers aim to mitigate this issue of small
407	numbers by grouping minor allele carriers together (i.e. heterozygotes + homozygotes for
408	the minor allele) (69). However, such an approach precludes the possibility to detect an

1	
2	
3	
4	
5	
6	
7	
, 8	
a	
10	
10	
11	
12	
13	
14	
15	
10	
1/	
10	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

409	allele-dosage effect. From a physiological perspective, an allele dosage effect would be
410	expected whereby a significant change among a heterozygote group would likely be
411	accompanied by a significant change in one of the homozygote groups but with an even
412	greater magnitude of the effect. This consideration highlights the importance of having an
413	adequately powered sample size, while factoring in the prevalence of each genotype.
414	
415	While single SNP research provides important information about individual gene-nutrient
416	interactions, the results of this review indicate that individual responses to omega-3s for
417	altering lipids, lipoproteins and apolipoproteins appear to be polygenic in nature. Thus,
418	we encourage researchers to further explore the use of nutri-GRSs to improve the
419	accuracy of genetic-based predictions. See, for example, the work of Vallée Marcotte et
420	al., which obtained a high quality evidence grade in the present review (65,66). This is
421	further exemplified in the analyses recently conducted by Chen et al. (42), which has yet
422	to be replicated and thus was not selected for evidence grading.
423	
424	The present analysis of scientific validity provides an important first step towards the
425	eventual development of clinical practice guidelines for genetic-based responses to
426	dietary intake. With questionable and variable scientific validity of existing consumer
427	nutrigenetic tests, the development of clinical practice guidelines is an important next
428	step as these can be used by HCPs and industry alike to help promote evidence-based
429	practice in personalized nutrition. Ideally, industry should use future clinical practice
430	guidelines to inform the nutrigenetic associations and related dietary recommendations
431	included in their reports. Decision aids can also be useful to guide clinical practice for

BMJ Open

2

-	
2	
h	
3	
Λ	
4	
5	
-	
6	
7	
/	
8	
0	
9	
-	
10	
11	
11	
12	
12	
13	
1 /	
14	
15	
15	
16	
17	
10	
10	
19	
20	
20	
71	
∠ I	
22	
~~	
23	
ว ⊿	
24	
25	
25	
26	
77	
27	
28	
20	
29	
20	
30	
21	
51	
32	
33	
24	
54	
35	
55	
36	
27	
37	
20	
20	
39	
40	
40	
11	
41	
42	
43	
11	
44	
45	
46	
47	
4/	
48	
UT	
49	
F^	
50	
51	
וכ	
52	
53	
E /	
54	
55	
56	
57	
57	
58	
50	
59	
~~	
60	

432 HCPs (109), and future research should seek to develop a decision aid related to omega433 3s and lipid/lipoprotein outcomes based on genetic variation.

434

435 It should be noted that there are some limitations to the present systematic review. First, 436 the literature was searched up until August 2020; as such, any articles published after this 437 date were not included. Furthermore, certain nutrigenetic associations/interactions were prioritized for evidence grading therefore evidence grades remain unknown for numerous 438 associations/interactions included in the narrative synthesis. However, evidence from a 439 440 single study typically results in an evidence grade of low or very low using the GRADE approach (39), therefore it is unlikely that any/many nutrigenetic associations/interactions 441 with strong scientific validity (which could be considered for use in clinical practice) 442 443 were missed. Future research groups may choose to instead select a specific SNP or nutri-GRS as the focus of future systematic reviews. The specific SNP or nutri-GRS chosen 444 may be selected based on the results of a preliminary scoping review. This would allow 445 for all articles included in the systematic review to undergo evidence grading. The 446 approach taken in the present review was more comprehensive, but has its limitations as 447 448 stated above.

449

Overall, we have provided a comprehensive overview the body of evidence related to
nutrigenetics, omega-3s and plasma lipids/lipoproteins/apolipoproteins, while providing
an overview of levels of evidence in this field. To our knowledge, this is the first
systematic review with GRADE evidence evaluation in the broader field of nutrigenetics.
The results of this work should be used in clinical practice guideline development, to

1		
2		
3	455	ultimately guide evidence-based practice in personalized nutrition and move this
4		
5	456	emerging field forward.
0		
/ 8	457	
9	157	Sources of Support: IK, received postdoctoral followships from the Canadian Institute of
10	450	Health Descarab NUTDISS and NIAE I.D. holds a Junior 2 research Scholar from the Fonds do
11	459	reacharaba du Québaa – Santé (ERO S) M C V halda a Tiar 1 Canada Basaarab Chair in
12	400	Nutrition Applied to Constitution and Matchelia Health
13	401	Numuon Applieu to Genetics and Metabolic Health.
14	402	Contributorship Statementar MCV and LK concentualized the review CS was remansible
15	403	Contributorship Statements: M-C.V. and J.K. conceptualized the review. G.S. was responsible
16	ЛСЛ	for the secret strategy in collaboration with LK MCV SD and VC LK and VC ware
17	404	Tor the search strategy, in conadoration with J.K., M-C.V., S.D. and V.G. J.K. and V.G. were
18	165	remansible for article careening and calentian summarizing exidence grading and developing a
19	405	responsible for article screening and screenion, summarizing, evidence grading, and developing a
20	166	draft of the systematic review. The first systematic review draft underwant revisions from S.D. and
21	400	dian of the systematic review. The first systematic review drant under went revisions from 5.D. and
22	467	M-CV who provided overall supervision for the project Following this LK VG VM
25 24	407	where where provided overall supervision for the project. Following this, J.K., V.G., V.W.,
25	468	DMM_IR_IR_GS_SD_ and M-CV served as scientific advisors and reviewed and revised
26	100	
27	469	the full-text manuscript IK wrote the first draft of the manuscript IK VG VM DMM IR
28	107	
29	470	I.R., G.S., S.D., and M-C.V., reviewed, revised and approved the final manuscript.
30	1.0	
31		
32	471	Competing Interests: The authors have no competing interests to declare.
33		
34	472	Funding: This project was supported through a pilot projects grant from INAF. I Keathley was
35	772	Funding. This project was supported through a prior projects grant from invert. J Reatiney was
20 27	473	supported through postdoctoral fellowships from CIHR (#430907) NUTRISS and INAF M-C
38	175	supported through postdoctoral tenowships from entite (#150507), ite fittes and fitter. We
39	474	Vohl holds a Canada Research Chair in Genomics Applied to Nutrition and Metabolic Health
40	17 1	vom notes e cunade research chan in Schonnes rippired to reaction and recubble reaction.
41		
42	475	Data Sharing Statement: Data are available upon reasonable request.
43		
44	476	
45	470	
46		
47	477	
48		
49 50		
51		
52		
53		
54		
55		
56		
57		
2 3 4 5 6	478 479 480	<u>Figure Legend:</u> Figure 1. PRISMA Flow Diagram
-----------------------	-------------------	--
7 8	481 482	*The original PRISMA Flow Diagram indicated the number of studies included in meta-analysis in this box. This has been revised for the purposes of this research
9 10		
11 12		
13 14		
15 16		
17 18		
19 20 21		
22 23		
24 25		
26 27		
28 29		
30 31 32		
33 34		
35 36		
37 38		
39 40		
41 42 43		
44 45		
46 47		
48 49		
50 51		
52 53		
54 55 56		
57 58		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

References

- 1. Barquera S, Pedroza-Tobias A, Medina C, Hernandez-Barrera L, Bibbins-Domingo K, Lozano R, et al. Global overview of the epidemiology of atherosclerotic cardiovascular disease. Arch Med Res. 2015;46:328–38.
- 2. Rudkowska I, Guénard F, Julien P, Couture P, Lemieux S, Barbier O, et al. Genome-wide association study of the plasma triglyceride response to an n-3 polyunsaturated fatty acid supplementation. J Lipid Res. 2014 Jul;55(7):1245–53.
- 3. Rizzi F, Conti C, Dogliotti E, Terranegra A, Salvi E, Braga D, et al. Interaction between polyphenols intake and PON1 gene variants on markers of cardiovascular disease: a nutrigenetic observational study. Journal of Translational Medicine. 2016;14:186.
- 4. Zhang X, Qi Q, Zhang C, Smith SR, Hu FB, Sacks FM, et al. FTO Genotype and 2-Year Change in Body Composition and Fat Distribution in Response to Weight-Loss Diets: The POUNDS LOST Trial. Diabetes. 2012 Nov 1;61(11):3005–11.
- 5. Merritt DC, Jamnik J, El-Sohemy A. FTO genotype, dietary protein intake, and body weight in a multiethnic population of young adults: a cross-sectional study. Genes Nutr. 2018;13:4.
- Vallée Marcotte B, Cormier V, Garneau V, Robitaille J, Desroches S, Vohl M-C. Nutrigenetic Testing for Personalized Nutrition: An Evaluation of Public Perceptions, Attitudes, and Concerns in a Population of French Canadians. Lifestyle Genomics [Internet]. 2019; Available from: https://doi.org/10.1159/000499626
- Vallée Marcotte B, Cormier H, Garneau V, Robitaille J, Desroches S, Vohl M-C. Current knowledge and interest of French Canadians regarding nutrigenetics. Genes Nutr. 2019 Dec;14(1):5.
- 8. Caulfield T, McGuire AL. Direct-to-Consumer Genetic Testing: Perceptions, Problems, and Policy Responses. Annu Rev Med. 2012;63(1):23–33.
- 9. Horne J, Gilliland J, Madill J, Shelley J. A critical examination of legal and ethical considerations for nutrigenetic testing with recommendations for improving regulation in Canada: From science to consumer. J Law Biosci. 2020;
- 10. Görman U, Mathers JC, Grimaldi KA, Ahlgren J, Nordström K. Do we know enough? A scientific and ethical analysis of the basis for genetic-based personalized nutrition. Genes Nutr. 2013 Jul;8(4):373–81.
- 11. Harris WS. Stearidonic acid as a "pro-eicosapentaenoic acid." Curr Opin Lipidol. 2012 Feb;23(1):30–4.
- 12. Shahidi F, Ambigaipalan P. Omega-3 Polyunsaturated Fatty Acids and Their Health Benefits. Annu Rev Food Sci Technol. 2018 25;9:345–81.

3 of 75	BMJ Open	
		3
	 Hu Y, Hu FB, Manson JE. Marine Omega-3 Supplementation and Cardiovascular Disease An Updated Meta-Analysis of 13 Randomized Controlled Trials Involving 127 477 Participants. J Am Heart Assoc. 2019;8(19):e013543. 	; :
	14. Abdelhamid AS, Brown TJ, Brainard JS, Biswas P, Thorpe GC, Moore HJ, et al. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev [Internet]. 2018 Jul 18 [cited 2020 Dec 1];2018(7). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6513557/	
	15. Jones PJH, Senanayake VK, Pu S, Jenkins DJA, Connelly PW, Lamarche B, et al. DHA- enriched high-oleic acid canola oil improves lipid profile and lowers predicted cardiovascular disease risk in the canola oil multicenter randomized controlled trial. Am J Clin Nutr. 2014 Jul;100(1):88–97.	
	16. Ballantyne CM, Bays HE, Kastelein JJ, Stein E, Isaacsohn JL, Braeckman RA, et al. Efficac and Safety of Eicosapentaenoic Acid Ethyl Ester (AMR101) Therapy in Statin-Treated Patients With Persistent High Triglycerides (from the ANCHOR Study). Am J Cardiol. 2012 Oct 1;110(7):984–92.	у
	17. Davidson MH, Stein EA, Bays HE, Maki KC, Doyle RT, Shalwitz RA, et al. Efficacy and tolerability of adding prescription omega-3 fatty acids 4 g/d to simvastatin 40 mg/d in hypertriglyceridemic patients: an 8-week, randomized, double-blind, placebo-controlled study. Clin Ther. 2007 Jul;29(7):1354–67.	l
	 Bradberry JC, Hilleman DE. Overview of Omega-3 Fatty Acid Therapies. Pharm Ther. 2013 Nov;38(11):681–91. 	
	19. Skulas-Ray AC, Alaupovic P, Kris-Etherton PM, West SG. Dose-response effects of marin omega-3 fatty acids on apolipoproteins, apolipoprotein-defined lipoprotein subclasses and Lp-PLA2 in individuals with moderate hypertriglyceridemia. J Clin Lipidol. 2015 Jun;9(3):360–7.	1e ',
	20. Lee MW, Park JK, Hong JW, Kim KJ, Shin DY, Ahn CW, et al. Beneficial Effects of Omega- Fatty Acids on Low Density Lipoprotein Particle Size in Patients with Type 2 Diabetes Already under Statin Therapy. Diabetes Metab J. 2013 Jun;37(3):207–11.	3
	21. Bouwens M, van de Rest O, Dellschaft N, Bromhaar MG, de Groot LCPGM, Geleijnse JM, al. Fish-oil supplementation induces antiinflammatory gene expression profiles in human blood mononuclear cells. Am J Clin Nutr. 2009 Aug;90(2):415–24.	et
	22. Rudkowska I, Paradis A-M, Thifault E, Julien P, Tchernof A, Couture P, et al. Transcriptomic and metabolomic signatures of an n-3 polyunsaturated fatty acids supplementation in a normolipidemic/normocholesterolemic Caucasian population. J Nutr Biochem. 2013 Jan;24(1):54–61.	
	23. Merched AJ, Chan L. Nutrigenetics and Nutrigenomics of Atherosclerosis. Curr Atheroscler Rep. 2013 Jun;15(6):328.	
	24. Madden J, Williams CM, Calder PC, Lietz G, Miles EA, Cordell H, et al. The impact of common gene variants on the response of biomarkers of cardiovascular disease (CVD) risk to increased fish oil fatty acids intakes. Annu Rev Nutr. 2011 Aug 21;31:203–34.	

- 25. Cave C, Hein N, Smith LM, Anderson-Berry A, Richter CK, Bisselou KS, et al. Omega-3 Long-Chain Polyunsaturated Fatty Acids Intake by Ethnicity, Income, and Education Level in the United States: NHANES 2003–2014. Nutrients [Internet]. 2020 Jul 9 [cited 2020 Oct 27];12(7). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7400855/
- 26. World Health Organization. Joint FAO/WHO Expert Consultation on Fats and Fatty Acids in Human Nutrition [Internet]. 2008. Available from: http://www.who.int/nutrition/topics/FFA_interim_ recommendations/en/
- 27. Fats and Fatty Acids in Human Nutrition | Karger Book [Internet]. [cited 2021 Jan 14]. Available from: https://www.karger.com/Book/Home/251867
- Horne J, Madill J, O'Connor C, Shelley J, Gilliland J. A Systematic Review of Genetic Testing and Lifestyle Behaviour Change: Are We Using High-Quality Genetic Interventions and Considering Behaviour Change Theory? Lifestyle Genomics. 2018;11(1):49–63.
- 29. Corella D, Ordovás JM. Interactions between dietary *n-3* fatty acids and genetic variants and risk of disease. Br J Nutr. 2012 Jun;107(S2):S271–83.
- 30. Grimaldi KA, van Ommen B, Ordovas JM, Parnell LD, Mathers JC, Bendik I, et al. Proposed guidelines to evaluate scientific validity and evidence for genotype-based dietary advice. Genes Nutr. 2017 Dec;12(1):35.
- 31. Khan KS, Kunz R, Kleijnen J, Antes G. Five steps to conducting a systematic review. J R Soc Med. 2003 Mar;96(3):118–21.
- 32. PRISMA. PRISMA: Transparent reporting of systematic reviews and meta-analyses [Internet]. 2015. Available from: http://www.prisma-statement.org/
- 33. Pollock A, Berge E. How to do a systematic review. Int J Stroke. 2018 Feb 1;13(2):138– 56.
- 34. Dekkers OM, Vandenbroucke JP, Cevallos M, Renehan AG, Altman DG, Egger M. COSMOS-E: Guidance on conducting systematic reviews and meta-analyses of observational studies of etiology. PLoS Med [Internet]. 2019 Feb 21 [cited 2020 Apr 9];16(2). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6383865/
- 35. Corella D, Ordovás JM. Interactions between dietary n-3 fatty acids and genetic variants and risk of disease. Br J Nutr. 2012 Jun;107(0 2):S271–83.
- 36. GRADE handbook [Internet]. [cited 2020 Sep 29]. Available from: https://gdt.gradepro.org/app/handbook/handbook.html
- 37. SNiPA a single nucleotide polymorphisms annotator and browser [Internet]. [cited 2020 Aug 20]. Available from: https://snipa.helmholtz-muenchen.de/snipa3/index.php?task=proxy_search

60

2	
3	38. Hosseini-Esfahani F, Mirmiran P, Koochakpoor G, Daneshpour MS, Guity K, Azizi F. Some
4	dietary factors can modulate the effect of the zinc transporters 8 polymorphism on the
6	risk of metabolic syndrome. Sci Rep. 2017 Dec;7(1):1649.
7	39. GRADE handbook [Internet]. [cited 2020 Apr 3]. Available from:
8	https://gdt.gradepro.org/app/handbook/handbook.html#h.dce0ghnajwsm
9 10	
11	40. Murad MH, Mustafa RA, Schünemann HJ, Sultan S, Santesso N. Rating the certainty in
12	evidence in the absence of a single estimate of effect. Evid Based Med. 2017
13	Jun;22(3):85–7.
14	41 Ma L-L. Wang Y-Y. Yang Z-H. Huang D. Weng H. Zeng X-T. Methodological quality (risk of
16	bias) assessment tools for primary and secondary medical studies: what are they and
17	which is better? Mil Med Res [Internet]. 2020 Feb 29 [cited 2020 Sep 2];7. Available
18	from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7049186/
19	
20	42. Chen Y, Estampador AC, Keller M, Poveda A, Dalla-Riva J, Johansson I, et al. The
22	combined effects of FADS gene variation and dietary fats in obesity-related traits in a
23	Apr: 43(4):808-20
24	Ap1,43(4).000-20.
25	43. Ching YK, Chin YS, Appukutty M, Ramanchadran V, Yu CY, Ang GY, et al. Interaction of
26 27	Dietary Linoleic Acid and α -Linolenic Acids with rs174547 in FADS1 Gene on Metabolic
28	Syndrome Components among Vegetarians. Nutrients. 2019 Jul 23;11(7):1686.
29	
30	44. Dumont J, Huybrechts I, Spinneker A, Gottrand F, Grammatikaki E, Bevilacqua N, et al.
31	FADS1 genetic variability interacts with dietary α -linolenic acid intake to affect serum
32 33	Jul-141(7)-1247-53
34	
35	45. Dumont J, Goumidi L, Grenier-Boley B, Cottel D, Marécaux N, Montaye M, et al. Dietary
36	linoleic acid interacts with FADS1 genetic variability to modulate HDL-cholesterol and
37	obesity-related traits. Clin Nutr. 2018 Oct 1;37(5):1683–9.
30 39	46 Holletrand S. Sonostadt F. Friggon H. Cullborg P. Wirfält F. Hodblad P. et al. Intaka lavala
40	40. Helistianu 5, Sollesteut E, Elicsoli O, Guilderg B, Willalt E, Heublau B, et al. Intake levels of dietary long-chain PIIFAs modify the association between genetic variation in <i>FADS</i>
41	and LDL-C. I Lipid Res. 2012 Jun:53(6):1183–9.
42	
43 44	47. Lu Y, Feskens EJ, Dollé ME, Imholz S, Verschuren WM, Müller M, et al. Dietary n−3 and
44	n–6 polyunsaturated fatty acid intake interacts with FADS1 genetic variation to affect
46	total and HDL-cholesterol concentrations in the Doetinchem Cohort Study. Am J Clin
47	Nutr. 2010 Jul 1;92(1):258–65.
48	48 Standl M. Lattka F. Stach B. Koletzko S. Bauer C-P. von Berg A. et al. FADS1 FADS2 Gene
49 50	Cluster. PUFA Intake and Blood Lipids in Children: Results from the GINIplus and
51	LISAplus Studies. PLoS ONE [Internet]. 2012 May 21 [cited 2020 Aug 3];7(5). Available
52	from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3357401/
53	
54	49. Fontaine-Bisson B, Wolever TMS, Chiasson J-L, Rabasa-Lhoret R, Maheux P, Josse RG, et
55 56	al. Genetic polymorphisms of tumor necrosis factor-alpha modify the association
57	
58	
59	

between dietary polyunsaturated fatty acids and fasting HDL-cholesterol and apo A-I concentrations. Am J Clin Nutr. 2007 Sep;86(3):768–74.

- 50. Joffe YT, van der Merwe L, Carstens M, Collins M, Jennings C, Levitt NS, et al. Tumor Necrosis Factor-α Gene -308 G/A Polymorphism Modulates the Relationship between Dietary Fat Intake, Serum Lipids, and Obesity Risk in Black South African Women. J Nutr. 2010 May 1;140(5):901–7.
- 51. Joffe YT, van der Merwe L, Evans J, Collins M, Lambert EV, September A, et al. The tumor necrosis factor- α gene -238 G>A polymorphism, dietary fat intake, obesity risk and serum lipid concentrations in black and white South African women. Eur J Clin Nutr. 2012 Dec;66(12):1295–302.
- 52. Tai ES, Corella D, Demissie S, Cupples LA, Coltell O, Schaefer EJ, et al. Polyunsaturated Fatty Acids Interact with the PPARA-L162V Polymorphism to Affect Plasma Triglyceride and Apolipoprotein C-III Concentrations in the Framingham Heart Study. J Nutr. 2005 Mar 1;135(3):397–403.
- 53. Volcik KA, Nettleton JA, Ballantyne CM, Boerwinkle E. Peroxisome proliferator-activated receptor [alpha] genetic variation interacts with n-6 and long-chain n-3 fatty acid intake to affect total cholesterol and LDL-cholesterol concentrations in the Atherosclerosis Risk in Communities Study. Am J Clin Nutr. 2008 Jun;87(6):1926–31.
- 54. Bouchard-Mercier A, Godin G, Lamarche B, Pérusse L, Vohl M-C. Effects of Peroxisome Proliferator-Activated Receptors, Dietary Fat Intakes and Gene–Diet Interactions on Peak Particle Diameters of Low-Density Lipoproteins. J Nutr Nutr. 2011;4(1):36–48.
- 55. Fallaize R, Celis-Morales C, Macready AL, Marsaux CF, Forster H, O'Donovan C, et al. The effect of the apolipoprotein E genotype on response to personalized dietary advice intervention: findings from the Food4Me randomized controlled trial. Am J Clin Nutr. 2016 Sep;104(3):827–36.
- 56. Fontaine-Bisson B, Wolever TMS, Connelly PW, Corey PN, El-Sohemy A. NF-κB –94Ins/Del ATTG polymorphism modifies the association between dietary polyunsaturated fatty acids and HDL-cholesterol in two distinct populations. Atherosclerosis. 2009 Jun;204(2):465–70.
- 57. Jang HB, Hwang J-Y, Park JE, Oh JH, Ahn Y, Kang J-H, et al. Intake levels of dietary polyunsaturated fatty acids modify the association between the genetic variation in *PCSK5* and HDL cholesterol. J Med Genet. 2014 Dec;51(12):782–8.
- 58. Lai C-Q, Corella D, Demissie S, Cupples LA, Adiconis X, Zhu Y, et al. Dietary Intake of n-6 Fatty Acids Modulates Effect of Apolipoprotein A5 Gene on Plasma Fasting Triglycerides, Remnant Lipoprotein Concentrations, and Lipoprotein Particle Size: The Framingham Heart Study. Circulation. 2006 May 2;113(17):2062–70.
- 59. Richardson K, Louie-Gao Q, Arnett DK, Parnell LD, Lai C-Q, Davalos A, et al. The PLIN4 Variant rs8887 Modulates Obesity Related Phenotypes in Humans through Creation of a Novel miR-522 Seed Site. Mailund T, editor. PLoS ONE. 2011 Apr 20;6(4):e17944.

- - 60. Warodomwichit D, Arnett DK, Kabagambe EK, Tsai MY, Hixson JE, Straka RJ, et al. Polyunsaturated Fatty Acids Modulate the Effect of TCF7L2 Gene Variants on Postprandial Lipemia. J Nutr. 2009 Mar 1;139(3):439–46.
 - 61. AlSaleh A, Maniou Z, Lewis FJ, Hall WL, Sanders TAB, O'Dell SD. Genetic predisposition scores for dyslipidaemia influence plasma lipid concentrations at baseline, but not the changes after controlled intake of n-3 polyunsaturated fatty acids. Genes Nutr. 2014 Jul;9(4):412.
 - 62. Harsløf LBS, Damsgaard CT, Hellgren LI, Andersen AD, Vogel U, Lauritzen L. Effects on metabolic markers are modified by PPARG2 and COX2 polymorphisms in infants randomized to fish oil. Genes Nutr. 2014 May;9(3):396.
 - 63. Rudkowska I, Guénard F, Julien P, Couture P, Lemieux S, Barbier O, et al. Genome-wide association study of the plasma triglyceride response to an n-3 polyunsaturated fatty acid supplementation. J Lipid Res. 2014 Jul;55(7):1245–53.
 - 64. Vallée Marcotte B, Guénard F, Cormier H, Lemieux S, Couture P, Rudkowska I, et al. Plasma Triglyceride Levels May Be Modulated by Gene Expression of IQCJ, NXPH1, PHF17 and MYB in Humans. Int J Mol Sci. 2017 Jan 26;18(2).
 - 65. Vallée Marcotte B, Guénard F, Lemieux S, Couture P, Rudkowska I, Calder PC, et al. Fine mapping of genome-wide association study signals to identify genetic markers of the plasma triglyceride response to an omega-3 fatty acid supplementation. Am J Clin Nutr. 2019 Jan 1;109(1):176–85.
 - 66. Vallée Marcotte B, Allaire J, Guénard F, de Toro-Martín J, Couture P, Lamarche B, et al. Genetic risk prediction of the plasma triglyceride response to independent supplementations with eicosapentaenoic and docosahexaenoic acids: the ComparED Study. Genes Nutr. 2020 Dec;15(1):10.
 - 67. Zheng J-S, Chen J, Wang L, Yang H, Fang L, Yu Y, et al. Replication of a Gene-Diet Interaction at CD36, NOS3 and PPARG in Response to Omega-3 Fatty Acid Supplements on Blood Lipids: A Double-Blind Randomized Controlled Trial. EBioMedicine. 2018 May;31:150–6.
 - 68. Vallée Marcotte B, Guénard F, Marquis J, Charpagne A, Vadillo-Ortega F, Tejero M, et al. Genetic Risk Score Predictive of the Plasma Triglyceride Response to an Omega-3 Fatty Acid Supplementation in a Mexican Population. Nutrients. 2019 Mar 29;11(4):737.
 - 69. Roke K, Mutch DM. The Role of FADS1/2 Polymorphisms on Cardiometabolic Markers and Fatty Acid Profiles in Young Adults Consuming Fish Oil Supplements. Nutrients. 2014 Jun 16;6(6):2290–304.
 - 70. Cormier H, Rudkowska I, Paradis A-M, Thifault E, Garneau V, Lemieux S, et al. Association between Polymorphisms in the Fatty Acid Desaturase Gene Cluster and the Plasma Triacylglycerol Response to an n-3 PUFA Supplementation. Nutrients. 2012 Aug 17;4(8):1026–41.

- 71. AbuMweis SS, Panchal SK, Jones PJH. Triacylglycerol-Lowering Effect of Docosahexaenoic Acid Is Not Influenced by Single-Nucleotide Polymorphisms Involved in Lipid Metabolism in Humans. Lipids. 2018;53(9):897–908.
- 72. Carvalho-Wells AL, Jackson KG, Lockyer S, Lovegrove JA, Minihane AM. APOE genotype influences triglyceride and C-reactive protein responses to altered dietary fat intake in UK adults. Am J Clin Nutr. 2012 Dec 1;96(6):1447–53.
- 73. Caslake MJ, Miles EA, Kofler BM, Lietz G, Curtis P, Armah CK, et al. Effect of sex and genotype on cardiovascular biomarker response to fish oils: the FINGEN Study. Am J Clin Nutr. 2008 Sep 1;88(3):618–29.
- 74. Dang TM, Conway V, Plourde M. Disrupted fatty acid distribution in HDL and LDL according to apolipoprotein E allele. Nutrition. 2015 Jun 1;31(6):807–12.
- 75. Jackson KG, Lockyer S, Carvalho-Wells AL, Williams CM, Minihane AM, Lovegrove JA. Dietary fat manipulation has a greater impact on postprandial lipid metabolism than the apolipoprotein E (epsilon) genotype–insights from the SATgenɛ study. Mol Nutr Food Res. 2012;56(12):1761–70.
- 76. Jackson KG, Lockyer S, Carvalho-Wells AL, Williams CM, Minihane AM, Lovegrove JA. *Apolipoprotein* E (epsilon) genotype has a greater impact on apoB-48 than apoB-100 responses to dietary fat manipulation-insights from the SATgenε study. Mol Nutr Food Res. 2017 Apr;61(4):1600688.
- 77. Minihane AM, Khan S, Leigh-Firbank EC, Talmud P, Wright JW, Murphy MC, et al. ApoE Polymorphism and Fish Oil Supplementation in Subjects With an Atherogenic Lipoprotein Phenotype. Arterioscler Thromb Vasc Biol. 2000 Aug;20(8):1990–7.
- 78. Olano-Martin E, Anil E, Caslake MJ, Packard CJ, Bedford D, Stewart G, et al. Contribution of apolipoprotein E genotype and docosahexaenoic acid to the LDL-cholesterol response to fish oil. Atherosclerosis. 2010 Mar;209(1):104–10.
- 79. Paschos GK, Yiannakouris N, Rallidis LS, Davies I, Griffin BA, Panagiotakos DB, et al. Apolipoprotein E Genotype in Dyslipidemic Patients and Response of Blood Lipids and Inflammatory Markers to Alpha-Linolenic Acid. Angiology. 2005 Jan 1;56(1):49–60.
- Thifault E, Cormier H, Bouchard-Mercier A, Rudkowska I, Paradis A-M, Garneau V, et al. Effects of Age, Sex, Body Mass Index and APOE Genotype on Cardiovascular Biomarker Response to an n-3 Polyunsaturated Fatty Acid Supplementation. J Nutr Nutr. 2013;6(2):73–82.
- 81. Madden J, Carrero J, Brunner A, Dastur N, Shearman C, Calder P, et al. Polymorphisms in the CD36 gene modulate the ability of fish oil supplements to lower fasting plasma triacyl glycerol and raise HDL cholesterol concentrations in healthy middle-aged men. Prostaglandins, Leukotrienes and Essential Fatty Acids. 2008;78:327–35.
- Dawczynski C, Massey KA, Ness C, Kiehntopf M, Stepanow S, Platzer M, et al. Randomized placebo-controlled intervention with n-3 LC-PUFA-supplemented yoghurt: Effects on circulating eicosanoids and cardiovascular risk factors. Clin Nutr. 2013 Oct 1;32(5):686–96.

1		
2		
3	83.	Binia A, Vargas-Martínez C, Ancira-Moreno M, Gosoniu LM, Montoliu I, Gámez-Valdez E,
5		et al. Improvement of cardiometabolic markers after fish oil intervention in young
6		Mexican adults and the role of PPAR α L162V and PPAR γ 2 P12A. J Nutr Biochem. 2017
7		May;43:98–106.
8	Q <i>1</i> .	Itariu BK Zouda M. Hochbrugger FF. Neuhofer A. Prager C. Schindler K. et al. Long-chain
9	04.	n_3 PIIFAs reduce adinose tissue and systemic inflammation in severally obese
10		nondiabetic nations: a randomized controlled trial. Am I Clin Nutr. 2012 Nov
11		1·96(5)·1137–49
12		
14	85.	Lindi V, Schwab U, Louheranta A, Laakso M, Vessby B, Hermansen K, et al. Impact of the
15		Pro12Ala polymorphism of the PPAR- γ 2 gene on serum triacylglycerol response to n–3
16		fatty acid supplementation. Mol Genet Metab. 2003 May;79(1):52–60.
17		
18	86.	Pishva H, Mehdipour P, Eshraghian MR, Mahboob S-A. Effects of Eicosapentaenoic Acid
19		Supplementation on Lipid and Lipoprotein Profile in Hypertriglyceridemic Subjects
20		with Different Proliferator-activated Receptor Alpha Genotypes. :13.
∠ı 22	07	
23	87.	Caron-Dorval D, Paquet P, Paradis A-M, Rudkowska I, Lemieux S, Couture P, et al. Effect
24		of the PPAR-Alpha L162V Polymorphism on the Cardiovascular Disease Risk Factor in
25		Response to n=3 Polyunsaturated Fatty Acids. J Nutr Nutr. 2008;1(4):205–12.
26	88	Binia A Vargas-Martínez C Ancira-Moreno M Cosoniu I M Montoliu I Gámez-Valdez F
27	00.	et al Improvement of cardiometabolic markers after fish oil intervention in young
28		Mexican adults and the role of PPARg L162V and PPARy2 P12A I Nutr Biochem 2017
29		Mav:43:98–106.
31		
32	89.	Dawczynski C, Massey KA, Ness C, Kiehntopf M, Stepanow S, Platzer M, et al.
33		Randomized placebo-controlled intervention with n-3 LC-PUFA-supplemented yoghurt:
34		Effects on circulating eicosanoids and cardiovascular risk factors. Clin Nutr. 2013
35		Oct;32(5):686–96.
36	~ ~	
3/	90.	Kotze M, Brand T, Pretorius J, J van Rensburg S, Luckhoff HK. Apolipoprotein E epsilon-4
30		as a genetic determinant of Alzheimer's disease heterogeneity. Degener Neurol
40		Neuromuscul Dis. 2015 Jan;9.
41	01	Marais AD Anolinoprotein F in linoprotein metabolism health and cardiovascular
42	11.	disease Pathology (Phila) 2019 Feb: 51(2):165–76
43		uisease. 1 actiology (1 mia). 2017 1 cb,51(2).105 70.
44	92.	Kuo C-L, Pilling LC, Atkins JL, Kuchel GA, Melzer D. ApoE e2 and aging-related outcomes
45		in 379,000 UK Biobank participants. Aging. 2020 Jun 8;12(12):12222–33.
40 47		
48	93.	Nawawi HM, Chua Y-A, Watts GF. The brave new world of genetic testing in the
49		management of the dyslipidaemias. Curr Opin Cardiol. 2020;35(3):226–33.
50	a :	
51	94.	Livingston G, Huntley J, Sommerlad A, Ames D, Ballard C, Banerjee S, et al. Dementia
52		prevention, intervention, and care: 2020 report of the Lancet Commission. The Lancet.
53		2020 Aug;396(10248):413-46.
54 55	05	Dorszawska I. Drandacki M. Oczkowska A. Dozar M. Kozubski W. Malagular Pasis of
56	93.	Familial and Snoradic Alzhaimer's Disease Curr Alzhaimer Des 2016:12(0):052 62
57		1 annual and spotatic right finer 5 Disease. Gut right filler res. 2010;15(7):952–05.
58		
59		

96. ACCE Model Process for Evaluating Genetic Tests | CDC [Internet]. 2021 [cited 2021 Feb 15]. Available from: https://www.cdc.gov/genomics/gtesting/acce/index.htm

- 97. Corella D, Coltell O, Portolés O, Sotos-Prieto M, Fernández-Carrión R, Ramirez-Sabio J, et al. A Guide to Applying the Sex-Gender Perspective to Nutritional Genomics. Nutrients. 2018 Dec 20;11(1):4.
- Dellinger RW, Gomez Garcia AM, Meyskens FL. Differences in the Glucuronidation of Resveratrol and Pterostilbene: Altered Enzyme Specificity and Potential Gender Differences. Drug Metab Pharmacokinet. 2014;29(2):112–9.
- 99. Vidaver RM, Lafleur B, Tong C, Bradshaw R, Marts SA. Women Subjects in NIH-Funded Clinical Research Literature: Lack of Progress in Both Representation and Analysis by Sex. J Womens Health Gend Based Med. 2000 Jun 1;9(5):495–504.
- 100. Carvalho-Wells AL, Jackson KG, Lockyer S, Lovegrove JA, Minihane AM. APOE genotype influences triglyceride and C-reactive protein responses to altered dietary fat intake in UK adults. Am J Clin Nutr. 2012 Dec 1;96(6):1447–53.
- 101. Thifault E, Cormier H, Bouchard-Mercier A, Rudkowska I, Paradis A-M, Garneau V, et al. Effects of Age, Sex, Body Mass Index and APOE Genotype on Cardiovascular Biomarker Response to an n-3 Polyunsaturated Fatty Acid Supplementation. Lifestyle Genomics. 2013;6(2):73–82.
- 102. Minihane Anne M., Khan Syrah, Leigh-Firbank Elizabeth C., Talmud Philippa, Wright John W., Murphy Margaret C., et al. ApoE Polymorphism and Fish Oil Supplementation in Subjects With an Atherogenic Lipoprotein Phenotype. Arterioscler Thromb Vasc Biol. 2000 Aug 1;20(8):1990–7.
- 103. Little J, Higgins J, Ioannidis J, Moher D, Gagnon F, von Elm E, et al., editors. STrengthening the REporting of Genetic Association studies (STREGA) - An extension of the STROBE statement. PLoS Med. 2009;6(2):e1000022.
- 104. Strande NT. Evaluating the Clinical Validity of Gene-Disease Associations: An Evidence-Based Framework Developed by the Clinical Genome Resource. The American Journal of Human Genetics. 2017;12.
- 105. Ciesielski TH, Pendergrass SA, White MJ, Kodaman N, Sobota RS, Huang M, et al. Diverse convergent evidence in the genetic analysis of complex disease: coordinating omic, informatic, and experimental evidence to better identify and validate risk factors. BioData Min. 2014 Dec;7(1):10.
- 106. Rudkowska I, Paradis A-M, Thifault E, Julien P, Barbier O, Couture P, et al. Differences in metabolomic and transcriptomic profiles between responders and nonresponders to an n-3 polyunsaturated fatty acids (PUFAs) supplementation. Genes Nutr. 2013 Jul;8(4):411–23.
- 107. Tremblay BL, Cormier H, Rudkowska I, Lemieux S, Couture P, Vohl M-C. Association between polymorphisms in phospholipase A2 genes and the plasma triglyceride response to an n-3 PUFA supplementation: a clinical trial. Lipids Health Dis. 2015 Feb 21;14(1):12.

1	
2	
3	108 Quellette C. Cormier H. Rudkowska I. Guénard F. Lemieux S. Couture P. et al
4	Polymornhisms in Cones Involved in the Triglyceride Synthesis Dathway and Marine
5	Our and 2 Delements of Fatter Arid Complementation Medulate Discuss Triples wide
6	Omega-3 Polyunsaturated Fatty Acid Supplementation Modulate Plasma Trigiyceride
7	Levels. Lifestyle Genomics. 2013;6(4–5):268–80.
8	
9	109. Ray-Barruel G, Rickard CM. Helping nurses help PIVCs: decision aids for daily
10	assessment and maintenance. Br J Nurs Mark Allen Publ. 2018 Apr 26;27(8):S12–8.
10	
17	
12	
13	
14	
15	
10	
17	
10	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	

BMJ Open

For beer review only

60

through other sources

(n = 4)

Records excluded

(n = 1691)

Full-text articles excluded,

with reasons

(n = 74)

Conference abstract (n = 34)

Dietary intervention or

dietary component analyzed did not meet inclusion

criteria (n = 22)

Outcome did not meet

inclusion criteria (n = 11)

Omega-3 assessed via

plasma only (n = 4)

Comparator did not meet

inclusion criteria (n = 3)

Figure 1: PRISMA 2009 Flow Diagram

Supplementary Tables

Supplementary Table 1: Search Strategy

Em	base
#	Search Strategy
1	omega-3':ti,ab,kw OR pufa\$:ti,ab,kw OR ((acid* NEAR/5 ('n-3' OR polyunsaturated OR linolenic OR eicosapenta\$noic OR timnodonic OR docosahexa\$noic)):ti,ab,kw) OR docosahexaenoate:ti,ab,kw OR epa:ti,ab,kw OR dha:ti,ab,kw OR ala:ti,ab,kw
2	omega 3 fatty acid'/exp
3	#1 OR #2
4	cholesterol*:ti,ab,kw OR hdl:ti,ab,kw OR ldl:ti,ab,kw OR 'high density lipoprotein*':ti,ab,kw OR 'low density lipoprotein*':ti,ab,kw OR 'beta lipoprotein*':ti,ab,kw OR apo*protein*:ti,ab,kw OR apoa:ti,ab,kw OR apob:ti,ab,kw OR apoc:ti,ab,kw OR apod:ti,ab,kw OR apoe:ti,ab,kw OR apoh:ti,ab,kw OR ((apo NEXT/1 (a OR b OR c OR d OR e OR h)):ti,ab,kw) OR triglyceride*:ti,ab,kw OR triacylglycerol*:ti,ab,kw OR (((serum OR plasma) NEXT/1 (lipid* OR tg OR tag)):ti,ab,kw)
5	cholesterol'/exp OR 'lipoprotein'/exp OR 'triacylglycerol'/exp
6	#4 OR #5
7	nutrigenomic*:ti,ab,kw OR nutrigenetic*:ti,ab,kw OR (((nutritional OR expression* OR variation* OR variant*) NEAR/2 (genomic* OR genetic* OR gene OR genes)):ti,ab,kw) OR genotype:ti,ab,kw OR ((('nutrient-gene' OR 'gene-nutrient' OR 'gene-diet') NEXT/1 interaction*):ti,ab,kw) OR 'personali?ed nutrition':ti,ab,kw OR 'precision nutrition':ti,ab,kw
8	nutrigenomics'/exp OR 'nutrigenetics'/exp OR 'genetic variation'/exp OR 'genotype'/exp
9	#7 OR #8
10	#3 AND #6 AND #9
11	[animals]/lim NOT [humans]/lim
12	#10 NOT #11

BMJ Open

Μϵ	edline (Ovid)
#	Search Strategy
1	("omega-3" or PUFA? or (acid* adj5 ("n-3" or polyunsaturated or linolenic or eicosapenta?noic or timnodonic or docosahexa?noic)) or docosahexaenoate or EPA or DHA or ALA).ab,kf,ti.
2	exp Fatty Acids, Omega-3/
3	1 or 2
4	(cholesterol* or HDL or LDL or "high density lipoprotein*" or "low density lipoprotein*" or "beta lipoprotein*" or apo*protein* or apoA or apoB or apoC or apoD or apoE or apoH or (apo adj (A or B or C or D or E or H)) or triglyceride* or triacylglycerol* or ((serum or plasma) adj (lipid* or TG or TAG))).ab,kf,ti.
5	exp Cholesterol/ or exp Lipoproteins/ or exp Triglycerides/
6	4 or 5
7	(nutrigenomic* or nutrigenetic* or ((nutritional or expression* or variation* or variant*) adj2 (genomic* or genetic* or gene or genes)) or genotype or (("nutrient-gene" or "gene-nutrient" or "gene-diet") adj interaction*) or "personali#ed nutrition" or "precision nutrition").ab,kf,ti.
8	Nutrigenomics/ or Genetic Variation/ or Genotype/
9	7 or 8
10	3 and 6 and 9
11	exp animals/ not humans.sh.
12	10 not 11

Web of Science

Indexes = SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, ESCI Timespan =All years

 BMJ Open

1 · · · · · · · · · · · · · · · · · · ·	TS=("omega-3" or PUFA\$ or (acid* NEAR/5 ("n-3" or polyunsaturated or linolenic or eicosapenta\$noic or timnodonic or docosahexa\$noic)) or docosahexaenoate or EPA or DHA or ALA) TS=(cholesterol* or HDL or LDL or "high density lipoprotein*" or "low density lipoprotein*" or "beta lipoprotein*" or apo*protein* or apoA or apoB or apoC or apoD or apoE or apoH or (apo NEAR/0 (A or B or C or D or E or H)) or triglyceride* or triacylglycerol* or ((serum or plasma) NEAR/0 (lipid* or TG or TAG))) TS=(nutrigenomic* or nutrigenetic* or ((nutritional or expression* or variation* or variant*) NEAR/2 (genomic* or genetic* or gene or genes)) or genotyp or (("nutrient-gene" or "gene-nutrient" or "gene-diet") NEAR/0 interaction*) or "personali?ed nutrition" or "precision nutrition") #1 AND #2 AND #3
2	TS=(cholesterol* or HDL or LDL or "high density lipoprotein*" or "low density lipoprotein*" or "beta lipoprotein*" or apo*protein* or apoA or apoB or apoC or apoD or apoE or apoH or (apo NEAR/0 (A or B or C or D or E or H)) or triglyceride* or triacylglycerol* or ((serum or plasma) NEAR/0 (lipid* or TG o TAG))) TS=(nutrigenomic* or nutrigenetic* or ((nutritional or expression* or variation* or variant*) NEAR/2 (genomic* or genetic* or gene or genes)) or genotyp or (("nutrient-gene" or "gene-nutrient" or "gene-diet") NEAR/0 interaction*) or "personali?ed nutrition" or "precision nutrition") #1 AND #2 AND #3
3	TS=(nutrigenomic* or nutrigenetic* or ((nutritional or expression* or variation* or variant*) NEAR/2 (genomic* or genetic* or gene or genes)) or genotyp or (("nutrient-gene" or "gene-nutrient" or "gene-diet") NEAR/0 interaction*) or "personali?ed nutrition" or "precision nutrition") #1 AND #2 AND #3
4 ;	#1 AND #2 AND #3
5	
	TS=(animals OR animal OR mice OR mus OR mouse OR murine OR woodmouse OR rats OR rat OR murinae OR murinae OR cottonrats OR hamster OR hamsters OR cricetinae OR rodentia OR rodentio OR rodents OR pigs OR pig OR swine OR swines OR pigets OR piget OR boars OR boars OR "sus scrofa" OR ferrets OR ferret OR polecat OR polecats OR "mustela putorius" OR "guinea pigs" OR "guinea pig" OR cavia OR allithrix OI marmoset OR meriones OR rabbits OR nabale OR octodon OR chinchilla OR chinchillas OR gerbillinae OR gerbil OR gerbils OR jird OR jirds OR merione OR meriones OR nabits OR nematode OR nematoda OR nematode OR rapported or cara or or cara or or cara or or cara or

	Supplementary Table 2: Summary of observational studies											
Author, Year	Study Design	Genetic Approach	Population (sample size included in analyses)	Gene(s), SNP(s)	Cytogenic Location of Gene(s)	Quantity, Source and Type of Omega-3 ¹	Comparators	Plasma Lipid/ Lipoprotein Outcome(s)	Summary of Statistically Significant Study Findings Relevant to the Research Question ²			
Bouchard- Mercier et al. 2011 (1)	Cross- Sectional	Single SNP	Healthy Caucasian men and women from INFOGENE study (n=674)	PPARa, L162V (rs1800206) PPARγ, P12A (rs1801282) PPARδ, -87T→ C (rs2016520)	PPARa: 22q13.31 PPARy: 3p25.2 PPARδ: 6p21.31	Mean: L162: 2.8 g/day V162: 2.9 g/day (unclear if food and/or supplement sources)	Minor allele carriers vs. Non-carriers	LDL-PPD	LDL-PPD: In a model including age, sex, TG, BMI, energy and omega-3 intakes and PPAR α L162V (rs1800206) polymorphism, the interaction of PPAR α 162V and omega-3 intakes explained 0.62% of the variance in LDL-PPD.			
Bodhini et al. 2017 (2)	Cross- Sectional	Single SNP	Adults with normal glucose tolerance (n=821) and adults with type 2 diabetes (n=861)	<i>MC4R</i> , rs17782313 <i>TCF7L2</i> , rs12255372 <i>TCF7L2</i> , rs7903146	MC4R: 18q21.32 TCF7L2: 10q25.2- q25.3	Low: 0.38 g/day ALA Moderate: 0.58 g/day ALA High: 0.89 g/day ALA (means) (food)	Major allele homozygotes vs. Minor allele carriers	HDL-c	HDL-c: 'T' allele carriers of <i>TCF7L2</i> rs12255372 within the lowest tertile of ALA intake (mean=0.38 g/day) exhibited higher levels of HDL-c compared to GG homozygotes in the lowest tertile of ALA intake (mean=0.38 g/day)			
Chen et al. 2019 (3)	Cross- Sectional Analysis within a Prospective Cohort	Single SNP, Haplotype and Gene-Centric	Adults of Swedish ancestry from the GLACIER cohort (n=5160)	All variations in the FADS1- FADS2-FADS3 gene cluster and variation within 200kb upstream and downstream of the FADS region	<i>FADS1:</i> 11q12.2 <i>FADS2:</i> 11q12.2 <i>FADS3:</i> 11q12.2	High: >1.6 g/day Low: <1.6 g/day (food)	Entire FADS region gene-centric analysis and Variation in individual FADS cluster SNPs: rs174570, rs174602, rs74771917, rs3168072, rs12577276, rs7115739 and Haplotype analysis	HDL-c LDL-c TG Total-c	 HDL-c: Significant interaction of rs174570 and omega-3 on HDL-c LDL-c: Significant interaction of rs174602 and omega-3 on LDL-c TG: Gene-centric analyses demonstrated a significant interaction between variation in the <i>FADS</i> gene cluster and omega-3 intake on TG Total-c: Significant interaction of rs174602 and omega-3 on total-c ('C' allele carriers exhibited lower total-c with low omega-3 intake, while no such relationship was observed with high omega-3 intake) 			
Ching et al. 2019 (4)	Cross- Sectional	Single SNP	Vegetarian adults of Malaysian ancestry (n=200)	<i>FADSI,</i> rs174547	<i>FADS1:</i> 11q12.2	Low: ≤0.45 g/day ALA Moderate: 0.46- 0.64 g/day ALA High: >0.64 g/day ALA (means) (food)	Comparison between three genotypes	HDL-c TG	HDL-c: The TT genotype had significantly lower HDL-c when ALA intake was in the moderate intake range, but there were no significant gene-omega-3 interaction on lipid levels			
Dumont et al. 2011 (5)	Cross- Sectional	Single SNP	Adolescents of European ancestry (n=573)	<i>FADSI,</i> rs174547	<i>FADS1:</i> 11q12.2	High: >1.4 g/day ALA Low: ≤1.4 g/day ALA (unclear if food and/or supplement sources)	Major allele homozygotes vs. Minor allele carriers	HDL-c LDL-c TG Total-c	Total-c: Significant interaction whereby the minor allele (CT+TT genotype) was associated with lower total-c when ALA intake is high as compared to when intake is low. This remained significant after assessing the interaction using ALA intake as a continuous variable.			

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Dumont et al. 2018 (6)	Cross- Sectional	Single SNP	Men and women aged 35 to 74 years from the MONA LISA Study of three French populations (n=3069)	<i>FADSI,</i> rs174547	<i>FADS1:</i> 11q12.2	Low: 0.6 g/day ALA (mean) Median: 0.8 g/day ALA (stratified by median for analyses) High: 1.3 g/day ALA (mean) (food and supplement)	Comparison between three genotypes	HDL-c LDL-c TG Total-c	
Fallaize et al. 2016 (7)	Cross- Sectional (Baseline) and Longitudinal Analyses within a Randomized Intervention	Single SNP*	Healthy adults enrolled in the Food4Me European trial (n=1466)	<i>APOE</i> , rs429358, rs7412	<i>APOE:</i> 19q13.32	High: >0.67 %kcal Low: <0.67 %kcal Increased Intake: reduced omega-3 intake from baseline Decreased Intake: decreased omega-3 intake from baseline (unclear if food and/or supplement sources)	APOE-E4- vs. APOE-E4+	Total-c	Total-c: Cross-sectional (baseline) analysis demonstrat significant genotype effect for <i>APOE</i> , omega-3 intake, total-c. Longitudinal analysis (baseline to month 6) demonstrated a significant genotype effect for <i>APOE</i> , cha omega-3 intake (increase or decrease) and total-c.
Fontaine- Bisson and El- Sohemy 2007 (8)	Cross- Sectional	Genetic Score	Men and women aged 20-29 years (n=595)	<i>TNFa,</i> rs361525, rs1800629	TNFa: 6p21.33	Intake range: 0.2- 4.6 %kcal (mean intakes were 0.7 %kcal for 0/0, 0.7% kcal for 0/1 and 0.6%kcal for 1/0) (food)	No minor allele ('A') for both SNPs (0/0) vs. One minor allele for rs361525 (1/0) vs. One minor allele for rs1800625 (0/1)	HDL-c	
Fontaine- Bisson et al. 2009 (9)	Cross- Sectional	Single SNP	Healthy men and women aged 20-29 years (n=593)	<i>NF-κB</i> -94Ins/Del ATTG (rs28362491)	<i>NF-кВ:</i> 4q24	Mean intake: 0.7 %kcal (unclear if food and/or supplement sources)	Ins/Ins vs. Ins/Del vs. Del/Del	HDL-c	HDL-c: Significant interaction between <i>NF-kB</i> genotyp omega-3 intake on HDL-c
Hellstrand et al. 2012 (10)	Cross- Sectional	Single SNP	Healthy men and women aged 45-68 years from Sweden (n=4635)	<i>FADS,</i> rs174547	<i>FADS:</i> 11q12.2	Low: ≤0.14 %kcal long-chain omega- 3 Moderate: 0.14- 0.28 %kcal long- chain omega-3 High: >0.28 %kcal long-chain omega-3 (tertiles of intake reported only for certain significant findings) (food and supplement)	TT vs. TC vs. CC	HDL-c LDL-c TG	LDL-c: Significant interaction between <i>FADS</i> rs174: genotype and long-chain omega-3 on LDL-c whereby the allele was significantly associated with lower LDL-c v long-chain omega-3 intake was in the lowest tertile (but the moderate or highest tertile). High long-chain omeg- intake was associated with significantly higher LDL-c f and TC genotypes but not TT genotypes. Stratified and based on sex demonstrated that these significant interac remained for men, but not women, however there was significant difference in interactions by sex.
Hosseini- Esfahani et al. 2017 (11)	Nested Case- Control	Single SNP	Healthy men and women aged ≥18 years from Iran	<i>ZNT8,</i> rs13266634	ZNT8: 8q24.11	Supplement) <u>Tertiles for</u> <u>omega-3:</u> Low: <0.38 %kcal	CC vs. CT+TT	HDL-c TG	HDL-c: Significant interaction between ZNT8 rs1326 genotype and omega-3 intake on the risk of low HDD whereby CC genotypes exhibited a decreased risk of low c with increasing intake of omega-3; this was not obser

· · · · · ·					1				1 000 000
			(n=1634)			0.54 %kcal High: >0.54 %kcal (food)			the CT+TT genotype group. TG: Significant interaction between ZNT8 rs13266634 genotype and omega-3 intake on the risk of high TG whereby CC genotypes exhibited a decreased risk of high TG with increasing intake of omega-3; this was not exhibited in the CT+TT genotype group.
Jang et al. 2014 (12)	Cross- Sectional	Single SNP	Adult: Men and women aged 40-69 from Korea (n=4205) Children: Boys and girls aged 8-13 years from Korea (n=1548)	<i>PCSK5,</i> rs1029035	<i>PCSK5:</i> 9q21.13	Based on overall median intake (further detailed elsewhere (12)): Low: <0.4 %kcal High: >0.4 %kcal (food)	CC vs. CA vs. AA	HDL-c	HDL-c: Significant interaction between <i>PCSK5</i> rs1029035 and omega-3 on HDL-c in male children and male adults. 'C' allele carriers exhibit a tendency to decrease HDL-c with omega-3, while AA genotypes exhibit the opposite effect.
Joffe et al. 2010 (13)	Cross- Sectional	Single SNP	Black women from South Africa, normal weight or with obesity (n=138)	<i>TNFa,</i> rs1800629	TNFa: 6p21.33	ALA (amount not reported/cannot determine) (food)	GG vs. GA+AA	HDL-c LDL-c TG Total-c Total-c:HDL-c	Total-c:HDL-c ratio: Significant interaction between <i>TNFα</i> , rs1800629 genotypes and %kcal from ALA whereby increasing %kcal from ALA was associated with increases in Total-c:HDL-c for GG genotypes but decreases in Total-c:HDL-c ratio for GA+AA genotypes
Joffe et al. 2012 (14)	Cross- Sectional	Single SNP	Black and white women from South Africa, normal weight or with obesity (n=263)	<i>TNFa,</i> rs361525	TNFa: 6p21.33	Median Intakes: omega-3: 0.28- 0.36 % kcal ALA: 0.21-0.26 %kcal EPA: 0.02 %kcal DHA: 0.04-0.08 %kcal (food)	GG vs. GA(+AA for one participant: black, normal weight)	HDL-c LDL-c TG Total-c Total-c:HDL-c	 LDL-c: Significant interaction for Caucasian women whereby LDL-c decreased with increasing %kcal from EPA in the GG genotype but not the GA genotype of <i>TNFα</i>, rs361525. Total-c: Significant interaction for white women whereby total-c decreased with increasing EPA and DHA intakes in the GG genotype group but not the GA genotype group of <i>TNFα</i> rs361525 but individual rates were not significant. Total-c:HDL-c ratio: Significant interaction for black women whereby Total-c:HDL-c decreased within increasing %kcal from omega-3 in the GA genotype group but not GG of <i>TNFα</i> rs361525.
Joffe et al. 2014 (15)	Cross- Sectional	Single SNP	Black and white women from South Africa, normal weight or with obesity (n=268)	<i>IL-6</i> , -174 G>C, IVS3 (rs1800795), +281 G>T, IVS4 (rs1554606), +869 A>G (rs2069845)	<i>IL-6:</i> 7p15.3	Black Women (%kcal/day): 0.28 omega-3, 0.21 ALA, 0.02 EPA, 0.04 DHA (normal weight); 0.36 omega-3, 0.22 ALA, 0.04 EPA, 0.08 DHA (obesity) White Women (%kcal/day): 0.33 omega-3, 0.26 ALA, 0.01 EPA, 0.05 DHA (normal weight); 0.32 omega-3, 0.25 ALA, 0.02 EPA, 0.05 DHA (food)	Major allele homozygotes vs. Minor allele carriers <i>or</i> Comparison between three genotypes	HDL-c LDL-c TG Total-c Total-c:HDL-c	 The following results were statistically significant only in white women, but not in black women³: HDL-c: Significant interaction whereby HDL-c increased with: increasing omega-3 and/or DHA and/or ALA intake in <i>IL-6</i> rs1800795 C allele carriers and increasing ALA intake in <i>IL-6</i> rs1554606 T allele carriers. HDL-c decreased with: increasing EPA and/or DHA intake in <i>IL-6</i> rs2069845 G allele carriers. TG: Significant interaction whereby TG reduced with increasing EPA intake in <i>IL-6</i> rs1800795 C allele carriers Total-c:HDL-c: Significant interaction whereby total-c:HDL-c ratio decreased with: increasing EPA intake in <i>IL-6</i> rs1554606 TT genotypes, increasing DHA intake in <i>IL-6</i> rs1554606 TT genotypes.
Lai et al. 2006 (16)	Cross- Sectional	Single SNP	Men and women from the Framingham	APOA5, rs662799, rs651821, rs3135506,	<i>APOA5:</i> 11q23.3	Mean Intake: 0.69 %kcal omega-3 <u>Tertiles for</u>	Major allele homozygotes vs. Minor allele carriers	TG	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

			(n=2148)	rs22/2560, rs2266788		omega-3: Low: <0.58 %kcal Moderate: 0.58- 0.74 %kcal High: >0.74 %kcal (unclear if food and/or supplement sources)			
Lu et al. 2010 (17)	Cross- Sectional	Single SNP	Men and women of Doetinchem Cohort Study (n=3575)	<i>FADS</i> , rs174546, rs482548, rs174570	FADS: 11q12.2	Mean intake: 0.5 %kcal (food)	Comparison between three genotypes	HDL-c Total-c	Total -c : In high omega-3 intake group, total-c w significantly higher with each added minor 'C' alle rs174546
Nettleton et al. 2009 (18)	Cross- Sectional	Single SNP	Men and women of Caucasian ancestry (n=8511)	<i>ANGPTL4</i> E40K (rs116843064)	ANGPTL4: 19p13.2	Not Reported/Cannot Determine (food)	Minor allele carriers vs. Non-allele carriers	HDL-c TG	
Richardson et al. 2011 (19)	Meta-analysis of the Framingham Offspring Study (FOS) and the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN)	Single SNP	Men and women from FOS and GOLDN studies (n=3605)	PLIN4, rs8887, rs11673616, rs892158, rs7250947, rs8102428, rs1609717, rs884164	PLIN4: 19p13.3	Mean intakes: FOS Men: 1.43 g/d FOS Women: 1.37 g/d GOLDN Men: 1.83 g/d GOLDN Women: 1.48 g/d (food and supplement)	Minor allele carriers vs. Non-allele carriers	TG HDL-c	TG: Significant interactions for <i>PLIN4</i> , rs884164 whe levels increased in minor allele carriers with higher o intake for males and females combined, and males indi
Standl et al. 2012 (20)	Cross- Sectional Analysis (10- year time point) within a 10-year longitudinal cohort study	Single SNP	10 year-old children of the GINIplus and LISAplus birth cohort studies (n=1697)	FADS1/FADS2, rs174545, rs174546, rs174556, rs174561, rs174575, rs3834458	<i>FADS1/2:</i> 11q12.2	Median intake: 0.14 mg/MJ omega-3 (ALA+EPA+DPA +DHA) (food and supplement)	Comparison between three genotypes	HDL-c LDL-c Total-c TG	
Tai et al. 2005 (21)	Cross- Sectional	Single SNP	Framingham Cohort, men and women (n=2106)	<i>PPARa</i> , L162V (rs1800206)	<i>PPARα</i> : 22q13.31	High: >0.69 %kcal Low: <0.69 %kcal (food)	PPARa: 162V carriers vs. 162L/162L homozygotes	TG apoC-III	 TG: 167V carriers had lower TG with high omega-3 compared to low omega-3 intake (gene-diet-interaction were NS) apoC-III: Significant gene-diet interactions; Higher a in 162V carriers with low omega-3 intake compared t carriers with high omega-3 intake and 162L homozygo low omega-3 intake
Volcik et al. 2008 (22)	Cross- Sectional (Baseline) Analysis within a Prospective Cohort	Single SNP	African American (n=3480) and Caucasian (n=10 134) men and women (N=13,614)	PPARa, L162V (rs1800206), 3'UTR G>A (rs6008259), 3'UTR C>T (rs3892755)	PPARa: 22q13.31	African American: High: >0.32 g/d EPA+DHA Low: ≤0.32 g/d EPA+DHA Caucasian: High: >0.22 g/d EPA+DHA Low: ≤0.22 g/d EPA+DHA (food)	Comparison between three genotypes for each SNP	HDL-c LDL-c TG Total-c	Total-c, LDL-c: African Americans (but not Cauca homozygous for $PPARa$ (rs3892755) TT genotype w EPA+DHA intake had significantly lower total-c and compared to CT and TT genotypes (both high and EPA+DHA intake)

BMJ Open

	Warodomwich it et al. 2009 (23)	Cross-sectional with fasting and postprandial measures	Single SNP	Men and women of GOLDN study (n=1083)	<i>TCF7L2</i> rs7903146, rs12255372	<i>TCF7L2:</i> 10q25.2-25.3	N/A (Median omega-3: 0.67% of kcal) (food)	Major allele homozygotes vs. Minor allele carriers	HDL-c LDL-c LDL-c particle size TG Total-c	_
0 1 2 3 4 5 6 7	ALA not a 1. Ir 2. A Part 3. T and '' ir *Hu	: alpha-linolenic applicable, NS: N takes are total on ll other (not listec icipants are descri- hese results were un-stratified by et ndicates that all o man <i>APOE</i> is pol	acid, Apo: apolipo on-significant, sdL nega-3 unless other l) gene/omega-3/lip bed as "healthy" fo taken from the full- hnicity. Note: Then f the completed ger ymorphic at two sin	protein, DHA: do DL-c: small, dens wise specified oid/lipoprotein res or studies that inco- text manuscript's re were no correct ne/omega-3/lipid/l ngle nucleotides (cosahexaenoic ac e, low-density lip ults of interest to orporated exclusio summary table o ions for multiple ipoprotein analys rs429358 and rs7	the present review v on criteria for certain of IL-6 results. Refer testing in the statisti ses were NS 412) resulting in thr	aenoic acid, HDL: h , SNP: single nucleo n conditions, blood l to Supplementary T cal analyses. ee different alleles (a	igh-density lipoprotei stide polymorphism, T ipid levels, etc. and w ables S8-S13 in Joffe ε2, ε3 and ε4)	n cholesterol, LD FG: triglycerides hen studies descri et al. 2014 (15) f	L: low-density lipoprotein cholesterol, N/A: bed the population as "healthy." or several other significant results, stratified
8 9 0										
2 3 4 5										
.6 .7 .8										
9 0 1										
3 4 5										
6 7 8										
9 0 1										
-2 -3 -4										

Page 53 of 75

 BMJ Open

9 4 5 6	Supplementary Table 3: Summary of interventional studies													
7 8 Auth 9	ior, Year	Study Design	Genetic Approach	Population (sample size included in analyses)	Intervention Duration	Gene(s), SNP(s)	Cytogenic Location of Gene(s)	Quantity, Source and Type of Omega-3	Comparators	Plasma Lipid/ Lipoprotein Outcome(s)	Summary of Statistically Significant Study Findings Relevant to the Research Question ¹			
11 12 13 14 15 16 17 ^{Abul} 17 ^{al. 2} 18 19 20 21 22 23	Mweis et 018 (24)	Randomized, Crossover Controlled Intervention	Single SNP*	Adults with at least one cardiovascular risk factor (n=129)	4 weeks	<i>FADS1</i> , rs174561 <i>FADS2</i> , rs174583 <i>ELOVL2</i> , rs953413 <i>ELOVL5</i> , rs2397142 <i>CETP</i> , rs5882 <i>SCD1</i> , rs2234970, <i>PPARa</i> , rs6008259 <i>LIPF</i> , rs814628 and <i>APOE</i> , rs429358, rs7412	<i>FADS1/2:</i> 11q12.2 <i>ELOVL2:</i> 6p24.2 <i>ELOVL5:</i> 6p12.1 <i>CETP:</i> 16q13 <i>SCD1:</i> 10q24.31 <i>PPARa:</i> 22q13.31 <i>LIPF:</i> 10q23.31 <i>APOE:</i> 19q13.32	Intake range: 1.0 – 2.5 g/day DHA (supplement)	Comparison between three genotypes for each single SNP (except <i>PPARA</i> and <i>LIPF</i> whereby analyses were major allele homozygotes vs. minor allele carriers) and <i>APOE</i> -E2 vs. <i>APOE</i> -E3 vs. <i>APOE</i> -E4	apoA1 apoB HDL-c LDL-c TG Total-c				
24 25 26 27 28 29 30 31 32 _{Alsa} 33 ²⁰ 34 35 36 37 38 39 40 41	leh et al. 14 (25)	Randomized Controlled Intervention	Single SNP and Polygenic	Healthy men and women (n=310)	12 months	CETP, rs3764261, <i>LIPC</i> , rs1532085 <i>APOB</i> , rs1367117 <i>ABCG5/ABCG</i> , rs4299376 <i>TIMD4/HAVCR</i> <i>I</i> , rs6882076 <i>GCKR</i> , rs1260326 <i>TRIB1</i> , rs2954029 <i>ANGPTL3/DO</i> <i>CK7</i> , rs2131925 <i>FADS1/2/3</i> , rs174546 <i>GALNT2</i> , rs4846914 <i>ABCA1</i> , rs4846914 <i>ABCA1</i> , rs4846914 <i>ABCA1</i> , rs48449268	CETP: 16q13 LIPC: 15q21.3 APOB: 2p24.1 ABCG5/ABCG8: 2p.21 TIMD4/HAVCR1: 5q33.3 GCKR: 2p23.3 TRIB1: 8q24.13 ANGPTL3/DOCK 7: 1p31.3 FADS: 11q12.2 GALNT2: 1q42.13 ABCA1: 9q31.1 APOE/APOC1/AP OC2: 19q13.32	Low Dose: 0.5 g/day EPA and DHA Moderate Dose: 0.9 g/day EPA and DHA High Dose: 1.8 g/day EPA and DHA (supplement)	Effect sizes per GRS risk allele after omega-3 treatment <i>and</i> Risk allele carriers vs. non-risk allele carriers	HDL-c LDL-c TG Total-c	TG: significant interaction whereby 1.8 g/day EPA and DHA significantly reduced TG in T allele carriers (21.6% reduction) vs. CC genotypes (3.5% reduction) of <i>FADS1</i> rs174546			

BMJ Open

1	
2	

-										
 4 5 6 Armstrong et 7 al. 2012 (26) 8 9 10 	Double-Blind, Placebo- Controlled Randomized Intervention	Single SNP (deletion polymorphism)	Healthy adults of African ancestry (n=98)	6 weeks	ALOX5, dd (33, 34 or 44), d5 (35, 45) and 55 (control) genotypes	<i>ALOX5:</i> 10q11.21	Fish oil: 5.0 g/day containing 2.0 g/day EPA and 1.0 g/day DHA Control oil: 5.0 g/day corn/soy oil (supplement)	dd vs. d5 vs. 55	TG Mean lipoprotein particle diameter, total number of particles and particle concentration for: HDL-c and LDL-c	 TG: significant interaction whereby decreases in TG from omega-3 supplementation were specific to d5 genotype group HDL-c particle concentration: significant decrease with omega-3 intervention in the d5 and 55 genotype groups Medium HDL-c particles and HDL-c (mmol/L): significant gene-treatment interaction but no significant differences after post-hoc analysis for comparisons among genotypes
11 12 13 Binia et al. 13 2017 (27) 14 15	Single-Arm Clinical Trial	Single SNP	Mexican adults 18-40 years (n=191)	6 weeks	PPARa, L162V (rs1800206), PPARy2, P12A (rs1801282)	<i>PPARα</i> : 22q13.31 <i>PPARγ2</i> : 3p25.2	Fish oil: 2.7 g/day containing 1.9 g/d EPA and 0.8 g/day DHA (supplement)	Major allele homozygotes vs. Minor allele carriers	HDL-c LDL-c TG Total-c	LDL-c: significant increase in LDL-c among minor allele carriers (PPARγ2 Pro12Ala and Ala12Ala) only vs. PPARγ2 Pro12Pro genotypes only for individuals with BMI>25.0 kg/m ² Total-c: significant increase in total-c among minor allele carriers (PPARγ2 Pro12Ala and Ala12Ala) only vs. PPARγ2 Pro12Pro genotypes only for individuals with BMI>25.0 kg/m ²
16 17 18 19 20 21 _{Mercier} et al. 22 2013 (28) 23 24 25 26 27	Single Arm Clinical Trial	Single SNP	Healthy adults aged 18-50 years (n=208)	6 weeks	SREBF1, rs4925115, rs4925118, rs12953299 ACLY, rs8071753, rs8065502, rs2304497 ACACA rs2017571, rs29221368, rs9906044, rs2229416, rs1714987, rs1266175, rs3815059, rs829165	<i>SREBF1:</i> 17p11.2 <i>ACLY:</i> 17q21.2 <i>ACACA:</i> 17q12	Fish oil: 5.0 g/day containing 1.9-2.2 g/day EPA and 1.1 g/day DHA (supplement)	Major allele homozygotes vs. Minor allele carriers <i>or</i> Comparison between three genotypes (when minor allele frequencies were >0.05)	TG	TG: Significant gene-diet interaction whereby individuals with the GG genotype of ACLY rs8071753 and individuals with the GG or CG genotype of ACACA rs1714987 exhibited greater TG lower effects following omega-3 supplementation; these two SNPs explained approximately 8% of the variance in plasma TG responses to omega-3 supplementation. There were significant differences in genotype frequencies of ACLY rs8071753 for responders and non-responders to omega-3 for TG lowering.
28 29 30 31 Bouchard- 32 ^{Mercier} et al. 2014 (29) 33 34 35 36	Single Arm Clinical Trial	Single SNP	Healthy men and women aged 18-50 years (n=208)	6 weeks	RXRA (12 SNPs), CPTIA (9 SNPs), ACADVL (1 SNP), ACAA2 (6 SNPs), ABCD2 (8 SNPs), ACOXI (8 SNPs), ACAA1 (3 SNPs) [outlined in Supplementary Table 5]	<i>RXRA:</i> 9q34.2 <i>CPTIA:</i> 11q13.3 <i>ACADVL:</i> 17p13.1 <i>ACAA2:</i> 18q21.1 <i>ABCD2:</i> 12q12 <i>ACOXI:</i> 17q25.1 <i>ACAA1:</i> 3p22.2	Fish oil: 5.0 g/day containing 1.9-2.2 g/day EPA and 1.1 g/day DHA (supplement)	Major allele homozygotes vs. Minor allele carriers <i>or</i> Comparison between three genotypes (when minor allele frequencies were >0.05)	TG	TG: There were significant gene-diet interaction effects on TG responses to omega-3 for RXRA rs11185660 genotype dependent on total fat intake, RXRA rs10881576, rs12339187 and rs11185660 genotypes dependent on saturated fat intake, and ACOX1 rs17583163 dependent on total polyunsaturated fat intake
 37 38 Bouchard- 39Mercier et al. 2014 (30) 41 	Single Arm Clinical Trial	Single SNP	Healthy men and women aged 18-50 years (n=208)	6 weeks	GCK (13 SNPs) [outlined in Supplementary Table 5]	GCK: 7p13	Fish oil: 5.0 g/day containing 1.9-2.2 g/day EPA and 1.1 g/day DHA (supplement)	Major allele homozygotes Vs. Minor allele carriers <i>or</i> Comparison between three genotypes	TG	TG: CC genotypes of <i>GCK</i> rs741038 exhibited significantly greater TG reduction in response to omega-3 when their carbohydrate intake was high (>48.6%kcal) compared to those with the CC genotype of rs741038 with low carbohydrate intake (≤48.6%kcal) and compared to CT or TT genotypes with either high or low carbohydrate intake.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 55 of 75

BMJ Open

1	
2	

0										
ß								(when minor allele		
4								frequencies were		
L								>0.05)	D 100	
ť			Healthy men of				Fish oil: 5.0 g/day		apoB-100	
• Caron-Dorval	Charle Anna		Caucasian		PPARα,	DD (D., 22, 12, 21	containing 1.9	V162 carriers	HDL-C	
7 et al. 2008	Single Arm	Single SNP	ancestry aged	6 weeks	L162V	PPARa: 22q13.31	g/day EPA and 1.1	vs.	LDL-c	
(31)	Clinical Irial		18-55 years		(rs1800206)		g/day DHA	non-carriers	Total a	
ĸ			(n=28)				(supplement)		Total C:HDL c	
9							Low Fat:		Total-C.IIDL-C	
10							4.0 mg/day FPA			
10							10.6 mg/d DPA			
11							11.7 mg/d DHA			
12							High-SFA:			
12							20.2 mg/d EPA,		apoB	
13	Sequential		TT Helson				27.1 mg/d DPA,		apoC-III	
14 Corrulho	Non-		Healthy men		ADOE		15.4 mg/d DHA	APOF E2/2	apoE	TC: Significant dist v constyna interaction for TC: greater
15 Wells et al	Randomized,	Single SND*	and women	8 weeks per	AFOL,	APOE: 10a13 32	High-SFA+DHA:	AT OL-LS/S	HDL-c	TG lowering response to high SEA+DHA diet in $APOF = 3/A$
2012(32)	Cross-Over	Single Sivi	vears	diet	rs7412	AI OL. 19415.52	524.3 mg/d EPA,	APOE-F3/4	LDL-c	carriers (compared to high-SFA diet alone)
16 2012 (32)	Dietary		(n=88)		15/112		215.5 mg/d DPA,	III OL LUI	sdLDL-c	carriers (compared to high of realet abile)
17	Intervention		(11 000)				3017.3 mg/d DHA		TG	
10							[actual intakes		l otal-c	
18							(supplemental			
19							DHA for High			
20							SFA+DHA: others			
f.							from food sources)			
21							Control oil: 0.0	APOE-E2/E2 +		
22	Double-Blind,		TT 1.1				g/d EPA and DHA	E2/E3	UDI	
D2 Contator et al	Randomized,		Healthy men	0 1	APOE,		Fish oil: 0.7 g/d	vs.	HDL-c	TG: Significant interaction between treatment x sex x $ADOF E2/E4 + E4/E4$ makes which to take
2008(24)	Placebo-	Single SNP*	and women	8 weeks per	rs429358,	APOE: 19q13.32	EPA and DHA	APOE-E3/E3	LDL-c	genotype whereby APOE-E3/E4 + E4/E4 males exhibited the
24 2008 (34)	Crossover		ageu 20-70 vears ($n=312$)	ulet	rs7412		Fish oil: 1.8 g/d	vs.	Total-c	well as $1.8 \text{ g/d} \text{EPA}$ and DHA compared to other genotypes
25	Intervention		years (n 512)				EPA and DHA	APOE-E3/E4 +	i otai-c	wen as 1.6 g/a El 14 and D114 compared to other genotypes
	intervention						(supplement)	E4/E4		
20			** 14		FADS gene		Fish oil: 5.0 g/day			
27	Sin ala Amu		Healthy men		cluster (19 SNIDa) [autlined		containing 1.9	Major allele		
28_{2012} (25)	Clinical Trial	Single SNP	and women	6 weeks	SNPS) [outlined	FADS: 11q12.2	g/day EPA and 1.1	nomozygotes	TG	
2012 (33)	Chinical Illai		vers $(n=208)$		Supplementary		g/day DHA	VS. Minor allele carriers		
29			years (if 200)		Table 51		(supplement)	winter affecte carriers		
<u>30</u>			Healthv men		10000		Fish oil containing	(DOF T)	HDL-c	
R1 Dang et al.	Single Arm		and women		APOE,	1005 10 10 00	900 mg EPA and	APOE-E4+	LDL-c	
2015 (36)	Clinical Trial	Single SNP*	aged 20-35	4 weeks	rs429358,	APOE: 19q13.32	680 mg DHA	VS.	TG	
32			years (n=80)		18/412		(supplement)	AFOE-E4-	Total-c	
33							Yogurt with lower			
RA							dose fish oil:			
ľ-							0.8g/day omega-3			
85	Dende 1		Men and				containing 0.01g			HDI at In response to among 2 minutestican (0.9.2.0
86	Randomized,		women with $TC > 1.7$		CD26		ALA, 0.44g EPA,			(0.8-3.0) HDL-c increased in GA genetype of CD36 rs1761667
Dawczynski et	Controlled	Single SNP	$10 \le 1.7$ mmol/I	10 weeks	rs1761667	CD36: 7a21 11	0.00g DFA and 0.31g DHA (fiel	Comparison between	HDL-c	and CG genotype of CD36 rs1049673
al. 2013 (37)	Double-Blind	Single SIM	otherwise	10 WCCK5	rs1049673	CD50. /421.11	oil)	three genotypes	TG	TG: In response to omega-3 supplementation (0.8-3.0 g/day)
B 8	Intervention		healthy		151017075		011)			TG decreased in GA genotype of <i>CD36</i> rs1761667.
89			(n=47)				Yogurt with			
10			× · · /				higher dose fish			
f+∪							oil: 3.0 g/day			
41							omega-3			
47										

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1 440 50 01 7 5

1 2										
β 4 5 6							containing 0.07g ALA, 1.59g EPA, 0.23g DPA and 1.12g DHA (fish oil)			
7 8 9							Control yogurt: commercial whole fruit yogurt with 3.5% milk fat			
10							(food)			
11 12 13 14 ^f erguson et al. 15 ^{2010 (38)} 16 17	Randomized Intervention and Cross- Sectional (Baseline) Analysis	Single SNP	Men and women with metabolic syndrome from LIPGENE cohort (<i>n</i> =450)	12 weeks	NOS3, rs11771443, rs1800783, rs1800779, rs1799983, rs3918227, rs743507	<i>NOS3:</i> 7q36.1	1.24 g/d EPA+DHA supplement (intervention); quantity of omega- 3 not reported for observational analyses	Major allele homozygotes vs. Minor allele carriers	apoA-1 apoB apoB-48 apoC-III apoC-III apoE HDL-c LDL-c TG Total-c	TG: For <i>NOS3</i> rs1799983 minor-allele (A) carriers only, the observational analysis indicated higher TG with lower EPA+DHA intake (and lower TG with higher EPA+DHA intake). Post-intervention with omega-3 supplementation indicated that only minor-allele (A) carriers exhibited significant TG reduction (accompanied by increases in plasma omega-3).
18 19 20 21 22 23 24 25 ^{Harslof et al.} 25 ^{Jarslof et al.} 2014 (39) 26 27 28 29 30 31 32	Randomized, Controlled Intervention	Single SNP and Genetic Score	Infants of Danish ancestry (n=133)	9 months	PPARy2, Pro12Ala (rs1801282), FADS2, rs174575, FADS3, rs174448 COX2, rs5275, rs689466	PPARy2: 3p25.2 FADS: 11q12.2 COX2: 1q25.2- q25.3	5.0 mL/day fish oil (median reported intake: 3.8 g/day containing 630 mg/day EPA and 620 mg/day DHA) (supplement)	PPARy2 genotype analyses were by major allele homozygotes vs. heterozygotes and FADS genotype analyses were by the number of DHA- increasing alleles and COX2 genotype analyses were by major allele homozygotes vs. heterozygotes vs.	HDL-c LDL-c TG Total-c	TG: <i>PPAR</i> γ2 heterozygotes exhibited reduced TG in response to omega-3 when compared to <i>PPAR</i> γ2 heterozygotes in the control (sunflower oil) group
33 34 _{Itariu et al.} 35 2012 (40) 36 37	Randomized, Controlled Intervention	Single SNP	Men and women without diabetes with a BMI ≥40 kg/m ² aged 20- 65 years (n=55)	8 weeks	<i>PPARγ2</i> , Pro12Ala (rs1801282)	<i>PPARγ2</i> : 3p25.2	Fish oil containing 3.4 g/day EPA + DHA (supplement)	<i>PPARγ2</i> , Ala12 carriers vs. Pro12Pro	apoB HDL-c LDL-c TG Total-c	 apoB: Significant increases in apoB with omega-3 intervention in Ala12 carriers when compared to Pro12 carriers. Total-c: Significant interaction effect whereby increases in total-c were exhibited with omega-3 intervention in Ala12 carriers when compared to the Pro12Pro genotype.
38 39Jackson et al. 40 41	Non- Randomized Intervention	Single SNP*	Healthy men aged 35-70 years (n=23)	8 weeks and 480-min postprandial	<i>APOE</i> , rs429358, rs7412	APOE: 19q13.32	Fish oil containing 3.45 g/day DHA (supplement)	APOE-E3/3 vs. APOE-E3/4	apoB apoC-III apoE HDL-c LDL-c TG	TG: APOE-E3/E4 exhibited reduced fasting TG in response to a high saturated fat + DHA intervention when compared to the high saturated fat diet alone. There was also a significant interaction (meal x time x genotype) for the postprandial TG lowering response whereby APOE-E3/4 consuming a high saturated fat + DHA intervention exhibited significantly lower

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1	
2	2

								Total-c	postprandial TG, TG area under the curve, and TG maximum concentration compared to those consuming the high saturated fat diet alone.
Non- Randomized Intervention	Single SNP*	Healthy men aged 35-70 years (n=23)	480-min postprandial	<i>APOE</i> , rs429358, rs7412	APOE: 19q13.32	Fish oil containing 3.45 g/day DHA (supplement)	APOE-E3/3 vs. APOE-E3/4	apoB-48 apoB-100	
Randomized Intervention	Single SNP	Healthy men and women aged 30-65 years (<i>n</i> =150)	3 months	<i>PPARγ2</i> , Pro12Ala (rs1801282)	<i>PPARy2</i> : 3p25.2	Fish oil containing 2.4 g/d EPA + DHA (supplement)	PPARy2, Ala12 carriers vs. Pro12Pro	HDL-c LDL-c TG Total-c	TG: Compared to Pro12Pro, Ala12 carriers exhibited significantly greater TG reductions in response to omega-3 supplementation only when total fat intake was ≤37 %kcal or SFA intake was ≤10 %kcal
Randomized, Controlled Intervention	Single SNP	Men at high risk of cardiovascular disease aged 65-75 years (n=204)	6 months	<i>FVII</i> , rs6046	<i>FVII:</i> 13q34	Fish oil containing 2.4 g/d EPA + DHA Dietary advice including recommendations to increase omega- 3 (supplement and food)	Major allele homozygotes vs. Minor allele carriers	TG	
Non- Randomized Intervention	Single SNP	Healthy men aged 43-84 years (<i>n</i> =111)	12 weeks	<i>CD36</i> , rs1527483, rs1049673, rs1761667, rs1984112	CD36: 7q21.11	Fish oil containing 1.02 g/d EPA and 0.69 g/d DHA (supplement)	For each SNP: AA vs. AG vs. GG	HDL-c LDL-c LDL-c:HDL-c TG	TG: In response to omega-3 supplementation, TG significantly reduced only in individuals with the GG genotype, for each SNP individually (i.e. for rs1527483, rs1049673, rs1761667 and rs1984112 individually) LDL-c: In response to omega-3 supplementation, LDL-c increased only in individuals with the rs1761667 AA genotype as well as for individuals with the rs1984112 AA genotype HDL-c: In response to omega-3 supplementation, HDL-c significantly increased in individuals with rs1761667 AA or AG as well as for individuals with the CC or CG genotype for either rs1984112, rs1527483 and/or rs1049673; NOTE: rs1527483 results should be interpreted with caution due to low sample sizes for AA and AG genotypes thus reducing statistical power)
Single-Arm Clinical Trial	Single SNP	Healthy men (n=159)	12 weeks	<i>TNFa</i> , -308 (rs1800629) <i>LT-a</i> , +252 (rs909253) <i>IL-1β</i> , -511 (rs16944) <i>IL-6</i> , -174 (rs1800795)	<i>TNFa:</i> 6p21.33 <i>LT-a:</i> 6p21.33 <i>IL-1β:</i> 2q14.1 <i>IL-6:</i> 7p15.3	Fish oil containing 1.8 g/d EPA+DHA (supplement)	Major allele homozygotes vs. Minor allele carriers <i>or</i> Comparison between three genotypes (depending on allele frequencies)	TG	TG: Significant negative correlation between pre- supplementation TG and change of TG during omega-3 supplementation for all genotypes of genes studied except for LT - α rs909253 GG genotype and IL - $I\beta$ rs16944 TT genotype. In LT - α rs909253 AA genotype and $TNF\alpha$ rs1800629 AA genotype, signification association between BMI (divided in tertiles) and TG changes.
Crossover Intervention	Single SNP	Healthy post- menopausal women (n=16)	8 weeks per diet	<i>FABP2,</i> rs1799883	<i>FABP2:</i> 4q26	High-Fat: 50 %kcal from dietary fat Low-Fat: 20 %kcal from dietary fat Low-Fat + omega-3: 23% kcal from dietary fat with 3 %kcal from omega-3 (food)	Major allele homozygotes vs. Minor allele carriers	TG	
_	Non-Randomized Intervention Randomized Intervention Randomized, Controlled Intervention Non- Randomized Intervention Single-Arm Clinical Trial Crossover Intervention	Non-Randomized Intervention Single SNP* Randomized Intervention Single SNP Randomized, Controlled Intervention Single SNP Randomized, Controlled Intervention Single SNP Non- Randomized Intervention Single SNP Single-Arm Clinical Trial Single SNP Crossover Intervention Single SNP	Non- Randomized InterventionSingle SNP*Healthy men aged 35-70 years (n=23) Healthy men and women aged 30-65 years (n=150)Randomized InterventionSingle SNPMen at high risk of cardiovascular disease aged 65-75 years (n=204)Non- Randomized InterventionSingle SNPMen at high risk of cardiovascular disease aged 65-75 years (n=204)Non- Randomized InterventionSingle SNPHealthy men aged 43-84 years (n=111)Non- Randomized InterventionSingle SNPHealthy men aged 43-84 years (n=111)Single-Arm Clinical TrialSingle SNPHealthy men (n=159)Crossover InterventionSingle SNPHealthy men (n=159)Crossover InterventionSingle SNPHealthy post- menopausal women (n=16)	Non- Randomized InterventionSingle SNP*Healthy men aged 35-70 years (n=23)480-min postprandialRandomized InterventionSingle SNPHealthy men aged 30-65 years (n=150)3 monthsRandomized, Controlled InterventionSingle SNPMen at high risk of cardiovascular (n=204)6 monthsNon- Randomized InterventionSingle SNPMen at high risk of cardiovascular (n=204)6 monthsNon- Randomized InterventionSingle SNPHealthy men aged 43-84 years (n=111)12 weeksNon- Randomized InterventionSingle SNPHealthy men aged 43-84 years (n=111)12 weeksSingle-Arm Clinical TrialSingle SNPHealthy men (n=159)12 weeksCrossover InterventionSingle SNPHealthy post- menopausal women (n=16)8 weeks per diet	Non- Randomized InterventionSingle SNP*Healthy men aged 35-70 years (n=23)480-min postprandialAPOE, rs429358, rs7412Randomized InterventionSingle SNPHealthy men aged 30-65 years (n=150)3 monthsPPARy2, Pro12Ala (s1801282)Randomized, Controlled InterventionSingle SNPMen at high risk of cardiovascular disease aged 65-75 years (n=204)6 monthsFVII, rs6046Non- Randomized, InterventionSingle SNPHealthy men aged 43-84 years (n=111)6 monthsFVII, rs6046Non- Randomized InterventionSingle SNPHealthy men aged 43-84 years (n=111)12 weeksCD36, rs1527483, rs164667, rs1984112Non- Randomized InterventionSingle SNPHealthy men aged 43-84 years (n=111)12 weeksCD36, rs16049673, rs161667, rs1984112Single-Arm Clinical TrialSingle SNPHealthy men (n=159)12 weeksTNFca, -308 (rs1800629) I.T-a, +322 (rs1800629) I.T-a, +321 (rs169044) I.t-6, 174 (rs1800795)Crossover InterventionSingle SNPHealthy men (n=16)8 weeks per dietFABP2, rs1799883	Non- Rundomized InterventionSingle SNP*Healthy men aged 35-70 years (n=23)480-min postprandial motopatter 	Non- Randomized InterventionSingle SNP*Healthy men aged 35-70 vest (r-23)480-min postprandial postprandial <i>APOE</i> , rs429358, rs7412 <i>APOE</i> : 19q13.32Fish oil containing 3.45 g/day DHA supplement)Randomized InterventionSingle SNPHealthy men aged 30.65 years (r=150)3 months <i>PPAR7</i> , Pro12A1a (s1801282) <i>PPAR72</i> : 3p25.2Fish oil containing 2.4 g/ EPA + DHARandomized InterventionSingle SNPMen at high risk of cardiovascular disease aged (n=204)6 months <i>FVII</i> , rs6046 <i>FVII</i> : 13q34Fish oil containing 2.4 g/ EPA + DHA + D	Non- Randomized Intervention Single SNP Healthy men aged 35-70 years (n=23) 480-min postprandial <i>APOE</i> : 172338, ne23238, ne23238, ne23238, ne23238, ne24238, ne24238, ne24238, ne24238, ne24238, ne24238, ne24238, ne24238, ne24238, ne24238, ne24238, ne24238, ne24238, ne19482, per network Fish oil containing 2-4 g d EPA + Distance single SNP <i>APOE</i> : 1933 No. <i>PrARp</i> , 744 Randomized Intervention Single SNP Healthy men and source years (n=150) 3 months (nex to ight) mick of arcs (n=240) <i>PrARp</i> , 2 (n=150) <i>PrARp</i> , 2 (n=150) <i>PrARp</i> , 2 (n=150) <i>PrARp</i> , 2 (n=150) Randomized Intervention Single SNP Healthy men aged 43-84 (n=2404) 6 months (n=2404) <i>FVII</i> , ns046 <i>FVII</i> , 13q34 Fish oil containing 2-4 g d EPA + Distance (n=10morpace) Major allele homozygotes (supplement) Major allele nerves (supplement) Non- Randomized Intervention Single SNP Healthy men (n=159) 12 weeks <i>CD36</i> , (s1984112) <i>CD36</i> , 7q21.11 Fish oil containing 10.2 g d EPA and 0.0 g d EPA and	Non- Randomized InterventionSingle SNPHealthy men aged 35-70 aged 35-70 method marked bare pestprandial intervention $APOE:$ pestprandial model pestprandial model model model pestprandial model $APOE:$ model model model model model model model model model model model model model $APOE:$ model model model model model model model model model model model model model model model $APOE:$ model $APOE:$ model $APOE:$ m

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

ñ										
8 4 5 Minihane et al. 2000 (48) 6 7	Double-Blind, Randomized, Placebo- Controlled, Crossover Intervention	Single SNP*	Healthy men aged 30-70 years at risk of atherogenic lipoprotein phenotype (n=50)	6 weeks per diet and 480 minute postprandial	<i>APOE</i> , rs429358, rs7412	<i>APOE:</i> 19q13.32	Fish oil containing 3.0 g/d EPA and DHA, Control oil: 6.0 g/d olive oil capsule (supplement)	APOE-E2/E3 vs. APOE-E3/E3 vs. APOE-E3/E4 + E4/E4	HDL-c LDL-c TG Total-c Total-c:HDL	 TG: Postprandial: Significantly greater reduction in TG incremental area under postprandial TG curve in APOE-E2/E3 relative to other APOE genotype categories Total-c: 6-week: APOE-E3/E4 + E4/E4 genotype group exhibited significantly different changes in total-c (increase), relative to other APOE genotypes, whereby reductions in total-c occurred
8 9 10 ^{Olano-Martin} et al. 2010 11 (49) 12 13	Randomized, Cross-Over Intervention	Single SNP*	Healthy normolipidemi c men (n=38)	4 weeks per diet	APOE, rs429358, rs7412	<i>APOE:</i> 19q13.32	EPA-rich fish oil: 3.3 g/d EPA DHA-rich fish oil: 3.7 g/d DHA Control oil: 80:20 palm olein:soyabean (supplement)	APOE-E3/3 vs. APOE-E3/4 (carriers)	apoB apoE HDL-c LDL-c TG TG:HDL-c Total-c	apoB, LDL-c: In <i>APOE</i> -E4 carriers only, DHA-rich oil treatment resulted in significant increases in apoB and LDL-c TG: Significant reduction in TG in response to both EPA and DHA in <i>APOE</i> -E3/E3 group; significant reduction in TG in <i>APOE</i> -E4 carriers with EPA only. No significant interactions. Total-c: Significant genotype x treatment interaction whereby <i>APOE</i> -E4 carriers exhibit total-c reductions in response to EPA-rich oil.
14 15 16Duellette et al. 17 ^{2013 (50)} 18 19	Single-Arm Clinical Trial	Single SNP	Healthy men and women aged 18-50 (n=210)	6 weeks	GPAM (3 SNPs), AGPAT3 (13 SNPs), AGPAT4 (35 SNPs) [outlined in Supplementary Table 5]	GPAM: 10q25.2 AGPAT3: 21q22.3 AGPAT4: 6q26	Fish oil containing 1.9-2.2 g/d EPA + 1.1 g/d DHA (supplement)	Major allele homozygotes vs. Minor allele carriers <i>or</i> Comparison between three genotypes (depending on allele frequencies)	HDL-c LDL-c TG Total-c	 LDL-e: Significant GPAM, rs2792751 genotype x supplementation interaction on LDL-c TG: Significant genotype x supplementation interaction on TG for GPAM, rs2792751 and rs17129561 as well as AGPAT4, rs9458172 and rs3798943
20 21 22 23 24 ^{Quellette et al.} 2014 (51) 25 26 27 28	Single-Arm Clinical Trial	Single SNP	Healthy men and women 18- 50 years (n=208)	6 weeks	MGLL (18 SNPs) [outlined in Supplementary Table 5]	<i>MGLL:</i> 3q21.3	Fish oil containing 1.9-2.2 g/d EPA + 1.1 g/d DHA (supplement)	Major allele homozygotes Vs. Minor allele carriers <i>or</i> Comparison between three genotypes (depending on allele frequencies)	apoB HDL-c LDL-c LDL particle size TG Total-c	LDL-c: Significant interactions for MGLL rs6776142, rs555183, rs782444, rs6787155 and rs1466571 whereby omega-3 supplementation modulated LDL-c levels; rs782444 and rs555183 minor allele homozygotes more likely to be negative responders to omega-3 supplementation (i.e. exhibit reduced LDL-c); rs6780384, rs782444 and rs6787155 major allele homozygotes more likely to be negative responders to omega-3 supplementation LDL particle size: Significant interactions for MGLL rs782440, rs13076543 and rs9877819 whereby omega-3 supplementation modulated LDL particle size; rs549662 minor allele homozygotes more likely to be positive responders to omega-3 supplementation (i.e. exhibit increased LDL particle size)
29 30 Paschos et al. 31 2005 (52) 32	Single-Arm Clinical Trial	Single SNP*	Men with dyslipidemia, aged 35 to 67 years (n=50)	12 weeks	<i>APOE</i> , rs429358, rs7412	APOE: 19q13.32	8.1 g/day ALA (via 15 ml of Flaxseed oil supplementation)	APOE-E2/E3 vs. APOE-E3/E3 vs. APOE-E3/E4	ApoA-I ApoB HDL-c LDL-c TG Total-c	ApoA-I: Significant decrease in E3/E3 HDL-c: Significant decrease in E3/E3
95 34 35 36 37 ^{Pishva et al.} 37 2010 (53) 38 39 40	Single-Arm Clinical Trial	Single SNP	Adults with hypertriglyceri demia (n=46)	8 weeks	<i>FABP2,</i> Ala54Thr (rs1799883)	<i>FABP2:</i> 4q26	2.0 g/day pure EPA (supplement)	Ala54Ala (GG) vs. Thr54 carriers (GT+TT)	ApoB ApoC-III HDL-c LDL-c TG Total-c	 ApoC-III: In response to EPA supplementation, significantly greater reductions in ApoC-III in GT+TT genotypes of rs1799883 compared to GG genotype. HDL-c: In response to EPA supplementation, significantly greater increases in HDL-c in GT+TT genotypes of rs1799883 compared to GG genotype. LDL-c: In response to EPA supplementation, LDL-c significantly decreased in GG genotypes of rs1799883 but not GT+TT genotypes. TG: In response to EPA supplementation, significantly greater reductions in TG in GT+TT genotypes of rs1799883 compared to GG genotype.
+ Pishva et al.	Single-Arm	Single SNP	Adults with	8 weeks	PPARa,	<i>PPARα</i> : 22q13.31	2.0 g/day pure	Leu162	ApoB	
+2										

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	
2	

-										
8 2014 (54) 4 5 6 7	Clinical Trial		hypertriglyceri demia (n=46)		Leu162Val (rs1800206) <i>PPARa</i> , Intron 7 SNP		EPA (supplement)	vs. Val162 carriers <i>and</i> Intron 7 GG vs Intron 7 GC	ApoCIII HDL-c LDL-c TG Total-c	
9 10 Roke and 11 _{Mutch, 2014} 12 (55) 13 14	Single-Arm Clinical Trial	Single SNP	Men aged 18- 25 years (n=12)	12 weeks (+8 week washout)	FADS1, rs174537 FADS2, rs174576 (LD=1.0 therefore presented results for rs174537)	<i>FADS1/2:</i> 11q12.2	Fish oil containing 1.8 g/d EPA+DHA (supplement)	Major allele homozygotes vs. Minor allele carriers	HDL-c LDL-c TG Total-c Total-c:HDL-c	-
15 16 1 Rudkowska et 18 ^{al. 2014 (56)} 19 20	Single-Arm Clinical Trial	Single SNP	Healthy men and women aged 18-50 (<i>n</i> =210)	6 weeks	SCD1, rs1502593, rs522951, rs11190480, rs3071, rs3829160, rs2234970, rs10883463, rs508384	SCD1 : 10q24.31	Fish oil containing 1.9-2.2 g/d EPA + 1.1 g/d DHA (supplement)	Comparison between three genotypes	HDL-c LDL-c TG Total-c Total-c:HDL-c	TG: For <i>SCD1</i> rs508384, AA genotype was associated with lower TG than CA and CC genotypes both pre- and post-supplementation.
21 22 23 24 25 Rudkowska et 26al. 2014 (57) 27 28 29 30 81	Single-Arm Clinical Trial	Nutrigenomic GWAS	Healthy men and women aged 18-50 (n=141) + Replication of GRS in FINGEN study (n=310)	6 weeks	Genetic Risk Score including: IQCJ-SCHIP1 (4 SNPs), SLIT2 (3 SNPs), PHF17 (3 SNPs), MYB (1 SNP), NXPH1 (1 SNP), NELL1 (1 SNP) [outlined in Supplementary Table 5]	IQCJ-SCHIP1: 3q25.32 SLIT2: 4p15.31 PHF17: 4q28.2 MYB: 6q23.3 NXPH1: 7p21.3 NELL1: 11p15.1	Fish oil containing 1.9-2.2 g/d EPA + 1.1 g/d DHA (supplement)	Responders versus non-responders (i.e. TG response) to supplementation	TG	 Thirteen SNPs were associated with TG response to omega-3 supplementation and 10 were used in the GRS calculation. The GRS was significantly associated with TG response. TG: The GRS explained 21.5% of the variation in TG response when adjusted for age, sex and BMI. Replication of this GRS in the FINGEN study: the GRS explained 2.0% of the TG change but the association as NS (adjusted for age, sex and BMI).
82 83scorletti et al. 84 2015 (58) 85	Randomized, Placebo- Controlled, Double-Blind Intervention	Single SNP	Men and women with non-alcoholic fatty liver disease (n=95)	15-18 months	PNPLA3, 1148M (rs738409) TM6SF2, E167K (rs58542926)	PNPLA3: 22q13.31 TM6SF2: 19p13.11	1.8 g/day EPA+ 1.5 g/day DHA (supplement)	Comparison between three genotypes and Major allele homozygotes vs. Minor allele carriers	TG	-
56 37 38Thifault et al. 39 ^{2013 (59)} 40	Single-Arm Clinical Trial	Single SNP*	Healthy men and women with overweight or obesity aged 18-50 (n=210)	6 weeks	<i>APOE</i> , rs429358, rs7412	APOE: 19q13.32	Fish oil containing 1.9-2.2 g/d EPA and 1.1 g/d DHA (supplement)	APOE-E2 vs. APOE-E3 vs. APOE-E4	apoB HDL-c LDL-c TG Total-c	
41 Tremblay et	Single-Arm	Single SNP	Healthy men	6 weeks	PLA2G2A (5	PLA2G2A:	Fish oil containing	Major allele	apoB-100	TG: omega-3 supplementation significantly reduced TG in
42										

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

8 al. 2015 (60) 4 5 6 7 8 9 10 11 12 13	Clinical Trial		and women aged 18-50 years (<i>n</i> =208)	4	SNPs), PLA2G2C (6 SNPs), PLA2G2D (8 SNPs), PLA2G2F (6 SNPs), PLA2G4A (22 SNPs), PLA2G6 (5 SNPs), PLA2G7 (9 SNPs) [outlined in Supplementary Table 5]	lp36.13 <i>PLA2G2C</i> : lp36.13 <i>PLA2G2D</i> : lp36.12 <i>PLA2G2F</i> : lp36.12 <i>PLA2G4A</i> : lq31.1 <i>PLA2G6</i> : 22q13.1 <i>PLA2G7</i> : 6p12.3	1.9 g/d EPA + 1.1 g/d DHA (supplement)	homozygotes vs. Minor allele carriers <i>or</i> Comparison between three genotypes (depending on allele frequencies)	HDL-c LDL-c TG Total-c	PLA2G7 rs1805018 as well as PLA2G4A rs10752979, rs10737277, rs7540602 and rs3820185; in the linear regression model, <i>PLA2G6</i> rs132989, <i>PLA2G7</i> rs679667, <i>PLA2G2D</i> rs12045689, <i>PLA2G4A</i> rs 10752979 and rs1160719 together explained 5.9% of post-supplementation TG levels
14 15 16 17 18 Vallée 19 Marcotte et al. 20 2016 (61) 21 22 23 24	Single-Arm Clinical Trial	Nutrigenomic GWAS	Men and woman aged 18-50 years (n=208)	6 weeks	<i>IQCJ</i> (16 SNPs), <i>NXPH1</i> (34 SNPs), <i>PHF17</i> (8 SNPs), <i>MYB</i> (9 SNPs) [outlined in Supplementary Table 5]	IQCJ: 3q25.32 NXPH1: 7p21.3 PHF17: 4q28.2 MYB: 6q23.3	Fish oil containing 1.9-2.2 g/d EPA + 1.1 g/d DHA (supplement)	Comparison between three genotypes	TG	TG: Significant gene-diet interaction on TG levels pre- vs. post-supplementation for the following SNPs: <i>IQCJ</i> (10 SNPs: rs2044704, rs1962071, rs6800211, rs17782879, rs1868414, rs2595260, rs9827242, rs1449009, rs2621309, rs61332355), <i>NXPH1</i> (4 SNPs: rs7806226, rs7805772, rs2349780, rs6974252), <i>MYB</i> (3 SNPs: rs9321493, rs11154794, rs210962). Four SNPs were still significant after applying the false discovery rate to account for multiple testing: rs1449009, rs2621309, rs61332355 in <i>IQCJ</i> ; rs7805772 in <i>NXPH1</i> . There were four dominant SNPs driving the association with the TG response: rs61332355 and rs9827242 in <i>IQCJ</i> , rs7805772 in <i>NXPH1</i> and rs11154794 in <i>MYB</i> . Significant differences in genotype frequencies between positive and negative responders to omega-3 for TG changes for <i>IQCJ</i> rs2044704, rs1962071, rs17782879, rs1868414, rs2595260, rs9827242, rs1449009, rs2621309, rs61332355, <i>NXPH1</i> rs7806226, rs7805772, <i>MYB</i> rs11154794 and rs210936.
26 27 28 Vallée 29 ^{Marcotte} et al. 2019 (62) 30 31 32	Single-Arm Clinical Trial (replication of GRS in a novel cohort)	Nutrigenomic GWAS	Healthy adults of Mexican descent aged 18-40 years (n=191)	6 weeks	Genetic Risk Score including 103 SNPs: [outlined in Supplementary Table 5]	NA	Fish oil containing 1.9 g/day EPA + 0.8 g/day DHA (supplement)	Responders versus non-responders (i.e. TG response) to supplementation	TG	TG: A first 7-SNP GRS [SNPs selected based on previously developed GRS (57,61)] did not explain TG variation. A second GRS calculated from 103 SNPs significantly explained 4.4% of TG variation. A third GRS including the 5 most relevant SNPs significantly explained 11.0% of TG variation (NXPH1 rs10265408, rs10486228, rs10486228, rs17150341, rs6974252 and IQCJ-SCHIP1 rs2595241). When subjects with the lowest TG change were not included, this third GRS explained more TG variation. Including only the 28 responders and 28 non-responders with the greatest TG variation, this third GRS explained 29.1% of TG variation.
33 34 Vallée 35 ^{Marcotte} et al. 2019 (63) 36 37	Single-Arm Clinical Trial	Nutrigenomics GWAS (polygenic)	Men and woman aged 18-50 years with overweight or obesity (n=208)	6 weeks	GWAS; GRS included 31 SNPs [outlined in Supplementary Table 5]	NA	Fish oil containing 1.9-2.2g/d EPA + 1.1g/d DHA (supplement)	Responders to omega-3 supplementation for TG reduction vs. Non-Responders	TG	TG: 31 SNPs associated with TG response to omega-3 supplementation and used in GRS calculation; Lower GRSs were significantly more responsive to omega-3 supplementation for TG reduction compared to higher GRS (GRS accounted for 49.7% of TG responses); These findings were replicated in the FINGEN study with 23 SNPs (GRS accounted for 3.7% of TG responses).
38 Vallée 39Marcotte et al. 40 2020 (64) 41	Double-Blind, Randomized, Controlled, Crossover Intervention	Nutrigenomics GWAS (polygenic)	Men and women with abdominal obesity and elevated CRP aged 18-70	10 weeks per diet	GRS included 30 SNPs [outlined in Supplementary Table 5]	NA	Control oil: 3 g/d corn oil Pure EPA: 2.7 g/d Pure DHA: 2.7 g/d (supplement)	Responders to different types of omega-3 supplementation for TG reduction vs.	TG	TG: The GRS was significantly associated with responsiveness to EPA for TG reduction when comparing responders vs. non-responders vs. adverse responders (trend, p=0.08, for DHA). The GRS was significantly associated with responsiveness to both EPA and DHA for TG reduction when comparing responders vs. adverse responders.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2										
3 4 5 б			years (n=122)					Non-Responders vs. Adverse Responders <i>and</i> Responders vs		
7								Adverse Responders		
8 9 Wu et al. 2014 10 (65) 11	Double-Blind, Randomized, Placebo- Controlled, Crossover Intervention	Single SNP	Men and women with moderate risk of CVD (n=84)	8 weeks	<i>eNOS</i> Glu298Asp (rs1799983)	<i>NOS3:</i> 7q36.1	Fish oil containing 0.9 g/day EPA + 0.6 g/day DHA (supplement)	Major allele homozygotes (GG) vs. Minor allele carriers (GT+TT)	LDL-c HDL-c TG Total-c	-
12 13 14 15 Zheng et al. 16 ^{2018 (66)} 17 18	Double-Blind, Randomized, Controlled Intervention	Single SNP and Polygenic	Men and women with type 2 diabetes aged 35-80 years for men or postmenopausa 1 and 80 years for women (n=139)	25 weeks	CD36, rs1527483 NOS3, rs1799983 PPARy2, rs1801282	CD36: 7q21.11 NOS3: 7q36.1 PPARy2: 3p25.2	Fish oil: 2.0 g/d EPA and DHA Flaxseed oil: 2.5 g/d ALA Control oil: corn oil (supplement)	Major allele homozygotes vs. Minor allele carriers and High vs. low genetic score calculated based on three SNPs	HDL-c LDL-c TG Total-c:HDL-c Total-c	 LDL-c: significant interaction for PPARy2 rs1801282 genotype, intervention group and LDL-c change; but increased LDL-c in G allele carriers of PPARy2 rs1801282 compared to CC genotype only in the control (corn oil) group TG: omega-3 fish oil (but not flaxseed oil) supplementation reduced TG for individuals with the CD36 rs1527483 GG genotype (significant interaction); significant interaction between genetic score and omega-3 on TG levels whereby omega-3 (fish oil and flaxseed oil) supplementation significantly reduced TG levels compared to control only in individuals with high genetic scores

ALA: alpha-linolenic acid, Apo: apolipoprotein, DHA: docosahexaenoic acid, EPA: eicosapentaenoic acid, HDL: high-density lipoprotein cholesterol, LDL: low-density lipoprotein cholesterol, NA: not applicable, NS: Non-significant, sdLDL-c: small, dense, low-density lipoprotein cholesterol, SNP: single nucleotide polymorphism, TG: triglycerides 1. All other (not listed) gene/omega-3/lipid/lipoprotein results of interest to the present review were NS

Participants are described as "healthy" for studies that incorporated exclusion criteria for certain conditions, blood lipid levels, etc. and when studies described the population as "healthy."

'--' indicates that all the completed gene/omega-3/lipid/lipoprotein analyses were NS

*Human APOE is polymorphic at two single nucleotides (rs429358 and rs7412) resulting in three different alleles (ε 2, ε 3 and ε 4)

3
4
5
6
7
, 8
0
9
10
11
12
13
14
15
16
17
10
10
19
20
21
22
23
24
25
26
27
27
20
29
30
31
32
33
34
35
36
27
2/
38
39
40
41
42
43
44
45
46
40 17
4/
48
49
50
51
52
53
54
55
55
50
5/
58
59
60

Supplementary Table 4: Genes, SNPs, lipid/lipoprotein outcomes and studies included in evidence grading process and guideline development

AbuMweis et al. 2018 (24) Carvalho-Wells et al. 2013 (32) APOE: rs429358, rs7412 (Genotype) TG TG Jackson et al. 2012 (32) Minihane et al. 2006 (48) Paschos et al. 2013 (39) Fallazie et al. 2016 (7) Munihane et al. 2013 (39) Fallazie et al. 2018 (24) Carvalho-Wells et al. 2013 (39) Fallazie et al. 2018 (24) Carvalho-Wells et al. 2018 (24) Carvalho-Wells et al. 2018 (36) Dang et al. 2015 (32) Carvalho-Wells et al. 2018 (34) Dang et al. 2015 (32) Carvalho-Wells et al. 2018 (36) Dang et al. 2015 (32) Carvalho-Wells et al. 2018 (36) Dang et al. 2015 (32) Thifault et al. 2013 (37) PPARy2: rs1801282 LDL-e Binia et al. 2017 (27) Binia et al. 2017 (27) PPARy2: rs1801282 TG Total-e Binia et al. 2013 (37) PPARy2: rs1801282 TG Binia et al. 2013 (37) HDL-e Binia et	Gene, SNP(s)	Outcome	Studies
APOE: rs429358, rs7412 (Genotype) TG Caralho-Wells et al. 2012 (32) Caslake et al. 2008 (34) Dang et al. 2015 (36) Lackson et al. 2012 (41) Olano-Martin et al. 2100 (49) Minihane et al. 2000 (48) Paschos et al. 2005 (52) Thifault et al. 2013 (59) APOE: rs429358, rs7412 Total-c Fallaize et al. 2016 (7) AbuMweis et al. 2018 (34) Caravalho-Wells et al. 2018 (24) Caravalho-Wells et al. 2018 (34) Dang et al. 2015 (36) Jackson et al. 2017 (32) Caslake et al. 2005 (52) Thifault et al. 2010 (39) APOE: rs429358, rs7412 Total-c Binia et al. 2010 (49) Paschos et al. 2005 (52) Thifault et al. 2013 (39) PPARy2: rs1801282 LDL-c Infaru et al. 2013 (39) PPARy2: rs1801282 Total-c Binia et al. 2017 (27) PPARy2: rs1801282 Total-c Binia et al. 2017 (27) PPARy2: rs1801282 Total-c Binia et al. 2017 (27) PHARy2: rs1801282 Total-c Binia et al. 2017 (27) PHARy2: rs1801282 Total-c Binia et al. 2017 (27) PHARy2: rs1801282 TG Binia et al. 2017 (27) PHARy2: rs1801282 TG Binia et al. 2017 (27) PHARy2: rs1801282 TG Binia et al. 2013 (37) PDARy2: rs1801282 TG Binia et al. 2013 (37) CD36: rs1761667 TG			AbuMweis et al. 2018 (24)
APOE: rs429358, rs7412 (Genotype) TG Caslake et al. 2018 (36) Darg et al. 2010 (49) Olano-Martin et al. 2010 (49) Minihame et al. 2010 (48) Paschos et al. 2015 (52) Thifault et al. 2013 (59) APOE: rs429358, rs7412 Total-c Fallaize et al. 2016 (7) AbuMweis et al. 2012 (32) Caslake et al. 2018 (26) Darg et al. 2013 (59) APOE: rs429358, rs7412 Total-c Fallaize et al. 2018 (26) Darg et al. 2013 (35) APOE: rs429358, rs7412 Total-c Binia et al. 2018 (26) Darg et al. 2013 (59) PPARy2: rs1801282 LDL-c Harslof et al. 2012 (41) Olano-Martin et al. 2013 (59) PPARy2: rs1801282 LDL-c Harslof et al. 2014 (39) Harslof et al. 2013 (43) Zheng et al. 2018 (66) PPARy2: rs1801282 Total-c Binia et al. 2017 (27) Harslof et al. 2018 (66) PPARy2: rs1801282 Total-c Binia et al. 2017 (27) Harslof et al. 2018 (66) CD36: rs1761667 TG Binia et al. 2014 (39) Harslof et al. 2018 (45) CD36: rs1761667 TG Dawczynski et al. 2013 (37) Madden et al. 2008 (45) CD36: rs1761667 TG Dawczynski et al. 2013 (37) Madden et al. 2008 (45) CD36: rs1761667 TG Dawczynski et al. 2013 (37) Madden et al. 2008 (45) CD36: rs1761667 TG Dawczynski et al. 2013 (37) Madden et al. 2018 (66)			Carvalho-Wells et al. 2012 (32)
APOE: rs429358, rs7412 (Genotype) TG Dang et al. 2015 (36) Jackson et al. 2012 (41) APOE: rs429358, rs7412 (Genotype) TG Jackson et al. 2016 (7) Minihane et al. 2013 (59) APOE: rs429358, rs7412 Total-c Fallaize et al. 2018 (24) Carvalho-Wells et al. 2018 (24) Carvalho-Wells et al. 2018 (24) APOE: rs429358, rs7412 Total-c Dang et al. 2018 (24) APOE: rs429358, rs7412 Total-c Dang et al. 2018 (24) APOE: rs429358, rs7412 Total-c Dang et al. 2018 (24) Parkp2: rs429358, rs7412 Total-c Dang et al. 2018 (24) Carvalho-Wells et al. 2010 (49) Paschos et al. 2018 (24) Parkp2: rs1801282 LDL-c Binia et al. 2017 (27) Harslof et al. 2018 (26) Binia et al. 2017 (27) Harslof et al. 2018 (26) Binia et al. 2017 (27) PPARy2: rs1801282 TG Binia et al. 2013 (37) Madden et al. 2018 (66) Binia et al. 2013 (37)			Caslake et al. 2008 (34)
APOE: rs429358, rs7412 (Genotype) TG Jackson et al. 2012 (41) (Olano-Martin et al. 2000 (48) Paschos et al. 2006 (48) Paschos et al. 2006 (48) Paschos et al. 2018 (24) APOE: rs429358, rs7412 Total-c Fallaize et al. 2012 (32) Caslake et al. 2012 (32) Caslake et al. 2012 (32) Caslake et al. 2012 (34) Dang et al. 2013 (36) APOE: rs429358, rs7412 Total-c Fallaize et al. 2013 (36) APOE: rs429358, rs7412 Total-c Fallaize et al. 2012 (41) Olano-Martin et al. 2013 (59) Binia et al. 2011 (41) Olano-Martin et al. 2012 (41) Olano-Martin et al. 2012 (42) PPARy2: rs1801282 LDL-c Harsif et al. 2012 (42) PPARy2: rs1801282 Total-c Binia et al. 2017 (27) PPARy2: rs1801282 Total-c Harsif et al. 2013 (43) Zheng et al. 2018 (66) Binia et al. 2017 (27) PPARy2: rs1801282 Total-c Harsif et al. 2017 (27) PPARy2: rs1801282 Total-c Harsif et al. 2017 (27) PPARy2: rs1801282 Total-c Binia et al. 2018 (66) CD36: rs1761667 HDL-c Dawczynski et al. 2013 (37) Madden et al. 2003 (43) Zheng et al. 2018 (66) Zheng et al. 2013 (37) Madden et al.			Dang et al. 2015 (36)
APOE: rs429358, rs7412 Total-c Fallazize et al. 2010 (49) APOE: rs429358, rs7412 Total-c Fallazize et al. 2018 (24) Carvalho-Wells et al. 2018 (34) Dang et al. 2015 (36) Dang et al. 2015 (36) Carvalho-Wells et al. 2018 (24) Carvalho-Wells et al. 2012 (32) Caslake et al. 2018 (34) Dang et al. 2015 (36) Dang et al. 2015 (36) PPARy2: rs1801282 LDL-c Binia et al. 2017 (27) Harslof et al. 2014 (39) Harslof et al. 2014 (39) PPARy2: rs1801282 LDL-c Binia et al. 2017 (27) Harslof et al. 2014 (39) Harslof et al. 2014 (39) Harslof et al. 2014 (39) PPARy2: rs1801282 Total-c Binia et al. 2017 (27) PPARy2: rs1801282 Total-c Binia et al. 2017 (27) PPARy2: rs1801282 Total-c Binia et al. 2017 (27) PPARy2: rs1801282 TG Binia et al. 2013 (37) Mdden et al. 2018 (66) Binia et al. 2013 (37) Mdden et al. 2018 (66) Dawezynski et al. 2013 (37) Madden et al. 2008 (45) Dawezynski et al. 2013 (37) Madden et al. 2008 (45) Dawezynski et al. 2013 (37)	APOE: rs429358, rs7412 (Genotype)	TG	Jackson et al. 2012 (41)
Minihane et al. 2000 (48) Paschos et al. 2005 (52) Thifault et al. 2013 (59) APOE: rs429358, rs7412 Total-c APOE: rs1801282 Total-c BPARy2: rs1801282 Total-c BPARy2: rs1801282 TG Brina et al. 2017 (27) Harstof et al. 2014 (39) Latrue t al. 2017 (27) Harstof et al. 2014 (39) Latrue t al.			Olano-Martin et al. 2010 (49)
APOE: rs429358, rs7412 Total-c Fallaize et al. 2015 (7) AbuMweis et al. 2018 (24) Carvalho-Wells et al. 2018 (24) Carvalho-Wells et al. 2013 (32) Caslake et al. 2008 (34) Dang et al. 2015 (36) Jackson et al. 2012 (31) Olano-Martin et al. 2013 (30) Binia et al. 2017 (27) Harsiof et al. 2013 (39) PPARy2: rs1801282 LDL-c Binia et al. 2017 (27) Harsiof et al. 2018 (66) Binia et al. 2017 (27) Harsiof et al. 2014 (39) Itariu et al. 2018 (66) Binia et al. 2008 (43) Zheng et al. 2018 (66) Dina et al. 2008 (45) CD36: rs1761667 CD36: rs1761667 HDL-c Dawczynski et al. 2013 (37) Madden et al. 2008 (45) CD36: rs1761667 HDL-c CD36: rs1049673 HDL-c CD36: rs1527483 TG CD36: rs17447* Madden et al. 2008 (Minihane et al. 2000 (48)
APOE: rs429358, rs7412 Total-c Thifault et al. 2013 (29) Fallaize et al. 2018 (24) Carvalho-Wells et al. 2012 (32) Casalke et al. 2008 (34) Dang et al. 2015 (36) Jackson et al. 2017 (37) Harslof et al. 2017 (27) Harslof et al. 2013 (39) Binia et al. 2017 (27) Harslof et al. 2013 (39) Itariu et al. 2013 (39) Itariu et al. 2017 (27) Harslof et al. 2017 (39) Itariu et al. 2017 (27) Harslof et al. 2014 (39) Itariu et al. 2018 (66) Dinia et al. 2017 (27) Harslof et al. 2014 (39) Itariu et al. 2018 (30) Zheng et a			Paschos et al. 2005 (52)
APOE: rs429358, rs7412 Total-c Fallaize et al. 2016 (24) (Carvalho-Wells et al. 2012 (32) (Caslake et al. 2008 (34)) Dang et al. 2015 (36) Jackson et al. 2012 (41) PPARy2: rs1801282 Total-c Binia et al. 2017 (27) Harslef et al. 2013 (59) PPARy2: rs1801282 LDL-c Hariu et al. 2012 (40) Lindi et al. 2013 (59) PPARy2: rs1801282 LDL-c Binia et al. 2017 (27) Harslef et al. 2018 (66) PPARy2: rs1801282 Total-c Binia et al. 2017 (27) Harslef et al. 2018 (66) PPARy2: rs1801282 Total-c Binia et al. 2017 (27) Harslef et al. 2018 (66) PPARy2: rs1801282 Total-c Binia et al. 2017 (27) Harslef et al. 2014 (39) PPARy2: rs1801282 Total-c Binia et al. 2017 (27) Parslop et al. 2018 (66) Binia et al. 2017 (27) Harslef et al. 2014 (39) Itariu et al. 2012 (40) Lindi et al. 2003 (43) Zheng et al. 2018 (66) CD36: rs1761667 TG Dawczynski et al. 2013 (37) Madden et al. 2008 (45) Dawczynski et al. 2013 (37) Madden et al. 2008 (45) Dawczynski et al. 2013 (37) Madden et al. 2008 (45) Dawczynski et al. 2013 (37) Madden et al. 2008 (45) Dumont et al. 2018 (66) <td></td> <td></td> <td>Thifault et al. 2013 (59)</td>			Thifault et al. 2013 (59)
APOE: rs429358, rs7412 Total-c AbuMweis et al. 2012 (32) Carvalho-Wells et al. 2012 (32) Caslake et al. 2008 (34) APOE: rs429358, rs7412 Total-c Total-c Caslake et al. 2008 (34) Dang et al. 2015 (36) Jackson et al. 2012 (41) Olano-Martin et al. 2010 (49) Paschos et al. 2005 (52) Thifault et al. 2013 (59) Binia et al. 2017 (27) Harslef et al. 2014 (39) PPARy2: rs1801282 LDL-c Itariu et al. 2012 (40) Lindi et al. 2017 (27) Harslof et al. 2014 (39) PPARy2: rs1801282 Total-c Binia et al. 2017 (27) PPARy2: rs1801282 Total-c Hariu et al. 2018 (66) Binia et al. 2017 (27) Harslof et al. 2018 (66) Elsina et al. 2017 (27) PPARy2: rs1801282 Total-c Hariu et al. 2012 (40) Lindi et al. 2018 (66) CD36: rs1761667 TG Dawczynski et al. 2013 (37) Madden et al. 2018 (66) CD36: rs1761667 TG Dawczynski et al. 2013 (37) Madden et al. 2018 (45) CD36: rs1527483 TG Dawczynski et al. 2013 (37) Madden et al. 2018 (66) CD36: rs174547* Total-c Dumont et al. 2013 (37) Madden et al. 2018 (66)			Fallaize et al. 2016 (7)
APOE: rs429358, rs7412 Total-c Carvalho-Wells et al. 2012 (32) Caslake et al. 2008 (34) APOE: rs429358, rs7412 Total-c Dang et al. 2015 (36) Jackson et al. 2012 (41) Olano-Matrin et al. 2010 (49) Paschos et al. 2005 (52) Thifault et al. 2013 (59) Binia et al. 2017 (27) Harslef et al. 2014 (39) PPARy2: rs1801282 LDL-c Itariu et al. 2012 (40) Lindi et al. 2003 (43) Zheng et al. 2018 (66) Binia et al. 2017 (27) Harslef et al. 2014 (39) PPARy2: rs1801282 Total-c Itariu et al. 2017 (27) PPARy2: rs1801282 Total-c Binia et al. 2017 (27) Pressent et al. 2018 (66) Binia et al. 2017 (27) Harslof et al. 2014 (39) Itariu et al. 2013 (43) Zheng et al. 2018 (66) Binia et al. 2017 (27) Harslof et al. 2014 (39) Itariu et al. 2012 (40) Lindi et al. 2017 (27) Harslof et al. 2018 (66) DBinia et al. 2017 (27) Harslof et al. 2018 (66) DBinia et al. 2017 (27) Harslof et al. 2018 (66) DBinia et al. 2017 (27) Harslof et al. 2018 (66) DBinia et al. 2017 (27) Harslof et al. 2013 (37) Madden et a			AbuMweis et al. 2018 (24)
APOE: rs429358, rs7412 Total-c Caslake et al. 2008 (34) Dang et al. 2015 (36) Jackson et al. 2012 (41) Olano-Martin et al. 2010 (49) Paschose et al. 2005 (52) Thifault et al. 2013 (59) PPARy2: rs1801282 LDL-c Binia et al. 2017 (27) Harslef et al. 2012 (40) Lindi et al. 2013 (43) Zheng et al. 2018 (66) PPARy2: rs1801282 LDL-c Harslef et al. 2014 (39) Harslef et al. 2017 (27) Harslef et al. 2018 (66) PPARy2: rs1801282 Total-c Binia et al. 2017 (27) Harslef et al. 2014 (39) Itariu et al. 2018 (66) PPARy2: rs1801282 Total-c Binia et al. 2017 (27) Harslef et al. 2014 (39) Itariu et al. 2018 (66) DBinia et al. 2017 (27) Harslef et al. 2018 (66) Binia et al. 2017 (27) Harslef et al. 2018 (66) CD36: rs1761667 HDL-c Binia et al. 2013 (37) Madden et al. 2008 (45) CD36: rs1761667 TG Dawczynski et al. 2013 (37) Madden et al. 2008 (45) CD36: rs1649673 HDL-c Dawczynski et al. 2013 (37) Madden et al. 2008 (45) CD36: rs174547* Total-c Dawczynski et al. 2018 (66) Lu et al. 2018 (66) FADS: rs174547* Total-c Dumont et al. 2018 (66) Lu et al. 2010 (17) Standi et al. 2014 (25) AbuMweis et al. 2014 (Carvalho-Wells et al. 2012 (32)
APOE: rs429358, rs7412 Total-c Dang et al. 2015 (36) Jackson et al. 2012 (41) Olano-Martin et al. 2010 (49) Paschos et al. 2015 (52) PPARy2: rs1801282 LDL-c Binia et al. 2017 (27) Harslof et al. 2012 (40) Lindi et al. 2012 (40) PPARy2: rs1801282 LDL-c Itariu et al. 2012 (40) PPARy2: rs1801282 Total-c Binia et al. 2017 (27) PPARy2: rs1801282 Total-c Itariu et al. 2012 (40) Lindi et al. 2003 (43) Zheng et al. 2018 (66) PPARy2: rs1801282 TG Binia et al. 2017 (27) Harslof et al. 2014 (39) Itariu et al. 2012 (40) Lindi et al. 2003 (43) Zheng et al. 2018 (66) Zheng et al. 2018 (66) Zheng et al. 2018 (66) CD36: rs1761667 HDL-c Dawczynski et al. 2013 (37) Madden et al. 2008 (45) CD36: rs1527483 TG Dawczynski et al. 2013 (37) Madden et al. 2008 (45) CD36: rs1527483 TG Dawczynski et al. 2013 (37) Madden et al. 2018 (66) FADS: rs174547* Total-c St			Caslake et al. 2008 (34)
PPARy2: rs1801282 LDL-c Binia et al. 2017 (27) Harslof et al. 2014 (39) Harslof et al. 2017 (27) Harslof et al. 2014 (39) Lindi et al. 2013 (43) Zheng et al. 2018 (66) PPARy2: rs1801282 Total-c Binia et al. 2017 (27) Harslof et al. 2014 (39) Harslof et al. 2012 (40) Lindi et al. 2003 (43) Zheng et al. 2018 (66) PPARy2: rs1801282 Total-c Binia et al. 2017 (27) Harslof et al. 2014 (39) Lindi et al. 2003 (43) Zheng et al. 2018 (66) PPARy2: rs1801282 Total-c Binia et al. 2017 (27) Harslof et al. 2014 (39) Lindi et al. 2003 (43) Zheng et al. 2018 (66) CD36: rs1761667 HDL-c Dawczynski et al. 2013 (37) Madden et al. 2008 (45) CD36: rs1761667 HDL-c Dawczynski et al. 2013 (37) Madden et al. 2008 (45) CD36: rs1761667 HDL-c Madden et al. 2008 (45) CD36: rs1761667 HDL-c Madden et al. 2008 (45) CD36: rs1527483 TG Dawczynski et al. 2013 (37) Madden et al. 2018 (66) FADS: rs174547* Total-c Madden et al. 2018 (66) Standl et al. 2018 (66) Dumont et al. 2018 (66) Jumont et al. 2018 (65) Total-c Standl et al. 2019 (67) Standl et	APOE: rs429358, rs7412	Total-c	Dang et al. 2015 (36)
Olano-Martin et al. 2010 (49) Paschos et al. 2005 (52) Thifault et al. 2013 (59) Binia et al. 2017 (27) Harslof et al. 2014 (39) PPARy2: rs1801282 LDL-c Binia et al. 2013 (43) Zheng et al. 2014 (39) Binia et al. 2017 (27) Harslof et al. 2014 (39) Itariu et al. 2013 (43) Zheng et al. 2014 (39) Itariu et al. 2017 (27) Harslof et al. 2014 (39) Itariu et al. 2017 (27) Harslof et al. 2014 (39) Itariu et al. 2012 (40) Lindi et al. 2003 (43) Zheng et al. 2014 (39) Itariu et al. 2017 (27) Harslof et al. 2014 (39) Itariu et al. 2012 (40) Lindi et al. 2003 (43) Zheng et al. 2018 (66) Binia et al. 2017 (27) Harslof et al. 2014 (39) Itariu et al. 2013 (43) Zheng et al. 2018 (45) CD36: rs1761667 HDL-c Madden et al. 2008 (45) CD36: rs1649673 HDL-c Madden et al. 2018 (66) Dumont et al. 2018 (66) Dumont et al. 2018 (66) Du			Jackson et al. 2012 (41)
Paschos et al. 2005 (52) Thifault et al. 2017 (27) Harslof et al. 2017 (27) Harslof et al. 2014 (39) Itariu et al. 2017 (27) Harslof et al. 2018 (66) PPARy2: rs1801282 LDL-c Binia et al. 2017 (27) Harslof et al. 2014 (39) Itariu et al. 2017 (27) Harslof et al. 2014 (39) Itariu et al. 2017 (27) Harslof et al. 2014 (39) Itariu et al. 2013 (43) Zheng et al. 2018 (66) PPARy2: rs1801282 Total-c Binia et al. 2017 (27) Harslof et al. 2018 (66) PPARy2: rs1801282 Total-c Binia et al. 2017 (27) Harslof et al. 2018 (66) PPARy2: rs1801282 TG Binia et al. 2017 (27) Harslof et al. 2014 (39) Itariu et al. 2012 (40) Lindi et al. 2003 (43) Zheng et al. 2018 (66) CD36: rs1761667 HDL-c Dawczynski et al. 2013 (37) Madden et al. 2013 (37) Madden et al. 2008 (45) CD36: rs1761667 TG Dawczynski et al. 2013 (37) Madden et al. 2008 (45) CD36: rs1761667 TG Dawczynski et al. 2013 (37) Madden et al. 2008 (45) CD36: rs1049673 HDL-c Dawczynski et al. 2013 (37) Madden et al. 2008 (45) CD36: rs174547* Total-c Madden et al. 2018 (66) Lu et al. 2010 (17) Standl et al. 2011 (5) Dumont et al. 2018 (66) Lu et al. 2018 (66) Lu et al. 2018 (20) Alsaleh et al. 2018 (20) Roke et al. 2018 (24) Roke et al. 2018 (25)			Olano-Martin et al. 2010 (49)
PPARy2: rs1801282 LDL-c Thifault et al. 2017 (27) Harslof et al. 2014 (39) Itarii et al. 2012 (40) Lindi et al. 2003 (43) Zheng et al. 2018 (66) PPARy2: rs1801282 Total-c Binia et al. 2017 (27) Harslof et al. 2018 (66) PPARy2: rs1801282 Total-c Binia et al. 2017 (27) Harslof et al. 2018 (66) PPARy2: rs1801282 Total-c Binia et al. 2017 (27) Harslof et al. 2014 (39) Itariu et al. 2012 (40) Lindi et al. 2003 (43) Zheng et al. 2018 (66) PPARy2: rs1801282 TG Binia et al. 2017 (27) Harslof et al. 2014 (39) Itariu et al. 2012 (40) Lindi et al. 2014 (39) Itariu et al. 2012 (40) Lindi et al. 2014 (39) CD36: rs1761667 HDL-c Dawczynski et al. 2013 (37) Madden et al. 2008 (45) CD36: rs1761667 TG Dawczynski et al. 2013 (37) Madden et al. 2008 (45) CD36: rs1761667 HDL-c Dawczynski et al. 2013 (37) Madden et al. 2008 (45) CD36: rs1649673 HDL-c Dawczynski et al. 2013 (37) Madden et al. 2008 (45) CD36: rs1527483 TG Madden et al. 2008 (45) CD36: rs174547* Total-c Dumont et al. 2011 (5) Dumont et al. 2011 (5) Dumont et al. 2011 (5) Dumont et al. 2018 (66) S1-SNP Genetic Risk Score TG Vallée Marcotte et al. 2019 (67)			Paschos et al. 2005 (52)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Thifault et al. 2013 (59)
PPARy2: rs1801282 LDL-c Harslof et al. 2014 (39) Itariu et al. 2012 (40) Lindi et al. 2013 (43) Zheng et al. 2018 (66) PPARy2: rs1801282 Total-c Binia et al. 2017 (27) Harslof et al. 2014 (39) Itariu et al. 2003 (43) Zheng et al. 2018 (66) PPARy2: rs1801282 Total-c Itariu et al. 2003 (43) Zheng et al. 2018 (66) PPARy2: rs1801282 TG Binia et al. 2017 (27) Harslof et al. 2018 (66) PPARy2: rs1801282 TG Binia et al. 2017 (27) Harslof et al. 2018 (66) CD36: rs1761667 HDL-c Binia et al. 2017 (27) Harslof et al. 2013 (37) CD36: rs1761667 HDL-c Madden et al. 2013 (37) Madden et al. 2018 (66) CD36: rs1761667 TG Dawczynski et al. 2013 (37) Madden et al. 2008 (45) CD36: rs1761667 TG Dawczynski et al. 2013 (37) Madden et al. 2008 (45) CD36: rs1049673 HDL-c Dawczynski et al. 2013 (37) Madden et al. 2008 (45) CD36: rs174547* Total-c Madden et al. 2018 (6) Lue et al. 2011 (5) Dumont et al. 2018 (6) Lue et al. 2014 (25) AbuMweis et al. 2014 (25) AbuMweis et al. 2014 (25) AbuMweis et al. 2014 (25) AbuMweis et al. 2014 (25) 31-SNP Genetic Risk Score TG Vallée Ma	2		Binia et al. 2017 (27)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Harsløf et al. 2014 (39)
Lindi et al. 2003 (43) Zheng et al. 2018 (66) Binia et al. 2017 (27) Harslof et al. 2012 (40) Lindi et al. 2012 (40) Lindi et al. 2013 (43) Zheng et al. 2018 (66) Binia et al. 2017 (27) Harslof et al. 2018 (66) Binia et al. 2017 (27) Harslof et al. 2018 (66) Binia et al. 2017 (27) Harslof et al. 2014 (39) Itariu et al. 2017 (27) Harslof et al. 2014 (39) Itariu et al. 2017 (27) Harslof et al. 2014 (39) Itariu et al. 2014 (39) Itariu et al. 2017 (27) Harslof et al. 2014 (39) Itariu et al. 2014 (39) Itariu et al. 2014 (39) Itariu et al. 2014 (40) Lindi et al. 2013 (43) Zheng et al. 2018 (66) CD36: rs1761667 TG Dawczynski et al. 2013 (37) Madden et al. 2008 (45) CD36: rs1049673 HDL-c Madden et al. 2008 (45) CD36: rs1527483 TG Zheng et al. 2018 (66) Dumont et al. 2010 (17) Stand	<i>PPARy2</i> : rs1801282	LDL-c	Itariu et al. 2012 (40)
Zheng et al. 2018 (66) Binia et al. 2017 (27) Harsløf et al. 2014 (39) Total-c Itariu et al. 2012 (40) Lindi et al. 2003 (43) Zheng et al. 2018 (66) Binia et al. 2017 (27) Harsløf et al. 2018 (66) Binia et al. 2018 (66) Binia et al. 2017 (27) Harsløf et al. 2018 (66) Binia et al. 2017 (27) Harsløf et al. 2017 (27) Harsløf et al. 2014 (39) Itariu et al. 2017 (27) Harsløf et al. 2014 (39) Itariu et al. 2017 (27) Harsløf et al. 2014 (39) Itariu et al. 2017 (27) Harsløf et al. 2014 (39) Itariu et al. 2013 (43) Zheng et al. 2018 (66) CD36: rs1761667 TG Dawczynski et al. 2013 (37) Madden et al. 2008 (45) CD36: rs1527483 TG Zheng et al. 2018 (66) Dumont et al. 2018 (66) Lu et al. 2014 (25) Abulweis et al. 2014 (25)	,		Lindi et al. 2003 (43)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Zheng et al. 2018 (66)
PPARy2: rs1801282 Total-c Harslof et al. 2014 (39) Itariu et al. 2012 (40) Lindi et al. 2003 (43) Zheng et al. 2018 (66) PPARy2: rs1801282 TG Binia et al. 2017 (27) Harslof et al. 2014 (39) Itariu et al. 2017 (20) Itariu et al. 2012 (40) Lindi et al. 2014 (39) PPARy2: rs1801282 TG Binia et al. 2014 (39) Itariu et al. 2013 (43) Zheng et al. 2014 (39) CD36: rs1761667 HDL-c Dawczynski et al. 2013 (37) Madden et al. 2008 (45) CD36: rs1761667 TG Dawczynski et al. 2013 (37) Madden et al. 2008 (45) CD36: rs1761667 TG Dawczynski et al. 2013 (37) Madden et al. 2008 (45) CD36: rs1761667 TG Dawczynski et al. 2013 (37) Madden et al. 2008 (45) CD36: rs1527483 TG Dawczynski et al. 2018 (66) Lu et al. 2018 (66) FADS: rs174547* Total-c Standl et al. 2018 (66) Lu et al. 2011 (5) S1-SNP Genetic Risk Score TG Vallée Marcotte et al. 2019 (67) Vallée Marcotte et al. 2019 (67)			Binia et al. 2017 (27)
PPARy2: rs1801282 Total-c Itariu et al. 2012 (40) Lindi et al. 2003 (43) Zheng et al. 2018 (66) PPARy2: rs1801282 TG Binia et al. 2017 (27) Harslof et al. 2012 (40) Lindi et al. 2012 (40) Lindi et al. 2012 (40) Lindi et al. 2012 (40) Lindi et al. 2013 (37) CD36: rs1761667 HDL-c Dawczynski et al. 2013 (37) Madden et al. 2008 (45) CD36: rs1761667 TG Dawczynski et al. 2013 (37) Madden et al. 2008 (45) CD36: rs1761667 TG Dawczynski et al. 2013 (37) Madden et al. 2008 (45) CD36: rs1761667 TG Dawczynski et al. 2013 (37) Madden et al. 2008 (45) CD36: rs1761667 TG Dawczynski et al. 2013 (37) Madden et al. 2008 (45) CD36: rs174547* TG Dawczynski et al. 2013 (37) Madden et al. 2008 (45) CD36: rs1527483 TG Dumont et al. 2018 (5) FADS: rs174547* Total-c Standl et al. 2018 (6) Lu et al. 2010 (17) FADS: rs174547* Total-c Standl et al. 2014 (25) AbuMweis et al. 2018 (24) Roke et al. 2014 (25) AbuMweis et al. 2014 (25) 31-SNP Genetic Risk Score TG Vallée Marcotte et al. 2019 (67)			Harsløf et al. 2014 (39)
Lindi et al. 2003 (43) Zheng et al. 2018 (66) Binia et al. 2017 (27) Harsløf et al. 2017 (27) Harsløf et al. 2012 (40) Lindi et al. 2012 (40) Lindi et al. 2018 (66) CD36: rs1761667 HDL-c Dawczynski et al. 2013 (37) Madden et al. 2008 (45) CD36: rs1761667 TG Dawczynski et al. 2013 (37) Madden et al. 2008 (45) CD36: rs1761667 TG Dawczynski et al. 2013 (37) Madden et al. 2008 (45) CD36: rs1049673 HDL-c Madden et al. 2008 (45) CD36: rs1527483 TG Madden et al. 2008 (45) CD36: rs174547* Total-c FADS: rs174547* Total-c Standl et al. 2014 (25) AbuMweis et al. 2014 (25) AbuMweis et al. 2014 (25) AbuMweis et al. 2014 (55) 31-SNP Genetic Risk Score TG Vallée Marcotte et al. 2020 (64)	<i>PPARy2</i> : rs1801282	Total-c	Itariu et al. 2012 (40)
Zheng et al. 2018 (66) Binia et al. 2017 (27) Harslof et al. 2014 (39) Itariu et al. 2012 (40) Lindi et al. 2003 (43) Zheng et al. 2018 (66) CD36: rs1761667 HDL-c Dawczynski et al. 2013 (37) Madden et al. 2008 (45) CD36: rs1761667 TG Dawczynski et al. 2013 (37) Madden et al. 2008 (45) CD36: rs1761667 TG Dawczynski et al. 2013 (37) Madden et al. 2008 (45) CD36: rs1049673 HDL-c Dawczynski et al. 2013 (37) Madden et al. 2008 (45) CD36: rs1527483 TG Madden et al. 2008 (45) CD36: rs174547* Total-c FADS: rs174547* Total-c Standl et al. 2014 (25) AbuMweis et al. 2018 (24) Roke et al. 2014 (25) AbuMweis et al. 2018 (24) Roke et al. 2014 (55) 31-SNP Genetic Risk Score TG Vallée Marcotte et al. 2019 (67)	,		Lindi et al. 2003 (43)
PPARy2: rs1801282Binia et al. 2017 (27) Harslof et al. 2014 (39) Itariu et al. 2012 (40) Lindi et al. 2003 (43) Zheng et al. 2018 (66) $CD36$: rs1761667HDL-cDawczynski et al. 2013 (37) Madden et al. 2008 (45) $CD36$: rs1761667TGDawczynski et al. 2013 (37) Madden et al. 2008 (45) $CD36$: rs1049673HDL-cDawczynski et al. 2013 (37) Madden et al. 2008 (45) $CD36$: rs1527483TGDawczynski et al. 2013 (37) Madden et al. 2008 (45) $FADS$: rs174547*Total-cDumont et al. 2018 (66) Lu et al. 2011 (5) Dumont et al. 2018 (6) Lu et al. 2012 (20) Alsaleh et al. 2018 (24) Roke et al. 2014 (25)31-SNP Genetic Risk ScoreTGVallée Marcotte et al. 2019 (67) Vallée Marcotte et al. 2020 (64)			Zheng et al. 2018 (66)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Binia et al. 2017 (27)
PPARy2: rs1801282 TG Itariu et al. 2012 (40) Lindi et al. 2003 (43) Zheng et al. 2018 (66) CD36: rs1761667 HDL-c Dawczynski et al. 2013 (37) Madden et al. 2008 (45) CD36: rs1761667 TG Dawczynski et al. 2013 (37) Madden et al. 2008 (45) CD36: rs1049673 HDL-c Dawczynski et al. 2013 (37) Madden et al. 2008 (45) CD36: rs1527483 TG Dawczynski et al. 2013 (37) Madden et al. 2008 (45) CD36: rs1527483 TG Dawczynski et al. 2018 (66) CD36: rs1527483 TG Dumont et al. 2018 (66) FADS: rs174547* Total-c Standl et al. 2011 (5) Staleh et al. 2014 (25) AbuMweis et al. 2014 (25) AbuMweis et al. 2014 (25) 31-SNP Genetic Risk Score TG Vallée Marcotte et al. 2019 (67)			Harsløf et al. 2014 (39)
Lindi et al. 2003 (43) CD36: rs1761667 HDL-c Dawczynski et al. 2013 (37) Madden et al. 2008 (45) Dawczynski et al. 2013 (37) Madden et al. 2008 (45) CD36: rs1761667 TG Dawczynski et al. 2013 (37) Madden et al. 2008 (45) Dawczynski et al. 2013 (37) Madden et al. 2008 (45) Dawczynski et al. 2013 (37) Madden et al. 2008 (45) Dawczynski et al. 2013 (37) Madden et al. 2008 (45) Dawczynski et al. 2013 (37) Madden et al. 2008 (45) Dawczynski et al. 2013 (37) Madden et al. 2008 (45) Madden et al. 2008 (45) CD36: rs1527483 TG Madden et al. 2008 (45) CD36: rs1527483 TG Madden et al. 2018 (66) Lu et al. 2010 (17) Standl et al. 2012 (20) Alsaleh et al. 2014 (25) AbuMweis et al. 2014 (25) AbuMweis et al. 2014 (25) AbuMweis et al. 2014 (25) 31-SNP Genetic Risk Score TG Vallée Marcotte et al. 2019 (67)	<i>PPARy2</i> : rs1801282	TG	Itariu et al. 2012 (40)
CD36: rs1761667 HDL-c Dawczynski et al. 2018 (66) CD36: rs1761667 TG Dawczynski et al. 2013 (37) CD36: rs1761667 TG Dawczynski et al. 2013 (37) Madden et al. 2008 (45) Dawczynski et al. 2013 (37) CD36: rs1049673 HDL-c Dawczynski et al. 2013 (37) Madden et al. 2008 (45) Dawczynski et al. 2013 (37) CD36: rs1527483 TG Madden et al. 2008 (45) CD36: rs1527483 TG Madden et al. 2008 (45) CD36: rs174547* Total-c Dumont et al. 2011 (5) FADS: rs174547* Total-c Standl et al. 2014 (25) AbuMweis et al. 2014 (25) AbuMweis et al. 2014 (25) 31-SNP Genetic Risk Score TG Vallée Marcotte et al. 2019 (67)			Lindi et al. 2003 (43)
CD36: rs1761667 HDL-c Dawczynski et al. 2013 (37) Madden et al. 2008 (45) CD36: rs1761667 TG Dawczynski et al. 2013 (37) Madden et al. 2008 (45) CD36: rs1049673 HDL-c Dawczynski et al. 2013 (37) Madden et al. 2008 (45) CD36: rs1527483 TG Madden et al. 2008 (45) CD36: rs1527483 TG Madden et al. 2008 (45) CD36: rs1527483 TG Madden et al. 2008 (45) CD36: rs1527483 TG Dumont et al. 2018 (66) Lu et al. 2018 (66) Lu et al. 2011 (5) Dumont et al. 2018 (6) Lu et al. 2010 (17) FADS: rs174547* Total-c Standl et al. 2012 (20) Alsaleh et al. 2014 (25) AbuMweis et al. 2014 (25) AbuMweis et al. 2014 (25) 31-SNP Genetic Risk Score TG Vallée Marcotte et al. 2019 (67)			Zheng et al. 2018 (66)
CD36: rs1761667 HDL-C Madden et al. 2008 (45) CD36: rs1761667 TG Dawczynski et al. 2013 (37) Madden et al. 2008 (45) CD36: rs1049673 HDL-c Dawczynski et al. 2013 (37) Madden et al. 2008 (45) CD36: rs1527483 TG Madden et al. 2008 (45) CD36: rs1527483 TG Madden et al. 2008 (45) CD36: rs1527483 TG Madden et al. 2018 (66) Dumont et al. 2018 (66) Dumont et al. 2011 (5) Dumont et al. 2011 (5) Dumont et al. 2012 (20) Alsaleh et al. 2012 (20) Alsaleh et al. 2014 (25) AbuMweis et al. 2018 (24) Roke et al. 2014 (55) 31-SNP Genetic Risk Score TG Vallée Marcotte et al. 2019 (67)	CD26: ==17(1)(7	UDL -	Dawczynski et al. 2013 (37)
$ \begin{array}{c} CD36: rs1761667 \\ CD36: rs1049673 \\ \hline TG \\ HDL-c \\ CD36: rs1049673 \\ \hline HDL-c \\ CD36: rs1527483 \\ \hline TG \\ \hline Madden et al. 2008 (45) \\ \hline Zheng et al. 2018 (66) \\ \hline Dumont et al. 2018 (66) \\ \hline Dumont et al. 2011 (5) \\ \hline Dumont et al. 2018 (6) \\ \hline Lu et al. 2010 (17) \\ \hline Standl et al. 2012 (20) \\ \hline Alsaleh et al. 2014 (25) \\ \hline AbuMweis et al. 2018 (24) \\ \hline Roke et al. 2014 (55) \\ \hline S1-SNP Genetic Risk Score \\ \hline TG \\ \hline TG \\ \hline \end{array} $	<i>CD30</i> . rs1/0100/	HDL-C	Madden et al. 2008 (45)
CD36: FS1761667 TG Madden et al. 2008 (45) CD36: rs1049673 HDL-c Dawczynski et al. 2013 (37) Madden et al. 2008 (45) CD36: rs1527483 TG Madden et al. 2008 (45) CD36: rs1527483 TG Madden et al. 2018 (66) Dumont et al. 2018 (66) Dumont et al. 2018 (66) Dumont et al. 2018 (66) FADS: rs174547* Total-c Standl et al. 2012 (20) Alsaleh et al. 2014 (25) AbuMweis et al. 2018 (24) Roke et al. 2014 (25) 31-SNP Genetic Risk Score TG Vallée Marcotte et al. 2019 (67)	CD26: ==17(1)(7	TC	Dawczynski et al. 2013 (37)
CD36: rs1049673 HDL-c Dawczynski et al. 2013 (37) Madden et al. 2008 (45) CD36: rs1527483 TG Madden et al. 2008 (45) Zheng et al. 2018 (66) Zheng et al. 2018 (66) Dumont et al. 2018 (66) Dumont et al. 2018 (66) FADS: rs174547* Total-c Standl et al. 2012 (20) Alsaleh et al. 2014 (25) AbuMweis et al. 2018 (24) Roke et al. 2018 (24) 31-SNP Genetic Risk Score TG Vallée Marcotte et al. 2019 (67)	<i>CD30</i> . rs1/0100/	IG	Madden et al. 2008 (45)
CD36: F\$1049673 HDL-c Madden et al. 2008 (45) CD36: rs1527483 TG Madden et al. 2008 (45) CD36: rs1527483 TG Zheng et al. 2018 (66) Dumont et al. 2011 (5) Dumont et al. 2018 (6) Lu et al. 2018 (6) FADS: rs174547* Total-c Standl et al. 2012 (20) Alsaleh et al. 2014 (25) AbuMweis et al. 2018 (24) Roke et al. 2018 (24) 31-SNP Genetic Risk Score TG Vallée Marcotte et al. 2019 (67)	CD261040672	UDL -	Dawczynski et al. 2013 (37)
CD36: rs1527483 TG Madden et al. 2008 (45) Zheng et al. 2018 (66) Dumont et al. 2018 (66) Dumont et al. 2011 (5) Dumont et al. 2018 (6) Lu et al. 2018 (6) Lu et al. 2010 (17) FADS: rs174547* Total-c Standl et al. 2012 (20) Alsaleh et al. 2014 (25) AbuMweis et al. 2018 (24) Roke et al. 2014 (55) TG Vallée Marcotte et al. 2019 (67) Vallée Marcotte et al. 2020 (64) Vallée Marcotte et al. 2020 (64)	CD30. 181049075	HDL-C	Madden et al. 2008 (45)
CD50: F\$1327483 TG Zheng et al. 2018 (66) Dumont et al. 2011 (5) Dumont et al. 2018 (6) Lu et al. 2018 (6) FADS: rs174547* Total-c Standl et al. 2012 (20) Alsaleh et al. 2014 (25) Alsaleh et al. 2018 (24) Roke et al. 2014 (55) TG Vallée Marcotte et al. 2019 (67) Vallée Marcotte et al. 2020 (64)	CD26:1527492	TC	Madden et al. 2008 (45)
FADS: rs174547* Total-c Dumont et al. 2011 (5) FADS: rs174547* Total-c Standl et al. 2010 (17) Alsaleh et al. 2012 (20) Alsaleh et al. 2012 (20) Alsaleh et al. 2014 (25) AbuMweis et al. 2018 (24) Roke et al. 2014 (55) Vallée Marcotte et al. 2019 (67) Vallée Marcotte et al. 2020 (64) Vallée Marcotte et al. 2020 (64)	<i>CD</i> 30. 18132/485	10	Zheng et al. 2018 (66)
FADS: rs174547* Total-c Dumont et al. 2018 (6) Lu et al. 2010 (17) FADS: rs174547* Total-c Standl et al. 2012 (20) Alsaleh et al. 2014 (25) AbuMweis et al. 2018 (24) Roke et al. 2014 (55) Roke et al. 2014 (55) 31-SNP Genetic Risk Score TG Vallée Marcotte et al. 2019 (67)			Dumont et al. 2011 (5)
FADS: rs174547* Total-c Lu et al. 2010 (17) FADS: rs174547* Total-c Standl et al. 2012 (20) Alsaleh et al. 2014 (25) AbuMweis et al. 2018 (24) Roke et al. 2014 (55) Roke et al. 2014 (55) 31-SNP Genetic Risk Score TG Vallée Marcotte et al. 2019 (67) Vallée Marcotte et al. 2020 (64) Vallée Marcotte et al. 2020 (64)			Dumont et al. 2018 (6)
FADS: rs174547* Total-c Standl et al. 2012 (20) Alsaleh et al. 2014 (25) Alsaleh et al. 2014 (25) AbuMweis et al. 2018 (24) Roke et al. 2014 (55) 31-SNP Genetic Risk Score TG Vallée Marcotte et al. 2019 (67) Vallée Marcotte et al. 2020 (64) Vallée Marcotte et al. 2020 (64)			Lu et al. 2010 (17)
Alsaleh et al. 2014 (25)AbuMweis et al. 2018 (24)Roke et al. 2014 (55)31-SNP Genetic Risk ScoreTGVallée Marcotte et al. 2019 (67)Vallée Marcotte et al. 2020 (64)	FADS: rs174547*	Total-c	Standl et al. 2012 (20)
AbuMweis et al. 2018 (24) Roke et al. 2014 (55)31-SNP Genetic Risk ScoreTGVallée Marcotte et al. 2019 (67) Vallée Marcotte et al. 2020 (64)			Alsaleh et al. 2014 (25)
Roke et al. 2014 (55)31-SNP Genetic Risk ScoreTGVallée Marcotte et al. 2019 (67) Vallée Marcotte et al. 2020 (64)			AbuMweis et al. 2018 (24)
31-SNP Genetic Risk ScoreTGVallée Marcotte et al. 2019 (67) Vallée Marcotte et al. 2020 (64)			Roke et al. 2014 (55)
Vallée Marcotte et al. 2020 (64)	21 SNID Genetic Disk Score	TG	Vallée Marcotte et al. 2019 (67)
	51-5111 Ochetic Kisk Scole	10	Vallée Marcotte et al. 2020 (64)

Tremblay et al. Lipids in Health

and Disease (2015) 14:12

Study	Gene(s), SNP(s)				
	<i>FADS2</i> , rs174599, rs174601, rs556656, rs11501631, rs74771917, rs3168072, rs182008711, rs73487492, rs174602, rs12577276				
Chen et al. Int J Obes;43:808-820	<i>FADS3</i> , rs191972868, rs115905177, rs174635, rs174634, rs174454, rs12292968, rs174570, rs7930349, rs116672159, rs116139751, rs7942717, rs7115739, rs174450, rs74626285				
(2019)	<i>RAB3IL1</i> , rs741887, rs2521561, rs2727258, rs2524288, rs117518711, rs74957100, rs77071864, rs78243280, rs741888, rs2524287, rs12420625, rs77229376, rs187943834, rs78156005, rs190738753, rs11230827, rs76133863, rs116985542, rs73491252				
Cormier et al. 2012	<i>FADS</i> gene cluster rs174456, rs174627, rs482548, rs2072114, rs12807005, rs174448, rs2845573, rs7394871, rs7942717, rs74823126, rs174602, rs498793, rs7935946, rs174546, rs174570, rs174579, rs174611, rs174616, rs968567				
	<i>IQCJ-SCHIP1</i> , rs7639707, rs62270407 NXPH1, rs61569932, rs1990554, rs6463808, rs6966968, rs28473103, rs28673635, rs12702829, rs78943417, rs293180, rs1837523				
Vallée Marcotte et al. Am J Clin Nutr: 109:176–185 (2019)	<i>PHF17</i> , rs1216346, rs114348423, rs75007521				
Nuu,109.170–185 (2019)	MYB, rs72560788, rs72974149, rs210962, rs6933462				
	NELL1, rs79624996, rs1850875, rs78786240, rs117114492				
	<i>SLIT2</i> , rs184945470, rs143662727, rs10009109, rs10009535, rs61790364, rs73241936, rs16869663, rs76015249				
	<i>PLA2G2A</i> , rs876018, rs955587, rs3753827, rs11573156,				

Supplementary Table 5: Additional list of gene(s) and SNP(s) tested in studies

rs11573142

PLA2G2C, rs6426616, rs12139100, rs10916716, rs2301475,

rs10916712, rs10916718

PLA2G2D, rs578459, rs16823482, rs3736979, rs584367,

rs12045689, rs679667, rs17354769, rs1091671

PLA2G2F, rs12065685, rs6657574, rs11582551, rs818571,

rs631134, rs11583904

	<i>PLA2G4A</i> , rs979924, rs2076075, rs3736741, rs10911949, rs10752979, rs1160719, rs10737277, rs12720702, rs7522213, rs7540602, rs10157410, rs12720497, rs4651331, rs1569480, rs10911935, rs12353944, rs11576330, rs10489410, rs10911946, rs3820185, rs12746200, rs11587539
	<i>PLA2G6</i> , rs5750546, rs132989, rs133016, rs2235346, rs2284060
	<i>PLA2G7</i> , rs12195701, rs12528807, rs1421368, rs1421378, rs17288905, rs1805017, rs1805018, rs6929105, rs7756935
	<i>GPAM</i> , rs17129561, rs10787428, rs2792751
	<i>AGPAT3</i> , rs999519, rs2838440, rs2838445, rs2838458, rs4818873, rs9978441, rs9982600, rs11700575, rs17004619, rs2838452, rs2838456, rs3788086, rs2838429
Ouellette et al. J Nutrigenet Nutrigenomics;6:268–280 (2013)	<i>AGPAT4</i> , rs746731, rs747866, rs1125640, rs2277092, rs2293286, rs3757025, rs3798225, rs3798920, rs3798924, rs3798929, rs3798943, rs3798945, rs3822853, rs3823058, rs4709501, rs6906489, rs6923835, rs7750302, rs7769321, rs9458172, rs10945713, rs10945719, rs11965825, rs12202278, rs17627837, rs12524665, rs1001422, rs6455711, rs9456642, rs2064721, rs3778227, rs3798922, rs11967514, rs7768457, rs12662114
Ouellette et al. Lipids in Health and Disease, 13:86 (2014)	<i>MGLL</i> , rs782440, rs16826716, rs6776142, rs9877819, rs555183, rs6780384, rs13076593, rs605188, rs6765071, rs782444, rs549662, rs3773155, rs541855, rs6439081, rs6439082, rs6787155, rs1466571, rs893294
Bouchard-Mercier et al. Genes Nutr 9:395 (2014)	<i>GCK</i> , rs2268573, rs2908297, rs2971676, rs758989, rs12673242, rs2908290, rs2284777, rs2300584, rs1990458, rs741038, rs1799884, rs2908277, rs3757838
	<i>RXRA</i> , rs10881576, rs7871655, rs12339187, rs11185660, rs11103473, rs10776909, rs12004589, rs3132301, rs1805352, rs3132294, rs1805343, rs1045570
	<i>CPT1A</i> , rs3019598, rs897048, rs7942147, rs4930248, rs11228364, rs11228368, rs10896371, rs1017640, rs613084
Bouchard-Mercier et al. Nutrients, 6, 1145-1163 (2014)	<i>ACADVL</i> , rs2017365
	ACAA2, rs529556, rs10502901, rs631536, rs1942421, rs2276168, rs7237253
	<i>ABCD2</i> , rs4072006, rs10877201, rs12582802, rs4294600, rs11172696, rs10877173, rs7133376, rs7968837
	ACOX1, rs10852766, rs3744033, rs12430, rs8065144,

BMJ Open

	rs11651351, rs3643, rs7213998, rs17583163
	ACAA1, rs2239621, rs156265, rs5875
	CETP, rs3764261, rs247616, rs7205804
	<i>LIPC</i> , rs1532085
	APOB, rs1367117
	ABCG5, ABCG8, rs4299376
	<i>TIMD4, HAVCR1</i> , rs6882076, rs1501908, rs1553318
AlSalah et al. Canas Nute 0:412	GCKR, rs1260326, rs780094
(2014)	TRIB1, rs2954022, rs10808546, rs2954029
	ANGPTL3, DOCK7, rs3850634, rs1167998, rs2131925
	<i>FADS1, FADS2, FADS3</i> , rs174550, rs174547, rs174546, rs174583
	<i>GALNT2</i> , rs4846914, rs1321257
	ABCA1, rs4149268
	APOE, APOC1, APOC2, rs439401
	<i>IQCJ-SCHIP1</i> , rs7639707, rs62270407
	NXPH1, rs61569932, rs1990554, rs6463808, rs6966968, rs28473103, rs28673635, rs12702829, rs78943417, rs29318 rs1837523
Vallée Marcotte et al. Genes &	<i>PHF17</i> , rs1216346, rs114348423, rs75007521
Nutrition 15:10 (2020)	<i>MYB</i> , rs72560788, rs72974149, rs210962, rs6933462
	NELL1, rs79624996, rs1850875, rs78786240, rs117114492
	<i>SLIT2,</i> rs184945470, rs143662727, rs10009109, rs10009535 rs61790364, rs73241936, rs16869663, rs76015249
Rudkowska et al. Journal of Lipid Research 55 (2014)	<i>IQCJ-SCHIP1, MYB, NELL1, NXPH1, PHF17, SLIT2,</i> rs2621308, rs1449009, rs61332355, rs2621309, rs2952724, rs2629715, rs1216352, rs1216365, rs931681, rs6920829, rs6463808, rs752088
Vallée Marcotte et al. J Nutrigenet Nutrigenomics;9 :1-11 (2016)	<i>IQCJ</i> , rs12497650, rs4501157, rs13091349, rs2044704, rs1062071, rs7634829, rs2621294, rs6800211, rs17782879, rs1868414, rs2595260, rs6763890, rs9827242, rs1449009, rs2621309, rs61332355

	1	
	<i>NXPH1</i> , rs6956210, rs2107779, rs10273195, rs12216689, rs6963644, rs17150341, rs1013868, rs12537067, rs4318981, rs17153997, rs7801099, rs4725120, rs1859275, rs10238726, rs1012960, rs11767429, rs4333500, rs7793115, rs7799856, rs7806226, rs13221144, rs17406479, rs10486228, rs17154569, rs4141002, rs7805772, rs2349780, rs2107474, rs11769942, rs6952383, rs6974252, rs10265408, rs2189904, rs2057862	
	PHF17, rs2217023, rs4975270, rs11722830, rs12505447, rs6534704, rs13148510, rs13143771, rs13142964	
	<i>MYB</i> , rs9321493, rs11154794, rs210798, rs210936, rs7757388, rs210962, rs17639758, rs1013891, rs2179308	
Vallée Marcotte et al. Nutrients; 11, 737 (2019)	 <i>IQCJ-SCHIP1</i>, rs12497650, rs4501157, rs13091349, rs2044704, rs1962071, rs7634829, rs2621294, rs6800211, rs17782879, rs1868414, rs2595260, rs6763890, rs1449009, rs61332355, rs12485627, rs2595242, rs7639937, rs9820807, rs1375409, rs1967363, rs9824310, rs11915303, rs9835214, rs11921343, rs13066560, rs1675497, rs9839862, rs16829875, rs17795566, rs9860588, rs16830408, rs17798579, rs2364930, rs9865997, rs2595241, rs7632574, rs2621308 <i>NXPH1</i>, rs6956210, rs2107779, rs10273195, rs12216689, rs6963644, rs17150341, rs1013868, rs4318981, rs17153997, rs7801099, rs4725120, rs10238726, rs1012960, rs11767429, rs4333500, rs7793115, rs7799856, rs7806226, rs13221144, rs17406479, rs10486228, rs17154569, rs4141002, rs7805772, rs2349780, rs2107474, rs11769942, rs6952383, rs6974252, rs10265408, rs2189904, rs2057862, rs6463808 	
	<i>PHF17</i> , rs2217023, rs4975270, rs11722830, rs12505447, rs6534704, rs13148510, rs13143771, rs13142964, rs1216352, rs1216365 <i>MYB</i> , rs9321493, rs11154794, rs210798, rs210936, rs7757388, rs17639758, rs1013891, rs2179308, rs6920829, <i>SUT2</i> , rs2952724	
	<i>NELL1</i> , rs752088	
Gene, rs Number	Alleles ¹	Associated Points
--------------------------------	------------------------------	-------------------
<i>IQCJ-SCHIP1</i> , rs7639707	<u>A</u> /G	+1
<i>QCJ-SCHIP1</i> , rs62270407	C/ <u>T</u>	-1
NXPH1, rs61569932,	<u>G</u> /T	+1
NXPH1, rs1990554	<u>A</u> /C	+1
NXPH1, rs6463808	<u>A</u> /G	+1
NXPH1, rs6966968	A/ <u>G</u>	+1
NXPH1, rs28473103	A/ <u>G</u>	-1
NXPH1, rs28673635	<u>A</u> /G	+1
NXPH1, rs12702829	<u> </u>	+1
NXPH1, rs78943417	A/T	-1
NXPH1, rs293180	$\overline{G/T}$	+1
NXPH1, rs1837523	<u>C</u> /T	-1
<i>PHF17</i> , rs1216346	<u>C</u> /T	+1
<i>PHF17</i> , rs114348423	<u>A</u> /G	+1
<i>PHF17</i> , rs75007521	<u>G</u> /T	-1
MYB, rs72560788	$\overline{C}/\underline{T}$	-1
MYB, rs72974149	A/ <u>G</u>	-1
MYB, rs210962	C/T	-1
MYB, rs6933462	C/G	+1
NELL1, rs79624996	Ā/G	+1
NELL1, rs1850875	C/T	+1
NELL1, rs78786240	C/T	-1
<i>NELL1</i> , rs117114492	G/T	+1
<i>SLIT2</i> , rs184945470	C/T	+1
SLIT2, rs143662727	A/G	-1
<i>SLIT2</i> , rs10009109	C/T	+1
<i>SLIT2</i> , rs10009535	<u>A/G</u>	+1
SLIT2, rs61790364	<u>A</u> /G	+1
<i>SLIT2</i> , rs73241936	<u> </u>	+1
<i>SLIT2</i> , rs16869663		+1
	A/G	+1

Supplementary Table 6: 31-SNP Nutri-GRS

1. Minor alleles are underlined

For individuals carrying one or two minor alleles, provide the associated number of points (either +1 or -1). For individuals homozygous for the major allele, provide 0 points. Count the overall number of points. Individuals with lower nutri-GRS are more likely to respond to approximately 3.0 g/day EPA+DHA for TG lowering.

References

- 1. Bouchard-Mercier A, Godin G, Lamarche B, Pérusse L, Vohl M-C. Effects of Peroxisome Proliferator-Activated Receptors, Dietary Fat Intakes and Gene–Diet Interactions on Peak Particle Diameters of Low-Density Lipoproteins. J Nutrigenet Nutrigenomics. 2011;4(1):36–48.
- 2. Bodhini D, Gaal S, Shatwan I, Ramya K, Ellahi B, Surendran S, et al. Interaction between TCF7L2 polymorphism and dietary fat intake on high density lipoprotein cholesterol. Li S, editor. PLoS ONE. 2017 Nov 28;12(11):e0188382.
- 3. Chen Y, Estampador AC, Keller M, Poveda A, Dalla-Riva J, Johansson I, et al. The combined effects of FADS gene variation and dietary fats in obesity-related traits in a population from the far north of Sweden: the GLACIER Study. International Journal of Obesity. 2019 Apr;43(4):808–20.
- Ching YK, Chin YS, Appukutty M, Ramanchadran V, Yu CY, Ang GY, et al. Interaction of Dietary Linoleic Acid and α-Linolenic Acids with rs174547 in FADS1 Gene on Metabolic Syndrome Components among Vegetarians. Nutrients. 2019 Jul;11(7):1686.
- 5. Dumont J, Huybrechts I, Spinneker A, Gottrand F, Grammatikaki E, Bevilacqua N, et al. FADS1 genetic variability interacts with dietary α-linolenic acid intake to affect serum non-HDL-cholesterol concentrations in European adolescents. J Nutr. 2011 Jul;141(7):1247–53.
- 6. Dumont J, Goumidi L, Grenier-Boley B, Cottel D, Marécaux N, Montaye M, et al. Dietary linoleic acid interacts with FADS1 genetic variability to modulate HDL-cholesterol and obesity-related traits. Clinical Nutrition. 2018 Oct 1;37(5):1683–9.
- Fallaize R, Celis-Morales C, Macready AL, Marsaux CF, Forster H, O'Donovan C, et al. The effect of the apolipoprotein E genotype on response to personalized dietary advice intervention: findings from the Food4Me randomized controlled trial. Am J Clin Nutr. 2016 Sep;104(3):827–36.
- Fontaine-Bisson B, El-Sohemy A. Genetic polymorphisms of tumor necrosis factor-alpha modify the association between dietary polyunsaturated fatty acids and plasma high-density lipoproteincholesterol concentrations in a population of young adults. J Nutrigenet Nutrigenomics. 2008;1(5):215–23.
- Fontaine-Bisson B, Wolever TMS, Connelly PW, Corey PN, El-Sohemy A. NF-κB –94Ins/Del ATTG polymorphism modifies the association between dietary polyunsaturated fatty acids and HDLcholesterol in two distinct populations. Atherosclerosis. 2009 Jun;204(2):465–70.
- Hellstrand S, Sonestedt E, Ericson U, Gullberg B, Wirfält E, Hedblad B, et al. Intake levels of dietary long-chain PUFAs modify the association between genetic variation in FADS and LDL-C. J Lipid Res. 2012 Jun;53(6):1183–9.
- 11. Hosseini-Esfahani F, Mirmiran P, Koochakpoor G, Daneshpour MS, Guity K, Azizi F. Some dietary factors can modulate the effect of the zinc transporters 8 polymorphism on the risk of metabolic syndrome. Sci Rep. 2017 Dec;7(1):1649.

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
30 27	
20	
30	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
5/	
58	
59	
00	

- 12. Jang HB, Hwang J-Y, Park JE, Oh JH, Ahn Y, Kang J-H, et al. Intake levels of dietary polyunsaturated fatty acids modify the association between the genetic variation in *PCSK5* and HDL cholesterol. J Med Genet. 2014 Dec;51(12):782–8.
- Joffe YT, van der Merwe L, Carstens M, Collins M, Jennings C, Levitt NS, et al. Tumor Necrosis Factorα Gene -308 G/A Polymorphism Modulates the Relationship between Dietary Fat Intake, Serum Lipids, and Obesity Risk in Black South African Women. The Journal of Nutrition. 2010 May 1;140(5):901–7.
- Joffe YT, van der Merwe L, Evans J, Collins M, Lambert EV, September A, et al. The tumor necrosis factor-α gene -238 G>A polymorphism, dietary fat intake, obesity risk and serum lipid concentrations in black and white South African women. Eur J Clin Nutr. 2012 Dec;66(12):1295– 302.
- 15. Joffe YT, van der Merwe L, Evans J, Collins M, Lambert EV, September A, et al. Interleukin-6 Gene Polymorphisms, Dietary Fat Intake, Obesity and Serum Lipid Concentrations in Black and White South African Women. Nutrients. 2014 Jun 24;6(6):2436–65.
- 16. Lai Chao-Qiang, Corella Dolores, Demissie Serkalem, Cupples L. Adrienne, Adiconis Xian, Zhu Yueping, et al. Dietary Intake of n-6 Fatty Acids Modulates Effect of Apolipoprotein A5 Gene on Plasma Fasting Triglycerides, Remnant Lipoprotein Concentrations, and Lipoprotein Particle Size. Circulation. 2006 May 2;113(17):2062–70.
- 17. Lu Y, Feskens EJ, Dollé ME, Imholz S, Verschuren WM, Müller M, et al. Dietary n–3 and n–6 polyunsaturated fatty acid intake interacts with FADS1 genetic variation to affect total and HDL-cholesterol concentrations in the Doetinchem Cohort Study. The American Journal of Clinical Nutrition. 2010 Jul 1;92(1):258–65.
- 18. Nettleton JA, Volcik KA, Hoogeveen RC, Boerwinkle E. Carbohydrate intake modifies associations between ANGPTL4[E40K] genotype and HDL-cholesterol concentrations in White men from the Atherosclerosis Risk in Communities (ARIC) study. Atherosclerosis. 2009 Mar;203(1):214–20.
- 19. Richardson K, Louie-Gao Q, Arnett DK, Parnell LD, Lai C-Q, Davalos A, et al. The PLIN4 Variant rs8887 Modulates Obesity Related Phenotypes in Humans through Creation of a Novel miR-522 Seed Site. PLOS ONE. 2011 Apr 20;6(4):e17944.
- 20. Standl M, Lattka E, Stach B, Koletzko S, Bauer C-P, von Berg A, et al. FADS1 FADS2 Gene Cluster, PUFA Intake and Blood Lipids in Children: Results from the GINIplus and LISAplus Studies. PLoS One [Internet]. 2012 May 21 [cited 2020 Aug 3];7(5). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3357401/
- 21. Tai ES, Corella D, Demissie S, Cupples LA, Coltell O, Schaefer EJ, et al. Polyunsaturated Fatty Acids Interact with the PPARA-L162V Polymorphism to Affect Plasma Triglyceride and Apolipoprotein C-III Concentrations in the Framingham Heart Study. J Nutr. 2005 Mar 1;135(3):397–403.
- 22. Volcik KA, Nettleton JA, Ballantyne CM, Boerwinkle E. Peroxisome proliferator—activated receptor alpha genetic variation interacts with n-6 and long-chain n-3 fatty acid intake to affect total cholesterol and LDL-cholesterol concentrations in the Atherosclerosis Risk in Communities Study. Am J Clin Nutr. 2008;87:1926–31.

23. Warodomwichit D, Arnett DK, Kabagambe EK, Tsai MY, Hixson JE, Straka RJ, et al. Polyunsaturated Fatty Acids Modulate the Effect of TCF7L2 Gene Variants on Postprandial Lipemia. The Journal of Nutrition. 2009 Mar 1;139(3):439–46.

- 24. AbuMweis SS, Panchal SK, Jones PJH. Triacylglycerol-Lowering Effect of Docosahexaenoic Acid Is Not Influenced by Single-Nucleotide Polymorphisms Involved in Lipid Metabolism in Humans. Lipids. 2018;53(9):897–908.
- 25. AlSaleh A, Maniou Z, Lewis FJ, Hall WL, Sanders TAB, O'Dell SD. Genetic predisposition scores for dyslipidaemia influence plasma lipid concentrations at baseline, but not the changes after controlled intake of n-3 polyunsaturated fatty acids. Genes Nutr. 2014 Jul;9(4):412.
- 26. Armstrong P, Kelley DS, Newman JW, Staggers FE, Hartiala J, Allayee H, et al. Arachidonate 5-Lipoxygenase Gene Variants Affect Response to Fish Oil Supplementation by Healthy African Americans1234. J Nutr. 2012 Aug;142(8):1417–28.
- Binia A, Vargas-Martínez C, Ancira-Moreno M, Gosoniu LM, Montoliu I, Gámez-Valdez E, et al. Improvement of cardiometabolic markers after fish oil intervention in young Mexican adults and the role of PPARα L162V and PPARγ2 P12A. The Journal of Nutritional Biochemistry. 2017 May;43:98–106.
- Bouchard-Mercier A, Rudkowska I, Lemieux S, Couture P, Vohl M-C. Polymorphisms, de novo lipogenesis, and plasma triglyceride response following fish oil supplementation. J Lipid Res. 2013 Oct;54(10):2866–73.
- Bouchard-Mercier A, Rudkowska I, Lemieux S, Couture P, Vohl M-C. Polymorphisms in Genes Involved in Fatty Acid β-Oxidation Interact with Dietary Fat Intakes to Modulate the Plasma TG Response to a Fish Oil Supplementation. Nutrients. 2014 Mar 18;6(3):1145–63.
- 30. Bouchard-Mercier A, Rudkowska I, Lemieux S, Couture P, Vohl M-C. An interaction effect between glucokinase gene variation and carbohydrate intakes modulates the plasma triglyceride response to a fish oil supplementation. Genes Nutr. 2014 May;9(3):395.
- 31. Caron-Dorval D, Paquet P, Paradis A-M, Rudkowska I, Lemieux S, Couture P, et al. Effect of the PPAR-Alpha L162V Polymorphism on the Cardiovascular Disease Risk Factor in Response to n–3 Polyunsaturated Fatty Acids. J Nutrigenet Nutrigenomics. 2008;1(4):205–12.
- 32. Carvalho-Wells AL, Jackson KG, Lockyer S, Lovegrove JA, Minihane AM. APOE genotype influences triglyceride and C-reactive protein responses to altered dietary fat intake in UK adults. The American Journal of Clinical Nutrition. 2012 Dec 1;96(6):1447–53.
- Lockyer S, Tzanetou M, Carvalho-Wells AL, Jackson KG, Minihane AM, Lovegrove JA. SATgene dietary model to implement diets of differing fat composition in prospectively genotyped groups (apoE) using commercially available foods. British Journal of Nutrition. 2012 Nov;108(9):1705–13.
- 34. Caslake MJ, Miles EA, Kofler BM, Lietz G, Curtis P, Armah CK, et al. Effect of sex and genotype on cardiovascular biomarker response to fish oils: the FINGEN Study. The American Journal of Clinical Nutrition. 2008 Sep 1;88(3):618–29.

2		
3	35.	Cormier H, Rudkowska I, Paradis A-M, Thifault E, Garneau V, Lemieux S, et al. Association between
4		Polymorphisms in the Fatty Acid Desaturase Gene Cluster and the Plasma Triacylglycerol Response
5		to an n-3 PLIEA Supplementation Nutrients $2012 \text{ Aug}/(8) \cdot 1026-41$
6		to an in 5 to A supplementation. Nutrients: 2012 Aug , $+(0)$. 1020 $+1$.
7	26	Dang TM, Conway V, Dlourdo M, Disruptod fatty acid distribution in HDL and LDL according to
8	50.	Dang TW, Conway V, Flourde W. Disrupted fatty acid distribution in FDE and EDE according to
9		apolipoprotein E allele. Nutrition. 2015 Jun 1;31(6):807–12.
10		
11	37.	Dawczynski C, Massey KA, Ness C, Kiehntopf M, Stepanow S, Platzer M, et al. Randomized placebo-
12		controlled intervention with n-3 LC-PUFA-supplemented yoghurt: Effects on circulating eicosanoids
13		and cardiovascular risk factors. Clinical Nutrition. 2013 Oct 1;32(5):686–96.
14		
15	38.	Ferguson JF, Phillips CM, McMonagle J, Pérez-Martínez P, Shaw DI, Lovegrove JA, et al. NOS3 gene
16		polymorphisms are associated with risk markers of cardiovascular disease, and interact with
17		omega-3 polyunsaturated fatty acids. Atherosclerosis. 2010 Aug 1:211(2):539–44.
18		
19	29	Harsløf LBS, Damsgaard CT, Hellgren LL, Andersen AD, Vogel LL Lauritzen L. Effects on metabolic
20	55.	markers are modified by PDAPC2 and COV2 polymorphisms in infants randomized to fish oil. Genes
21		Nutre 2014 May 0(2):200
22		Nutr. 2014 May;9(3):396.
23		
24	40.	Itariu BK, Zeyda M, Hochbrugger EE, Neuhofer A, Prager G, Schindler K, et al. Long-chain n–3 PUFAs
25		reduce adipose tissue and systemic inflammation in severely obese nondiabetic patients: a
26		randomized controlled trial. The American Journal of Clinical Nutrition. 2012 Nov 1;96(5):1137–49.
27		
28	41.	Jackson KG, Lockyer S, Carvalho-Wells AL, Williams CM, Minihane AM, Lovegrove JA. Dietary fat
29		manipulation has a greater impact on postprandial lipid metabolism than the apolipoprotein E
30		(epsilon) genotype–insights from the SATgene study. Molecular Nutrition & Food Research.
31		2012.56(12).1761–70
32		2012,50(12).1701 70.
33	12	Jackson KG Lockver S. Carvalho-Wells AL Williams CM Minihane AM Lovegrove IA Anolinoprotein
34	42.	Jackson KG, Lockyer S, Carvano-Weils AL, Williams Civi, Williams AN, Lovegrove JA. Apolipoprotein
35		E (epsilon) genotype has a greater impact on apoB-48 than apoB-100 responses to dietary rat
30		manipulation—insights from the SATgene study. Molecular Nutrition & Food Research.
3/		2017;61(4):1600688.
38		
39	43.	Lindi V, Schwab U, Louheranta A, Laakso M, Vessby B, Hermansen K, et al. Impact of the Pro12Ala
40		polymorphism of the PPAR-γ2 gene on serum triacylglycerol response to n–3 fatty acid
41		supplementation. Molecular Genetics and Metabolism. 2003 May;79(1):52–60.
42		
45	44.	Lindman AS, Pedersen JI, Hjerkinn EM, Arnesen H, Veierød MB, Ellingsen I, et al. The effects of long-
44		term diet and omega-3 fatty acid supplementation on coagulation factor VII and serum
45		nhospholinids with special emphasis on the R3530 polymorphism of the EV/II gene. Thromb
40		Hogmost 2004 Juni01/6/:1007 104
47		Haemost. 2004 Juli,91(0).1097–104.
40	4 -	Madde L Course L De course A Destructure C Colde D stat Del se seletore in the CD2C
49 50	45.	Madden J, Carrero J, Brunner A, Dastur N, Snearman C, Calder P, et al. Polymorphisms in the CD36
51		gene modulate the ability of fish oil supplements to lower fasting plasma triacyl glycerol and raise
52		HDL cholesterol concentrations in healthy middle-aged men. Prostaglandins, Leukotrienes and
52		Essential Fatty Acids. 2008;78:327–35.
54		
55	46.	Markovic O, O'Reilly G, Fussell HelenM, Turner SJ, Calder PC, Howell WM, et al. Role of single
56		nucleotide polymorphisms of pro-inflammatory cytokine genes in the relationship between serum
57		· · · · · · · · · ·
58		
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

lipids and inflammatory parameters, and the lipid-lowering effect of fish oil in healthy males. Clinical Nutrition. 2004 Oct 1;23(5):1084–95.

- 47. McColley SP, Georgopoulos A, Young LR, Kurzer MS, Redmon JB, Raatz SK. A high-fat diet and the threonine-encoding allele (Thr54) polymorphism of fatty acid–binding protein 2 reduce plasma triglyceride–rich lipoproteins. Nutrition Research. 2011 Jul 1;31(7):503–8.
- Minihane Anne M., Khan Syrah, Leigh-Firbank Elizabeth C., Talmud Philippa, Wright John W., Murphy Margaret C., et al. ApoE Polymorphism and Fish Oil Supplementation in Subjects With an Atherogenic Lipoprotein Phenotype. Arteriosclerosis, Thrombosis, and Vascular Biology. 2000 Aug 1;20(8):1990–7.
- 49. Olano-Martin E, Anil E, Caslake MJ, Packard CJ, Bedford D, Stewart G, et al. Contribution of apolipoprotein E genotype and docosahexaenoic acid to the LDL-cholesterol response to fish oil. Atherosclerosis. 2010 Mar;209(1):104–10.
- 50. Ouellette C, Cormier H, Rudkowska I, Guénard F, Lemieux S, Couture P, et al. Polymorphisms in Genes Involved in the Triglyceride Synthesis Pathway and Marine Omega-3 Polyunsaturated Fatty Acid Supplementation Modulate Plasma Triglyceride Levels. LFG. 2013;6(4–5):268–80.
- 51. Ouellette C, Rudkowska I, Lemieux S, Lamarche B, Couture P, Vohl M-C. Gene-diet interactions with polymorphisms of the MGLL gene on plasma low-density lipoprotein cholesterol and size following an omega-3 polyunsaturated fatty acid supplementation: a clinical trial. Lipids Health Dis. 2014 May 24;13:86.
- 52. Paschos GK, Yiannakouris N, Rallidis LS, Davies I, Griffin BA, Panagiotakos DB, et al. Apolipoprotein E Genotype in Dyslipidemic Patients and Response of Blood Lipids and Inflammatory Markers to Alpha-Linolenic Acid. Angiology. 2005 Jan 1;56(1):49–60.
- 53. Pishva H, Mahboob S-A, Mehdipour P, Eshraghian MR, Mohammadi-Asl J, Hosseini S, et al. Fatty acid–binding protein-2 genotype influences lipid and lipoprotein response to eicosapentaenoic acid supplementation in hypertriglyceridemic subjects. Nutrition. 2010 Nov 1;26(11):1117–21.
- 54. Pishva H, Mehdipour P, Eshraghian MR, Mahboob S-A. Effects of Eicosapentaenoic Acid Supplementation on Lipid and Lipoprotein Profile in Hypertriglyceridemic Subjects with Different Proliferator-activated Receptor Alpha Genotypes. Int J Prev Med. 2014 Mar;5(3):333–40.
- 55. Roke K, Mutch DM. The Role of FADS1/2 Polymorphisms on Cardiometabolic Markers and Fatty Acid Profiles in Young Adults Consuming Fish Oil Supplements. Nutrients. 2014 Jun 16;6(6):2290–304.
- 56. Rudkowska I, Julien P, Couture P, Lemieux S, Tchernof A, Barbier O, et al. Cardiometabolic risk factors are influenced by Stearoyl-CoA Desaturase (SCD) –1 gene polymorphisms and n-3 polyunsaturated fatty acid supplementation. Molecular Nutrition & Food Research. 2014;58(5):1079–86.
- Rudkowska I, Guénard F, Julien P, Couture P, Lemieux S, Barbier O, et al. Genome-wide association study of the plasma triglyceride response to an n-3 polyunsaturated fatty acid supplementation. J Lipid Res. 2014 Jul;55(7):1245–53.

1 2	
3 4 5 6	58. Scorletti E, West AL, Bhatia L, Hoile SP, McCormick KG, Burdge GC, et al. Treating liver fat and serum triglyceride levels in NAFLD, effects of PNPLA3 and TM6SF2 genotypes: Results from the WELCOME trial. Journal of Hepatology. 2015 Dec 1;63(6):1476–83.
7 8 9 10	59. Thifault E, Cormier H, Bouchard-Mercier A, Rudkowska I, Paradis A-M, Garneau V, et al. Effects of Age, Sex, Body Mass Index and APOE Genotype on Cardiovascular Biomarker Response to an n-3 Polyunsaturated Fatty Acid Supplementation. LFG. 2013;6(2):73–82.
12 13 14 15	60. Tremblay BL, Cormier H, Rudkowska I, Lemieux S, Couture P, Vohl M-C. Association between polymorphisms in phospholipase A2 genes and the plasma triglyceride response to an n-3 PUFA supplementation: a clinical trial. Lipids in Health and Disease. 2015 Feb 21;14(1):12.
16 17 18 19	61. Bastien Vallée Marcotte, Cormier H, Guénard F, Rudkowska I, Lemieux S, Couture P, et al. Novel Genetic Loci Associated with the Plasma Triglyceride Response to an Omega-3 Fatty Acid Supplementation. J Nutigenet Nutrigenomics. 2016;9:1–11.
20 21 22 23 24 25	62. Vallée Marcotte B, Guénard F, Marquis J, Charpagne A, Vadillo-Ortega F, Tejero ME, et al. Genetic Risk Score Predictive of the Plasma Triglyceride Response to an Omega-3 Fatty Acid Supplementation in a Mexican Population. Nutrients [Internet]. 2019 Mar 29 [cited 2020 Aug 3];11(4). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6521301/
26 27 28 29	63. Vallée Marcotte B, Guénard F, Lemiux S, Couture P, Rudkowska I, Calder PC, et al. Fine mapping of genome-wide association study signals to identify genetic markers of the plasma triglyceride response to an omega-3 fatty acid supplementation.
30 31 32 33 34 35	64. Vallée Marcotte B, Allaire J, Guénard F, de Toro-Martín J, Couture P, Lamarche B, et al. Genetic risk prediction of the plasma triglyceride response to independent supplementations with eicosapentaenoic and docosahexaenoic acids: the ComparED Study. Genes Nutr. 2020 Dec;15(1):10.
36 37 38 39	65. Wu S-Y, Mayneris-Perxachs J, Lovegrove JA, Todd S, Yaqoob P. Fish-oil supplementation alters numbers of circulating endothelial progenitor cells and microparticles independently of eNOS genotype. The American Journal of Clinical Nutrition. 2014 Nov 1;100(5):1232–43.
40 41 42 43	66. Zheng J-S, Chen J, Wang L, Yang H, Fang L, Yu Y, et al. Replication of a Gene-Diet Interaction at CD36, NOS3 and PPARG in Response to Omega-3 Fatty Acid Supplements on Blood Lipids: A Double-Blind Randomized Controlled Trial. EBioMedicine. 2018 Apr 17;31:150–6.
44 45 46 47 48 49	67. Vallée Marcotte B, Guénard F, Lemieux S, Couture P, Rudkowska I, Calder PC, et al. Fine mapping of genome-wide association study signals to identify genetic markers of the plasma triglyceride response to an omega-3 fatty acid supplementation. The American Journal of Clinical Nutrition. 2019 Jan 1;109(1):176–85.
50 51 52 53 54 55 56 57	
58 59 60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

PRISMA 2009 Checklist

Section/topic	#	Checklist item	Reported on page #
TITLE			
Title	1	Identify the report as a systematic review, meta-analysis, or both.	1
ABSTRACT			
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	2
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of what is already known.	3-5
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	5-6
METHODS			
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	5
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	5-6
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	5, 7
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	Suppl. T1
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	6-7
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	6-7
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	5-7
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	8-9
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	9

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

PRISMA 2009 Checklist

1 2	ERIS MAR
5 4 5 6 7 8	Synthesis c
9	
10 11 12	Section/to
13 14	Risk of bias
15 16 17	Additional a
18	RESULTS
19 20 21	Study select
22 23	Study chara
24 25	Risk of bias
26 27	Results of i
28 29	Synthesis c
30 31	Risk of bias
32 33	Additional a
34 35	DISCUSS
36 37	Summary o
38 39 40	Limitations
41 42	Conclusion
43	FUNDING
44 45	
46	

of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I ²) for each meta-analysis.	NA (meta- analysis not appropriate)

		Page 1 of 2	
Section/topic	#	Checklist item	Reported on page #
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	Table 4
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	11-12
RESULTS			
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	Figure 1
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	Tables 1 and 2
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	Table 4
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	Tables 1 and 2
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	NA
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	Table 4
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	11-12, Table 3
DISCUSSION			
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	Table 3, 34-39
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	45-46
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	40-47
FUNDING	<u> </u>		

Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the

systematic review.

 Funding

, terns for Systet. For more informa. From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(7): e1000097. doi:10.1371/journal.pmed1000097 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

A systematic review of nutrigenetics, omega-3 and plasma lipids/lipoproteins/apolipoproteins with evidence evaluation using the GRADE approach

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-054417.R3
Article Type:	Original research
Date Submitted by the Author:	27-Jan-2022
Complete List of Authors:	Keathley, Justine; Université Laval, Centre Nutrition, Santé et Société (NUTRISS), Institut sur la Nutrition et les Aliments Fonctionnels (INAF) Quebec, QC, CAN; Universite Laval, School of Nutrition Quebec, QC, CAN Garneau, Véronique; Université Laval, Centre Nutrition, Santé et Société (NUTRISS), Institut sur la Nutrition et les Aliments Fonctionnels (INAF); Universite Laval, School of Nutrition Marcil, Valérie ; University of Montreal, Department of Nutrition; Sainte- Justine University Health Centre, Research Centre Mutch, David; University of Guelph, Department of Human Health and Nutritional Sciences Robitaille, Julie; Laval University, Centre Nutrition, Santé et Société (NUTRISS), Institut sur la Nutrition et les Aliments Fonctionnels (INAF); Laval University, School of Nutrition Rudkowska, Iwona; Université Laval, Department of Kinesiology; Centre de recherche du CHU de Quebec-Universite Laval, Endocrinology and Nephrology Unit Sofian, Gabriela; Université Laval, Library Desroches, Sophie; Université Laval, Centre Nutrition, Santé et Société (NUTRISS), Institut sur la Nutrition et les Aliments Fonctionnels (INAF); Université Laval, Library Desroches, Sophie; Université Laval, Centre Nutrition, Santé et Société (NUTRISS), Institut sur la Nutrition et les Aliments Fonctionnels (INAF); Université Laval, Centre Nutrition, Santé et Société (NUTRISS), Institut sur la Nutrition et les Aliments Fonctionnels (INAF); Université Laval, School of Nutrition
Primary Subject Heading :	Nutrition and metabolism
Secondary Subject Heading:	Cardiovascular medicine, Genetics and genomics, Nutrition and metabolism
Keywords:	NUTRITION & DIETETICS, GENETICS, Lipid disorders < DIABETES & ENDOCRINOLOGY
	·

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	A systematic review of nutrigenetics, omega-3 and plasma
2	GRADE approach
4 5 6	Justine Keathley, PhD, RD ^{1,2} ; Véronique Garneau, MSc, RD ¹ ; Valérie Marcil ^{3,4} , PhD, David M Mutch, PhD ⁵ , Julie Robitaille, PhD, RD ^{1,2} , Iwona Rudkowska, PhD, RD ^{6,7} , Gabriela Sofian, MSI ⁸ , Sophie Desroches, PhD, RD ^{1,2} ; Marie-Claude Vohl, PhD^{1,2**}
7 8	¹ Centre Nutrition, Santé et Société (NUTRISS), Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Université Laval, Québec City, Québec, G1V 0A6, Canada
9	² School of Nutrition, Université Laval, Québec City, Québec, G1V 0A6, Canada
10	³ Research Centre, Sainte-Justine University Health Centre, Montréal, Québec, H3T 1C5, Canada
11	⁴ Department of Nutrition, Université de Montréal, Montréal, Québec, H3T 1J4, Canada
12 13	⁵ Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
14 15	⁶ Endocrinology and Nephrology Unit, CHU de Québec-Université Laval Research Center, Québec City, Québec, G1V 0A6, Canada
16	⁷ Department of Kinesiology, Université Laval, Québec City, Québec, G1V 0A6, Canada
17	⁸ Library, Université Laval, Québec City, Québec, G1V 0A6, Canada
18	**Corresponding Author: marie-claude.vohl@fsaa.ulaval.ca; Tel.: +1-418-656-2131 (ext.
19	404676)
20 21 22 23 24 25 26 27 28	Ethics Approval Statement: No ethics approval was required for a systematic review. Running Head: Nutrigenetics, omega-3 and lipids/lipoproteins Data described in the manuscript will be made available upon request pending approval from the corresponding author. Abbreviations: ALA (alpha-linolenic acid); CV (coefficient of variation); DHA (docosahexaenoic acid); EPA (eicosapentaenoic acid); FDA (Food and Drug Administration); GRADE (Grading of Recommendations Assessment, Development and Evaluation); HCP (healthcare professional); LD (linkage disequilibrium); nutri-GRS (nutrigenetic risk score); SNP (single nucleotide polymorphism)
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

29 ABSTRACT

Objectives: Despite the uptake of nutrigenetic testing through direct-to-consumer
 services and healthcare professionals, systematic reviews determining scientific validity
 are limited in this field. The objective of this review was to: retrieve, synthesize and
 assess the quality of evidence (confidence) for nutrigenetic approaches related to the
 effect of genetic variation on plasma lipid, lipo- and apolipoprotein responsiveness to
 omega-3 fatty acid intake.

Design: A systematic review was conducted using three search engines (Embase, Web of Science and Medline) for articles published up until August 1, 2020. We aimed to systematically search, identify (select), and provide a narrative synthesis of all studies that assessed nutrigenetic associations/interactions for genetic variants (comparators) influencing the plasma lipid, lipoprotein and/or apolipoprotein response (outcomes) to omega-3 fatty acid intake (intervention/exposure) in humans - both pediatric and adult populations (population). We further aimed to assess the overall quality of evidence for specific priority nutrigenetic associations/interactions based on the following inclusion criteria: nutrigenetic associations/interactions reported for the same genetic variants (comparators) influencing the same plasma lipid, lipoprotein and/or apolipoprotein response (outcomes) to omega-3 fatty acid intake (intervention/exposure) in humans – both pediatric and adult populations (population) in two independent studies, irrespective of the findings. Risk of bias was assessed in individual studies. Evidence was evaluated using the GRADE approach with a modification to further consider biological plausibility. This systematic review was registered with PROSPERO (CRD42020185087).

Results: Out of 1830 articles screened, 65 met the inclusion criteria for the narrative synthesis (n=23 observational, n=42 interventional); of these, 25 met the inclusion criteria for GRADE evidence evaluation. Overall, current evidence is insufficient for gene-diet associations related to omega-3 fatty acid intake on plasma apolipoproteins, total cholesterol, HDL-cholesterol, LDL-cholesterol and LDL particle size. However, there is strong (GRADE rating: moderate quality) evidence to suggest that male APOE-E4 carriers (rs429358, rs7412) exhibit significant triglyceride reductions in response to omega-3-rich fish oil with a dose-response effect. Moreover, strong (GRADE rating: high quality) evidence suggests that a 31-SNP nutrigenetic risk score can predict plasma triglyceride responsiveness to omega-3-rich fish oil in adults with overweight/obesity from various ethnicities.

- 63 Conclusions: Most evidence in this area is weak, but two specific nutrigenetic
 64 interactions exhibited strong evidence, with limited generalizability to specific
 65 populations.
 - Keywords: nutrigenomics, nutrigenetics, nutritional genomics, genetic risk score,
 nutrigenetic risk score, triglycerides, lipids, lipoproteins, omega-3 fatty acid, *APOE*
- 68 STRENGTHS AND LIMITATIONS

1

2 3 4 5 6 7 8 9 10 11 12 13	69 70 71 72 73 74 75 76	 Strength: Comprehensive systematic review guided by PRISMA Strength: Critical appraisal of the evidence guided by GRADE with a modification to further consider biological plausibility in addition to the standard components of the GRADE approach Limitation: Inability to conduct a meta-analysis given the comprehensive overview of studies and thus heterogeneity Limitation: Several included studies without replication; most evidence was low or very low quality according to GRADE
14 15 16 17 18 19 20 21 22 23 24		
25 26 27 28 29 30 31 32 33 34 35		
36 37 38 39 40 41 42 43 44 45 46		
47 48 49 50 51 52 53 54 55 56 57 58 59		

BMJ Open

77 INTRODUCTION

Cardiometabolic disease is a health concern worldwide (1). Nutrigenetic research demonstrates that there is significant inter-individual variability in cardiometabolic risk factor levels, in part based on a combination of genetic and nutrition-related risk factors (2,3). For example, protein intake has consistently been shown to influence measures of body weight and composition dependent on FTO genotype (rs9939609 or loci in strong linkage disequilibrium) (4,5). Consumers indicate great interest in personalized nutrition based on genetics (6,7), however, a lack of industry oversight (8,9) has led to highly variable scientific validity of nutrigenetic tests available to consumers. While recognizing that some groups question whether genetic testing for personalized nutrition is ready for 'prime time', Gorman and colleagues suggested that there are certain specific nutrigenetic interactions with strong evidence that could be considered for implementation into clinical practice by expert committees who are responsible for creating dietary guidelines (10). With this in mind, systematic reviews that include an evaluation of levels of evidence are urgently needed in order to determine if there are any nutrigenetic associations that may warrant potential implementation into practice. The dominant omega-3 polyunsaturated fatty acids are eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which typically come from marine sources (e.g. fish oil), and alpha-linolenic acid (ALA), which are rich in plant sources (e.g., canola oil) (11,12). It is well established that higher intakes of omega-3 fatty acids from foods or supplements (herein after referred to collectively as "omega-3s"), particularly from long-chain EPA and DHA, tend to improve indicators of cardiometabolic health (12,13). In

Page 6 of 75

100	terms of their lipid and lipoprotein lowering effects, omega-3s have consistently
101	demonstrated an impact on triglycerides (TG) (14). High-quality evidence from
102	population-based studies suggests that long-chain omega-3s (EPA and DHA) reduce
103	plasma TG by about 15% (14). There is also high-quality evidence suggesting that EPA
104	and DHA can raise high-density lipoprotein (HDL) cholesterol (14). Other studies have
105	further demonstrated a relationship between omega-3 and HDL-cholesterol (15), low-
106	density lipoprotein (LDL)-cholesterol (15), total cholesterol (16-18), apolipoproteins
107	(19), and LDL particle size (20). Despite several studies with significant findings for
108	these outcomes, when reviewing the evidence, studies have demonstrated conflicting
109	results for the impact of omega-3 on many lipid profile outcomes (14). Genetic variation
110	could explain this heterogeneity. EPA and DHA have been shown to significantly impact
111	the expression of thousands of genes including those involved in inflammatory and
112	atherogenic pathways (21,22). Evidence now demonstrates that the health impacts of
113	omega-3 intake could differ based on genetic variation (23,24). Despite the potential for
114	omega-3s to have a significant positive impact on health outcomes, population intakes of
115	omega-3s tend to be low (25). While the World Health Organization's Adequate Intake
116	level for adults is 200-250 mg EPA+DHA daily (26,27), the mean reported intake of
117	EPA+DHA in the United States is only approximately 100 mg daily (25). Nutrigenetic
118	interventions have the potential to motivate improvements in dietary intake beyond
119	population-based interventions (28). Additionally, evidence suggests that genetic
120	variability affects health responses to omega-3s (23). Thus, critically appraising and
121	grading the evidence for nutrigenetic interactions related to omega-3s and plasma lipids,
122	lipoproteins and apolipoproteins is an important research priority. The most recent

Page 7 of 75

59

60

BMJ Open

	~
	•
۰.	

1		
2 3 4	123	systematic review on nutrigenetic interactions related to omega-3s and intermediate
5 6	124	phenotypes of cardiovascular disease was conducted nearly a decade ago, and this study
7 8 9	125	did not evaluate the quality of evidence using an established methodology (29).
10 11	126	Therefore, we aimed to provide a comprehensive summary of current evidence related to
12 13	127	inter-individual variability in plasma lipid, lipoprotein and apolipoprotein responses to
14 15 16	128	omega-3 intake (plant and marine sources) based on genetic variations. Overall, the
17 18	129	specific objectives of this study were as follows:
19 20 21	130	Objective 1. Systematically search, identify (select), and provide a narrative
22 23	131	synthesis of all studies that assessed nutrigenetic associations/interactions for genetic
24 25 26	132	variants (comparators; i.e. outcomes in those with a specific genotype for a genetic
27 28	133	variant compared to a different genotype) influencing the plasma lipid, lipoprotein
29 30	134	and/or apolipoprotein response (outcomes) to omega-3 fatty acid intake
31 32 33	135	(intervention/exposure) in humans – both pediatric and adult populations
34 35 36	136	(population).
37 38	137	Objective 2. Assess the overall quality of evidence for specific priority nutrigenetic
39 40 41	138	associations/interactions based on the following inclusion criteria: nutrigenetic
42 43	139	associations/interactions reported for the same genetic variants (comparators)
44 45	140	influencing the same plasma lipid, lipoprotein and/or apolipoprotein response
46 47 48	141	(outcomes) to omega-3 fatty acid intake (intervention/exposure) in humans - both
49 50	142	pediatric and adult populations (population) in two independent studies, irrespective
51 52	143	of the findings.
53 54 55 56 57	144	
20		

-	145 146 147	Methods Patient and Public Involvement: No patient involvement
	147	ratent and rubic involvement. No patient involvement.
	148	Literature Search
	149	The systematic review protocol was registered with PROSPERO (CRD42020185087).
	150	The review process was guided by previously established methods, including a
	151	previously outlined five-step systematic review process (30,31). The search engines
	152	Embase, Web of Science and Medline OVID were used to conduct the search starting in
	153	May 2020 and screen for articles meeting inclusion criteria, using the comprehensive
	154	search terms outlined in Supplementary Table 1, properly combined by Boolean
	155	operators. The literature was searched up until August 1, 2020 (there was no minimum
	156	start date; any article published prior to this date was included in the search). A PRISMA
	157	diagram (Figure 1) guided the article screening process (32).
	158	Inclusion and Exclusion Criteria
	159	Original studies were included if they were written in English or French. Inclusion
	160	criteria were developed using the Population, Intervention, Comparison, Outcomes,
	161	(PICO) and Population, Exposure, Comparison, Outcomes (PECO) methods (33,34) for
	162	interventional and observational research, respectively. These are detailed in Table 1 for
	163	each study objective.
	164	Table 1. PICO/PECO for Study Objectives

	PICO/PECO for Objective 1:
Population	Human studies (adult and pediatric)
Intervention/	Omega-3s (total omega-3 or various types; supplemental and/or dietary
Exposure	intake)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

5		BMJ Open
		8
	Comparison	Genetic variation HDL-cholesterol I DL-cholesterol I DL particle size total
	Outcomes	cholesterol, apolipoproteins, and/or TG
		PICO/PECO for Objective 2*:
	Population	Human studies (adult and pediatric)
	Intervention/	Omega-3s (total omega-3 or various types; supplemental and/or dietary
	Comparison	Genetic variation in the same genetic location [gene(s) and SNP(s)]
	Outcomes	The same outcome of interest among studies with the same genetic comparators: HDL-cholesterol, LDL-cholesterol, LDL particle size, total cholesterol, apolipoproteins, and/or TG
165 166 167	*Nutrigenetic ass process , irrespec independent stud	sociations/interactions were included in objective 2, in the evidence grading tive of the findings, provided that they had been reported in at least two ies on the same gene(s) and SNP(s), and the same plasma outcome.
168	There were no l	imitations to the population characteristics (all populations/patient
169	samples were in	cluded). Animal studies were excluded. Dietary interventions and
170	observational st	udies involving omega-3s (total omega-3 or various types; supplemental
171	and/or dietary in	ntake) and comparing lipid and/or lipoprotein and/or apolipoprotein
172	outcomes betwe	een different genetic variations based on omega-3 dietary or supplemental
173	intake (and not	blood fatty acid levels; e.g. EPA and DHA in red blood cells) were
174	included in the	narrative synthesis. In included studies, samples had to be stratified on the
175	basis of genetic	variation. Specific lipid and lipoprotein outcomes of interest were: HDL-
176	cholesterol, LD	L-cholesterol, LDL particle size, total cholesterol, apolipoproteins, and
177	triglycerides (T	G). Studies that reported ratios of the aforementioned lipid parameters
178	(e.g. HDL-chole	esterol to total cholesterol ratio) were also included. Both observational
179	and interventior	hal studies were included, as well as single-gene, polygenic and genome-
180	wide association	n studies (GWAS). Differences in study designs and methods were
181	considered whe	n developing the overall evidence grades, as further detailed below.
182	Associations/int	teractions reported in two independent studies formed the basis of the
183	inclusion criteri	a for objective 2, in which nutrigenetic associations/interactions were

prioritized for evidence grading. This is further detailed in Table 1 and the section belowentitled "Evidence Grading."

186 Article Selection and Data Extraction

Two independent investigators (JK and VG) screened articles using the computer software *Covidence* (including title, abstract, and full-text screening) and extracted data from the included articles. Reference lists of included articles and of a systematic review on a similar topic (35) were also screened for relevant articles. Data extraction templates were piloted by two independent investigators (JK and VG) on ten included studies and revised accordingly. The final data extraction templates included the following components for each study: first author name and year, study design, genetic approach, population and sample size, study duration (interventional studies only), genes and single nucleotide polymorphisms (SNPs) analyzed with rs numbers, quantity and type of omega-3, comparisons (e.g. a control group or different amount/type of omega-3s as well as genetic grouping), lipid/lipoprotein outcome(s), whether or not the study reported that they followed STREGA guidelines and a summary of statistically significant study findings relevant to the research question. Corresponding authors of included studies were contacted as needed to provide clarity and/or additional information about the included studies.

202 Evidence Grading

203 Upon reading all full-text articles included, and summarizing the body of evidence
204 (Tables 2 and 3), SNPs/nutrigenetic risk scores (nutri-GRSs) and subsequent
205 lipid/lipoprotein/apolipoprotein outcomes were systematically prioritized and selected for

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 11 of 75

1

60

BMJ Open

2		
3 4	206	evidence grading, if a specific nutrigenetic association/interaction was reported in at least
5 6	207	two independent studies. To clarify, this refers to the same SNP(s)/nutri-GRS [or SNPs
/ 8 9	208	in strong linkage disequilibrium (LD)] being assessed and influencing the same
9 10 11	209	lipid/lipoprotein outcome in at least two studies. For these nutrigenetic
12 13	210	associations/interactions, we proceeded with evidence grading, while including all
14 15	211	studies relevant to the particular nutrigenetic association/interaction, irrespective of the
16 17 18	212	findings. Consistency of results was then one of several factors considered when grading
19 20	213	the body of evidence. The Grading of Recommendations Assessment, Development and
21 22	214	Evaluation (GRADE) approach indicates that a single study rarely (if ever) results in
23 24 25	215	strong evidence, but two studies (typically RCTs) can indicate strong evidence if they are
23 26 27	216	graded highly using the GRADE criteria (36). Prior to selecting the nutrigenetic
28 29	217	associations/interactions (genetic variants and lipid/lipoprotein/apolipoprotein outcomes)
30 31	218	for evidence grading, LD was assessed using the SNIPA SNP Annotator Software (37)
32 33 34	219	for genes located on the same chromosome and arm (determined using the Online
35 36	220	Mendelian Inheritance in Man® [OMIM] database) as outlined in the summary of
37 38	221	results' tables in the column labelled 'Cytogenic Location of Gene(s)' (Tables 1 and 2).
39 40	222	Strong LD was defined as r ² >0.8 and location <250 kb away from the index SNP
41 42 43	223	location. SNPs in strong LD were considered together for the purposes of evidencing
44 45 46	224	grading.
47 48	225	Based on our abovementioned predetermined criteria for specific nutrigenetic topic
49 50 51	226	selection for evidence grading, nutrigenetic associations/interactions that were not
52 53	227	included in the evidence grading process likely have weak evidence (at minimum due to
54 55 56 57 58 59	228	lack of replication, for example, ZNT8 rs13266634 and HDL-c or TG responsiveness to

2		
3	229	omega-3, which has only been assessed in a single study (38)). According to the GRADE
4 5	220	
6 7	230	guidelines, when only a single study exists indicating significant findings for an outcome
7 8 9	231	of interest (especially when the study is observational), the overall quality of the evidence
10 11	232	is generally rated to be low or very low (39). Therefore, our process for prioritizing
12 13	233	nutrigenetic topics for evidence grading aimed to filter out specific nutrigenetic
14 15 16	234	associations/interactions that would likely be deemed low or very low quality (based on,
17 18	235	at minimum, lack of replication). Two authors (JK and VG) critically appraised the
19 20	236	selected nutrigenetic interactions using the GRADE methodology, with one modification
21 22 22	237	(39,40). The modified GRADE approach consisted of the additional consideration of
23 24 25	238	biological plausibility whereby evidence was considered for upgrading if there was
26 27	239	evidence of biological plausibility for the nutrigenetic interaction. Nutrigenetic
28 29	240	interactions were grouped according to studies assessing the same SNP(s)/nutri-GRS and
30 31 32	241	lipid/lipoprotein/apolipoprotein outcome, and the quality of the body of evidence (studies
33 34	242	with significant and non-significant results) was rated; this process was guided by the
35 36	243	GRADE Evidence Profile, which included consideration of risk of bias, inconsistency,
37 38 30	244	indirectness, imprecision, publication bias, plausible confounding, dose-response and
40 41	245	other factors (39). For example, different sources of omega-3s (e.g. EPA+DHA vs. ALA;
42 43	246	food sources vs. supplementation) were taken into consideration when grading the
44 45	247	evidence through the analysis of indirectness within the modified GRADE approach
46 47 48	248	(39,40). Risk of bias was assessed in each of the included interventional and
49 50	249	observational studies using the National Institutes of Health Study Quality Assessment
51 52	250	Tools, in line with recently published recommendations for risk of bias assessments (41).
53 54 55	251	To assess measures of precision, coefficients of variation (CV) were calculated based on
56 57		

Page 13 of 75

1

BMJ Open

1

2	
3	
4	
5	
6	
7	
, 8	
٥ ٥	
פ 10	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
27 22	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
37	
25	
22	
30	
3/	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
- 0 /0	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

outcome means (mean change or absolute values – whichever was used for the analyses)
and standard deviations. In cases where standard errors of the mean were reported, these
were converted to standard deviations to calculate the CV. The nutrigenetic interactions
were each given an evidence grade of high, moderate, low or very low.

256 **Results**

257

Figure 1 outlines the PRISMA Flow Diagram, which was used to guide the systematic 258 259 review. Supplementary Tables 2 and 3 provide a summary of the 65 included studies. The 260 results columns of Supplementary Tables 2 and 3 (far right) indicate nutrigenetic findings 261 that were statistically significant. There were many results from the included studies that were not statistically significant. It is important to highlight that any results related to the 262 263 studies' analyzed SNPs and outcomes of interest that were not statistically significant are 264 not indicated in the results column. No studies explicitly reported that they followed 265 STREGA guidelines. LD analysis of SNPs tested in different studies revealed strong LD 266 in several SNPs from the FADS gene cluster (see Table 2 footnote). As such, LD was taken into consideration in the selection of nutrigenetic interactions selected for evidence 267 268 grading.

269 Observational Studies

270 Of the 65 included studies, 23 were observational with the majority of these being cross-271 sectional, as outlined in Supplementary Table 2. A total of 62,221 participants were 272 included in the observational studies. These studies assessed correlations among a 273 number of different genetic variations and outcomes, with several studies assessing 274 genetic variations in the *FADS* gene cluster (42–48), *TNFa* (49–51) and *PPARa* (52–54).

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

275	Most studies (n=13) assessed total omega-3s (38,42,47–49,51,54–60). The intake and
276	type of omega-3s, lipid/lipoprotein/apolipoprotein outcomes and associations revealed
277	from these studies were variable as further detailed in Supplementary Table 2. In the
278	observational studies assessing genetic variation in the FADS gene cluster, some studies
279	indicated significant gene-diet findings related to HDL-cholesterol, LDL-cholesterol, TG,
280	total-cholesterol while other studies demonstrated no significant gene-diet interactions for
281	these outcomes thus indicating notable inconsistency among the results, while
282	considering that SNPs differed by studies (42–48). In the observational studies focused
283	on genetic variation in the $TNF\alpha$ gene, there was some evidence of a gene-diet
284	relationship for omega-3 and LDL-cholesterol, total-cholesterol and total-
285	cholesterol:HDL-cholesterol ratio, but again, results differed between studies (49–51).
286	For gene-diet relationships and $PPAR\alpha$ genetic variation, individual studies indicated
287	significant findings related to total-cholesterol, LDL-cholesterol, TG, apoC-III and LDL
288	peak particle diameter (52–54). Comprehensive details of the observational studies are
289	outlined in Supplementary Table 2.
290	Interventional Studies
291	Of the 65 included studies, 42 were interventional including 16 randomized trials. Non-
292	randomized studies included single arm clinical trials and sequential non-randomized
293	cross-over interventions. For interventional studies, n=6,225 participants upon combining

all sample sizes of the included studies. Again, these studies assessed relationships

- between a number of different genetic variants and study outcomes. In more recent years,
- 296 several studies (n=8) used a nutri-GRS or polygenic approaches (61–68) given the
- 297 plausibility that many gene-lipid/lipoprotein/apolipoprotein and omega-3 interactions are

Page 15 of 75

BMJ Open

298	polygenic in nature. Numerous studies assessed genetic variations in the FADS gene
299	cluster (61,62,69–71), APOE (61,71–80), CD36 (67,81,82), PPARy2 (62,67,83–85) and
300	PPARα (83,86,87). Among these studies, results related to significant gene-diet (omega-
301	3) associations influencing lipid/lipoprotein outcomes were generally inconsistent except
302	for APOE (rs429358 and rs7412), omega-3 and TG in males only (71–75,77–80), and for
303	a 31-SNP nutri-GRS, omega-3 and TG (65,66). There was also consistent evidence to
304	indicate a lack of association among <i>PPARy2</i> (rs1801282) genetic variation, EPA+DHA
305	and LDL cholesterol (62,67,84,85,88). Most studies (n=40) used supplemental EPA
306	and/or DHA sources of omega-3s for the dietary intervention (see Supplementary Table
307	3). The dosage/intake and type of omega-3s were variable with EPA and/or DHA dosages
308	ranging from 0.5-3.7 g/day across different studies, and one study with an ALA
309	intervention dosage of 8.1 g/day, as further detailed in Table 3.
310	Levels of Evidence Using GRADE
311	A total of 25 articles were included in the evidence grading process, representing 11
312	unique nutrigenetic associations/interactions as outlined in Tables 2 and 3, and
313	Supplementary Table 4. Through the modified GRADE process, it was determined that
314	there is strong evidence (GRADE rating: moderate quality) for APOE genotypes (rs7412,
315	rs429358), omega-3s and TG lowering in male adults only (71–75,77–80). This evidence
316	suggests that adult males (but not females) with the APOE-E3/E4 or E4/E4 genotype
317	(rs429358, rs7412) tend to experience significant reductions in TG in response to 0.7-3.7
318	g/day of EPA and/or DHA, with higher dosages demonstrating greater TG lowering
319	effects (71–75,77–80). Furthermore, it was determined that there is strong evidence
320	(GRADE rating: high quality) for using a 31-SNP nutri-GRS (detailed in Supplementary

Tables 5 and 6) to assess the effectiveness of omega-3s for TG lowering in adults with overweight/obesity in various ethnicities (65,66). The evidence suggests that in adults with overweight/obesity, lower genetic risk scores demonstrate greater responsiveness to omega-3 supplementation (65,66).

325 All other evidence that was evaluated was determined to be weak (GRADE rating: low or

326 very low quality), as further detailed in Table 2. Imprecision, indirectness, and

327 inconsistency were common reasons for downgrading the evidence (refer to Table 2

328 footnote). There was evidence for a plausible mechanism of action for most of the

329 nutrigenetic interactions that were graded; evidence of a dose response was less common.

Table 2. GRADE Evidence Profile: Genetic Variation, Omega-3 and Lipids

⁹ Nutrigenetic interactions for omega-3 and plasma lipid/lipoprotein outcomes

Patient or Population: adults

Intervention/Exposure: dietary or supplemental omega-3 (EPA and/or DHA and/or ALA) Comparison/Control: genetic variation, different omega-3 intakes

Outcomes: plasma lipids and lipoproteins

7 <i>Gene</i> rs Number and 18 Lipid: Number and 10 Type of Studies (total <i>n</i>)	Limitations	Inconsistency	Indirectness	Imprecision	Publication Bias	Dose Response	Biological Plausibility*	Quality	Conclusion
20 <i>CD36</i> rs1761667 and 21 HDL-c: 22 1 RCT and 1 single arm trial (<i>n</i> =115) (81,89) 23	Serious limitations ^a	Serious inconsistency ^b	Serious indirectness ^c	Serious imprecision ^d	Undetected	No evidence of a gradient	Evidence of a mechanism of action	⊕⊕⊖⊖ (Low)	Weak evidence suggests that possessing the GA or possibly the AA genotype of <i>CD36</i> rs1761667 could lead to significant increases in HDL-c in response to 0.8-3.0 g/day of omega-3s.
24 CD36 rs1761667 and 25 TG: 26 1 RCT and 1 single arm 27 trial (n=115) (81,89)	Serious limitations ^a	Serious inconsistency ^b	Serious indirectness ^c	Serious imprecision ^e	Undetected	No evidence of a gradient	Evidence of a mechanism of action	$\begin{array}{c} \oplus \oplus \ominus \ominus \\ \text{(Low)} \end{array}$	Weak evidence suggests that possessing the GA or possibly the GG genotype of <i>CD36</i> rs1761667 could lead to significant reductions in TG in response to 0.8-3.0 g/day of omega-3s.
28 29 <i>CD36</i> rs1049673 and 9 HDL-c: 30 1 RCT and 1 single arm 31 trial (<i>n</i> =115) (81,89) 22	Serious limitations ^a	Serious inconsistency ^b	Serious indirectness ^c	No serious imprecision	Undetected	No evidence of a gradient	Evidence of a mechanism of action	⊕⊕⊝⊝ (Low)	Weak evidence suggests that possessing the CG or possibly the CC genotype of <i>CD36</i> rs1049673 could lead to significant increases in HDL-c in response to 0.8-3.0 g/day of omega-3s.
33 CD36 rs1527483 and 34 TG: 35 1 RCT and 1 single arm 36 trial (n=250) (67,81)	Serious limitations ^f	No serious inconsistency	Serious indirectness ^g	Very serious imprecision ^e	Undetected	No evidence of a gradient	Evidence of a mechanism of action	⊕⊕⊝⊝ (Low)	Weak evidence suggests that possessing the GG genotype of <i>CD36</i> rs1527483 could lead to significant decreases in TG in response to approximately 2.0 g/day of EPA+DHA (but not ALA).
74POE rs429358, rs7412 8 and TG: 4 RCTs and 5 9 single arm trials (1 single 10 arm trial consisted of a	No serious limitations	No serious inconsistency	Serious indirectness ^h	No serious imprecision	Undetected	Evidence of a gradient	Evidence of a mechanism of action	⊕⊕⊕⊖ (Moderate)	Strong evidence suggests that adult males (but not females) with the <i>APOE</i> -E3/E4 or E4/E4 genotype (rs429358, rs7412) experience significant reductions in TG in

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2									
3	1	1	1		1	1	1	1	
subset sample of another single arm trial)									DHA. Higher dosages may have greater TG
(n=980)(71-75,77-80)									lowering effects.
<i>APOE</i> rs429358, rs7412								$\Theta \Theta \Theta \Theta$	In males and females combined, strong
and Total-c: 4 RC1s, 5								(Moderate:	evidence suggests that there is no nutrigenetic
9 single arm trials (1 single							Look of	Males and	(red20258, re7412) and total a There is no
10 arm trial consisted of a	No sorious	Sorious	Sorious	No sorious		No avidance	Lack of	Females)	(IS429358, IS7412) and total-c. There is no
single arm trial) 1 cross-	limitations	inconsistency	indirectnessh	imprecision	Undetected	of a gradient	mechanism of	and	$\Delta I \Delta APOF$ (rs429358 rs7412) and total-c
sectional and longitudinal	minutions	meonsistency	indirectiless	mprecision		of a gradient	action	and	In male subgroups weak evidence suggests
³ analysis within an RCT							uouon		that there is no nutrigenetic interaction
4(n=2,446)(55,71-75,77-								(Low:	between ALA or EPA and/or DHA, APOE
15 80)								Males)	(rs429358, rs7412) and total-c.
16									Strong evidence suggests that in adults with
1731-SNP Nutri-GRS and									overweight/obesity, a 31-SNP genetic risk
18 TG:	No serious	No serious	Serious	No serious		Evidence of	Some evidence	••••	score can predict TG responsiveness to
191 RCT, 1 single arm trial	limitations	inconsistency	indirectness ^j	imprecision	Undetected	a gradient ^k	of a mechanism	High	EPA+DHA supplementation. Individuals
20 (n=330) (65,66)		5					of action ¹		with lower genetic risk scores demonstrate
21									lowering
22PPARg2 rs1801282 and							Lack of		Strong evidence suggests that genetic
23LDL-c: 4 RCTs. 1 single	No serious	No serious	Serious	Serious		No evidence	evidence of a	0000	variation in <i>PPARg2</i> (rs1801282) does not
arm trial $(n=670)$	limitations	inconsistency	indirectnessm	imprecision ⁿ	Undetected	of a gradient	mechanism of	(Moderate)	influence LDL-c responses to omega-3s
(62,67,84,85,88)		5		1			action	, , , , , , , , , , , , , , , , , , ,	(EPA+DHA).
26									Weak evidence suggests that possessing the
77PP4Ra2 rs1801282 and							Lack of		CG or GG genotype of <i>PPARg2</i> (rs1801282)
oTotal-c: 4 RCTs 1 single	No serious	Serious	Serious	Serious		No evidence	evidence of a		could lead to significant increases in total-c in
arm trial $(n=670)$	limitations	inconsistencyo	indirectness ^m	imprecision ⁿ	Undetected	of a gradient	mechanism of	(Low)	response to approximately 3 g/day of omega-
(62,67,84,85,88)						0.000	action	()	3s (EPA+DHA) in individuals with
BO C P P P P									overweight or obesity, but not for individuals
<u>B1</u>									Weak evidence suggests that genetic variation
B2 PP4Rg2 rs1801282 and									in $PPAR\sigma^2$ (rs1801282) does not influence
3 TG: 4 RCTs. 1 single arm	No serious	Very serious	Serious	Serious		No evidence	Evidence of a		total-c responses to omega-3s (EPA+DHA).
$\frac{34}{\text{trial}(n=670)}$	limitations	inconsistency ^p	indirectness ^m	imprecision ⁿ	Undetected	of a gradient	mechanism of	(Low)	but when dietary total fat and saturated fat
35 (62,67,84,85,88)				1			action		intake are low, nutrigenetic interactions may
36									exist.
37 <i>FADS</i> (rs174547**) and	Very serious	No serious	Very serious	Serious		No evidence	Evidence of a		Weak evidence suggests that genetic variation
38 Total-c: 2 RCTs, 1	risk of bias ^q	inconsistency	indirectness ^r	imprecision ⁿ	Undetected	of a gradient	mechanism of	(Very Low)	in <i>FADS</i> (rs174547**) does not influence
39 ^{single-arm trial, 4 cross-}				- r			action	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	total-c responses to omega-3.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	
T	

netic
netic

Study	Rick of Rice
Dawczynski et al. 2013	
Maddan at al. 2008	0
	51667 and TC
Study	Risk of Bias
Dawczynski et al 2013	
Madden et al 2008	9
<i>CD36</i> . rs1049	673 and HDL-c
Study	Risk of Bias
Dawczynski et al. 2013	Θ
Madden et al. 2008	Θ
<i>CD36</i> , rs152	27483 and TG
Study	Risk of Bias
Zheng et al. 2018	D
Madden et al. 2008	Θ
<i>ApoE</i> , rs42935	8, rs7412 and TG
Study	Risk of Bias
AbuMweis et al. 2018	Θ
Carvalho-Wells et al. 2012	Ð
Caslake et al. 2008	\oplus
Dang et al. 2015	Ð
Jackson et al. 2012	Θ
Minihane et al. 2000	\oplus
Olano-Martin et al. 2010	\oplus
Paschos et al. 2005	Θ
Thifault et al. 2013	\oplus
<i>ApoE</i> , rs429358,	rs7412 and Total-c
Study	Risk of Bias
AbuMweis et al. 2018	Θ
Carvalho-Wells et al. 2012	•
Caslake et al. 2008	•
Dang et al. 2015	•
Fallaize et al. 2016	Θ
Jackson et al. 2012	Θ
Minihane et al. 2000	•
Olano-Martin et al. 2010	\oplus
Paschos et al. 2005	Θ
Thifault et al. 2013	<u> </u>
31-SNP Nutr	i-GRS and TG
Study	Risk of Bias
/allée Marcotte et al 2019	\square

Table 3. Summary of Risk of Bias Across SNPs and Outcomes Following Omega-3Exposure/Intervention

DD 1 Da 2 vs 1801 282 and I DI a		
Study	Risk of Bias	
Binia et al 2017		
Harslof et al 2014	 	
Itariu et al 2012	¥	
Lindi et al 2003	Q	
Zheng et al 2018	 	
<i>PPARg2</i> , rs180	1282 and Total-c	
Study	Risk of Bias	
Binia et al. 2017	Θ	
Harslof et al. 2014	\oplus	
Itariu et al. 2012	\oplus	
Lindi et al. 2003	Θ	
Zheng et al. 2018	\oplus	
PPARg2, rs18	801282 and TG	
Study	Risk of Bias	
Binia et al. 2017	Θ	
Binia et al. 2017 Harslof et al. 2014	Θ	
Binia et al. 2017 Harslof et al. 2014 Itariu et al. 2012		
Binia et al. 2017 Harslof et al. 2014 Itariu et al. 2012 Lindi et al. 2003	Ο Φ Φ Ο	
Binia et al. 2017 Harslof et al. 2014 Itariu et al. 2012 Lindi et al. 2003 Zheng et al. 2018		
Binia et al. 2017 Harslof et al. 2014 Itariu et al. 2012 Lindi et al. 2003 Zheng et al. 2018 <i>FADS</i> , rs1745	⊖ ⊕ ⊕ ⊖ ⊖ ⊖ ⊕ 547 and Total-c	
Binia et al. 2017 Harslof et al. 2014 Itariu et al. 2012 Lindi et al. 2003 Zheng et al. 2018 FADS, rs1745 Study	 ⊖ ⊕ ⊕ ⊖ ⊖ ⊕ 547 and Total-c Risk of Bias 	
Binia et al. 2017 Harslof et al. 2014 Itariu et al. 2012 Lindi et al. 2003 Zheng et al. 2018 FADS, rs1745 Study AbuMweis et al. 2018	⊖ ⊕ ⊕ ⊖ 47 and Total-c Risk of Bias ⊖	
Binia et al. 2017 Harslof et al. 2014 Itariu et al. 2012 Lindi et al. 2003 Zheng et al. 2018 FADS, rs1745 Study AbuMweis et al. 2018 Alsaleh et al. 2014	 ⊖ ⊕ ⊕ ⊖ ⊕ 547 and Total-c Risk of Bias ⊖ ⊕ ⊕ 	
Binia et al. 2017 Harslof et al. 2014 Itariu et al. 2012 Lindi et al. 2003 Zheng et al. 2018 FADS, rs1745 Study AbuMweis et al. 2014 Lu et al. 2010	⊖ ⊕ ⊖ ⊕ 547 and Total-c Risk of Bias ⊖ ⊕ ⊕	
Binia et al. 2017 Harslof et al. 2014 Itariu et al. 2012 Lindi et al. 2003 Zheng et al. 2018 FADS, rs1745 Study AbuMweis et al. 2018 Alsaleh et al. 2014 Lu et al. 2010 Standl et al. 2012	 ⊖ ⊕ ⊕ ⊕ 47 and Total-c Risk of Bias ⊖ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ 	
Binia et al. 2017 Harslof et al. 2014 Itariu et al. 2012 Lindi et al. 2003 Zheng et al. 2018 FADS, rs1745 Study AbuMweis et al. 2018 Alsaleh et al. 2014 Lu et al. 2010 Standl et al. 2012 Dumont et al. 2011	 □ □ □ □ □ □ 0 	
Binia et al. 2017 Harslof et al. 2014 Itariu et al. 2012 Lindi et al. 2003 Zheng et al. 2018 FADS, rs1745 Study AbuMweis et al. 2018 Alsaleh et al. 2010 Standl et al. 2012 Dumont et al. 2011 Dumont et al. 2018	 □ □ □ □ □ 0 0	

 \oplus no serious risk of bias; \ominus serious risk of bias; $\ominus \ominus$ very serious risk of bias (for study design type using NIH Study Quality Assessment Tools)

HDL-c: high-density lipoprotein cholesterol, LDL-c: low-density lipoprotein cholesterol, TG: triglycerides, total-c: total cholesterol

2 3	271	DISCUSSION
4	271	DISCUSSION
5 6 7	273	Overall, this systematic review found strong evidence (i.e. GRADE ratings: moderate and
/ 8 0	274	high quality evidence) for only a limited amount of evidence in this area: APOE
9 10 11	275	(rs429358 and rs7412) genotypes and TG responsiveness to omega-3s in men, and a 31-
12 13	276	SNP nutri-GRS and TG responsiveness to omega-3s in adults with overweight/obesity.
14 15	277	Limited evidence exists for individual genetic-based responsiveness of omega-3s on
16 17 18	278	apolipoprotein and/or LDL particle size, with no studies from the present comprehensive
19 20	279	review meeting the criteria for evidence grading. This highlights the need for more
21 22	280	replication studies in this area. While more research exists on omega-3 responsiveness for
23 24 25	281	other lipid outcomes such as total-c, HDL-c and LDL-c, the level of evidence for
25 26 27	282	nutrigenetic interactions related to these outcomes remains low. Again, more studies are
28 29	283	needed related to these outcomes, including replication studies of previously identified
30 31	284	nutrigenetic interactions. These studies should first replicate the interventions (i.e. use the
32 33 34	285	same type and amount of omega-3s as the original study), and recruit samples with
35 36	286	similar characteristics to the original study. Once replication is established, research
37 38	287	should then seek to expand the population studied to improve generalizability and explore
39 40 41	288	the effectiveness of different interventions (i.e. different formulations and doses of
42 43	289	omega-3s). The variability of the interventions and sample sizes in the studies conducted
44 45	290	to date often resulted in the quality of evidence being downgraded (see Table 2). It should
46 47	291	also be noted that study heterogeneity precluded the ability to conduct a meta-analysis.
48 49 50	292	Thus, the GRADE approach worked well for evaluating the quality of the evidence given
51 52	293	that this approach takes into consideration several factors when determining the quality of
53 54		
55 56		
57 58		
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

2

÷	
2	
3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
11	
12	
13	
14	
15	
16	
10	
17	
18	
19	
20	
21	
∠ I つつ	
22	
23	
24	
25	
26	
20	
27	
28	
29	
30	
31	
21	
32	
33	
34	
35	
36	
27	
5/	
38	
39	
40	
41	
41 42	
+Z	
43	
44	
45	
46	
17	
47	
48	
49	
50	
51	
52	
52	
23 -	
54	
55	
56	
57	
57	
28	
59	
60	

294	evidence such as risk of bias, indirectness of evidence, inconsistency or results,
295	imprecision and publication bias (39).

296

297 It is important to note that our results demonstrating strong evidence for interactions 298 between APOE genotypes and lipid responses to omega-3s have notable ethical 299 implications. Compared to non-carriers, carriers of APOE-E4 have a 15 times greater risk of developing Alzheimer's disease (90). Moreover, APOE genotypes are significantly 300 301 associated with CVD risk including risk of coronary artery disease and hyperlipidemia 302 (91–93). Interestingly, the pathology of Alzheimer's disease has been linked to 303 cardiovascular mechanisms (90). Future research should explore nutrigenetic interactions, 304 with risk of developing Alzheimer's disease as the study endpoint/outcome of interest. 305 Despite the current lack of knowledge about how diet may play a role in mitigating the 306 genetic-based risk of Alzheimer's disease, several potentially modifiable risk factors 307 account for around 40% of dementia and Alzheimer's disease globally (94), and the link 308 between Alzheimer's disease risk and APOE is well-established (95). Therefore, despite 309 the strong scientific validity identified in the present review, there are other factors that 310 must be considered before this test can be recommended for implementation in a practice setting; this includes ethical, legal and social implications (96). 311

312

In addition, our finding of strong evidence for *APOE* genotypes and TG responsiveness to omega-3s in men but not women speaks to the importance of taking biological sex into account in nutrigenetics research. The importance of this has been further highlighted elsewhere, where it has been noted that the results of nutrition and nutrigenetic research

317	may differ in men and women (97). For example, UDP-glucuronidation isoenzyme
318	expression profiles have been demonstrated to be regulated by sex hormones, and thus
319	sex-specific differences in glucuronidation of resveratrol have been observed (98). As
320	more studies are completed, researchers may find that certain nutrigenetic interactions
321	differ depending on biological sex, ethnicity, age or other factors, similar to our findings
322	on APOE, omega-3s and TG in which there was robust evidence of a nutrigenetic
323	interaction in males only. Researchers may also find explanations for this, which are
324	currently poorly understood. In general, it is becoming increasingly recognized that
325	health-related responses to different interventions may vary based on biological sex; this
326	is an important consideration of personalized nutrition (97). Nutrigenetic research often
327	groups men and women together, but stratifying based on biological sex could provide
328	further insights for specific nutrigenetic interactions and could also help explain why
329	some replication studies have had conflicting findings (97). Moreover, biomedical
330	research in general historically has been conducted more in men than women; yet such
331	research findings are often generalized to women despite limited research conducted in
332	samples of women, which is problematic for a number of reasons (99). In the present
333	review, the evidence was strong for the APOE findings in men only, but not women in
334	part because there were more studies conducted in men. Specifically, there were five
335	studies conducted in men and women (combined) (71,73,74,100,101), and four studies
336	conducted in samples of only men (75,78,79,102), yet no studies conducted in samples of
337	only women. This brings to light important issues of equity and warrants further
338	discussion and consideration.
339	

Page 25 of 75

BMJ Open

2 3 4	340	As research continues to develop, it appears likely that lipid and lipoprotein responses are
5 6 7	341	polygenic in nature. Therefore, future research should consider using nutri-GRSs or other
7 8 9	342	polygenic methods of assessing responsiveness to nutrition interventions. This work
10 11	343	should use unbiased approaches or non-hypothesis driven approach to derive nutri-GRSs,
12 13	344	such as establishing them from genetic-wide association studies. In addition to the two
14 15 16	345	studies meeting the criteria for evidence grading (65,66), a modified version of the 31-
17 18	346	SNP GRS was tested in men and women in the FINGEN study, using 23 of the 31 SNPs
19 20	347	(65). While this did not meet our inclusion criteria for evidence grading given that a
21 22 23	348	different GRS was used, the 23-SNP GRS was significantly associated with TG
24 25	349	responsiveness to omega-3 supplementation in this population as well, providing further
26 27	350	evidence for the scientific validity of this nutrigenetic interaction (65).
28 29 20	351	
30 31 32	352	While we used a modified version of the GRADE approach (with the additional
33 34	353	consideration of biological plausibility) to evaluate the body of evidence, several tools are
35 36	354	available for evaluating the quality of scientific evidence, though no generally accepted
37 38 39	355	methods exist for nutrigenetic research specifically. In 2017, Grimaldi et al. proposed a
40 41	356	set of guidelines to assess the scientific validity of genotype-based dietary advice (30).
42 43	357	While we originally intended to use these guidelines for assessing the evidence, we came
44 45 46	358	across some limitations that ultimately led us to use the GRADE guidelines. Specifically,
40 47 48	359	Grimaldi et al. (2017) suggested that only studies that include STREGA guidelines
49 50	360	should be included in the assessment of scientific validity (30). However, limiting the
51 52	361	evidence to only these studies could result in several important studies being missed. In
53 54 55 56	362	the present review, none of the included studies explicitly indicated that they followed
2		
----	--	
3		
4		
5		
6		
7		
8		
a		
10		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		
26		
27		
28		
20		
20		
21		
21		
32		
33		
34		
35		
36		
37		
38		
39		
40		
41		
42		
43		
44		
45		
46		
47		
48		
49		
50		
51		
52		
52		
57		
55		
55		
50		
5/		
20		
59		
60		

1

363	STREGA guidelines. In addition, it was recommended by Grimaldi et al. to use STREGA
364	guidelines to assess risk of bias (30). However, the STREGA checklist is only intended
365	for observational genetic association studies - not interventional research (103). In the
366	present review, 42 of the 65 included studies were interventional (65%) (Supplementary
367	Table 3). In addition, the STREGA guidelines are intended to improve the transparency
368	and adequate reporting of genetic association studies, but it is not intended to be used as a
369	study quality assessment tool (103). However, Grimaldi et al. nicely highlighted the
370	importance of understanding the nature of the genetic variation, at a functional level,
371	when assessing scientific validity (30). This is not included in the standard GRADE
372	approach but is an important niche component of nutrigenetic research. As such, an
373	analysis of functional SNPs (biological plausibility) was included as an additional
374	component of the standard GRADE process, as indicated in the methods section above.
375	Overall, we found that the methods used in this systematic review were effective and can
376	be used to synthesize and evaluate nutrigenetic studies assessing other gene-nutrient-
377	health outcome interactions.
378	
379	The additional consideration of functional SNPs to the standard GRADE approach helped
380	to strengthen this review, as biological mechanistic evidence can help ensure that study
381	findings did not occur by chance alone, and this is a component of evidence evaluation

382 frameworks in medical genetics (104,105). Transcriptomic and pathway analyses can

help inform the direction of future nutrigenetic studies by generating hypotheses about

the impact of specific genetic variations on varying responses to nutrition on health-

related outcomes. For example, using transcriptomics and pathway analyses to identify

Page 27 of 75

BMJ Open

386	changes in lipid metabolism following omega-3 supplementation, Rudkowska and
387	colleagues identified six genes expressed in opposite directions between responders and
388	non-responders to omega-3 supplementation for TG lowering: FADS2, PLA2G4A,
389	ALOX15, PEMT, MGLL and GPAM (106). Tremblay et al. then built on this knowledge
390	and discovered that PLA2G6 rs132989, PLA2G7 rs679667, PLA2G2D rs12045689,
391	PLA2G4A rs10752979 and rs1160719 together explained 5.9% of post- omega-3
392	supplementation TG levels, with several individual PLA2G4A SNPs also having a
393	significant impact on the TG lowering effect of omega-3 supplementation (107). Others
394	have built on this mechanistic knowledge as well (108). Future research should now seek
395	to replicate this work given that we found that there have been no replication studies
396	completed and thus, this research (107,108) did not meet the criteria for evidence
397	grading.
398	
399	In the current body of literature, there are some limitations that should be highlighted.
400	
401	Given the variability in allele frequencies for each SNP, it should be noted that study
401	Given the variability in allele frequencies for each SNP, it should be noted that study limitations can arise with small sample sizes whereby some genotype groups may not be
401	Given the variability in allele frequencies for each SNP, it should be noted that study limitations can arise with small sample sizes whereby some genotype groups may not be adequately powered to detect significant differences. For example, Dawczynski et al.
401 402 403	Given the variability in allele frequencies for each SNP, it should be noted that study limitations can arise with small sample sizes whereby some genotype groups may not be adequately powered to detect significant differences. For example, Dawczynski et al. (2013) detected significant changes in TG among the GA genotype group of <i>CD36</i>
401 402 403 404	Given the variability in allele frequencies for each SNP, it should be noted that study limitations can arise with small sample sizes whereby some genotype groups may not be adequately powered to detect significant differences. For example, Dawczynski et al. (2013) detected significant changes in TG among the GA genotype group of <i>CD36</i> rs1761667 (n=18) in response to omega-3s but neither of the homozygote groups (AA:
401 402 403 404 405	Given the variability in allele frequencies for each SNP, it should be noted that study limitations can arise with small sample sizes whereby some genotype groups may not be adequately powered to detect significant differences. For example, Dawczynski et al. (2013) detected significant changes in TG among the GA genotype group of <i>CD36</i> rs1761667 (n=18) in response to omega-3s but neither of the homozygote groups (AA: n=8, GG: n=7) exhibited a significant difference, despite similar directions and
401 402 403 404 405 406	Given the variability in allele frequencies for each SNP, it should be noted that study limitations can arise with small sample sizes whereby some genotype groups may not be adequately powered to detect significant differences. For example, Dawczynski et al. (2013) detected significant changes in TG among the GA genotype group of <i>CD36</i> rs1761667 (n=18) in response to omega-3s but neither of the homozygote groups (AA: n=8, GG: n=7) exhibited a significant difference, despite similar directions and magnitudes of effect among the GA and GG genotypes (82). It is thus possible that this
 401 402 403 404 405 406 407 	Given the variability in allele frequencies for each SNP, it should be noted that study limitations can arise with small sample sizes whereby some genotype groups may not be adequately powered to detect significant differences. For example, Dawczynski et al. (2013) detected significant changes in TG among the GA genotype group of <i>CD36</i> rs1761667 (n=18) in response to omega-3s but neither of the homozygote groups (AA: n=8, GG: n=7) exhibited a significant difference, despite similar directions and magnitudes of effect among the GA and GG genotypes (82). It is thus possible that this study was not adequately powered. Some researchers aim to mitigate this issue of small
401 402 403 404 405 406 407 408	Given the variability in allele frequencies for each SNP, it should be noted that study limitations can arise with small sample sizes whereby some genotype groups may not be adequately powered to detect significant differences. For example, Dawczynski et al. (2013) detected significant changes in TG among the GA genotype group of <i>CD36</i> rs1761667 (n=18) in response to omega-3s but neither of the homozygote groups (AA: n=8, GG: n=7) exhibited a significant difference, despite similar directions and magnitudes of effect among the GA and GG genotypes (82). It is thus possible that this study was not adequately powered. Some researchers aim to mitigate this issue of small numbers by grouping minor allele carriers together (i.e. heterozygotes + homozygotes for

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	
2	
3	
4	
5	
5	
0	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
21	
21	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
17	
42	
45	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
55	
54	
55	
56	
57	
58	
59	
60	

409	the minor allele) (69). However, such an approach precludes the possibility to detect an
410	allele-dosage effect. From a physiological perspective, an allele dosage effect would be
411	expected whereby a significant change among a heterozygote group would likely be
412	accompanied by a significant change in one of the homozygote groups but with an even
413	greater magnitude of the effect. This consideration highlights the importance of having an
414	adequately powered sample size, while factoring in the prevalence of each genotype.
415	
416	While single SNP research provides important information about individual gene-nutrient
417	interactions, the results of this review indicate that individual responses to omega-3s for
418	altering lipids, lipoproteins and apolipoproteins appear to be polygenic in nature. Thus,
419	we encourage researchers to further explore the use of nutri-GRSs to improve the
420	accuracy of genetic-based predictions. See, for example, the work of Vallée Marcotte et
421	al., which obtained a high quality evidence grade in the present review (65,66). This is
422	further exemplified in the analyses recently conducted by Chen et al. (42), which has yet
423	to be replicated and thus was not selected for evidence grading.
424	
425	The present analysis of scientific validity provides an important first step towards the
426	eventual development of clinical practice guidelines for genetic-based responses to
427	dietary intake. With questionable and variable scientific validity of existing consumer
428	nutrigenetic tests, the development of clinical practice guidelines is an important next
429	step as these can be used by HCPs and industry alike to help promote evidence-based
430	practice in personalized nutrition. Ideally, industry should use future clinical practice
431	guidelines to inform the nutrigenetic associations and related dietary recommendations

BMJ Open

1	
2	
3	
4	
5	
6	
7	
8	
a	
9 10	
10	
11	
12	
13	
14	
15	
16	
17	
19	
10	
19	
20	
21	
22	
23	
24	
25	
26	
27	
2/	
20	
29	
30	
31	
32	
33	
34	
35	
36	
37	
20	
20	
29	
40	
41	
42	
43	
44	
45	
46	
47	
48	
10	
47 50	
50	
51	
52	
53	
54	
55	
56	
57	
58	
50	
ノフ	

included in their reports. Decision aids can also be useful to guide clinical practice for
HCPs (109), and future research should seek to develop a decision aid related to omega3s and lipid/lipoprotein outcomes based on genetic variation.

436 It should be noted that there are some limitations to the present systematic review. First, 437 the literature was searched up until August 2020; as such, any articles published after this date were not included. Furthermore, certain nutrigenetic associations/interactions were 438 prioritized for evidence grading therefore evidence grades remain unknown for numerous 439 440 associations/interactions included in the narrative synthesis. However, evidence from a single study typically results in an evidence grade of low or very low using the GRADE 441 442 approach (39), therefore it is unlikely that any/many nutrigenetic associations/interactions 443 with strong scientific validity (which could be considered for use in clinical practice) were missed. Future research groups may choose to instead select a specific SNP or nutri-444 GRS as the focus of future systematic reviews. The specific SNP or nutri-GRS chosen 445 may be selected based on the results of a preliminary scoping review. This would allow 446 for all articles included in the systematic review to undergo evidence grading. The 447 approach taken in the present review was more comprehensive, but has its limitations as 448 449 stated above.

450

60

451 Overall, we have provided a comprehensive overview the body of evidence related to
452 nutrigenetics, omega-3s and plasma lipids/lipoproteins/apolipoproteins, while providing
453 an overview of levels of evidence in this field. To our knowledge, this is the first
454 systematic review with GRADE evidence evaluation in the broader field of nutrigenetics.

The results of this work should be used in clinical practice guideline development to
The results of this work should be used in eninear praence Suidenne development, to
ultimately guide evidence-based practice in personalized nutrition and move this
emerging field forward.
Sources of Support: J.K. received postdoctoral fellowships from the Canadian Institute of
Health Research, NUTRISS and INAF. I.R. holds a Junior 2 research Scholar from the Fonds de
recherche du Québec—Santé (FRQ-S). M-C.V. holds a Tier 1 Canada Research Chair in
Nutrition Applied to Genetics and Metabolic Health.
Contributorship Statements: M-C.V. and J.K. conceptualized the review. G.S. was responsible
for the search strategy, in collaboration with J.K., M-C.V., S.D. and V.G. J.K. and V.G. were
responsible for article screening and selection, summarizing, evidence grading, and developing a
draft of the systematic review. The first systematic review draft underwent revisions from S.D. and
M-C.V., who provided overall supervision for the project. Following this, J.K., V.G., V.M.,
D.M.M., J.R., I.R., G.S., S.D., and M-C.V. served as scientific advisors and reviewed and revised
the full-text manuscript. J.K. wrote the first draft of the manuscript. J.K., V.G., V.M., D.M.M., J.R.,
I.R., G.S., S.D., and M-C.V., reviewed, revised and approved the final manuscript.
Competing Interests: The authors have no competing interests to declare.
Funding: This project was supported through a pilot projects grant from INAF. J Keathley was
supported through postdoctoral fellowships from CIHR (#430907), NUTRISS and INAF. M-C
Vohl holds a Canada Research Chair in Genomics Applied to Nutrition and Metabolic Health.
Data Sharing Statement: Data are available upon reasonable request

2 3 4 5 6 7 8	479 480 481 482 483	Figure Legend: Figure 1. PRISMA Flow Diagram *The original PRISMA Flow Diagram indicated the number of studies included in meta-analysis in this box. This has been revised for the purposes of this research
9 10 11 12 13 14		
15 16 17 18 19 20 21		
21 22 23 24 25 26 27		
27 28 29 30 31 32 33		
34 35 36 37 38 39		
40 41 42 43 44 45		
46 47 48 49 50 51		
52 53 54 55 56 57		
58 59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

References

- 1. Barquera S, Pedroza-Tobias A, Medina C, Hernandez-Barrera L, Bibbins-Domingo K, Lozano R, et al. Global overview of the epidemiology of atherosclerotic cardiovascular disease. Arch Med Res. 2015;46:328–38.
- 2. Rudkowska I, Guénard F, Julien P, Couture P, Lemieux S, Barbier O, et al. Genome-wide association study of the plasma triglyceride response to an n-3 polyunsaturated fatty acid supplementation. J Lipid Res. 2014 Jul;55(7):1245–53.
- 3. Rizzi F, Conti C, Dogliotti E, Terranegra A, Salvi E, Braga D, et al. Interaction between polyphenols intake and PON1 gene variants on markers of cardiovascular disease: a nutrigenetic observational study. Journal of Translational Medicine. 2016;14:186.
- 4. Zhang X, Qi Q, Zhang C, Smith SR, Hu FB, Sacks FM, et al. FTO Genotype and 2-Year Change in Body Composition and Fat Distribution in Response to Weight-Loss Diets: The POUNDS LOST Trial. Diabetes. 2012 Nov 1;61(11):3005–11.
- 5. Merritt DC, Jamnik J, El-Sohemy A. FTO genotype, dietary protein intake, and body weight in a multiethnic population of young adults: a cross-sectional study. Genes Nutr. 2018;13:4.
- Vallée Marcotte B, Cormier V, Garneau V, Robitaille J, Desroches S, Vohl M-C. Nutrigenetic Testing for Personalized Nutrition: An Evaluation of Public Perceptions, Attitudes, and Concerns in a Population of French Canadians. Lifestyle Genomics [Internet]. 2019; Available from: https://doi.org/10.1159/000499626
- Vallée Marcotte B, Cormier H, Garneau V, Robitaille J, Desroches S, Vohl M-C. Current knowledge and interest of French Canadians regarding nutrigenetics. Genes Nutr. 2019 Dec;14(1):5.
- 8. Caulfield T, McGuire AL. Direct-to-Consumer Genetic Testing: Perceptions, Problems, and Policy Responses. Annu Rev Med. 2012;63(1):23–33.
- 9. Horne J, Gilliland J, Madill J, Shelley J. A critical examination of legal and ethical considerations for nutrigenetic testing with recommendations for improving regulation in Canada: From science to consumer. J Law Biosci. 2020;
- 10. Görman U, Mathers JC, Grimaldi KA, Ahlgren J, Nordström K. Do we know enough? A scientific and ethical analysis of the basis for genetic-based personalized nutrition. Genes Nutr. 2013 Jul;8(4):373–81.
- 11. Harris WS. Stearidonic acid as a "pro-eicosapentaenoic acid." Curr Opin Lipidol. 2012 Feb;23(1):30–4.
- 12. Shahidi F, Ambigaipalan P. Omega-3 Polyunsaturated Fatty Acids and Their Health Benefits. Annu Rev Food Sci Technol. 2018 25;9:345–81.

3 of 75	BMJ Open	
		3
	 Hu Y, Hu FB, Manson JE. Marine Omega-3 Supplementation and Cardiovascular Disease An Updated Meta-Analysis of 13 Randomized Controlled Trials Involving 127 477 Participants. J Am Heart Assoc. 2019;8(19):e013543. 	; :
	14. Abdelhamid AS, Brown TJ, Brainard JS, Biswas P, Thorpe GC, Moore HJ, et al. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev [Internet]. 2018 Jul 18 [cited 2020 Dec 1];2018(7). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6513557/	
	15. Jones PJH, Senanayake VK, Pu S, Jenkins DJA, Connelly PW, Lamarche B, et al. DHA- enriched high-oleic acid canola oil improves lipid profile and lowers predicted cardiovascular disease risk in the canola oil multicenter randomized controlled trial. Am J Clin Nutr. 2014 Jul;100(1):88–97.	
	16. Ballantyne CM, Bays HE, Kastelein JJ, Stein E, Isaacsohn JL, Braeckman RA, et al. Efficac and Safety of Eicosapentaenoic Acid Ethyl Ester (AMR101) Therapy in Statin-Treated Patients With Persistent High Triglycerides (from the ANCHOR Study). Am J Cardiol. 2012 Oct 1;110(7):984–92.	у
	17. Davidson MH, Stein EA, Bays HE, Maki KC, Doyle RT, Shalwitz RA, et al. Efficacy and tolerability of adding prescription omega-3 fatty acids 4 g/d to simvastatin 40 mg/d in hypertriglyceridemic patients: an 8-week, randomized, double-blind, placebo-controlled study. Clin Ther. 2007 Jul;29(7):1354–67.	l
	 Bradberry JC, Hilleman DE. Overview of Omega-3 Fatty Acid Therapies. Pharm Ther. 2013 Nov;38(11):681–91. 	
	19. Skulas-Ray AC, Alaupovic P, Kris-Etherton PM, West SG. Dose-response effects of marin omega-3 fatty acids on apolipoproteins, apolipoprotein-defined lipoprotein subclasses and Lp-PLA2 in individuals with moderate hypertriglyceridemia. J Clin Lipidol. 2015 Jun;9(3):360–7.	1e ',
	20. Lee MW, Park JK, Hong JW, Kim KJ, Shin DY, Ahn CW, et al. Beneficial Effects of Omega- Fatty Acids on Low Density Lipoprotein Particle Size in Patients with Type 2 Diabetes Already under Statin Therapy. Diabetes Metab J. 2013 Jun;37(3):207–11.	3
	21. Bouwens M, van de Rest O, Dellschaft N, Bromhaar MG, de Groot LCPGM, Geleijnse JM, al. Fish-oil supplementation induces antiinflammatory gene expression profiles in human blood mononuclear cells. Am J Clin Nutr. 2009 Aug;90(2):415–24.	et
	22. Rudkowska I, Paradis A-M, Thifault E, Julien P, Tchernof A, Couture P, et al. Transcriptomic and metabolomic signatures of an n-3 polyunsaturated fatty acids supplementation in a normolipidemic/normocholesterolemic Caucasian population. J Nutr Biochem. 2013 Jan;24(1):54–61.	
	23. Merched AJ, Chan L. Nutrigenetics and Nutrigenomics of Atherosclerosis. Curr Atheroscler Rep. 2013 Jun;15(6):328.	
	24. Madden J, Williams CM, Calder PC, Lietz G, Miles EA, Cordell H, et al. The impact of common gene variants on the response of biomarkers of cardiovascular disease (CVD) risk to increased fish oil fatty acids intakes. Annu Rev Nutr. 2011 Aug 21;31:203–34.	

- 25. Cave C, Hein N, Smith LM, Anderson-Berry A, Richter CK, Bisselou KS, et al. Omega-3 Long-Chain Polyunsaturated Fatty Acids Intake by Ethnicity, Income, and Education Level in the United States: NHANES 2003–2014. Nutrients [Internet]. 2020 Jul 9 [cited 2020 Oct 27];12(7). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7400855/
- 26. World Health Organization. Joint FAO/WHO Expert Consultation on Fats and Fatty Acids in Human Nutrition [Internet]. 2008. Available from: http://www.who.int/nutrition/topics/FFA_interim_ recommendations/en/
- 27. Fats and Fatty Acids in Human Nutrition | Karger Book [Internet]. [cited 2021 Jan 14]. Available from: https://www.karger.com/Book/Home/251867
- Horne J, Madill J, O'Connor C, Shelley J, Gilliland J. A Systematic Review of Genetic Testing and Lifestyle Behaviour Change: Are We Using High-Quality Genetic Interventions and Considering Behaviour Change Theory? Lifestyle Genomics. 2018;11(1):49–63.
- 29. Corella D, Ordovás JM. Interactions between dietary *n-3* fatty acids and genetic variants and risk of disease. Br J Nutr. 2012 Jun;107(S2):S271–83.
- 30. Grimaldi KA, van Ommen B, Ordovas JM, Parnell LD, Mathers JC, Bendik I, et al. Proposed guidelines to evaluate scientific validity and evidence for genotype-based dietary advice. Genes Nutr. 2017 Dec;12(1):35.
- 31. Khan KS, Kunz R, Kleijnen J, Antes G. Five steps to conducting a systematic review. J R Soc Med. 2003 Mar;96(3):118–21.
- 32. PRISMA. PRISMA: Transparent reporting of systematic reviews and meta-analyses [Internet]. 2015. Available from: http://www.prisma-statement.org/
- 33. Pollock A, Berge E. How to do a systematic review. Int J Stroke. 2018 Feb 1;13(2):138– 56.
- 34. Dekkers OM, Vandenbroucke JP, Cevallos M, Renehan AG, Altman DG, Egger M. COSMOS-E: Guidance on conducting systematic reviews and meta-analyses of observational studies of etiology. PLoS Med [Internet]. 2019 Feb 21 [cited 2020 Apr 9];16(2). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6383865/
- 35. Corella D, Ordovás JM. Interactions between dietary n-3 fatty acids and genetic variants and risk of disease. Br J Nutr. 2012 Jun;107(0 2):S271–83.
- 36. GRADE handbook [Internet]. [cited 2020 Sep 29]. Available from: https://gdt.gradepro.org/app/handbook/handbook.html
- 37. SNiPA a single nucleotide polymorphisms annotator and browser [Internet]. [cited 2020 Aug 20]. Available from: https://snipa.helmholtz-muenchen.de/snipa3/index.php?task=proxy_search

60

2	
3	38. Hosseini-Esfahani F, Mirmiran P, Koochakpoor G, Daneshpour MS, Guity K, Azizi F. Some
4	dietary factors can modulate the effect of the zinc transporters 8 polymorphism on the
6	risk of metabolic syndrome. Sci Rep. 2017 Dec;7(1):1649.
7	39. GRADE handbook [Internet]. [cited 2020 Apr 3]. Available from:
8	https://gdt.gradepro.org/app/handbook/handbook.html#h.dce0ghnajwsm
9 10	
11	40. Murad MH, Mustafa RA, Schünemann HJ, Sultan S, Santesso N. Rating the certainty in
12	evidence in the absence of a single estimate of effect. Evid Based Med. 2017
13	Jun;22(3):85–7.
14	41 Ma L-L. Wang Y-Y. Yang Z-H. Huang D. Weng H. Zeng X-T. Methodological quality (risk of
16	bias) assessment tools for primary and secondary medical studies: what are they and
17	which is better? Mil Med Res [Internet]. 2020 Feb 29 [cited 2020 Sep 2];7. Available
18	from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7049186/
19	
20	42. Chen Y, Estampador AC, Keller M, Poveda A, Dalla-Riva J, Johansson I, et al. The
22	combined effects of FADS gene variation and dietary fats in obesity-related traits in a
23	Apr: 43(4):808-20
24	Ap1,43(4).000-20.
25	43. Ching YK, Chin YS, Appukutty M, Ramanchadran V, Yu CY, Ang GY, et al. Interaction of
26 27	Dietary Linoleic Acid and α -Linolenic Acids with rs174547 in FADS1 Gene on Metabolic
28	Syndrome Components among Vegetarians. Nutrients. 2019 Jul 23;11(7):1686.
29	
30	44. Dumont J, Huybrechts I, Spinneker A, Gottrand F, Grammatikaki E, Bevilacqua N, et al.
31	FADS1 genetic variability interacts with dietary α -linolenic acid intake to affect serum
32 33	Jul-141(7)-1247-53
34	
35	45. Dumont J, Goumidi L, Grenier-Boley B, Cottel D, Marécaux N, Montaye M, et al. Dietary
36	linoleic acid interacts with FADS1 genetic variability to modulate HDL-cholesterol and
37	obesity-related traits. Clin Nutr. 2018 Oct 1;37(5):1683–9.
30 39	46 Holletrand S. Sonostadt F. Friggon H. Cullborg P. Wirfält F. Hodblad P. et al. Intaka lavala
40	40. Helistianu 5, Sollesteut E, Elicsoli O, Guilderg B, Willalt E, Heublau B, et al. Intake levels of dietary long-chain PIIFAs modify the association between genetic variation in FADS
41	and LDL-C. I Lipid Res. 2012 Jun:53(6):1183–9.
42	
43 44	47. Lu Y, Feskens EJ, Dollé ME, Imholz S, Verschuren WM, Müller M, et al. Dietary n−3 and
44	n–6 polyunsaturated fatty acid intake interacts with FADS1 genetic variation to affect
46	total and HDL-cholesterol concentrations in the Doetinchem Cohort Study. Am J Clin
47	Nutr. 2010 Jul 1;92(1):258–65.
48	48 Standl M. Lattka F. Stach B. Koletzko S. Bauer C-P. von Berg A. et al. FADS1 FADS2 Gene
49 50	Cluster. PUFA Intake and Blood Lipids in Children: Results from the GINIplus and
51	LISAplus Studies. PLoS ONE [Internet]. 2012 May 21 [cited 2020 Aug 3];7(5). Available
52	from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3357401/
53	
54	49. Fontaine-Bisson B, Wolever TMS, Chiasson J-L, Rabasa-Lhoret R, Maheux P, Josse RG, et
55 56	al. Genetic polymorphisms of tumor necrosis factor-alpha modify the association
57	
58	
59	

between dietary polyunsaturated fatty acids and fasting HDL-cholesterol and apo A-I concentrations. Am J Clin Nutr. 2007 Sep;86(3):768–74.

- 50. Joffe YT, van der Merwe L, Carstens M, Collins M, Jennings C, Levitt NS, et al. Tumor Necrosis Factor-α Gene -308 G/A Polymorphism Modulates the Relationship between Dietary Fat Intake, Serum Lipids, and Obesity Risk in Black South African Women. J Nutr. 2010 May 1;140(5):901–7.
- 51. Joffe YT, van der Merwe L, Evans J, Collins M, Lambert EV, September A, et al. The tumor necrosis factor- α gene -238 G>A polymorphism, dietary fat intake, obesity risk and serum lipid concentrations in black and white South African women. Eur J Clin Nutr. 2012 Dec;66(12):1295–302.
- 52. Tai ES, Corella D, Demissie S, Cupples LA, Coltell O, Schaefer EJ, et al. Polyunsaturated Fatty Acids Interact with the PPARA-L162V Polymorphism to Affect Plasma Triglyceride and Apolipoprotein C-III Concentrations in the Framingham Heart Study. J Nutr. 2005 Mar 1;135(3):397–403.
- 53. Volcik KA, Nettleton JA, Ballantyne CM, Boerwinkle E. Peroxisome proliferator-activated receptor [alpha] genetic variation interacts with n-6 and long-chain n-3 fatty acid intake to affect total cholesterol and LDL-cholesterol concentrations in the Atherosclerosis Risk in Communities Study. Am J Clin Nutr. 2008 Jun;87(6):1926–31.
- 54. Bouchard-Mercier A, Godin G, Lamarche B, Pérusse L, Vohl M-C. Effects of Peroxisome Proliferator-Activated Receptors, Dietary Fat Intakes and Gene–Diet Interactions on Peak Particle Diameters of Low-Density Lipoproteins. J Nutr Nutr. 2011;4(1):36–48.
- 55. Fallaize R, Celis-Morales C, Macready AL, Marsaux CF, Forster H, O'Donovan C, et al. The effect of the apolipoprotein E genotype on response to personalized dietary advice intervention: findings from the Food4Me randomized controlled trial. Am J Clin Nutr. 2016 Sep;104(3):827–36.
- 56. Fontaine-Bisson B, Wolever TMS, Connelly PW, Corey PN, El-Sohemy A. NF-κB –94Ins/Del ATTG polymorphism modifies the association between dietary polyunsaturated fatty acids and HDL-cholesterol in two distinct populations. Atherosclerosis. 2009 Jun;204(2):465–70.
- 57. Jang HB, Hwang J-Y, Park JE, Oh JH, Ahn Y, Kang J-H, et al. Intake levels of dietary polyunsaturated fatty acids modify the association between the genetic variation in *PCSK5* and HDL cholesterol. J Med Genet. 2014 Dec;51(12):782–8.
- 58. Lai C-Q, Corella D, Demissie S, Cupples LA, Adiconis X, Zhu Y, et al. Dietary Intake of n-6 Fatty Acids Modulates Effect of Apolipoprotein A5 Gene on Plasma Fasting Triglycerides, Remnant Lipoprotein Concentrations, and Lipoprotein Particle Size: The Framingham Heart Study. Circulation. 2006 May 2;113(17):2062–70.
- 59. Richardson K, Louie-Gao Q, Arnett DK, Parnell LD, Lai C-Q, Davalos A, et al. The PLIN4 Variant rs8887 Modulates Obesity Related Phenotypes in Humans through Creation of a Novel miR-522 Seed Site. Mailund T, editor. PLoS ONE. 2011 Apr 20;6(4):e17944.

- - 60. Warodomwichit D, Arnett DK, Kabagambe EK, Tsai MY, Hixson JE, Straka RJ, et al. Polyunsaturated Fatty Acids Modulate the Effect of TCF7L2 Gene Variants on Postprandial Lipemia. J Nutr. 2009 Mar 1;139(3):439–46.
 - 61. AlSaleh A, Maniou Z, Lewis FJ, Hall WL, Sanders TAB, O'Dell SD. Genetic predisposition scores for dyslipidaemia influence plasma lipid concentrations at baseline, but not the changes after controlled intake of n-3 polyunsaturated fatty acids. Genes Nutr. 2014 Jul;9(4):412.
 - 62. Harsløf LBS, Damsgaard CT, Hellgren LI, Andersen AD, Vogel U, Lauritzen L. Effects on metabolic markers are modified by PPARG2 and COX2 polymorphisms in infants randomized to fish oil. Genes Nutr. 2014 May;9(3):396.
 - 63. Rudkowska I, Guénard F, Julien P, Couture P, Lemieux S, Barbier O, et al. Genome-wide association study of the plasma triglyceride response to an n-3 polyunsaturated fatty acid supplementation. J Lipid Res. 2014 Jul;55(7):1245–53.
 - 64. Vallée Marcotte B, Guénard F, Cormier H, Lemieux S, Couture P, Rudkowska I, et al. Plasma Triglyceride Levels May Be Modulated by Gene Expression of IQCJ, NXPH1, PHF17 and MYB in Humans. Int J Mol Sci. 2017 Jan 26;18(2).
 - 65. Vallée Marcotte B, Guénard F, Lemieux S, Couture P, Rudkowska I, Calder PC, et al. Fine mapping of genome-wide association study signals to identify genetic markers of the plasma triglyceride response to an omega-3 fatty acid supplementation. Am J Clin Nutr. 2019 Jan 1;109(1):176–85.
 - 66. Vallée Marcotte B, Allaire J, Guénard F, de Toro-Martín J, Couture P, Lamarche B, et al. Genetic risk prediction of the plasma triglyceride response to independent supplementations with eicosapentaenoic and docosahexaenoic acids: the ComparED Study. Genes Nutr. 2020 Dec;15(1):10.
 - 67. Zheng J-S, Chen J, Wang L, Yang H, Fang L, Yu Y, et al. Replication of a Gene-Diet Interaction at CD36, NOS3 and PPARG in Response to Omega-3 Fatty Acid Supplements on Blood Lipids: A Double-Blind Randomized Controlled Trial. EBioMedicine. 2018 May;31:150–6.
 - 68. Vallée Marcotte B, Guénard F, Marquis J, Charpagne A, Vadillo-Ortega F, Tejero M, et al. Genetic Risk Score Predictive of the Plasma Triglyceride Response to an Omega-3 Fatty Acid Supplementation in a Mexican Population. Nutrients. 2019 Mar 29;11(4):737.
 - 69. Roke K, Mutch DM. The Role of FADS1/2 Polymorphisms on Cardiometabolic Markers and Fatty Acid Profiles in Young Adults Consuming Fish Oil Supplements. Nutrients. 2014 Jun 16;6(6):2290–304.
 - 70. Cormier H, Rudkowska I, Paradis A-M, Thifault E, Garneau V, Lemieux S, et al. Association between Polymorphisms in the Fatty Acid Desaturase Gene Cluster and the Plasma Triacylglycerol Response to an n-3 PUFA Supplementation. Nutrients. 2012 Aug 17;4(8):1026–41.

- 71. AbuMweis SS, Panchal SK, Jones PJH. Triacylglycerol-Lowering Effect of Docosahexaenoic Acid Is Not Influenced by Single-Nucleotide Polymorphisms Involved in Lipid Metabolism in Humans. Lipids. 2018;53(9):897–908.
- 72. Carvalho-Wells AL, Jackson KG, Lockyer S, Lovegrove JA, Minihane AM. APOE genotype influences triglyceride and C-reactive protein responses to altered dietary fat intake in UK adults. Am J Clin Nutr. 2012 Dec 1;96(6):1447–53.
- 73. Caslake MJ, Miles EA, Kofler BM, Lietz G, Curtis P, Armah CK, et al. Effect of sex and genotype on cardiovascular biomarker response to fish oils: the FINGEN Study. Am J Clin Nutr. 2008 Sep 1;88(3):618–29.
- 74. Dang TM, Conway V, Plourde M. Disrupted fatty acid distribution in HDL and LDL according to apolipoprotein E allele. Nutrition. 2015 Jun 1;31(6):807–12.
- 75. Jackson KG, Lockyer S, Carvalho-Wells AL, Williams CM, Minihane AM, Lovegrove JA. Dietary fat manipulation has a greater impact on postprandial lipid metabolism than the apolipoprotein E (epsilon) genotype–insights from the SATgenɛ study. Mol Nutr Food Res. 2012;56(12):1761–70.
- 76. Jackson KG, Lockyer S, Carvalho-Wells AL, Williams CM, Minihane AM, Lovegrove JA. *Apolipoprotein* E (epsilon) genotype has a greater impact on apoB-48 than apoB-100 responses to dietary fat manipulation-insights from the SATgenε study. Mol Nutr Food Res. 2017 Apr;61(4):1600688.
- 77. Minihane AM, Khan S, Leigh-Firbank EC, Talmud P, Wright JW, Murphy MC, et al. ApoE Polymorphism and Fish Oil Supplementation in Subjects With an Atherogenic Lipoprotein Phenotype. Arterioscler Thromb Vasc Biol. 2000 Aug;20(8):1990–7.
- 78. Olano-Martin E, Anil E, Caslake MJ, Packard CJ, Bedford D, Stewart G, et al. Contribution of apolipoprotein E genotype and docosahexaenoic acid to the LDL-cholesterol response to fish oil. Atherosclerosis. 2010 Mar;209(1):104–10.
- 79. Paschos GK, Yiannakouris N, Rallidis LS, Davies I, Griffin BA, Panagiotakos DB, et al. Apolipoprotein E Genotype in Dyslipidemic Patients and Response of Blood Lipids and Inflammatory Markers to Alpha-Linolenic Acid. Angiology. 2005 Jan 1;56(1):49–60.
- Thifault E, Cormier H, Bouchard-Mercier A, Rudkowska I, Paradis A-M, Garneau V, et al. Effects of Age, Sex, Body Mass Index and APOE Genotype on Cardiovascular Biomarker Response to an n-3 Polyunsaturated Fatty Acid Supplementation. J Nutr Nutr. 2013;6(2):73–82.
- 81. Madden J, Carrero J, Brunner A, Dastur N, Shearman C, Calder P, et al. Polymorphisms in the CD36 gene modulate the ability of fish oil supplements to lower fasting plasma triacyl glycerol and raise HDL cholesterol concentrations in healthy middle-aged men. Prostaglandins, Leukotrienes and Essential Fatty Acids. 2008;78:327–35.
- Dawczynski C, Massey KA, Ness C, Kiehntopf M, Stepanow S, Platzer M, et al. Randomized placebo-controlled intervention with n-3 LC-PUFA-supplemented yoghurt: Effects on circulating eicosanoids and cardiovascular risk factors. Clin Nutr. 2013 Oct 1;32(5):686–96.

1		
2		
3	83.	Binia A, Vargas-Martínez C, Ancira-Moreno M, Gosoniu LM, Montoliu I, Gámez-Valdez E,
5		et al. Improvement of cardiometabolic markers after fish oil intervention in young
6		Mexican adults and the role of PPAR α L162V and PPAR γ 2 P12A. J Nutr Biochem. 2017
7		May;43:98–106.
8	Q <i>1</i> .	Itariu BK Zouda M. Hochbrugger FF. Neuhofer A. Prager C. Schindler K. et al. Long-chain
9	04.	n_3 PIIFAs reduce adinose tissue and systemic inflammation in severally obese
10		nondiabetic nations: a randomized controlled trial. Am I Clin Nutr. 2012 Nov
11		1·96(5)·1137–49
12		
14	85.	Lindi V, Schwab U, Louheranta A, Laakso M, Vessby B, Hermansen K, et al. Impact of the
15		Pro12Ala polymorphism of the PPAR- γ 2 gene on serum triacylglycerol response to n–3
16		fatty acid supplementation. Mol Genet Metab. 2003 May;79(1):52–60.
17		
18	86.	Pishva H, Mehdipour P, Eshraghian MR, Mahboob S-A. Effects of Eicosapentaenoic Acid
19		Supplementation on Lipid and Lipoprotein Profile in Hypertriglyceridemic Subjects
20		with Different Proliferator-activated Receptor Alpha Genotypes. :13.
∠ı 22	07	
23	87.	Caron-Dorval D, Paquet P, Paradis A-M, Rudkowska I, Lemieux S, Couture P, et al. Effect
24		of the PPAR-Alpha L162V Polymorphism on the Cardiovascular Disease Risk Factor in
25		Response to n=3 Polyunsaturated Fatty Acids. J Nutr Nutr. 2008;1(4):205–12.
26	88	Binia A Vargas-Martínez C Ancira-Moreno M Cosoniu I M Montoliu I Gámez-Valdez F
27	00.	et al Improvement of cardiometabolic markers after fish oil intervention in young
28		Mexican adults and the role of PPARg L162V and PPARy2 P12A I Nutr Biochem 2017
29		Mav:43:98–106.
31		
32	89.	Dawczynski C, Massey KA, Ness C, Kiehntopf M, Stepanow S, Platzer M, et al.
33		Randomized placebo-controlled intervention with n-3 LC-PUFA-supplemented yoghurt:
34		Effects on circulating eicosanoids and cardiovascular risk factors. Clin Nutr. 2013
35		Oct;32(5):686–96.
36	~ ~	
3/	90.	Kotze M, Brand T, Pretorius J, J van Rensburg S, Luckhoff HK. Apolipoprotein E epsilon-4
30		as a genetic determinant of Alzheimer's disease heterogeneity. Degener Neurol
40		Neuromuscul Dis. 2015 Jan;9.
41	01	Marais AD Anolinoprotein F in linoprotein metabolism health and cardiovascular
42	11.	disease Pathology (Phila) 2019 Feb: 51(2):165–76
43		uisease. 1 actiology (1 mia). 2017 1 eb,51(2).105 70.
44	92.	Kuo C-L, Pilling LC, Atkins JL, Kuchel GA, Melzer D. ApoE e2 and aging-related outcomes
45		in 379,000 UK Biobank participants. Aging. 2020 Jun 8;12(12):12222–33.
40 47		
48	93.	Nawawi HM, Chua Y-A, Watts GF. The brave new world of genetic testing in the
49		management of the dyslipidaemias. Curr Opin Cardiol. 2020;35(3):226–33.
50	a :	
51	94.	Livingston G, Huntley J, Sommerlad A, Ames D, Ballard C, Banerjee S, et al. Dementia
52		prevention, intervention, and care: 2020 report of the Lancet Commission. The Lancet.
53		2020 Aug;396(10248):413-46.
54 55	05	Dorszawska I. Drandacki M. Oczkowska A. Dozar M. Kozubski W. Malagular Pasis of
56	93.	Familial and Snoradic Alzhaimer's Disease Curr Alzhaimer Des 2016:12(0):052 62
57		1 annual and spotatic right finer 5 Disease. Gut right filler res. 2010;15(7):952–05.
58		
59		

96. ACCE Model Process for Evaluating Genetic Tests | CDC [Internet]. 2021 [cited 2021 Feb 15]. Available from: https://www.cdc.gov/genomics/gtesting/acce/index.htm

- 97. Corella D, Coltell O, Portolés O, Sotos-Prieto M, Fernández-Carrión R, Ramirez-Sabio J, et al. A Guide to Applying the Sex-Gender Perspective to Nutritional Genomics. Nutrients. 2018 Dec 20;11(1):4.
- Dellinger RW, Gomez Garcia AM, Meyskens FL. Differences in the Glucuronidation of Resveratrol and Pterostilbene: Altered Enzyme Specificity and Potential Gender Differences. Drug Metab Pharmacokinet. 2014;29(2):112–9.
- 99. Vidaver RM, Lafleur B, Tong C, Bradshaw R, Marts SA. Women Subjects in NIH-Funded Clinical Research Literature: Lack of Progress in Both Representation and Analysis by Sex. J Womens Health Gend Based Med. 2000 Jun 1;9(5):495–504.
- 100. Carvalho-Wells AL, Jackson KG, Lockyer S, Lovegrove JA, Minihane AM. APOE genotype influences triglyceride and C-reactive protein responses to altered dietary fat intake in UK adults. Am J Clin Nutr. 2012 Dec 1;96(6):1447–53.
- 101. Thifault E, Cormier H, Bouchard-Mercier A, Rudkowska I, Paradis A-M, Garneau V, et al. Effects of Age, Sex, Body Mass Index and APOE Genotype on Cardiovascular Biomarker Response to an n-3 Polyunsaturated Fatty Acid Supplementation. Lifestyle Genomics. 2013;6(2):73–82.
- 102. Minihane Anne M., Khan Syrah, Leigh-Firbank Elizabeth C., Talmud Philippa, Wright John W., Murphy Margaret C., et al. ApoE Polymorphism and Fish Oil Supplementation in Subjects With an Atherogenic Lipoprotein Phenotype. Arterioscler Thromb Vasc Biol. 2000 Aug 1;20(8):1990–7.
- 103. Little J, Higgins J, Ioannidis J, Moher D, Gagnon F, von Elm E, et al., editors. STrengthening the REporting of Genetic Association studies (STREGA) - An extension of the STROBE statement. PLoS Med. 2009;6(2):e1000022.
- 104. Strande NT. Evaluating the Clinical Validity of Gene-Disease Associations: An Evidence-Based Framework Developed by the Clinical Genome Resource. The American Journal of Human Genetics. 2017;12.
- 105. Ciesielski TH, Pendergrass SA, White MJ, Kodaman N, Sobota RS, Huang M, et al. Diverse convergent evidence in the genetic analysis of complex disease: coordinating omic, informatic, and experimental evidence to better identify and validate risk factors. BioData Min. 2014 Dec;7(1):10.
- 106. Rudkowska I, Paradis A-M, Thifault E, Julien P, Barbier O, Couture P, et al. Differences in metabolomic and transcriptomic profiles between responders and nonresponders to an n-3 polyunsaturated fatty acids (PUFAs) supplementation. Genes Nutr. 2013 Jul;8(4):411–23.
- 107. Tremblay BL, Cormier H, Rudkowska I, Lemieux S, Couture P, Vohl M-C. Association between polymorphisms in phospholipase A2 genes and the plasma triglyceride response to an n-3 PUFA supplementation: a clinical trial. Lipids Health Dis. 2015 Feb 21;14(1):12.

1	
2	
3	108 Quellette C. Cormier H. Rudkowska I. Guénard F. Lemieux S. Couture P. et al
4	Polymornhisms in Cones Involved in the Triglyceride Synthesis Dathway and Marine
5	Our and 2 Delements of Fatter Arid Complementation Medulate Discuss Triples with
6	Omega-3 Polyunsaturated Fatty Acid Supplementation Modulate Plasma Trigiyceride
7	Levels. Lifestyle Genomics. 2013;6(4–5):268–80.
8	
9	109. Ray-Barruel G, Rickard CM. Helping nurses help PIVCs: decision aids for daily
10	assessment and maintenance. Br J Nurs Mark Allen Publ. 2018 Apr 26;27(8):S12–8.
10	
17	
12	
13	
14	
15	
10	
17	
10	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	

For beer review only

60

through other sources

(n = 4)

Records excluded

(n = 1691)

Full-text articles excluded,

with reasons

(n = 74)

Conference abstract (n = 34)

Dietary intervention or

dietary component analyzed did not meet inclusion

criteria (n = 22)

Outcome did not meet

inclusion criteria (n = 11)

Omega-3 assessed via

plasma only (n = 4)

Comparator did not meet

inclusion criteria (n = 3)

Figure 1: PRISMA 2009 Flow Diagram

Supplementary Tables

Supplementary Table 1: Search Strategy

Em	Embase								
#	Search Strategy								
1	omega-3':ti,ab,kw OR pufa\$:ti,ab,kw OR ((acid* NEAR/5 ('n-3' OR polyunsaturated OR linolenic OR eicosapenta\$noic OR timnodonic OR docosahexa\$noic)):ti,ab,kw) OR docosahexaenoate:ti,ab,kw OR epa:ti,ab,kw OR dha:ti,ab,kw OR ala:ti,ab,kw								
2	omega 3 fatty acid'/exp								
3	#1 OR #2								
4	cholesterol*:ti,ab,kw OR hdl:ti,ab,kw OR ldl:ti,ab,kw OR 'high density lipoprotein*':ti,ab,kw OR 'low density lipoprotein*':ti,ab,kw OR 'beta lipoprotein*':ti,ab,kw OR apo*protein*:ti,ab,kw OR apoa:ti,ab,kw OR apob:ti,ab,kw OR apoc:ti,ab,kw OR apod:ti,ab,kw OR apoe:ti,ab,kw OR apoh:ti,ab,kw OR ((apo NEXT/1 (a OR b OR c OR d OR e OR h)):ti,ab,kw) OR triglyceride*:ti,ab,kw OR triacylglycerol*:ti,ab,kw OR (((serum OR plasma) NEXT/1 (lipid* OR tg OR tag)):ti,ab,kw)								
5	cholesterol'/exp OR 'lipoprotein'/exp OR 'triacylglycerol'/exp								
6	#4 OR #5								
7	nutrigenomic*:ti,ab,kw OR nutrigenetic*:ti,ab,kw OR (((nutritional OR expression* OR variation* OR variant*) NEAR/2 (genomic* OR genetic* OR gene OR genes)):ti,ab,kw) OR genotype:ti,ab,kw OR ((('nutrient-gene' OR 'gene-nutrient' OR 'gene-diet') NEXT/1 interaction*):ti,ab,kw) OR 'personali?ed nutrition':ti,ab,kw OR 'precision nutrition':ti,ab,kw								
8	nutrigenomics'/exp OR 'nutrigenetics'/exp OR 'genetic variation'/exp OR 'genotype'/exp								
9	#7 OR #8								
10	#3 AND #6 AND #9								
11	[animals]/lim NOT [humans]/lim								
12	#10 NOT #11								

Μϵ	edline (Ovid)
#	Search Strategy
1	("omega-3" or PUFA? or (acid* adj5 ("n-3" or polyunsaturated or linolenic or eicosapenta?noic or timnodonic or docosahexa?noic)) or docosahexaenoate or EPA or DHA or ALA).ab,kf,ti.
2	exp Fatty Acids, Omega-3/
3	1 or 2
4	(cholesterol* or HDL or LDL or "high density lipoprotein*" or "low density lipoprotein*" or "beta lipoprotein*" or apo*protein* or apoA or apoB or apoC or apoD or apoE or apoH or (apo adj (A or B or C or D or E or H)) or triglyceride* or triacylglycerol* or ((serum or plasma) adj (lipid* or TG or TAG))).ab,kf,ti.
5	exp Cholesterol/ or exp Lipoproteins/ or exp Triglycerides/
6	4 or 5
7	(nutrigenomic* or nutrigenetic* or ((nutritional or expression* or variation* or variant*) adj2 (genomic* or genetic* or gene or genes)) or genotype or (("nutrient-gene" or "gene-nutrient" or "gene-diet") adj interaction*) or "personali#ed nutrition" or "precision nutrition").ab,kf,ti.
8	Nutrigenomics/ or Genetic Variation/ or Genotype/
9	7 or 8
10	3 and 6 and 9
11	exp animals/ not humans.sh.
12	10 not 11

Web of Science

Indexes = SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, ESCI Timespan =All years

 BMJ Open

1 · · · · · · · · · · · · · · · · · · ·	TS=("omega-3" or PUFA\$ or (acid* NEAR/5 ("n-3" or polyunsaturated or linolenic or eicosapenta\$noic or timnodonic or docosahexa\$noic)) or docosahexaenoate or EPA or DHA or ALA) TS=(cholesterol* or HDL or LDL or "high density lipoprotein*" or "low density lipoprotein*" or "beta lipoprotein*" or apo*protein* or apoA or apoB or apoC or apoD or apoE or apoH or (apo NEAR/0 (A or B or C or D or E or H)) or triglyceride* or triacylglycerol* or ((serum or plasma) NEAR/0 (lipid* or TG or TAG))) TS=(nutrigenomic* or nutrigenetic* or ((nutritional or expression* or variation* or variant*) NEAR/2 (genomic* or genetic* or gene or genes)) or genotyp or (("nutrient-gene" or "gene-nutrient" or "gene-diet") NEAR/0 interaction*) or "personali?ed nutrition" or "precision nutrition") #1 AND #2 AND #3
2	TS=(cholesterol* or HDL or LDL or "high density lipoprotein*" or "low density lipoprotein*" or "beta lipoprotein*" or apo*protein* or apoA or apoB or apoC or apoD or apoE or apoH or (apo NEAR/0 (A or B or C or D or E or H)) or triglyceride* or triacylglycerol* or ((serum or plasma) NEAR/0 (lipid* or TG o TAG))) TS=(nutrigenomic* or nutrigenetic* or ((nutritional or expression* or variation* or variant*) NEAR/2 (genomic* or genetic* or gene or genes)) or genotyp or (("nutrient-gene" or "gene-nutrient" or "gene-diet") NEAR/0 interaction*) or "personali?ed nutrition" or "precision nutrition") #1 AND #2 AND #3
3	TS=(nutrigenomic* or nutrigenetic* or ((nutritional or expression* or variation* or variant*) NEAR/2 (genomic* or genetic* or gene or genes)) or genotyp or (("nutrient-gene" or "gene-nutrient" or "gene-diet") NEAR/0 interaction*) or "personali?ed nutrition" or "precision nutrition") #1 AND #2 AND #3
4 ;	#1 AND #2 AND #3
5	
	TS=(animals OR animal OR mice OR mus OR mouse OR murine OR woodmouse OR rats OR rat OR murinae OR murinae OR cottonrats OR hamster OR hamsters OR cricetinae OR rodentia OR rodentio OR rodents OR pigs OR pig OR swine OR swines OR pigets OR piget OR boars OR boars OR "sus scrofa" OR ferrets OR ferret OR polecat OR polecats OR "mustela putorius" OR "guinea pigs" OR "guinea pig" OR cavia OR allithrix OI marmoset OR meriones OR rabbits OR nabale OR octodon OR chinchilla OR chinchillas OR gerbillinae OR gerbil OR gerbils OR jird OR jirds OR merione OR meriones OR nabits OR nematode OR nematoda OR nematode OR rapported or cara or or cara or or cara or or cara or

	Supplementary Table 2: Summary of observational studies												
Author, Year	Study Design	Genetic Approach	Population (sample size included in analyses)	Gene(s), SNP(s)	Cytogenic Location of Gene(s)	Quantity, Source and Type of Omega-3 ¹	Comparators	Plasma Lipid/ Lipoprotein Outcome(s)	Summary of Statistically Significant Study Findings Relevant to the Research Question ²				
Bouchard- Mercier et al. 2011 (1)	Cross- Sectional	Single SNP	Healthy Caucasian men and women from INFOGENE study (n=674)	PPARa, L162V (rs1800206) PPARγ, P12A (rs1801282) PPARδ, -87T→ C (rs2016520)	PPARa: 22q13.31 PPARy: 3p25.2 PPARδ: 6p21.31	Mean: L162: 2.8 g/day V162: 2.9 g/day (unclear if food and/or supplement sources)	Minor allele carriers vs. Non-carriers	LDL-PPD	LDL-PPD: In a model including age, sex, TG, BMI, energy and omega-3 intakes and PPAR α L162V (rs1800206) polymorphism, the interaction of PPAR α 162V and omega-3 intakes explained 0.62% of the variance in LDL-PPD.				
Bodhini et al. 2017 (2)	Cross- Sectional	Single SNP	Adults with normal glucose tolerance (n=821) and adults with type 2 diabetes (n=861)	<i>MC4R</i> , rs17782313 <i>TCF7L2</i> , rs12255372 <i>TCF7L2</i> , rs7903146	MC4R: 18q21.32 TCF7L2: 10q25.2- q25.3	Low: 0.38 g/day ALA Moderate: 0.58 g/day ALA High: 0.89 g/day ALA (means) (food)	Major allele homozygotes vs. Minor allele carriers	HDL-c	HDL-c: 'T' allele carriers of <i>TCF7L2</i> rs12255372 within the lowest tertile of ALA intake (mean=0.38 g/day) exhibited higher levels of HDL-c compared to GG homozygotes in the lowest tertile of ALA intake (mean=0.38 g/day)				
Chen et al. 2019 (3)	Cross- Sectional Analysis within a Prospective Cohort	Single SNP, Haplotype and Gene-Centric	Adults of Swedish ancestry from the GLACIER cohort (n=5160)	All variations in the FADS1- FADS2-FADS3 gene cluster and variation within 200kb upstream and downstream of the FADS region	<i>FADS1:</i> 11q12.2 <i>FADS2:</i> 11q12.2 <i>FADS3:</i> 11q12.2	High: >1.6 g/day Low: <1.6 g/day (food)	Entire FADS region gene-centric analysis and Variation in individual FADS cluster SNPs: rs174570, rs174602, rs74771917, rs3168072, rs12577276, rs7115739 and Haplotype analysis	HDL-c LDL-c TG Total-c	 HDL-c: Significant interaction of rs174570 and omega-3 on HDL-c LDL-c: Significant interaction of rs174602 and omega-3 on LDL-c TG: Gene-centric analyses demonstrated a significant interaction between variation in the <i>FADS</i> gene cluster and omega-3 intake on TG Total-c: Significant interaction of rs174602 and omega-3 on total-c ('C' allele carriers exhibited lower total-c with low omega-3 intake, while no such relationship was observed with high omega-3 intake) 				
Ching et al. 2019 (4)	Cross- Sectional	Single SNP	Vegetarian adults of Malaysian ancestry (n=200)	<i>FADSI,</i> rs174547	<i>FADS1:</i> 11q12.2	Low: ≤0.45 g/day ALA Moderate: 0.46- 0.64 g/day ALA High: >0.64 g/day ALA (means) (food)	Comparison between three genotypes	HDL-c TG	HDL-c: The TT genotype had significantly lower HDL-c when ALA intake was in the moderate intake range, but there were no significant gene-omega-3 interaction on lipid levels				
Dumont et al. 2011 (5)	Cross- Sectional	Single SNP	Adolescents of European ancestry (n=573)	<i>FADSI,</i> rs174547	<i>FADS1:</i> 11q12.2	High: >1.4 g/day ALA Low: ≤1.4 g/day ALA (unclear if food and/or supplement sources)	Major allele homozygotes vs. Minor allele carriers	HDL-c LDL-c TG Total-c	Total-c: Significant interaction whereby the minor allele (CT+TT genotype) was associated with lower total-c when ALA intake is high as compared to when intake is low. This remained significant after assessing the interaction using ALA intake as a continuous variable.				

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Dumont et al. 2018 (6)	Cross- Sectional	Single SNP	Men and women aged 35 to 74 years from the MONA LISA Study of three French populations (n=3069)	<i>FADSI,</i> rs174547	<i>FADS1:</i> 11q12.2	Low: 0.6 g/day ALA (mean) Median: 0.8 g/day ALA (stratified by median for analyses) High: 1.3 g/day ALA (mean) (food and supplement)	Comparison between three genotypes	HDL-c LDL-c TG Total-c	
Fallaize et al. 2016 (7)	Cross- Sectional (Baseline) and Longitudinal Analyses within a Randomized Intervention	Single SNP*	Healthy adults enrolled in the Food4Me European trial (n=1466)	<i>APOE</i> , rs429358, rs7412	<i>APOE:</i> 19q13.32	High: >0.67 %kcal Low: <0.67 %kcal Increased Intake: reduced omega-3 intake from baseline Decreased Intake: decreased omega-3 intake from baseline (unclear if food and/or supplement sources)	APOE-E4- vs. APOE-E4+	Total-c	Total-c: Cross-sectional (baseline) analysis demonstrat significant genotype effect for <i>APOE</i> , omega-3 intake, total-c. Longitudinal analysis (baseline to month 6) demonstrated a significant genotype effect for <i>APOE</i> , cha omega-3 intake (increase or decrease) and total-c.
Fontaine- Bisson and El- Sohemy 2007 (8)	Cross- Sectional	Genetic Score	Men and women aged 20-29 years (n=595)	<i>TNFa,</i> rs361525, rs1800629	TNFa: 6p21.33	Intake range: 0.2- 4.6 %kcal (mean intakes were 0.7 %kcal for 0/0, 0.7% kcal for 0/1 and 0.6%kcal for 1/0) (food)	No minor allele ('A') for both SNPs (0/0) vs. One minor allele for rs361525 (1/0) vs. One minor allele for rs1800625 (0/1)	HDL-c	
Fontaine- Bisson et al. 2009 (9)	Cross- Sectional	Single SNP	Healthy men and women aged 20-29 years (n=593)	<i>NF-κB</i> -94Ins/Del ATTG (rs28362491)	<i>NF-кВ:</i> 4q24	Mean intake: 0.7 %kcal (unclear if food and/or supplement sources)	Ins/Ins vs. Ins/Del vs. Del/Del	HDL-c	HDL-c: Significant interaction between <i>NF-kB</i> genotyp omega-3 intake on HDL-c
Hellstrand et al. 2012 (10)	Cross- Sectional	Single SNP	Healthy men and women aged 45-68 years from Sweden (n=4635)	<i>FADS,</i> rs174547	<i>FADS:</i> 11q12.2	Low: ≤0.14 %kcal long-chain omega- 3 Moderate: 0.14- 0.28 %kcal long- chain omega-3 High: >0.28 %kcal long-chain omega-3 (tertiles of intake reported only for certain significant findings) (food and supplement)	TT vs. TC vs. CC	HDL-c LDL-c TG	LDL-c: Significant interaction between <i>FADS</i> rs174: genotype and long-chain omega-3 on LDL-c whereby the allele was significantly associated with lower LDL-c v long-chain omega-3 intake was in the lowest tertile (but the moderate or highest tertile). High long-chain omeg- intake was associated with significantly higher LDL-c f and TC genotypes but not TT genotypes. Stratified and based on sex demonstrated that these significant interac remained for men, but not women, however there was significant difference in interactions by sex.
Hosseini- Esfahani et al. 2017 (11)	Nested Case- Control	Single SNP	Healthy men and women aged ≥18 years from Iran	<i>ZNT8,</i> rs13266634	ZNT8: 8q24.11	Supplement) <u>Tertiles for</u> <u>omega-3:</u> Low: <0.38 %kcal	CC vs. CT+TT	HDL-c TG	HDL-c: Significant interaction between ZNT8 rs1326 genotype and omega-3 intake on the risk of low HDD whereby CC genotypes exhibited a decreased risk of low c with increasing intake of omega-3; this was not obser

· · · · · ·					1				1 000 000
			(n=1634)			0.54 %kcal High: >0.54 %kcal (food)			the CT+TT genotype group. TG: Significant interaction between ZNT8 rs13266634 genotype and omega-3 intake on the risk of high TG whereby CC genotypes exhibited a decreased risk of high TG with increasing intake of omega-3; this was not exhibited in the CT+TT genotype group.
Jang et al. 2014 (12)	Cross- Sectional	Single SNP	Adult: Men and women aged 40-69 from Korea (n=4205) Children: Boys and girls aged 8-13 years from Korea (n=1548)	<i>PCSK5,</i> rs1029035	<i>PCSK5:</i> 9q21.13	Based on overall median intake (further detailed elsewhere (12)): Low: <0.4 %kcal High: >0.4 %kcal (food)	CC vs. CA vs. AA	HDL-c	HDL-c: Significant interaction between <i>PCSK5</i> rs1029035 and omega-3 on HDL-c in male children and male adults. 'C' allele carriers exhibit a tendency to decrease HDL-c with omega-3, while AA genotypes exhibit the opposite effect.
Joffe et al. 2010 (13)	Cross- Sectional	Single SNP	Black women from South Africa, normal weight or with obesity (n=138)	<i>TNFa,</i> rs1800629	TNFa: 6p21.33	ALA (amount not reported/cannot determine) (food)	GG vs. GA+AA	HDL-c LDL-c TG Total-c Total-c:HDL-c	Total-c:HDL-c ratio: Significant interaction between <i>TNFα</i> , rs1800629 genotypes and %kcal from ALA whereby increasing %kcal from ALA was associated with increases in Total-c:HDL-c for GG genotypes but decreases in Total-c:HDL-c ratio for GA+AA genotypes
Joffe et al. 2012 (14)	Cross- Sectional	Single SNP	Black and white women from South Africa, normal weight or with obesity (n=263)	<i>TNFa,</i> rs361525	TNFa: 6p21.33	Median Intakes: omega-3: 0.28- 0.36 % kcal ALA: 0.21-0.26 %kcal EPA: 0.02 %kcal DHA: 0.04-0.08 %kcal (food)	GG vs. GA(+AA for one participant: black, normal weight)	HDL-c LDL-c TG Total-c Total-c:HDL-c	 LDL-c: Significant interaction for Caucasian women whereby LDL-c decreased with increasing %kcal from EPA in the GG genotype but not the GA genotype of <i>TNFα</i>, rs361525. Total-c: Significant interaction for white women whereby total-c decreased with increasing EPA and DHA intakes in the GG genotype group but not the GA genotype group of <i>TNFα</i> rs361525 but individual rates were not significant. Total-c:HDL-c ratio: Significant interaction for black women whereby Total-c:HDL-c decreased within increasing %kcal from omega-3 in the GA genotype group but not GG of <i>TNFα</i> rs361525.
Joffe et al. 2014 (15)	Cross- Sectional	Single SNP	Black and white women from South Africa, normal weight or with obesity (n=268)	<i>IL-6</i> , -174 G>C, IVS3 (rs1800795), +281 G>T, IVS4 (rs1554606), +869 A>G (rs2069845)	<i>IL-6:</i> 7p15.3	Black Women (%kcal/day): 0.28 omega-3, 0.21 ALA, 0.02 EPA, 0.04 DHA (normal weight); 0.36 omega-3, 0.22 ALA, 0.04 EPA, 0.08 DHA (obesity) White Women (%kcal/day): 0.33 omega-3, 0.26 ALA, 0.01 EPA, 0.05 DHA (normal weight); 0.32 omega-3, 0.25 ALA, 0.02 EPA, 0.05 DHA (food)	Major allele homozygotes vs. Minor allele carriers <i>or</i> Comparison between three genotypes	HDL-c LDL-c TG Total-c Total-c:HDL-c	 The following results were statistically significant only in white women, but not in black women³: HDL-c: Significant interaction whereby HDL-c increased with: increasing omega-3 and/or DHA and/or ALA intake in <i>IL-6</i> rs1800795 C allele carriers and increasing ALA intake in <i>IL-6</i> rs1554606 T allele carriers. HDL-c decreased with: increasing EPA and/or DHA intake in <i>IL-6</i> rs2069845 G allele carriers. TG: Significant interaction whereby TG reduced with increasing EPA intake in <i>IL-6</i> rs1800795 C allele carriers Total-c:HDL-c: Significant interaction whereby total-c:HDL-c ratio decreased with: increasing EPA intake in <i>IL-6</i> rs1554606 TT genotypes, increasing DHA intake in <i>IL-6</i> rs1554606 TT genotypes.
Lai et al. 2006 (16)	Cross- Sectional	Single SNP	Men and women from the Framingham	APOA5, rs662799, rs651821, rs3135506,	<i>APOA5:</i> 11q23.3	Mean Intake: 0.69 %kcal omega-3 <u>Tertiles for</u>	Major allele homozygotes vs. Minor allele carriers	TG	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

			(n=2148)	rs22/2560, rs2266788		omega-3: Low: <0.58 %kcal Moderate: 0.58- 0.74 %kcal High: >0.74 %kcal (unclear if food and/or supplement sources)			
Lu et al. 2010 (17)	Cross- Sectional	Single SNP	Men and women of Doetinchem Cohort Study (n=3575)	<i>FADS</i> , rs174546, rs482548, rs174570	FADS: 11q12.2	Mean intake: 0.5 %kcal (food)	Comparison between three genotypes	HDL-c Total-c	Total -c : In high omega-3 intake group, total-c w significantly higher with each added minor 'C' alle rs174546
Nettleton et al. 2009 (18)	Cross- Sectional	Single SNP	Men and women of Caucasian ancestry (n=8511)	<i>ANGPTL4</i> E40K (rs116843064)	ANGPTL4: 19p13.2	Not Reported/Cannot Determine (food)	Minor allele carriers vs. Non-allele carriers	HDL-c TG	
Richardson et al. 2011 (19)	Meta-analysis of the Framingham Offspring Study (FOS) and the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN)	Single SNP	Men and women from FOS and GOLDN studies (n=3605)	PLIN4, rs8887, rs11673616, rs892158, rs7250947, rs8102428, rs1609717, rs884164	PLIN4: 19p13.3	Mean intakes: FOS Men: 1.43 g/d FOS Women: 1.37 g/d GOLDN Men: 1.83 g/d GOLDN Women: 1.48 g/d (food and supplement)	Minor allele carriers vs. Non-allele carriers	TG HDL-c	TG: Significant interactions for <i>PLIN4</i> , rs884164 whe levels increased in minor allele carriers with higher o intake for males and females combined, and males indi
Standl et al. 2012 (20)	Cross- Sectional Analysis (10- year time point) within a 10-year longitudinal cohort study	Single SNP	10 year-old children of the GINIplus and LISAplus birth cohort studies (n=1697)	FADS1/FADS2, rs174545, rs174546, rs174556, rs174561, rs174575, rs3834458	<i>FADS1/2:</i> 11q12.2	Median intake: 0.14 mg/MJ omega-3 (ALA+EPA+DPA +DHA) (food and supplement)	Comparison between three genotypes	HDL-c LDL-c Total-c TG	
Tai et al. 2005 (21)	Cross- Sectional	Single SNP	Framingham Cohort, men and women (n=2106)	<i>PPARa</i> , L162V (rs1800206)	<i>PPARα</i> : 22q13.31	High: >0.69 %kcal Low: <0.69 %kcal (food)	PPARa: 162V carriers vs. 162L/162L homozygotes	TG apoC-III	 TG: 167V carriers had lower TG with high omega-3 compared to low omega-3 intake (gene-diet-interaction were NS) apoC-III: Significant gene-diet interactions; Higher a in 162V carriers with low omega-3 intake compared t carriers with high omega-3 intake and 162L homozygo low omega-3 intake
Volcik et al. 2008 (22)	Cross- Sectional (Baseline) Analysis within a Prospective Cohort	Single SNP	African American (n=3480) and Caucasian (n=10 134) men and women (N=13,614)	PPARa, L162V (rs1800206), 3'UTR G>A (rs6008259), 3'UTR C>T (rs3892755)	PPARa: 22q13.31	African American: High: >0.32 g/d EPA+DHA Low: ≤0.32 g/d EPA+DHA Caucasian: High: >0.22 g/d EPA+DHA Low: ≤0.22 g/d EPA+DHA (food)	Comparison between three genotypes for each SNP	HDL-c LDL-c TG Total-c	Total-c, LDL-c: African Americans (but not Cauca homozygous for $PPARa$ (rs3892755) TT genotype w EPA+DHA intake had significantly lower total-c and compared to CT and TT genotypes (both high and EPA+DHA intake)

	Warodomwich it et al. 2009 (23)	Cross-sectional with fasting and postprandial measures	Single SNP	Men and women of GOLDN study (n=1083)	<i>TCF7L2</i> rs7903146, rs12255372	<i>TCF7L2:</i> 10q25.2-25.3	N/A (Median omega-3: 0.67% of kcal) (food)	Major allele homozygotes vs. Minor allele carriers	HDL-c LDL-c LDL-c particle size TG Total-c	_
0 1 2 3 4 5 6 7	ALA not a 1. Ir 2. A Part 3. T and '' ir *Hu	: alpha-linolenic applicable, NS: N takes are total on ll other (not listec icipants are descri- hese results were un-stratified by et ndicates that all o man <i>APOE</i> is pol	acid, Apo: apolipo on-significant, sdL nega-3 unless other l) gene/omega-3/lip bed as "healthy" fo taken from the full- hnicity. Note: Then f the completed ger ymorphic at two sin	protein, DHA: do DL-c: small, dens wise specified oid/lipoprotein res or studies that inco- text manuscript's re were no correct ne/omega-3/lipid/l ngle nucleotides (cosahexaenoic ac e, low-density lip ults of interest to orporated exclusio summary table o ions for multiple ipoprotein analys rs429358 and rs7	the present review v on criteria for certain of IL-6 results. Refer testing in the statisti ses were NS 412) resulting in thr	aenoic acid, HDL: h , SNP: single nucleo n conditions, blood l to Supplementary T cal analyses. ee different alleles (a	igh-density lipoprotei stide polymorphism, T ipid levels, etc. and w ables S8-S13 in Joffe ε2, ε3 and ε4)	n cholesterol, LD FG: triglycerides hen studies descri et al. 2014 (15) f	L: low-density lipoprotein cholesterol, N/A: bed the population as "healthy." or several other significant results, stratified
8 9 0										
2 3 4 5										
.6 .7 .8										
9 0 1										
3 4 5										
6 7 8										
9 0 1										
-2 -3 -4										

Page 53 of 75

 BMJ Open

9 4 5 6	Supplementary Table 3: Summary of interventional studies													
7 8 Auth 9	ior, Year	Study Design	Genetic Approach	Population (sample size included in analyses)	Intervention Duration	Gene(s), SNP(s)	Cytogenic Location of Gene(s)	Quantity, Source and Type of Omega-3	Comparators	Plasma Lipid/ Lipoprotein Outcome(s)	Summary of Statistically Significant Study Findings Relevant to the Research Question ¹			
11 12 13 14 15 16 17 ^{Abul} 17 ^{al. 2} 18 19 20 21 22 23	Mweis et 018 (24)	Randomized, Crossover Controlled Intervention	Single SNP*	Adults with at least one cardiovascular risk factor (n=129)	4 weeks	<i>FADS1</i> , rs174561 <i>FADS2</i> , rs174583 <i>ELOVL2</i> , rs953413 <i>ELOVL5</i> , rs2397142 <i>CETP</i> , rs5882 <i>SCD1</i> , rs2234970, <i>PPARa</i> , rs6008259 <i>LIPF</i> , rs814628 and <i>APOE</i> , rs429358, rs7412	<i>FADS1/2:</i> 11q12.2 <i>ELOVL2:</i> 6p24.2 <i>ELOVL5:</i> 6p12.1 <i>CETP:</i> 16q13 <i>SCD1:</i> 10q24.31 <i>PPARa:</i> 22q13.31 <i>LIPF:</i> 10q23.31 <i>APOE:</i> 19q13.32	Intake range: 1.0 – 2.5 g/day DHA (supplement)	Comparison between three genotypes for each single SNP (except <i>PPARA</i> and <i>LIPF</i> whereby analyses were major allele homozygotes vs. minor allele carriers) and <i>APOE</i> -E2 vs. <i>APOE</i> -E3 vs. <i>APOE</i> -E4	apoA1 apoB HDL-c LDL-c TG Total-c				
24 25 26 27 28 29 30 31 32 _{Alsa} 33 ²⁰ 34 35 36 37 38 39 40 41	leh et al. 14 (25)	Randomized Controlled Intervention	Single SNP and Polygenic	Healthy men and women (n=310)	12 months	CETP, rs3764261, <i>LIPC</i> , rs1532085 <i>APOB</i> , rs1367117 <i>ABCG5/ABCG</i> , rs4299376 <i>TIMD4/HAVCR</i> <i>I</i> , rs6882076 <i>GCKR</i> , rs1260326 <i>TRIB1</i> , rs2954029 <i>ANGPTL3/DO</i> <i>CK7</i> , rs2131925 <i>FADS1/2/3</i> , rs174546 <i>GALNT2</i> , rs4846914 <i>ABCA1</i> , rs4846914 <i>ABCA1</i> , rs4846914 <i>ABCA1</i> , rs4846914 <i>ABCA1</i> , rs48449268	CETP: 16q13 LIPC: 15q21.3 APOB: 2p24.1 ABCG5/ABCG8: 2p.21 TIMD4/HAVCR1: 5q33.3 GCKR: 2p23.3 TRIB1: 8q24.13 ANGPTL3/DOCK 7: 1p31.3 FADS: 11q12.2 GALNT2: 1q42.13 ABCA1: 9q31.1 APOE/APOC1/AP OC2: 19q13.32	Low Dose: 0.5 g/day EPA and DHA Moderate Dose: 0.9 g/day EPA and DHA High Dose: 1.8 g/day EPA and DHA (supplement)	Effect sizes per GRS risk allele after omega-3 treatment <i>and</i> Risk allele carriers vs. non-risk allele carriers	HDL-c LDL-c TG Total-c	TG: significant interaction whereby 1.8 g/day EPA and DHA significantly reduced TG in T allele carriers (21.6% reduction) vs. CC genotypes (3.5% reduction) of <i>FADS1</i> rs174546			

1	
2	

-										
 4 5 6 Armstrong et 7 al. 2012 (26) 8 9 10 	Double-Blind, Placebo- Controlled Randomized Intervention	Single SNP (deletion polymorphism)	Healthy adults of African ancestry (n=98)	6 weeks	ALOX5, dd (33, 34 or 44), d5 (35, 45) and 55 (control) genotypes	<i>ALOX5:</i> 10q11.21	Fish oil: 5.0 g/day containing 2.0 g/day EPA and 1.0 g/day DHA Control oil: 5.0 g/day corn/soy oil (supplement)	dd vs. d5 vs. 55	TG Mean lipoprotein particle diameter, total number of particles and particle concentration for: HDL-c and LDL-c	 TG: significant interaction whereby decreases in TG from omega-3 supplementation were specific to d5 genotype group HDL-c particle concentration: significant decrease with omega-3 intervention in the d5 and 55 genotype groups Medium HDL-c particles and HDL-c (mmol/L): significant gene-treatment interaction but no significant differences after post-hoc analysis for comparisons among genotypes
11 12 13 Binia et al. 13 2017 (27) 14 15	Single-Arm Clinical Trial	Single SNP	Mexican adults 18-40 years (n=191)	6 weeks	PPARa, L162V (rs1800206), PPARy2, P12A (rs1801282)	<i>PPARα</i> : 22q13.31 <i>PPARγ2</i> : 3p25.2	Fish oil: 2.7 g/day containing 1.9 g/d EPA and 0.8 g/day DHA (supplement)	Major allele homozygotes vs. Minor allele carriers	HDL-c LDL-c TG Total-c	LDL-c: significant increase in LDL-c among minor allele carriers (PPARγ2 Pro12Ala and Ala12Ala) only vs. PPARγ2 Pro12Pro genotypes only for individuals with BMI>25.0 kg/m ² Total-c: significant increase in total-c among minor allele carriers (PPARγ2 Pro12Ala and Ala12Ala) only vs. PPARγ2 Pro12Pro genotypes only for individuals with BMI>25.0 kg/m ²
16 17 18 19 20 21 _{Mercier} et al. 22 2013 (28) 23 24 25 26 27	Single Arm Clinical Trial	Single SNP	Healthy adults aged 18-50 years (n=208)	6 weeks	SREBF1, rs4925115, rs4925118, rs12953299 ACLY, rs8071753, rs8065502, rs2304497 ACACA rs2017571, rs29221368, rs9906044, rs2229416, rs1714987, rs1266175, rs3815059, rs829165	<i>SREBF1:</i> 17p11.2 <i>ACLY:</i> 17q21.2 <i>ACACA:</i> 17q12	Fish oil: 5.0 g/day containing 1.9-2.2 g/day EPA and 1.1 g/day DHA (supplement)	Major allele homozygotes vs. Minor allele carriers <i>or</i> Comparison between three genotypes (when minor allele frequencies were >0.05)	TG	TG: Significant gene-diet interaction whereby individuals with the GG genotype of ACLY rs8071753 and individuals with the GG or CG genotype of ACACA rs1714987 exhibited greater TG lower effects following omega-3 supplementation; these two SNPs explained approximately 8% of the variance in plasma TG responses to omega-3 supplementation. There were significant differences in genotype frequencies of ACLY rs8071753 for responders and non-responders to omega-3 for TG lowering.
28 29 30 31 Bouchard- 32 ^{Mercier} et al. 2014 (29) 33 34 35 36	Single Arm Clinical Trial	Single SNP	Healthy men and women aged 18-50 years (n=208)	6 weeks	RXRA (12 SNPs), CPTIA (9 SNPs), ACADVL (1 SNP), ACAA2 (6 SNPs), ABCD2 (8 SNPs), ACOXI (8 SNPs), ACAA1 (3 SNPs) [outlined in Supplementary Table 5]	<i>RXRA:</i> 9q34.2 <i>CPTIA:</i> 11q13.3 <i>ACADVL:</i> 17p13.1 <i>ACAA2:</i> 18q21.1 <i>ABCD2:</i> 12q12 <i>ACOXI:</i> 17q25.1 <i>ACAA1:</i> 3p22.2	Fish oil: 5.0 g/day containing 1.9-2.2 g/day EPA and 1.1 g/day DHA (supplement)	Major allele homozygotes vs. Minor allele carriers <i>or</i> Comparison between three genotypes (when minor allele frequencies were >0.05)	TG	TG: There were significant gene-diet interaction effects on TG responses to omega-3 for RXRA rs11185660 genotype dependent on total fat intake, RXRA rs10881576, rs12339187 and rs11185660 genotypes dependent on saturated fat intake, and ACOX1 rs17583163 dependent on total polyunsaturated fat intake
 37 38 Bouchard- 39Mercier et al. 2014 (30) 41 	Single Arm Clinical Trial	Single SNP	Healthy men and women aged 18-50 years (n=208)	6 weeks	GCK (13 SNPs) [outlined in Supplementary Table 5]	GCK: 7p13	Fish oil: 5.0 g/day containing 1.9-2.2 g/day EPA and 1.1 g/day DHA (supplement)	Major allele homozygotes Vs. Minor allele carriers <i>or</i> Comparison between three genotypes	TG	TG: CC genotypes of <i>GCK</i> rs741038 exhibited significantly greater TG reduction in response to omega-3 when their carbohydrate intake was high (>48.6%kcal) compared to those with the CC genotype of rs741038 with low carbohydrate intake (≤48.6%kcal) and compared to CT or TT genotypes with either high or low carbohydrate intake.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 55 of 75

BMJ Open

1	
2	

0										
ß								(when minor allele		
4								frequencies were		
L								>0.05)	D 100	
ť			Healthy men of				Fish oil: 5.0 g/day		apoB-100	
• Caron-Dorval	Charle Anna		Caucasian		PPARa,	DD (D., 22, 12, 21	containing 1.9	V162 carriers	HDL-C	
7 et al. 2008	Single Arm	Single SNP	ancestry aged	6 weeks	L162V	PPARa: 22q13.31	g/day EPA and 1.1	vs.	LDL-c	
(31)	Clinical Irial		18-55 years		(rs1800206)		g/day DHA	non-carriers	Total a	
ĸ			(n=28)				(supplement)		Total C:HDL c	
9							Low Fat:		Total-C.IIDL-C	
10							4.0 mg/day FPA			
10							10.6 mg/d DPA			
11							11.7 mg/d DHA			
12							High-SFA:			
12							20.2 mg/d EPA,		apoB	
13	Sequential		TT Helson				27.1 mg/d DPA,		apoC-III	
14 Corrulho	Non-		Healthy men		ADOE		15.4 mg/d DHA	ADOE E2/2	apoE	TC: Significant dist v constyna interaction for TC: greater
15 Wells et al	Randomized,	Single SND*	and women	8 weeks per	AFOL,	$APOE \cdot 10a13.32$	High-SFA+DHA:	AT OE-ES/S	HDL-c	TG lowering response to high SEA+DHA diet in $APOF = 3/A$
2012(32)	Cross-Over	Single Sivi	vears	diet	rs7412	AI OL. 19415.52	524.3 mg/d EPA,	APOE-F3/4	LDL-c	carriers (compared to high-SFA diet alone)
16 2012 (32)	Dietary		(n=88)		15,112		215.5 mg/d DPA,	11 01 15,1	sdLDL-c	carriers (compared to high of realet abile)
17	Intervention		(3017.3 mg/d DHA		TG	
10							[actual intakes		Total-c	
18							(supplemental			
19							DHA for High			
20							SFA+DHA: others			
f.							from food sources)			
21							Control oil: 0.0	APOE-E2/E2 +		
22	Double-Blind,		TT 1.1				g/d EPA and DHA	E2/E3	UDI	
D2 Contator et al	Randomized,		Healthy men	0	APOE,		Fish oil: 0.7 g/d	vs.	HDL-c	TG: Significant interaction between treatment x sex x $ADOF E2/E4 + E4/E4$ makes which to take
2008(24)	Placebo-	Single SNP*	and women	8 weeks per	rs429358,	APOE: 19q13.32	EPA and DHA	APOE-E3/E3	LDL-c	genotype whereby APOE-E3/E4 + E4/E4 males exhibited the
24 ^{2008 (34)}	Crossover		ageu 20-70 vears ($n=312$)	ulet	rs7412		Fish oil: 1.8 g/d	vs.	Total-c	well as $1.8 \text{ g/d} \text{EPA}$ and DHA compared to other genotypes
25	Intervention		years (n 512)				EPA and DHA	APOE-E3/E4 +	i otai-c	wen as 1.6 g/a El 14 and D114 compared to other genotypes
	intervention						(supplement)	E4/E4		
20			** 14		FADS gene		Fish oil: 5.0 g/day			
27	Sin ala Amu		Healthy men		cluster (19 SNIDa) fautlined		containing 1.9	Major allele		
28_{2012} (25)	Clinical Trial	Single SNP	and women	6 weeks	SNPS) [outlined	FADS: 11q12.2	g/day EPA and 1.1	nomozygotes	TG	
2012 (33)	Chinical Illai		vers $(n=208)$		Supplementary		g/day DHA	VS. Minor allele carriers		
29			years (if 200)		Table 51		(supplement)	winor ancie carriers		
<u>30</u>			Healthv men		10000		Fish oil containing	(DOF T)	HDL-c	
R1 Dang et al.	Single Arm		and women		APOE,	(DOE 10 10 00	900 mg EPA and	APOE-E4+	LDL-c	
2015 (36)	Clinical Trial	Single SNP*	aged 20-35	4 weeks	rs429358,	APOE: 19q13.32	680 mg DHA	VS.	TG	
32			years (n=80)		18/412		(supplement)	AFOE-E4-	Total-c	
33							Yogurt with lower			
RA							dose fish oil:			
ľ-							0.8g/day omega-3			
85	Dendensing 1		Men and				containing 0.01g			HDL at In response to among 2 supplementation (0.9.2.0)
86	Randomized,		women with $TC > 1.7$		CD26		ALA, U.44g EPA,			(0.8-3.0) HDL-c increased in GA genetype of CD36 rs1761667
Dawczynski et	Controlled	Single SNP	$10 \le 1.7$ mmol/I	10 weeks	rs1761667	$CD36 \cdot 7a21.11$	0.31g DHA (fiel	Comparison between	HDL-c	and CG genotype of CD36 rs1049673
al. 2013 (37)	Double-Blind	Single Sivi	otherwise	10 WCCR5	rs1049673	CD50. /421.11	oil)	three genotypes	TG	TG: In response to omega-3 supplementation (0.8-3.0 g/day)
B 8	Intervention		healthy		151079075		011)			TG decreased in GA genotype of <i>CD36</i> rs1761667.
89			(n=47)				Yogurt with			
10			× · · /				higher dose fish			
f+∪							oil: 3.0 g/day			
41							omega-3			
47										

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 440 50 01 7 5

1 2										
β 4 5 6							containing 0.07g ALA, 1.59g EPA, 0.23g DPA and 1.12g DHA (fish oil)			
7 8 9							Control yogurt: commercial whole fruit yogurt with 3.5% milk fat			
10							(food)			
11 12 13 14 ^f erguson et al. 15 ^{2010 (38)} 16 17	Randomized Intervention and Cross- Sectional (Baseline) Analysis	Single SNP	Men and women with metabolic syndrome from LIPGENE cohort (<i>n</i> =450)	12 weeks	NOS3, rs11771443, rs1800783, rs1800779, rs1799983, rs3918227, rs743507	<i>NOS3:</i> 7q36.1	1.24 g/d EPA+DHA supplement (intervention); quantity of omega- 3 not reported for observational analyses	Major allele homozygotes vs. Minor allele carriers	apoA-1 apoB apoB-48 apoC-III apoC-III apoE HDL-c LDL-c TG Total-c	TG: For <i>NOS3</i> rs1799983 minor-allele (A) carriers only, the observational analysis indicated higher TG with lower EPA+DHA intake (and lower TG with higher EPA+DHA intake). Post-intervention with omega-3 supplementation indicated that only minor-allele (A) carriers exhibited significant TG reduction (accompanied by increases in plasma omega-3).
18 19 20 21 22 23 24 25 ^{Harslof et al.} 25 ^{Harslof et al.} 2014 (39) 26 27 28 29 30 31 32	Randomized, Controlled Intervention	Single SNP and Genetic Score	Infants of Danish ancestry (n=133)	9 months	PPARy2, Pro12Ala (rs1801282), FADS2, rs1535, FADS2, rs174575, FADS3, rs174448 COX2, rs5275, rs689466	PPARy2: 3p25.2 FADS: 11q12.2 COX2: 1q25.2- q25.3	5.0 mL/day fish oil (median reported intake: 3.8 g/day containing 630 mg/day EPA and 620 mg/day DHA) (supplement)	PPARy2 genotype analyses were by major allele homozygotes vs. heterozygotes and FADS genotype analyses were by the number of DHA- increasing alleles and COX2 genotype analyses were by major allele homozygotes vs. heterozygotes vs.	HDL-c LDL-c TG Total-c	TG: <i>PPAR</i> γ2 heterozygotes exhibited reduced TG in response to omega-3 when compared to <i>PPAR</i> γ2 heterozygotes in the control (sunflower oil) group
 33 34 Itariu et al. 35 2012 (40) 36 37 	Randomized, Controlled Intervention	Single SNP	$\begin{tabular}{ c c c c c } \hline Men and \\ women without \\ diabetes with a \\ BMI \ge 40 \\ kg/m^2 aged 20- \\ 65 years \\ (n=55) \end{tabular}$	8 weeks	<i>PPARγ2</i> , Pro12Ala (rs1801282)	<i>PPARγ2</i> : 3p25.2	Fish oil containing 3.4 g/day EPA + DHA (supplement)	PPARy2, Ala12 carriers vs. Pro12Pro	apoB HDL-c LDL-c TG Total-c	 apoB: Significant increases in apoB with omega-3 intervention in Ala12 carriers when compared to Pro12 carriers. Total-c: Significant interaction effect whereby increases in total-c were exhibited with omega-3 intervention in Ala12 carriers when compared to the Pro12Pro genotype.
38 39Jackson et al. 40 ^{2012 (41)} 41	Non- Randomized Intervention	Single SNP*	Healthy men aged 35-70 years (n=23)	8 weeks and 480-min postprandial	<i>APOE</i> , rs429358, rs7412	APOE: 19q13.32	Fish oil containing 3.45 g/day DHA (supplement)	APOE-E3/3 vs. APOE-E3/4	apoB apoC-III apoE HDL-c LDL-c TG	TG: APOE-E3/E4 exhibited reduced fasting TG in response to a high saturated fat + DHA intervention when compared to the high saturated fat diet alone. There was also a significant interaction (meal x time x genotype) for the postprandial TG lowering response whereby APOE-E3/4 consuming a high saturated fat + DHA intervention exhibited significantly lower

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	
2	

								Total-c	postprandial TG, TG area under the curve, and TG maximum concentration compared to those consuming the high saturated fat diet alone.
Non- Randomized Intervention	Single SNP*	Healthy men aged 35-70 years (n=23)	480-min postprandial	<i>APOE</i> , rs429358, rs7412	APOE: 19q13.32	Fish oil containing 3.45 g/day DHA (supplement)	APOE-E3/3 vs. APOE-E3/4	ароВ-48 ароВ-100	
Randomized Intervention	Single SNP	Healthy men and women aged 30-65 years (<i>n</i> =150)	3 months	<i>PPARγ2</i> , Pro12Ala (rs1801282)	<i>PPARy2</i> : 3p25.2	Fish oil containing 2.4 g/d EPA + DHA (supplement)	PPARy2, Ala12 carriers vs. Pro12Pro	HDL-c LDL-c TG Total-c	TG: Compared to Pro12Pro, Ala12 carriers exhibited significantly greater TG reductions in response to omega-3 supplementation only when total fat intake was ≤37 %kcal or SFA intake was ≤10 %kcal
Randomized, Controlled Intervention	Single SNP	Men at high risk of cardiovascular disease aged 65-75 years (n=204)	6 months	<i>FVII</i> , rs6046	<i>FVII:</i> 13q34	Fish oil containing 2.4 g/d EPA + DHA Dietary advice including recommendations to increase omega- 3 (supplement and food)	Major allele homozygotes vs. Minor allele carriers	TG	
Non- Randomized Intervention	Single SNP	Healthy men aged 43-84 years (<i>n</i> =111)	12 weeks	<i>CD36</i> , rs1527483, rs1049673, rs1761667, rs1984112	CD36: 7q21.11	Fish oil containing 1.02 g/d EPA and 0.69 g/d DHA (supplement)	For each SNP: AA vs. AG vs. GG	HDL-c LDL-c LDL-c:HDL-c TG	TG: In response to omega-3 supplementation, TG significantly reduced only in individuals with the GG genotype, for each SNP individually (i.e. for rs1527483, rs1049673, rs1761667 and rs1984112 individually) LDL-c: In response to omega-3 supplementation, LDL-c increased only in individuals with the rs1761667 AA genotype as well as for individuals with the rs1984112 AA genotype HDL-c: In response to omega-3 supplementation, HDL-c significantly increased in individuals with rs1761667 AA or AG as well as for individuals with the CC or CG genotype for either rs1984112, rs1527483 and/or rs1049673; NOTE: rs1527483 results should be interpreted with caution due to low sample sizes for AA and AG genotypes thus reducing statistical power)
Single-Arm Clinical Trial	Single SNP	Healthy men (n=159)	12 weeks	<i>TNFa</i> , -308 (rs1800629) <i>LT-a</i> , +252 (rs909253) <i>IL-1β</i> , -511 (rs16944) <i>IL-6</i> , -174 (rs1800795)	<i>TNFα:</i> 6p21.33 <i>LT-α:</i> 6p21.33 <i>IL-1β:</i> 2q14.1 <i>IL-6:</i> 7p15.3	Fish oil containing 1.8 g/d EPA+DHA (supplement)	Major allele homozygotes vs. Minor allele carriers <i>or</i> Comparison between three genotypes (depending on allele frequencies)	TG	TG: Significant negative correlation between pre- supplementation TG and change of TG during omega-3 supplementation for all genotypes of genes studied except for LT - α rs909253 GG genotype and IL - $I\beta$ rs16944 TT genotype. In LT - α rs909253 AA genotype and $TNF\alpha$ rs1800629 AA genotype, signification association between BMI (divided in tertiles) and TG changes.
Crossover Intervention	Single SNP	Healthy post- menopausal women (n=16)	8 weeks per diet	FABP2, rs1799883	<i>FABP2:</i> 4q26	High-Fat: 50 %kcal from dietary fat Low-Fat: 20 %kcal from dietary fat Low-Fat + omega-3: 23% kcal from dietary fat with 3 %kcal from omega-3 (food)	Major allele homozygotes vs. Minor allele carriers	TG	
_	Non-Randomized Intervention Randomized Intervention Randomized, Controlled Intervention Non- Randomized Intervention Single-Arm Clinical Trial Crossover Intervention	Non-Randomized Single SNP* Randomized Single SNP Randomized Single SNP Randomized, Single SNP Randomized, Single SNP Randomized, Single SNP Intervention Single SNP Non-Randomized Single SNP Intervention Single SNP Single-Arm Single SNP Clinical Trial Single SNP Crossover Single SNP Intervention Single SNP	Non- Randomized InterventionSingle SNP*Healthy men aged 35-70 years (n=23) Healthy men and women aged 30-65 years (n=150)Randomized InterventionSingle SNPMen at high risk of cardiovascular disease aged 65-75 years (n=204)Non- Randomized InterventionSingle SNPMen at high risk of cardiovascular disease aged 65-75 years (n=204)Non- Randomized InterventionSingle SNPHealthy men aged 43-84 years (n=111)Non- Randomized InterventionSingle SNPHealthy men aged 43-84 years (n=111)Single-Arm Clinical TrialSingle SNPHealthy men (n=159)Crossover InterventionSingle SNPHealthy post- menopausal women (n=16)	Non- Randomized InterventionSingle SNP*Healthy men aged 35-70 years (n=23)480-min postprandialRandomized InterventionSingle SNPHealthy men aged 30-65 years (n=150)3 monthsRandomized, Controlled InterventionSingle SNPMen at high risk of cardiovascular (n=204)6 monthsNon- Randomized InterventionSingle SNPMen at high risk of cardiovascular (n=204)6 monthsNon- Randomized InterventionSingle SNPHealthy men aged 43-84 years (n=111)12 weeksNon- Randomized InterventionSingle SNPHealthy men aged 43-84 years (n=111)12 weeksSingle-Arm Clinical TrialSingle SNPHealthy men (n=159)12 weeksCrossover InterventionSingle SNPHealthy post- menopausal women (n=16)8 weeks per diet	Non- Randomized InterventionSingle SNP*Healthy men aged 35-70 years (n=23)480-min postprandialAPOE, rs429358, rs7412Randomized InterventionSingle SNPHealthy men aged 30-65 years (n=150)3 monthsPPARy2, Pro12Ala (s1801282)Randomized, Controlled InterventionSingle SNPMen at high risk of cardiovascular disease aged 65-75 years (n=204)6 monthsFVII, rs6046Non- Randomized, InterventionSingle SNPHealthy men aged 43-84 years (n=111)6 monthsFVII, rs6046Non- Randomized InterventionSingle SNPHealthy men aged 43-84 years (n=111)12 weeksCD36, rs1527483, rs164667, rs1984112Non- Randomized InterventionSingle SNPHealthy men aged 43-84 years (n=111)12 weeksCD36, rs16049673, rs161667, rs1984112Single-Arm Clinical TrialSingle SNPHealthy men (n=159)12 weeksTNFca, -308 (rs1800629) I.T-a, +322 (rs1800629) I.T-a, +321 (rs169044) I.t-6, 174 (rs1800795)Crossover InterventionSingle SNPHealthy men (n=16)8 weeks per dietFABP2, rs1799883	Non- Rundomized InterventionSingle SNP*Healthy men aged 35-70 years (n=23)480-min postprandial motopatter postprandialAPOE: rs429358, rs412APOE: 19q13.32Randomized InterventionSingle SNPHealthy men and women aged 30-65 years (n=150)3 monthsPPARp2; Pro12Ala (rs1801282)PPARp2: 3p25.2Randomized InterventionSingle SNPMen at high risk of cardiovascular (a=204)6 monthsFVII, rs6046FVII: 13q34Non- Randomized InterventionSingle SNPHealthy men aged 43-84 years (n=211)6 monthsFVII, rs6046FVII: 13q34Non- Randomized InterventionSingle SNPHealthy men aged 43-84 years (n=111)12 weeksCD36, rs1527483, rs1049673, rs1049673, rs1984112CD36: 7q21.11Single-Arm Clinical TrialSingle SNPHealthy men (n=159)12 weeksTNFa: (rs10223)TNFa: (rs2243), IL-R. rs1984112Crossover 	Non- Randomized InterventionSingle SNP*Healthy men aged 35-70 vest (r-23)480-min postprandial postprandial <i>APOE</i> , rs429358, rs7412 <i>APOE</i> : 19q13.32Fish oil containing 3.45 g/day DHA supplement)Randomized InterventionSingle SNPHealthy men aged 30.65 years (r=150)3 months <i>PPAR7</i> , Pro12A1a (s1801282) <i>PPAR72</i> : 3p25.2Fish oil containing 2.4 g/ EPA + DHARandomized InterventionSingle SNPMen at high risk of cardiovascular disease aged (n=204)6 months <i>FVII</i> , rs6046 <i>FVII</i> : 13q34Fish oil containing 2.4 g/ EPA + DHA + D	Non- Randomized Intervention Single SNP Healthy men aged 35-70 years (n=23) 480-min postprandial <i>APOE</i> : 172338, ne23238, ne23238, ne23238, ne23238, ne2423	Non- Randomized InterventionSingle SNPHealthy men aged 35-70 aged 35-70 method marked bare pestprandial intervention $APOE:$ pestprandial model pestprandial model model model pestprandial model $APOE:$ model model model model model model model model model model model $APOE:$ model model model model model model model model model model model model model model $APOE:$ model model model model model model model model model model model model model $APOE:$ model model model model model model model model model model model model model model model model model model model $APOE:$ model model model model model model model model model model model model model model model model model $APOE:$ model model model model model model model model model model model model model model model model model model

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

ñ										
8 4 5 Minihane et al. 2000 (48) 6 7	Double-Blind, Randomized, Placebo- Controlled, Crossover Intervention	Single SNP*	Healthy men aged 30-70 years at risk of atherogenic lipoprotein phenotype (n=50)	6 weeks per diet and 480 minute postprandial	<i>APOE</i> , rs429358, rs7412	<i>APOE:</i> 19q13.32	Fish oil containing 3.0 g/d EPA and DHA, Control oil: 6.0 g/d olive oil capsule (supplement)	APOE-E2/E3 vs. APOE-E3/E3 vs. APOE-E3/E4 + E4/E4	HDL-c LDL-c TG Total-c Total-c:HDL	 TG: Postprandial: Significantly greater reduction in TG incremental area under postprandial TG curve in APOE-E2/E3 relative to other APOE genotype categories Total-c: 6-week: APOE-E3/E4 + E4/E4 genotype group exhibited significantly different changes in total-c (increase), relative to other APOE genotypes, whereby reductions in total-c occurred
8 9 10 ^{Olano-Martin} et al. 2010 11 (49) 12 13	Randomized, Cross-Over Intervention	Single SNP*	Healthy normolipidemi c men (n=38)	4 weeks per diet	APOE, rs429358, rs7412	<i>APOE:</i> 19q13.32	EPA-rich fish oil: 3.3 g/d EPA DHA-rich fish oil: 3.7 g/d DHA Control oil: 80:20 palm olein:soyabean (supplement)	APOE-E3/3 vs. APOE-E3/4 (carriers)	apoB apoE HDL-c LDL-c TG TG:HDL-c Total-c	apoB, LDL-c: In <i>APOE</i> -E4 carriers only, DHA-rich oil treatment resulted in significant increases in apoB and LDL-c TG: Significant reduction in TG in response to both EPA and DHA in <i>APOE</i> -E3/E3 group; significant reduction in TG in <i>APOE</i> -E4 carriers with EPA only. No significant interactions. Total-c: Significant genotype x treatment interaction whereby <i>APOE</i> -E4 carriers exhibit total-c reductions in response to EPA-rich oil.
14 15 16Duellette et al. 17 ^{2013 (50)} 18 19	Single-Arm Clinical Trial	Single SNP	Healthy men and women aged 18-50 (n=210)	6 weeks	GPAM (3 SNPs), AGPAT3 (13 SNPs), AGPAT4 (35 SNPs) [outlined in Supplementary Table 5]	GPAM: 10q25.2 AGPAT3: 21q22.3 AGPAT4: 6q26	Fish oil containing 1.9-2.2 g/d EPA + 1.1 g/d DHA (supplement)	Major allele homozygotes vs. Minor allele carriers <i>or</i> Comparison between three genotypes (depending on allele frequencies)	HDL-c LDL-c TG Total-c	 LDL-e: Significant GPAM, rs2792751 genotype x supplementation interaction on LDL-c TG: Significant genotype x supplementation interaction on TG for GPAM, rs2792751 and rs17129561 as well as AGPAT4, rs9458172 and rs3798943
20 21 22 23 24 ² uellette et al. 25 26 27 28	Single-Arm Clinical Trial	Single SNP	Healthy men and women 18- 50 years (n=208)	6 weeks	MGLL (18 SNPs) [outlined in Supplementary Table 5]	<i>MGLL:</i> 3q21.3	Fish oil containing 1.9-2.2 g/d EPA + 1.1 g/d DHA (supplement)	Major allele homozygotes vs. Minor allele carriers <i>or</i> Comparison between three genotypes (depending on allele frequencies)	apoB HDL-c LDL-c LDL particle size TG Total-c	LDL-c: Significant interactions for MGLL rs6776142, rs555183, rs782444, rs6787155 and rs1466571 whereby omega-3 supplementation modulated LDL-c levels; rs782444 and rs555183 minor allele homozygotes more likely to be negative responders to omega-3 supplementation (i.e. exhibit reduced LDL-c); rs6780384, rs782444 and rs6787155 major allele homozygotes more likely to be negative responders to omega-3 supplementation LDL particle size: Significant interactions for MGLL rs782440, rs13076543 and rs9877819 whereby omega-3 supplementation modulated LDL particle size; rs549662 minor allele homozygotes more likely to be positive responders to omega-3 supplementation (i.e. exhibit increased LDL particle size)
29 30 Paschos et al. 31 2005 (52) 32	Single-Arm Clinical Trial	Single SNP*	Men with dyslipidemia, aged 35 to 67 years (n=50)	12 weeks	<i>APOE</i> , rs429358, rs7412	APOE: 19q13.32	8.1 g/day ALA (via 15 ml of Flaxseed oil supplementation)	APOE-E2/E3 vs. APOE-E3/E3 vs. APOE-E3/E4	ApoA-I ApoB HDL-c LDL-c TG Total-c	ApoA-I: Significant decrease in E3/E3 HDL-c: Significant decrease in E3/E3
95 34 35 36 37 ^{Pishva et al.} 37 2010 (53) 38 39 40	Single-Arm Clinical Trial	Single SNP	Adults with hypertriglyceri demia (n=46)	8 weeks	<i>FABP2,</i> Ala54Thr (rs1799883)	<i>FABP2:</i> 4q26	2.0 g/day pure EPA (supplement)	Ala54Ala (GG) vs. Thr54 carriers (GT+TT)	ApoB ApoC-III HDL-c LDL-c TG Total-c	 ApoC-III: In response to EPA supplementation, significantly greater reductions in ApoC-III in GT+TT genotypes of rs1799883 compared to GG genotype. HDL-c: In response to EPA supplementation, significantly greater increases in HDL-c in GT+TT genotypes of rs1799883 compared to GG genotype. LDL-c: In response to EPA supplementation, LDL-c significantly decreased in GG genotypes of rs1799883 but not GT+TT genotypes. TG: In response to EPA supplementation, significantly greater reductions in TG in GT+TT genotypes of rs1799883 compared to GG genotype.
+ Pishva et al.	Single-Arm	Single SNP	Adults with	8 weeks	PPARa,	<i>PPARα</i> : 22q13.31	2.0 g/day pure	Leu162	ApoB	
+2										

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	
2	

-										
8 2014 (54) 4 5 6 7	Clinical Trial		hypertriglyceri demia (n=46)		Leu162Val (rs1800206) <i>PPARa</i> , Intron 7 SNP		EPA (supplement)	vs. Val162 carriers <i>and</i> Intron 7 GG vs Intron 7 GC	ApoCIII HDL-c LDL-c TG Total-c	
9 10 Roke and 11 _{Mutch, 2014} 12 (55) 13 14	Single-Arm Clinical Trial	Single SNP	Men aged 18- 25 years (n=12)	12 weeks (+8 week washout)	FADS1, rs174537 FADS2, rs174576 (LD=1.0 therefore presented results for rs174537)	<i>FADS1/2:</i> 11q12.2	Fish oil containing 1.8 g/d EPA+DHA (supplement)	Major allele homozygotes vs. Minor allele carriers	HDL-c LDL-c TG Total-c Total-c:HDL-c	-
15 16 1 Rudkowska et 18 ^{al. 2014 (56)} 19 20	Single-Arm Clinical Trial	Single SNP	Healthy men and women aged 18-50 (n=210)	6 weeks	SCD1, rs1502593, rs522951, rs11190480, rs3071, rs3829160, rs2234970, rs10883463, rs508384	SCD1 : 10q24.31	Fish oil containing 1.9-2.2 g/d EPA + 1.1 g/d DHA (supplement)	Comparison between three genotypes	HDL-c LDL-c TG Total-c Total-c:HDL-c	TG: For <i>SCD1</i> rs508384, AA genotype was associated with lower TG than CA and CC genotypes both pre- and post-supplementation.
21 22 23 24 25 Rudkowska et 26al. 2014 (57) 27 28 29 30 81	Single-Arm Clinical Trial	Nutrigenomic GWAS	Healthy men and women aged 18-50 (n=141) + Replication of GRS in FINGEN study (n=310)	6 weeks	Genetic Risk Score including: IQCJ-SCHIP1 (4 SNPs), SLIT2 (3 SNPs), PHF17 (3 SNPs), MYB (1 SNP), NXPH1 (1 SNP), NELL1 (1 SNP) [outlined in Supplementary Table 5]	IQCJ-SCHIP1: 3q25.32 SLIT2: 4p15.31 PHF17: 4q28.2 MYB: 6q23.3 NXPH1: 7p21.3 NELL1: 11p15.1	Fish oil containing 1.9-2.2 g/d EPA + 1.1 g/d DHA (supplement)	Responders versus non-responders (i.e. TG response) to supplementation	TG	 Thirteen SNPs were associated with TG response to omega-3 supplementation and 10 were used in the GRS calculation. The GRS was significantly associated with TG response. TG: The GRS explained 21.5% of the variation in TG response when adjusted for age, sex and BMI. Replication of this GRS in the FINGEN study: the GRS explained 2.0% of the TG change but the association as NS (adjusted for age, sex and BMI).
82 83scorletti et al. 84 2015 (58) 85	Randomized, Placebo- Controlled, Double-Blind Intervention	Single SNP	Men and women with non-alcoholic fatty liver disease (n=95)	15-18 months	PNPLA3, 1148M (rs738409) TM6SF2, E167K (rs58542926)	PNPLA3: 22q13.31 TM6SF2: 19p13.11	1.8 g/day EPA+ 1.5 g/day DHA (supplement)	Comparison between three genotypes and Major allele homozygotes vs. Minor allele carriers	TG	-
56 37 38Thifault et al. 39 ^{2013 (59)} 40	Single-Arm Clinical Trial	Single SNP*	Healthy men and women with overweight or obesity aged 18-50 (n=210)	6 weeks	<i>APOE</i> , rs429358, rs7412	APOE: 19q13.32	Fish oil containing 1.9-2.2 g/d EPA and 1.1 g/d DHA (supplement)	APOE-E2 vs. APOE-E3 vs. APOE-E4	apoB HDL-c LDL-c TG Total-c	
41 Tremblay et	Single-Arm	Single SNP	Healthy men	6 weeks	PLA2G2A (5	PLA2G2A:	Fish oil containing	Major allele	apoB-100	TG: omega-3 supplementation significantly reduced TG in
42										

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

8 al. 2015 (60) 4 5 6 7 8 9 10 11 12 13	Clinical Trial		and women aged 18-50 years (<i>n</i> =208)	4	SNPs), PLA2G2C (6 SNPs), PLA2G2D (8 SNPs), PLA2G2F (6 SNPs), PLA2G4A (22 SNPs), PLA2G6 (5 SNPs), PLA2G7 (9 SNPs) [outlined in Supplementary Table 5]	lp36.13 <i>PLA2G2C</i> : lp36.13 <i>PLA2G2D</i> : lp36.12 <i>PLA2G2F</i> : lp36.12 <i>PLA2G4A</i> : lq31.1 <i>PLA2G6</i> : 22q13.1 <i>PLA2G7</i> : 6p12.3	1.9 g/d EPA + 1.1 g/d DHA (supplement)	homozygotes vs. Minor allele carriers <i>or</i> Comparison between three genotypes (depending on allele frequencies)	HDL-c LDL-c TG Total-c	PLA2G7 rs1805018 as well as PLA2G4A rs10752979, rs10737277, rs7540602 and rs3820185; in the linear regression model, PLA2G6 rs132989, PLA2G7 rs679667, PLA2G2D rs12045689, PLA2G4A rs 10752979 and rs1160719 together explained 5.9% of post-supplementation TG levels
14 15 16 17 18 Vallée 19 Marcotte et al. 20 2016 (61) 21 22 23 24	Single-Arm Clinical Trial	Nutrigenomic GWAS	Men and woman aged 18-50 years (n=208)	6 weeks	<i>IQCJ</i> (16 SNPs), <i>NXPH1</i> (34 SNPs), <i>PHF17</i> (8 SNPs), <i>MYB</i> (9 SNPs) [outlined in Supplementary Table 5]	IQCJ: 3q25.32 NXPH1: 7p21.3 PHF17: 4q28.2 MYB: 6q23.3	Fish oil containing 1.9-2.2 g/d EPA + 1.1 g/d DHA (supplement)	Comparison between three genotypes	TG	TG: Significant gene-diet interaction on TG levels pre- vs. post-supplementation for the following SNPs: <i>IQCJ</i> (10 SNPs: rs2044704, rs1962071, rs6800211, rs17782879, rs1868414, rs2595260, rs9827242, rs1449009, rs2621309, rs61332355), <i>NXPH1</i> (4 SNPs: rs7806226, rs7805772, rs2349780, rs6974252), <i>MYB</i> (3 SNPs: rs9321493, rs11154794, rs210962). Four SNPs were still significant after applying the false discovery rate to account for multiple testing: rs1449009, rs2621309, rs61332355 in <i>IQCJ</i> ; rs7805772 in <i>NXPH1</i> . There were four dominant SNPs driving the association with the TG response: rs61332355 and rs9827242 in <i>IQCJ</i> , rs7805772 in <i>NXPH1</i> and rs11154794 in <i>MYB</i> . Significant differences in genotype frequencies between positive and negative responders to omega-3 for TG changes for <i>IQCJ</i> rs2044704, rs1962071, rs17782879, rs1868414, rs2595260, rs9827242, rs1449009, rs2621309, rs61332355, <i>NXPH1</i> rs7806226, rs7805772, <i>MYB</i> rs11154794 and rs210936.
26 27 28 Vallée 29 ^{Marcotte} et al. 2019 (62) 30 31 32	Single-Arm Clinical Trial (replication of GRS in a novel cohort)	Nutrigenomic GWAS	Healthy adults of Mexican descent aged 18-40 years (n=191)	6 weeks	Genetic Risk Score including 103 SNPs: [outlined in Supplementary Table 5]	NA	Fish oil containing 1.9 g/day EPA + 0.8 g/day DHA (supplement)	Responders versus non-responders (i.e. TG response) to supplementation	TG	TG: A first 7-SNP GRS [SNPs selected based on previously developed GRS (57,61)] did not explain TG variation. A second GRS calculated from 103 SNPs significantly explained 4.4% of TG variation. A third GRS including the 5 most relevant SNPs significantly explained 11.0% of TG variation (NXPH1 rs10265408, rs10486228, rs10486228, rs17150341, rs6974252 and IQCJ-SCHIP1 rs2595241). When subjects with the lowest TG change were not included, this third GRS explained more TG variation. Including only the 28 responders and 28 non-responders with the greatest TG variation, this third GRS explained 29.1% of TG variation.
33 34 Vallée 35 ^{Marcotte} et al. 2019 (63) 36 37	Single-Arm Clinical Trial	Nutrigenomics GWAS (polygenic)	Men and woman aged 18-50 years with overweight or obesity (n=208)	6 weeks	GWAS; GRS included 31 SNPs [outlined in Supplementary Table 5]	NA	Fish oil containing 1.9-2.2g/d EPA + 1.1g/d DHA (supplement)	Responders to omega-3 supplementation for TG reduction vs. Non-Responders	TG	TG: 31 SNPs associated with TG response to omega-3 supplementation and used in GRS calculation; Lower GRSs were significantly more responsive to omega-3 supplementation for TG reduction compared to higher GRS (GRS accounted for 49.7% of TG responses); These findings were replicated in the FINGEN study with 23 SNPs (GRS accounted for 3.7% of TG responses).
38 Vallée 39Marcotte et al. 40 2020 (64) 41	Double-Blind, Randomized, Controlled, Crossover Intervention	Nutrigenomics GWAS (polygenic)	Men and women with abdominal obesity and elevated CRP aged 18-70	10 weeks per diet	GRS included 30 SNPs [outlined in Supplementary Table 5]	NA	Control oil: 3 g/d corn oil Pure EPA: 2.7 g/d Pure DHA: 2.7 g/d (supplement)	Responders to different types of omega-3 supplementation for TG reduction vs.	TG	TG: The GRS was significantly associated with responsiveness to EPA for TG reduction when comparing responders vs. non-responders vs. adverse responders (trend, p=0.08, for DHA). The GRS was significantly associated with responsiveness to both EPA and DHA for TG reduction when comparing responders vs. adverse responders.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2										
3 4 5 б			years (n=122)					Non-Responders vs. Adverse Responders <i>and</i> Responders vs		
7								Adverse Responders		
8 9 Wu et al. 2014 10 (65) 11	Double-Blind, Randomized, Placebo- Controlled, Crossover Intervention	Single SNP	Men and women with moderate risk of CVD (n=84)	8 weeks	<i>eNOS</i> Glu298Asp (rs1799983)	<i>NOS3:</i> 7q36.1	Fish oil containing 0.9 g/day EPA + 0.6 g/day DHA (supplement)	Major allele homozygotes (GG) vs. Minor allele carriers (GT+TT)	LDL-c HDL-c TG Total-c	-
12 13 14 15 Zheng et al. 16 ^{2018 (66)} 17 18	Double-Blind, Randomized, Controlled Intervention	Single SNP and Polygenic	Men and women with type 2 diabetes aged 35-80 years for men or postmenopausa 1 and 80 years for women (n=139)	25 weeks	CD36, rs1527483 NOS3, rs1799983 PPARy2, rs1801282	CD36: 7q21.11 NOS3: 7q36.1 PPARy2: 3p25.2	Fish oil: 2.0 g/d EPA and DHA Flaxseed oil: 2.5 g/d ALA Control oil: corn oil (supplement)	Major allele homozygotes vs. Minor allele carriers and High vs. low genetic score calculated based on three SNPs	HDL-c LDL-c TG Total-c:HDL-c Total-c	 LDL-c: significant interaction for PPARy2 rs1801282 genotype, intervention group and LDL-c change; but increased LDL-c in G allele carriers of PPARy2 rs1801282 compared to CC genotype only in the control (corn oil) group TG: omega-3 fish oil (but not flaxseed oil) supplementation reduced TG for individuals with the CD36 rs1527483 GG genotype (significant interaction); significant interaction between genetic score and omega-3 on TG levels whereby omega-3 (fish oil and flaxseed oil) supplementation significantly reduced TG levels compared to control only in individuals with high genetic scores

ALA: alpha-linolenic acid, Apo: apolipoprotein, DHA: docosahexaenoic acid, EPA: eicosapentaenoic acid, HDL: high-density lipoprotein cholesterol, LDL: low-density lipoprotein cholesterol, NA: not applicable, NS: Non-significant, sdLDL-c: small, dense, low-density lipoprotein cholesterol, SNP: single nucleotide polymorphism, TG: triglycerides 1. All other (not listed) gene/omega-3/lipid/lipoprotein results of interest to the present review were NS

Participants are described as "healthy" for studies that incorporated exclusion criteria for certain conditions, blood lipid levels, etc. and when studies described the population as "healthy."

'--' indicates that all the completed gene/omega-3/lipid/lipoprotein analyses were NS

*Human APOE is polymorphic at two single nucleotides (rs429358 and rs7412) resulting in three different alleles (ε 2, ε 3 and ε 4)
3
4
5
6
7
, 8
0
9
10
11
12
13
14
15
16
17
18
10
19
20
21
22
23
24
25
26
27
20
20
29
30
31
32
33
34
35
36
37
20
20
39
40
41
42
43
44
45
46
47
48
70 70
77 50
50
51
52
53
54
55
56
57
52
20
59
60

Supplementary Table 4: Genes, SNPs, lipid/lipoprotein outcomes and studies included in evidence grading process and guideline development

Gene, SNP(s)	Outcome	Studies
		AbuMweis et al. 2018 (24)
		Carvalho-Wells et al. 2012 (32)
		Caslake et al. 2008 (34)
		Dang et al. 2015 (36)
APOE: rs429358, rs7412 (Genotype)	TG	Jackson et al. 2012 (41)
		Olano-Martin et al. 2010 (49)
		Minihane et al. 2000 (48)
		Paschos et al. 2005 (52)
		Thifault et al. 2013 (59)
		Fallaize et al. 2016 (7)
		AbuMweis et al. 2018 (24)
		Carvalho-Wells et al. 2012 (32)
		Caslake et al. 2008 (34)
APOE: rs429358, rs7412	Total-c	Dang et al. 2015 (36)
		Jackson et al. 2012 (41)
		Olano-Martin et al. 2010 (49)
		Paschos et al. 2005 (52)
		Thifault et al. 2013 (59)
2		Binia et al. 2017 (27)
		Harsløf et al. 2014 (39)
<i>PPARy2</i> : rs1801282	LDL-c	Itariu et al. 2012 (40)
		Lindi et al. 2003 (43)
		Zheng et al. 2018 (66)
		Binia et al. 2017 (27)
		Harsløf et al. 2014 (39)
<i>PPARy2</i> : rs1801282	Total-c	Itariu et al. 2012 (40)
		Lindi et al. 2003 (43)
		Zheng et al. 2018 (66)
	TG	Binia et al. 2017 (27)
		Marsløf et al. 2014 (39)
<i>PPARy2</i> : rs1801282		Itariu et al. 2012 (40)
		Lindi et al. 2003 (43)
		Zheng et al. 2018 (66)
CD36: rs1761667	HDL_c	Dawczynski et al. 2013 (37)
CD50. 181701007	IIDL-C	Madden et al. 2008 (45)
CD36: rs1761667	TG	Dawczynski et al. 2013 (37)
CD50. 131701007	10	Madden et al. 2008 (45)
CD36: rs1049673	HDI -c	Dawczynski et al. 2013 (37)
		Madden et al. 2008 (45)
CD36: rs1527483	TG	Madden et al. 2008 (45)
	10	Zheng et al. 2018 (66)
		Dumont et al. 2011 (5)
		Dumont et al. 2018 (6)
	Total-c	Lu et al. 2010 (17)
<i>FADS</i> : rs174547*		Standl et al. 2012 (20)
		Alsaleh et al. 2014 (25)
		AbuMweis et al. 2018 (24)
		Roke et al. 2014 (55)
31-SNP Genetic Risk Score	TG	Vallée Marcotte et al. 2019 (67)
	10	Vallée Marcotte et al. 2020 (64)

Tremblay et al. Lipids in Health

and Disease (2015) 14:12

Study	Gene(s), SNP(s)
	<i>FADS2</i> , rs174599, rs174601, rs556656, rs11501631, rs74771917, rs3168072, rs182008711, rs73487492, rs174602, rs12577276
Chen et al. Int J Obes;43:808-820	<i>FADS3</i> , rs191972868, rs115905177, rs174635, rs174634, rs174454, rs12292968, rs174570, rs7930349, rs116672159, rs116139751, rs7942717, rs7115739, rs174450, rs74626285
(2019)	<i>RAB3IL1</i> , rs741887, rs2521561, rs2727258, rs2524288, rs117518711, rs74957100, rs77071864, rs78243280, rs741888, rs2524287, rs12420625, rs77229376, rs187943834, rs78156005, rs190738753, rs11230827, rs76133863, rs116985542, rs73491252
Cormier et al. 2012	<i>FADS</i> gene cluster rs174456, rs174627, rs482548, rs2072114, rs12807005, rs174448, rs2845573, rs7394871, rs7942717, rs74823126, rs174602, rs498793, rs7935946, rs174546, rs174570, rs174579, rs174611, rs174616, rs968567
	<i>IQCJ-SCHIP1</i> , rs7639707, rs62270407 NXPH1, rs61569932, rs1990554, rs6463808, rs6966968, rs28473103, rs28673635, rs12702829, rs78943417, rs293180, rs1837523
Vallée Marcotte et al. Am J Clin Nutr: 109:176–185 (2019)	<i>PHF17</i> , rs1216346, rs114348423, rs75007521
Ivau,109.170–105 (2017)	MYB, rs72560788, rs72974149, rs210962, rs6933462
	NELL1, rs79624996, rs1850875, rs78786240, rs117114492
	<i>SLIT2</i> , rs184945470, rs143662727, rs10009109, rs10009535, rs61790364, rs73241936, rs16869663, rs76015249
	<i>PLA2G2A</i> , rs876018, rs955587, rs3753827, rs11573156,

Supplementary Table 5: Additional list of gene(s) and SNP(s) tested in studies

rs11573142

PLA2G2C, rs6426616, rs12139100, rs10916716, rs2301475,

rs10916712, rs10916718

PLA2G2D, rs578459, rs16823482, rs3736979, rs584367,

rs12045689, rs679667, rs17354769, rs1091671

PLA2G2F, rs12065685, rs6657574, rs11582551, rs818571,

rs631134, rs11583904

	<i>PLA2G4A</i> , rs979924, rs2076075, rs3736741, rs10911949, rs10752979, rs1160719, rs10737277, rs12720702, rs7522213, rs7540602, rs10157410, rs12720497, rs4651331, rs1569480, rs10911935, rs12353944, rs11576330, rs10489410, rs10911946, rs3820185, rs12746200, rs11587539
	<i>PLA2G6</i> , rs5750546, rs132989, rs133016, rs2235346, rs2284060
	<i>PLA2G7</i> , rs12195701, rs12528807, rs1421368, rs1421378, rs17288905, rs1805017, rs1805018, rs6929105, rs7756935
	<i>GPAM</i> , rs17129561, rs10787428, rs2792751
	<i>AGPAT3</i> , rs999519, rs2838440, rs2838445, rs2838458, rs4818873, rs9978441, rs9982600, rs11700575, rs17004619, rs2838452, rs2838456, rs3788086, rs2838429
Ouellette et al. J Nutrigenet Nutrigenomics;6:268–280 (2013)	<i>AGPAT4</i> , rs746731, rs747866, rs1125640, rs2277092, rs2293286, rs3757025, rs3798225, rs3798920, rs3798924, rs3798929, rs3798943, rs3798945, rs3822853, rs3823058, rs4709501, rs6906489, rs6923835, rs7750302, rs7769321, rs9458172, rs10945713, rs10945719, rs11965825, rs12202278, rs17627837, rs12524665, rs1001422, rs6455711, rs9456642, rs2064721, rs3778227, rs3798922, rs11967514, rs7768457, rs12662114
Ouellette et al. Lipids in Health and Disease, 13:86 (2014)	<i>MGLL</i> , rs782440, rs16826716, rs6776142, rs9877819, rs555183, rs6780384, rs13076593, rs605188, rs6765071, rs782444, rs549662, rs3773155, rs541855, rs6439081, rs6439082, rs6787155, rs1466571, rs893294
Bouchard-Mercier et al. Genes Nutr 9:395 (2014)	<i>GCK</i> , rs2268573, rs2908297, rs2971676, rs758989, rs12673242, rs2908290, rs2284777, rs2300584, rs1990458, rs741038, rs1799884, rs2908277, rs3757838
	<i>RXRA</i> , rs10881576, rs7871655, rs12339187, rs11185660, rs11103473, rs10776909, rs12004589, rs3132301, rs1805352, rs3132294, rs1805343, rs1045570
	<i>CPT1A</i> , rs3019598, rs897048, rs7942147, rs4930248, rs11228364, rs11228368, rs10896371, rs1017640, rs613084
Bouchard-Mercier et al. Nutrients, 6, 1145-1163 (2014)	<i>ACADVL</i> , rs2017365
	ACAA2, rs529556, rs10502901, rs631536, rs1942421, rs2276168, rs7237253
	<i>ABCD2</i> , rs4072006, rs10877201, rs12582802, rs4294600, rs11172696, rs10877173, rs7133376, rs7968837
	ACOX1, rs10852766, rs3744033, rs12430, rs8065144,

BMJ Open

	rs11651351, rs3643, rs7213998, rs17583163
	ACAA1, rs2239621, rs156265, rs5875
	CETP, rs3764261, rs247616, rs7205804
	<i>LIPC</i> , rs1532085
	APOB, rs1367117
	ABCG5, ABCG8, rs4299376
	<i>TIMD4, HAVCR1</i> , rs6882076, rs1501908, rs1553318
Alfalah et al. Canas Nute 0:412	GCKR, rs1260326, rs780094
(2014)	TRIB1, rs2954022, rs10808546, rs2954029
	ANGPTL3, DOCK7, rs3850634, rs1167998, rs2131925
	<i>FADS1, FADS2, FADS3</i> , rs174550, rs174547, rs174546, rs174583
	<i>GALNT2</i> , rs4846914, rs1321257
	ABCA1, rs4149268
	APOE, APOC1, APOC2, rs439401
	<i>IQCJ-SCHIP1</i> , rs7639707, rs62270407
	NXPH1, rs61569932, rs1990554, rs6463808, rs6966968, rs28473103, rs28673635, rs12702829, rs78943417, rs29318 rs1837523
Vallée Marcotte et al. Genes &	<i>PHF17</i> , rs1216346, rs114348423, rs75007521
Nutrition 15:10 (2020)	<i>MYB</i> , rs72560788, rs72974149, rs210962, rs6933462
	NELL1, rs79624996, rs1850875, rs78786240, rs117114492
	<i>SLIT2</i> , rs184945470, rs143662727, rs10009109, rs10009535 rs61790364, rs73241936, rs16869663, rs76015249
Rudkowska et al. Journal of Lipid Research 55 (2014)	<i>IQCJ-SCHIP1, MYB, NELL1, NXPH1, PHF17, SLIT2,</i> rs2621308, rs1449009, rs61332355, rs2621309, rs2952724, rs2629715, rs1216352, rs1216365, rs931681, rs6920829, rs6463808, rs752088
Vallée Marcotte et al. J Nutrigenet Nutrigenomics;9 :1-11 (2016)	<i>IQCJ</i> , rs12497650, rs4501157, rs13091349, rs2044704, rs1062071, rs7634829, rs2621294, rs6800211, rs17782879, rs1868414, rs2595260, rs6763890, rs9827242, rs1449009, rs2621309, rs61332355

	1
	<i>NXPH1</i> , rs6956210, rs2107779, rs10273195, rs12216689, rs6963644, rs17150341, rs1013868, rs12537067, rs4318981, rs17153997, rs7801099, rs4725120, rs1859275, rs10238726, rs1012960, rs11767429, rs4333500, rs7793115, rs7799856, rs7806226, rs13221144, rs17406479, rs10486228, rs17154569, rs4141002, rs7805772, rs2349780, rs2107474, rs11769942, rs6952383, rs6974252, rs10265408, rs2189904, rs2057862
	PHF17, rs2217023, rs4975270, rs11722830, rs12505447, rs6534704, rs13148510, rs13143771, rs13142964
	<i>MYB</i> , rs9321493, rs11154794, rs210798, rs210936, rs7757388, rs210962, rs17639758, rs1013891, rs2179308
Vallée Marcotte et al. Nutrients; 11, 737 (2019)	 <i>IQCJ-SCHIP1</i>, rs12497650, rs4501157, rs13091349, rs2044704, rs1962071, rs7634829, rs2621294, rs6800211, rs17782879, rs1868414, rs2595260, rs6763890, rs1449009, rs61332355, rs12485627, rs2595242, rs7639937, rs9820807, rs1375409, rs1967363, rs9824310, rs11915303, rs9835214, rs11921343, rs13066560, rs1675497, rs9839862, rs16829875, rs17795566, rs9860588, rs16830408, rs17798579, rs2364930, rs9865997, rs2595241, rs7632574, rs2621308 <i>NXPH1</i>, rs6956210, rs2107779, rs10273195, rs12216689, rs6963644, rs17150341, rs1013868, rs4318981, rs17153997, rs7801099, rs4725120, rs10238726, rs1012960, rs11767429, rs4333500, rs7793115, rs7799856, rs7806226, rs13221144, rs17406479, rs10486228, rs17154569, rs4141002, rs7805772, rs2349780, rs2107474, rs11769942, rs6952383, rs6974252, rs10265408, rs2189904, rs2057862, rs6463808
	<i>PHF17</i> , rs2217023, rs4975270, rs11722830, rs12505447, rs6534704, rs13148510, rs13143771, rs13142964, rs1216352, rs1216365 <i>MYB</i> , rs9321493, rs11154794, rs210798, rs210936, rs7757388, rs17639758, rs1013891, rs2179308, rs6920829, <i>SLIT2</i> , rs2952724
	<i>NELL1</i> , rs752088

Gene, rs Number	Alleles ¹	Associated Points
<i>IQCJ-SCHIP1</i> , rs7639707	<u>A</u> /G	+1
<i>QCJ-SCHIP1</i> , rs62270407	C/ <u>T</u>	-1
NXPH1, rs61569932,	<u>G</u> /T	+1
NXPH1, rs1990554	<u>A</u> /C	+1
NXPH1, rs6463808	<u>A</u> /G	+1
NXPH1, rs6966968	A/ <u>G</u>	+1
NXPH1, rs28473103	A/ <u>G</u>	-1
NXPH1, rs28673635	<u>A</u> /G	+1
NXPH1, rs12702829	<u> </u>	+1
NXPH1, rs78943417	A/T	-1
NXPH1, rs293180	G/T	+1
NXPH1, rs1837523	<u>C</u> /T	-1
<i>PHF17</i> , rs1216346	<u>C</u> /T	+1
<i>PHF17</i> , rs114348423	<u>A</u> /G	+1
<i>PHF17</i> , rs75007521	<u>G</u> /T	-1
MYB, rs72560788	$\overline{C}/\underline{T}$	-1
MYB, rs72974149	A/ <u>G</u>	-1
MYB, rs210962	C/T	-1
MYB, rs6933462	C/G	+1
NELL1, rs79624996	Ā/G	+1
NELL1, rs1850875	C/T	+1
NELL1, rs78786240	C/T	-1
<i>NELL1</i> , rs117114492	G/T	+1
<i>SLIT2</i> , rs184945470	C/T	+1
SLIT2, rs143662727	A/G	-1
<i>SLIT2</i> , rs10009109	C/T	+1
<i>SLIT2</i> , rs10009535	<u>A/G</u>	+1
SLIT2, rs61790364	<u>A</u> /G	+1
<i>SLIT2</i> , rs73241936	<u> </u>	+1
<i>SLIT2</i> , rs16869663	A/G	+1
	A/G	+1

Supplementary Table 6: 31-SNP Nutri-GRS

1. Minor alleles are underlined

For individuals carrying one or two minor alleles, provide the associated number of points (either +1 or -1). For individuals homozygous for the major allele, provide 0 points. Count the overall number of points. Individuals with lower nutri-GRS are more likely to respond to approximately 3.0 g/day EPA+DHA for TG lowering.

References

- 1. Bouchard-Mercier A, Godin G, Lamarche B, Pérusse L, Vohl M-C. Effects of Peroxisome Proliferator-Activated Receptors, Dietary Fat Intakes and Gene–Diet Interactions on Peak Particle Diameters of Low-Density Lipoproteins. J Nutrigenet Nutrigenomics. 2011;4(1):36–48.
- Bodhini D, Gaal S, Shatwan I, Ramya K, Ellahi B, Surendran S, et al. Interaction between TCF7L2 polymorphism and dietary fat intake on high density lipoprotein cholesterol. Li S, editor. PLoS ONE. 2017 Nov 28;12(11):e0188382.
- 3. Chen Y, Estampador AC, Keller M, Poveda A, Dalla-Riva J, Johansson I, et al. The combined effects of FADS gene variation and dietary fats in obesity-related traits in a population from the far north of Sweden: the GLACIER Study. International Journal of Obesity. 2019 Apr;43(4):808–20.
- Ching YK, Chin YS, Appukutty M, Ramanchadran V, Yu CY, Ang GY, et al. Interaction of Dietary Linoleic Acid and α-Linolenic Acids with rs174547 in FADS1 Gene on Metabolic Syndrome Components among Vegetarians. Nutrients. 2019 Jul;11(7):1686.
- 5. Dumont J, Huybrechts I, Spinneker A, Gottrand F, Grammatikaki E, Bevilacqua N, et al. FADS1 genetic variability interacts with dietary α-linolenic acid intake to affect serum non-HDL-cholesterol concentrations in European adolescents. J Nutr. 2011 Jul;141(7):1247–53.
- 6. Dumont J, Goumidi L, Grenier-Boley B, Cottel D, Marécaux N, Montaye M, et al. Dietary linoleic acid interacts with FADS1 genetic variability to modulate HDL-cholesterol and obesity-related traits. Clinical Nutrition. 2018 Oct 1;37(5):1683–9.
- Fallaize R, Celis-Morales C, Macready AL, Marsaux CF, Forster H, O'Donovan C, et al. The effect of the apolipoprotein E genotype on response to personalized dietary advice intervention: findings from the Food4Me randomized controlled trial. Am J Clin Nutr. 2016 Sep;104(3):827–36.
- Fontaine-Bisson B, El-Sohemy A. Genetic polymorphisms of tumor necrosis factor-alpha modify the association between dietary polyunsaturated fatty acids and plasma high-density lipoproteincholesterol concentrations in a population of young adults. J Nutrigenet Nutrigenomics. 2008;1(5):215–23.
- Fontaine-Bisson B, Wolever TMS, Connelly PW, Corey PN, El-Sohemy A. NF-κB –94Ins/Del ATTG polymorphism modifies the association between dietary polyunsaturated fatty acids and HDLcholesterol in two distinct populations. Atherosclerosis. 2009 Jun;204(2):465–70.
- Hellstrand S, Sonestedt E, Ericson U, Gullberg B, Wirfält E, Hedblad B, et al. Intake levels of dietary long-chain PUFAs modify the association between genetic variation in FADS and LDL-C. J Lipid Res. 2012 Jun;53(6):1183–9.
- 11. Hosseini-Esfahani F, Mirmiran P, Koochakpoor G, Daneshpour MS, Guity K, Azizi F. Some dietary factors can modulate the effect of the zinc transporters 8 polymorphism on the risk of metabolic syndrome. Sci Rep. 2017 Dec;7(1):1649.

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
30 27	
20	
30	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
5/	
58	
59	
00	

- 12. Jang HB, Hwang J-Y, Park JE, Oh JH, Ahn Y, Kang J-H, et al. Intake levels of dietary polyunsaturated fatty acids modify the association between the genetic variation in *PCSK5* and HDL cholesterol. J Med Genet. 2014 Dec;51(12):782–8.
- Joffe YT, van der Merwe L, Carstens M, Collins M, Jennings C, Levitt NS, et al. Tumor Necrosis Factorα Gene -308 G/A Polymorphism Modulates the Relationship between Dietary Fat Intake, Serum Lipids, and Obesity Risk in Black South African Women. The Journal of Nutrition. 2010 May 1;140(5):901–7.
- Joffe YT, van der Merwe L, Evans J, Collins M, Lambert EV, September A, et al. The tumor necrosis factor-α gene -238 G>A polymorphism, dietary fat intake, obesity risk and serum lipid concentrations in black and white South African women. Eur J Clin Nutr. 2012 Dec;66(12):1295– 302.
- 15. Joffe YT, van der Merwe L, Evans J, Collins M, Lambert EV, September A, et al. Interleukin-6 Gene Polymorphisms, Dietary Fat Intake, Obesity and Serum Lipid Concentrations in Black and White South African Women. Nutrients. 2014 Jun 24;6(6):2436–65.
- 16. Lai Chao-Qiang, Corella Dolores, Demissie Serkalem, Cupples L. Adrienne, Adiconis Xian, Zhu Yueping, et al. Dietary Intake of n-6 Fatty Acids Modulates Effect of Apolipoprotein A5 Gene on Plasma Fasting Triglycerides, Remnant Lipoprotein Concentrations, and Lipoprotein Particle Size. Circulation. 2006 May 2;113(17):2062–70.
- 17. Lu Y, Feskens EJ, Dollé ME, Imholz S, Verschuren WM, Müller M, et al. Dietary n–3 and n–6 polyunsaturated fatty acid intake interacts with FADS1 genetic variation to affect total and HDL-cholesterol concentrations in the Doetinchem Cohort Study. The American Journal of Clinical Nutrition. 2010 Jul 1;92(1):258–65.
- 18. Nettleton JA, Volcik KA, Hoogeveen RC, Boerwinkle E. Carbohydrate intake modifies associations between ANGPTL4[E40K] genotype and HDL-cholesterol concentrations in White men from the Atherosclerosis Risk in Communities (ARIC) study. Atherosclerosis. 2009 Mar;203(1):214–20.
- 19. Richardson K, Louie-Gao Q, Arnett DK, Parnell LD, Lai C-Q, Davalos A, et al. The PLIN4 Variant rs8887 Modulates Obesity Related Phenotypes in Humans through Creation of a Novel miR-522 Seed Site. PLOS ONE. 2011 Apr 20;6(4):e17944.
- 20. Standl M, Lattka E, Stach B, Koletzko S, Bauer C-P, von Berg A, et al. FADS1 FADS2 Gene Cluster, PUFA Intake and Blood Lipids in Children: Results from the GINIplus and LISAplus Studies. PLoS One [Internet]. 2012 May 21 [cited 2020 Aug 3];7(5). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3357401/
- 21. Tai ES, Corella D, Demissie S, Cupples LA, Coltell O, Schaefer EJ, et al. Polyunsaturated Fatty Acids Interact with the PPARA-L162V Polymorphism to Affect Plasma Triglyceride and Apolipoprotein C-III Concentrations in the Framingham Heart Study. J Nutr. 2005 Mar 1;135(3):397–403.
- 22. Volcik KA, Nettleton JA, Ballantyne CM, Boerwinkle E. Peroxisome proliferator—activated receptor alpha genetic variation interacts with n-6 and long-chain n-3 fatty acid intake to affect total cholesterol and LDL-cholesterol concentrations in the Atherosclerosis Risk in Communities Study. Am J Clin Nutr. 2008;87:1926–31.

23. Warodomwichit D, Arnett DK, Kabagambe EK, Tsai MY, Hixson JE, Straka RJ, et al. Polyunsaturated Fatty Acids Modulate the Effect of TCF7L2 Gene Variants on Postprandial Lipemia. The Journal of Nutrition. 2009 Mar 1;139(3):439–46.

- 24. AbuMweis SS, Panchal SK, Jones PJH. Triacylglycerol-Lowering Effect of Docosahexaenoic Acid Is Not Influenced by Single-Nucleotide Polymorphisms Involved in Lipid Metabolism in Humans. Lipids. 2018;53(9):897–908.
- 25. AlSaleh A, Maniou Z, Lewis FJ, Hall WL, Sanders TAB, O'Dell SD. Genetic predisposition scores for dyslipidaemia influence plasma lipid concentrations at baseline, but not the changes after controlled intake of n-3 polyunsaturated fatty acids. Genes Nutr. 2014 Jul;9(4):412.
- 26. Armstrong P, Kelley DS, Newman JW, Staggers FE, Hartiala J, Allayee H, et al. Arachidonate 5-Lipoxygenase Gene Variants Affect Response to Fish Oil Supplementation by Healthy African Americans1234. J Nutr. 2012 Aug;142(8):1417–28.
- Binia A, Vargas-Martínez C, Ancira-Moreno M, Gosoniu LM, Montoliu I, Gámez-Valdez E, et al. Improvement of cardiometabolic markers after fish oil intervention in young Mexican adults and the role of PPARα L162V and PPARγ2 P12A. The Journal of Nutritional Biochemistry. 2017 May;43:98–106.
- Bouchard-Mercier A, Rudkowska I, Lemieux S, Couture P, Vohl M-C. Polymorphisms, de novo lipogenesis, and plasma triglyceride response following fish oil supplementation. J Lipid Res. 2013 Oct;54(10):2866–73.
- Bouchard-Mercier A, Rudkowska I, Lemieux S, Couture P, Vohl M-C. Polymorphisms in Genes Involved in Fatty Acid β-Oxidation Interact with Dietary Fat Intakes to Modulate the Plasma TG Response to a Fish Oil Supplementation. Nutrients. 2014 Mar 18;6(3):1145–63.
- 30. Bouchard-Mercier A, Rudkowska I, Lemieux S, Couture P, Vohl M-C. An interaction effect between glucokinase gene variation and carbohydrate intakes modulates the plasma triglyceride response to a fish oil supplementation. Genes Nutr. 2014 May;9(3):395.
- 31. Caron-Dorval D, Paquet P, Paradis A-M, Rudkowska I, Lemieux S, Couture P, et al. Effect of the PPAR-Alpha L162V Polymorphism on the Cardiovascular Disease Risk Factor in Response to n–3 Polyunsaturated Fatty Acids. J Nutrigenet Nutrigenomics. 2008;1(4):205–12.
- 32. Carvalho-Wells AL, Jackson KG, Lockyer S, Lovegrove JA, Minihane AM. APOE genotype influences triglyceride and C-reactive protein responses to altered dietary fat intake in UK adults. The American Journal of Clinical Nutrition. 2012 Dec 1;96(6):1447–53.
- Lockyer S, Tzanetou M, Carvalho-Wells AL, Jackson KG, Minihane AM, Lovegrove JA. SATgenε dietary model to implement diets of differing fat composition in prospectively genotyped groups (apoE) using commercially available foods. British Journal of Nutrition. 2012 Nov;108(9):1705–13.
- 34. Caslake MJ, Miles EA, Kofler BM, Lietz G, Curtis P, Armah CK, et al. Effect of sex and genotype on cardiovascular biomarker response to fish oils: the FINGEN Study. The American Journal of Clinical Nutrition. 2008 Sep 1;88(3):618–29.

2		
3	35.	Cormier H, Rudkowska I, Paradis A-M, Thifault E, Garneau V, Lemieux S, et al. Association between
4		Polymorphisms in the Fatty Acid Desaturase Gene Cluster and the Plasma Triacylglycerol Response
5		to an n-3 PLIEA Supplementation Nutrients $2012 \text{ Aug}/(8) \cdot 1026-41$
6		to an in 5 to A supplementation. Nutrients: 2012 Aug , $+(0)$. 1020 $+1$.
7	26	Dang TM, Conway V, Dlourdo M, Disruptod fatty acid distribution in HDL and LDL according to
8	50.	Dang TW, Conway V, Flourde W. Disrupted fatty acid distribution in FDE and EDE according to
9		apolipoprotein E allele. Nutrition. 2015 Jun 1;31(6):807–12.
10		
11	37.	Dawczynski C, Massey KA, Ness C, Kiehntopf M, Stepanow S, Platzer M, et al. Randomized placebo-
12		controlled intervention with n-3 LC-PUFA-supplemented yoghurt: Effects on circulating eicosanoids
13		and cardiovascular risk factors. Clinical Nutrition. 2013 Oct 1;32(5):686–96.
14		
15	38.	Ferguson JF, Phillips CM, McMonagle J, Pérez-Martínez P, Shaw DI, Lovegrove JA, et al. NOS3 gene
16		polymorphisms are associated with risk markers of cardiovascular disease, and interact with
17		omega-3 polyunsaturated fatty acids. Atherosclerosis. 2010 Aug 1:211(2):539–44.
18		
19	29	Harsløf LBS, Damsgaard CT, Hellgren LL, Andersen AD, Vogel LL Lauritzen L. Effects on metabolic
20	55.	markers are modified by PDAPC2 and COV2 polymorphisms in infants randomized to fish oil. Genes
21		Nutre 2014 May 0(2):200
22		Nutr. 2014 May;9(3):396.
23		
24	40.	Itariu BK, Zeyda M, Hochbrugger EE, Neuhofer A, Prager G, Schindler K, et al. Long-chain n–3 PUFAs
25		reduce adipose tissue and systemic inflammation in severely obese nondiabetic patients: a
26		randomized controlled trial. The American Journal of Clinical Nutrition. 2012 Nov 1;96(5):1137–49.
27		
28	41.	Jackson KG, Lockyer S, Carvalho-Wells AL, Williams CM, Minihane AM, Lovegrove JA. Dietary fat
29		manipulation has a greater impact on postprandial lipid metabolism than the apolipoprotein E
30		(epsilon) genotype–insights from the SATgene study. Molecular Nutrition & Food Research.
31		2012.56(12).1761–70
32		2012,50(12).1701 70.
33	12	Jackson KG Lockver S. Carvalho-Wells AL Williams CM Minihane AM Lovegrove IA Anolinoprotein
34	42.	Jackson KG, Lockyer S, Carvano-Weils AL, Williams Civi, Williams AN, Lovegrove JA. Apolipoprotein
35		E (epsilon) genotype has a greater impact on apoB-48 than apoB-100 responses to dietary rat
30		manipulation—insights from the SATgene study. Molecular Nutrition & Food Research.
3/		2017;61(4):1600688.
38		
39	43.	Lindi V, Schwab U, Louheranta A, Laakso M, Vessby B, Hermansen K, et al. Impact of the Pro12Ala
40		polymorphism of the PPAR-γ2 gene on serum triacylglycerol response to n–3 fatty acid
41		supplementation. Molecular Genetics and Metabolism. 2003 May;79(1):52–60.
42		
45	44.	Lindman AS, Pedersen JI, Hjerkinn EM, Arnesen H, Veierød MB, Ellingsen I, et al. The effects of long-
44		term diet and omega-3 fatty acid supplementation on coagulation factor VII and serum
45		nhospholinids with special emphasis on the R3530 polymorphism of the EV/II gene. Thromb
40		Hogmost 2004 Juni01/6/:1007 104
47		Haemost. 2004 Juli,91(0).1097–104.
40	4 -	Madde L Course L De course A Destructure C Colde D stat Del se seletore in the CD2C
49 50	45.	Madden J, Carrero J, Brunner A, Dastur N, Snearman C, Calder P, et al. Polymorphisms in the CD36
51		gene modulate the ability of fish oil supplements to lower fasting plasma triacyl glycerol and raise
52		HDL cholesterol concentrations in healthy middle-aged men. Prostaglandins, Leukotrienes and
52		Essential Fatty Acids. 2008;78:327–35.
54		
55	46.	Markovic O, O'Reilly G, Fussell HelenM, Turner SJ, Calder PC, Howell WM, et al. Role of single
56		nucleotide polymorphisms of pro-inflammatory cytokine genes in the relationship between serum
57		· · · · · · · · · ·
58		
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

lipids and inflammatory parameters, and the lipid-lowering effect of fish oil in healthy males. Clinical Nutrition. 2004 Oct 1;23(5):1084–95.

- 47. McColley SP, Georgopoulos A, Young LR, Kurzer MS, Redmon JB, Raatz SK. A high-fat diet and the threonine-encoding allele (Thr54) polymorphism of fatty acid–binding protein 2 reduce plasma triglyceride–rich lipoproteins. Nutrition Research. 2011 Jul 1;31(7):503–8.
- Minihane Anne M., Khan Syrah, Leigh-Firbank Elizabeth C., Talmud Philippa, Wright John W., Murphy Margaret C., et al. ApoE Polymorphism and Fish Oil Supplementation in Subjects With an Atherogenic Lipoprotein Phenotype. Arteriosclerosis, Thrombosis, and Vascular Biology. 2000 Aug 1;20(8):1990–7.
- 49. Olano-Martin E, Anil E, Caslake MJ, Packard CJ, Bedford D, Stewart G, et al. Contribution of apolipoprotein E genotype and docosahexaenoic acid to the LDL-cholesterol response to fish oil. Atherosclerosis. 2010 Mar;209(1):104–10.
- 50. Ouellette C, Cormier H, Rudkowska I, Guénard F, Lemieux S, Couture P, et al. Polymorphisms in Genes Involved in the Triglyceride Synthesis Pathway and Marine Omega-3 Polyunsaturated Fatty Acid Supplementation Modulate Plasma Triglyceride Levels. LFG. 2013;6(4–5):268–80.
- 51. Ouellette C, Rudkowska I, Lemieux S, Lamarche B, Couture P, Vohl M-C. Gene-diet interactions with polymorphisms of the MGLL gene on plasma low-density lipoprotein cholesterol and size following an omega-3 polyunsaturated fatty acid supplementation: a clinical trial. Lipids Health Dis. 2014 May 24;13:86.
- 52. Paschos GK, Yiannakouris N, Rallidis LS, Davies I, Griffin BA, Panagiotakos DB, et al. Apolipoprotein E Genotype in Dyslipidemic Patients and Response of Blood Lipids and Inflammatory Markers to Alpha-Linolenic Acid. Angiology. 2005 Jan 1;56(1):49–60.
- 53. Pishva H, Mahboob S-A, Mehdipour P, Eshraghian MR, Mohammadi-Asl J, Hosseini S, et al. Fatty acid–binding protein-2 genotype influences lipid and lipoprotein response to eicosapentaenoic acid supplementation in hypertriglyceridemic subjects. Nutrition. 2010 Nov 1;26(11):1117–21.
- 54. Pishva H, Mehdipour P, Eshraghian MR, Mahboob S-A. Effects of Eicosapentaenoic Acid Supplementation on Lipid and Lipoprotein Profile in Hypertriglyceridemic Subjects with Different Proliferator-activated Receptor Alpha Genotypes. Int J Prev Med. 2014 Mar;5(3):333–40.
- 55. Roke K, Mutch DM. The Role of FADS1/2 Polymorphisms on Cardiometabolic Markers and Fatty Acid Profiles in Young Adults Consuming Fish Oil Supplements. Nutrients. 2014 Jun 16;6(6):2290–304.
- 56. Rudkowska I, Julien P, Couture P, Lemieux S, Tchernof A, Barbier O, et al. Cardiometabolic risk factors are influenced by Stearoyl-CoA Desaturase (SCD) –1 gene polymorphisms and n-3 polyunsaturated fatty acid supplementation. Molecular Nutrition & Food Research. 2014;58(5):1079–86.
- Rudkowska I, Guénard F, Julien P, Couture P, Lemieux S, Barbier O, et al. Genome-wide association study of the plasma triglyceride response to an n-3 polyunsaturated fatty acid supplementation. J Lipid Res. 2014 Jul;55(7):1245–53.

1 2	
2 3 4 5 6	58. Scorletti E, West AL, Bhatia L, Hoile SP, McCormick KG, Burdge GC, et al. Treating liver fat and serum triglyceride levels in NAFLD, effects of PNPLA3 and TM6SF2 genotypes: Results from the WELCOME trial. Journal of Hepatology. 2015 Dec 1;63(6):1476–83.
7 8 9 10	59. Thifault E, Cormier H, Bouchard-Mercier A, Rudkowska I, Paradis A-M, Garneau V, et al. Effects of Age, Sex, Body Mass Index and APOE Genotype on Cardiovascular Biomarker Response to an n-3 Polyunsaturated Fatty Acid Supplementation. LFG. 2013;6(2):73–82.
12 13 14 15	60. Tremblay BL, Cormier H, Rudkowska I, Lemieux S, Couture P, Vohl M-C. Association between polymorphisms in phospholipase A2 genes and the plasma triglyceride response to an n-3 PUFA supplementation: a clinical trial. Lipids in Health and Disease. 2015 Feb 21;14(1):12.
16 17 18 19	61. Bastien Vallée Marcotte, Cormier H, Guénard F, Rudkowska I, Lemieux S, Couture P, et al. Novel Genetic Loci Associated with the Plasma Triglyceride Response to an Omega-3 Fatty Acid Supplementation. J Nutigenet Nutrigenomics. 2016;9:1–11.
20 21 22 23 24 25	62. Vallée Marcotte B, Guénard F, Marquis J, Charpagne A, Vadillo-Ortega F, Tejero ME, et al. Genetic Risk Score Predictive of the Plasma Triglyceride Response to an Omega-3 Fatty Acid Supplementation in a Mexican Population. Nutrients [Internet]. 2019 Mar 29 [cited 2020 Aug 3];11(4). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6521301/
26 27 28 29	63. Vallée Marcotte B, Guénard F, Lemiux S, Couture P, Rudkowska I, Calder PC, et al. Fine mapping of genome-wide association study signals to identify genetic markers of the plasma triglyceride response to an omega-3 fatty acid supplementation.
30 31 32 33 34	64. Vallée Marcotte B, Allaire J, Guénard F, de Toro-Martín J, Couture P, Lamarche B, et al. Genetic risk prediction of the plasma triglyceride response to independent supplementations with eicosapentaenoic and docosahexaenoic acids: the ComparED Study. Genes Nutr. 2020 Dec;15(1):10.
36 37 38 39	65. Wu S-Y, Mayneris-Perxachs J, Lovegrove JA, Todd S, Yaqoob P. Fish-oil supplementation alters numbers of circulating endothelial progenitor cells and microparticles independently of eNOS genotype. The American Journal of Clinical Nutrition. 2014 Nov 1;100(5):1232–43.
40 41 42 43	66. Zheng J-S, Chen J, Wang L, Yang H, Fang L, Yu Y, et al. Replication of a Gene-Diet Interaction at CD36, NOS3 and PPARG in Response to Omega-3 Fatty Acid Supplements on Blood Lipids: A Double-Blind Randomized Controlled Trial. EBioMedicine. 2018 Apr 17;31:150–6.
44 45 46 47 48 49	67. Vallée Marcotte B, Guénard F, Lemieux S, Couture P, Rudkowska I, Calder PC, et al. Fine mapping of genome-wide association study signals to identify genetic markers of the plasma triglyceride response to an omega-3 fatty acid supplementation. The American Journal of Clinical Nutrition. 2019 Jan 1;109(1):176–85.
50 51 52 53 54 55 56	
57 58 59 60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
~~	

PRISMA 2009 Checklist

Section/topic	#	Checklist item	Reported on page #
TITLE			
Title	1	Identify the report as a systematic review, meta-analysis, or both.	1
ABSTRACT			
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	2
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of what is already known.	3-5
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	5-6
METHODS			
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	5
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	5-6
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	5, 7
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	Suppl. T1
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	6-7
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	6-7
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	5-7
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	8-9
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	9

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	ERISMAN
2	
3	
4	[
5	Synthesis of
6 7	
, 8	
9	
10	
11	Section/to
12	
13 14	Risk of blas
15	
16	Additional a
17	
18	RESULTS
19 20	Study select
20 21	-
22	Study chara
23	5
24	Dick of biog
25	RISK OF DIAS
20 27	Results of ir
28	
29	Synthesis of
30	Risk of bias
31	
32 22	Additional a
34	
35	DISCUSSI
36	Summary of
37	-
38	
39 40	Linitations
41	Conclusions
42	Conclusions
43	FUNDING
44	
45 46	
47	

PRISMA 2009 Checklist

ynthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I ²) for each meta-analysis.	NA (meta- analysis not
			appropriate)

		Page 1 of 2		
Section/topic	#	Checklist item	Reported on page #	
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	Table 4	
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	11-12	
RESULTS				
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	Figure 1	
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	Tables 1 and 2	
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	Table 4	
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	Tables 1 and 2	
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	NA	
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	Table 4	
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	11-12, Table 3	
DISCUSSION				
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	Table 3, 34-39	
imitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	45-46	
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	40-47	

BMJ Open

Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the

systematic review.

 Funding

, terns for Systet. For more informa. From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(7): e1000097. doi:10.1371/journal.pmed1000097 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml