Supplementary Online Content

Gasperetti A, Cappelletto C, Carrick R, et al. Association of premature ventricular contraction burden on serial Holter monitoring with arrhythmic risk in patients with arrhythmogenic right ventricular cardiomyopathy. *JAMA Cardiol*. Published online February 23, 2022. doi:10.1001/jamacardio.2021.6016

eMethods. Final Model Performance

eTable 1. Characteristics at Disease Diagnosis by Presence of PVC Spikes

eTable 2. Characteristics at Disease Diagnosis by Presence of Ventricular Arrhythmia Events During Follow-up

eTable 3. Association of PVC on Holter Finding With Occurrence of a Sustained Ventricular Arrhythmia Event

eTable 4. Association of PVC Spike on Holter Finding With Occurrence of a Sustained Ventricular Arrhythmia Event

eTable 5. Association of NSVT on Holter Finding With Occurrence of a Sustained Ventricular Arrhythmia Event

eTable 6. Association of Use of β -Blockers During Holter Examination With Occurrence of a Sustained Ventricular Arrhythmia Event

eTable 7. Association of Use of Class III AADs During Holter Examination With Occurrence of a Sustained Ventricular Arrhythmia Event

eTable 8. Association of Male Sex at Holter Examination With Occurrence of a Sustained Ventricular Arrhythmia Event

eTable 9. Results of Final Model

eTable 10. Final Model in Primary Prevention Patients With ARVC (n = 122)

eTable 11. Final Model in Secondary Prevention Patients With ARVC (n = 47)

eTable 12. Final Model Performance in Patients With ARVC and No ICD at Baseline (n = 96)

eTable 13. Final Model Performance in Patients With ARVC Implanted With ICD at Baseline (n = 73)

eFigure 1. PVC Burden Modification During Follow-up Stratifying Patients by β -Blocker Therapy

eFigure 2. Calibration Plots for Final Model

This supplementary material has been provided by the authors to give readers additional information about their work.

eMethods. Final Model Performance

The following tables reports the final model performance if the following definition of a PVC spike is used:

- a) an absolute increase in PVC burden \geq 5000 PVCs and/or
- b) a relative % increase ≥50% from the preceding Holter, with an absolute increase of at least 1000 PVCs.

Holter predict	tors of an SVA event in the up	pcoming 12 months	
	Fixed Effects		
	OR	C.I.	р
24-h PVC burden (log)	1.532	[1.128-2.082]	0.006
Presence of a PVC Spike	5.343	[2.387–11.962]	<0.001
Presence of nsVT	2.223	[1.103-4.479]	0.025
	Random Effects		
	Estimate	Standard Error	C.I.
Patient	0.889	0.343	[0.418–1.893]

C-statistic: 0.889 [0.850-0.927]

The following tables reports the final model performance if the following definition of a PVC spike is used:

- a) an absolute increase in PVC burden ≥5000 PVCs and/or
- b) a relative % increase ≥100% from the preceding Holter, with an absolute increase of at least 1000 PVCs.

Holter predic	ctors of an SVA event in the up	coming 12 months	
	Fixed Effects		
	OR	C.I.	р
24-h PVC burden (log)	1.557	[1.151-2.106]	0.004
Presence of a PVC Spike	5.189	[2.352–11.447]	<0.001
Presence of nsVT	2.213	[1.108-4.422]	0.024
	Random Effects		
	Estimate	Standard Error	C.I.
Patient	0.837	0.342	[0.376–1.864]

Harrel's C: 0.880 [0.840-0.920]

eTable 1. Characteristics at Disease Diagnosis by Presence of PVC Spikes

	ARVC patients with	ARVC patients without	р
	PVC spikes (n = 67)	PVC spikes (n = 102)	
Age (years), mean±s.d.	37.5±14.9	35.5±15.0	0.381
Male sex, n (%)	37 (55.2)	58 (56.9)	0.834
Proband Status, n (%)	54 (80.6)	74 (72.6)	0.233
Pathogenic/Likely Pathogenic Variant, n (%)	33 (49.2)	52 (51.0)	0.826
Recent cardiac syncope, n (%)	13 (19.4)	11 (10.8)	0.116
TWI, median [IQR]	3 [2–4]	3 [2–4]	0.755
nsVT at diagnosis, n (%)	29 (43.9)	32 (32.0)	0.118
24-h PVC count, median [IQR]	3851 [1241–9979]	1553 [366–7000]	0.011
History of SVT at diagnosis, n (%)	19 (28.4)	28 (27.5)	0.898
RVEF at CMR (%), mean±s.d.	44.9±12.7	46.8±11.8	0.338

eTable 2. Characteristics at Disease Diagnosis by Presence of Ventricular Arrhythmia Events During Follow-up

Characteristics at Disease Diagnosis				
	ARVC patients with	ARVC patients without VA	р	
	VA events (n = 57)	event (n = 112)		
Age (years), mean±s.d.	34.0±14.4	37.4±15.1	0.166	
Male sex, n (%)	35 (51.4)	60 (53.6)	0.332	
Proband Status, n (%)	49 (85.9)	79 (70.5)	0.027	
Recent cardiac syncope, n (%)	11 (9.8)	13 (22.8)	0.022	
TWI, median [IQR]	4 [3 – 5]	3 [2 – 4]	0.002	
nsVT at diagnosis, n (%)	27 (48.2)	34 (30.9)	0.029	
24-h PVC count, median [IQR]	5000 [2240 - 8000]	1437 [333 – 6047]	<0.001	
History of SVT at diagnosis, n (%)	20 (35.1)	27 (24.1)	0.132	
RVEF at CMR (%), mean±s.d.	43.7±10.2	47.2±12.9	0.102	
LVEF at CMR (%), mean±s.d.	53.4±8.1	55.1±8.2	0.247	

eTable 3. Association of PVC on Holter Finding With Occurrence of a Sustained Ventricular Arrhythmia Event

Per Holter Event Predictor					
Fixed Effects					
	OR	C.I.	р		
PVC at Holter (log)	2.189	[1.636-2.929]	<0.001		
	Random Effects				
	Estimate	Standard Error	C.I.		
Patient	0.760	0.343	[0.313–1.842]		

eTable 4. Association of PVC Spike on Holter Finding With Occurrence of a Sustained Ventricular Arrhythmia Event

	Per Holter Event Predictor	r			
Fixed Effects					
	OR	C.I.	р		
PVC Spike	13.071	[6.036-28.307]	<0.001		
	Random Effects				
	Estimate	Standard Error	C.I.		
Patient	0.890	0.350	[0.413–1.919]		

eTable 5. Association of NSVT on Holter Finding With Occurrence of a Sustained Ventricular Arrhythmia Event

	Per Holter Event Predicto	or			
	Fixed Effects				
	OR	C.I.	р		
NSVT	4.110	[2.333-7.240]	<0.001		
	Random Effects				
	Estimate	Standard Error	C.I.		
Patient	0.441	0.420	[0.068-2.852]		

eTable 6. Association of Use of β -Blockers During Holter Examination With Occurrence of a Sustained Ventricular Arrhythmia Event

Per Holter Event Predictor					
Fixed Effects					
	OR	C.I.	р		
Use of BB-blockers	1.010	[0.574–1.773]	0.973		
	Random Effects				
	Estimate	Standard Error	C.I.		
Patient	0.570	0.358	[0.166–1.952]		

eTable 7. Association of Use of Class III AADs During Holter Examination With Occurrence of a Sustained Ventricular Arrhythmia Event

Per Holter Event Predictor				
Fixed Effects				
	OR	C.I.	р	
Use of ClassIII AADs	1.191	[0.630-2.253]	0.590	
Random Effects				
	Estimate	Standard Error	C.I.	
Patient	0.554	0.365	[0.153-2.012]	

eTable 8. Association of Male Sex at Holter Examination With Occurrence of a Sustained Ventricular Arrhythmia Event

	Per Holter Event Predicto	or	
	Fixed Effects		
	OR	C.I.	р
Male sex	1.042	[0.585–1.856]	0.888
	Random Effects		
	Estimate	Standard Error	C.I.
Patient	0.574	0.357	[0.169–1.942]

eTable 9. Results of Final Model

Holter predictors of an SVA event in the upcoming 12 months				
Fixed Effects				
	OR	C.I.	р	
24-h PVC burden (log)	1.498	[1.104–2.034]	0.010	
Presence of a PVC spike	6.196	[2.743–13.993]	<0.001	
Presence of NSVT	2.289	[1.100-4.514]	0.026	
	Random Effects			
	Estimate	Standard Error	C.I.	
Patient	0.882	0.347	[0.408–1.907]	

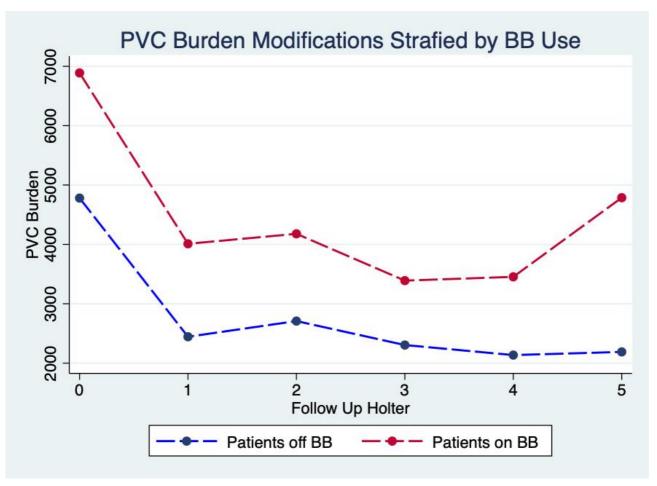
Holter predic	tors of an SVA event in the u	pcoming 12 months	
	Fixed Effects		
	OR	C.I.	р
24-h PVC burden (log)	1.388	[0.955-2.017]	0.086
Presence of a PVC Spike	8.276	[2.663-25.715]	<0.001
Presence of nsVT	2.297	[0.907-5.818]	0.080
	Random Effects		
	Estimate	Standard Error	C.I.
Patient	0.893	0.499	[0.299–2.669]

eTable 10. Final Model in Primary Prevention Patients With ARVC (n = 122)

eTable 11. Final Model in Secondary Prevention Patients With ARVC (n = 47)

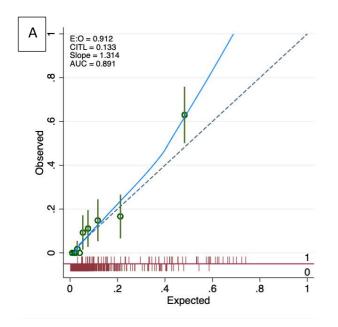
Holter predictors of an SVA event in the upcoming 12 months					
Fixed Effects					
	OR	C.I.	р		
24-h PVC burden (log)	1.673	[0.986–2.839]	0.056		
Presence of a PVC Spike	4.150	[1.159–14.863]	0.029		
Presence of nsVT	2.171	[0.712-6.621]	0.173		
Random Effects					
	Estimate	Standard Error	C.I.		
Patient	0.884	0.507	[0.287-2.718]		

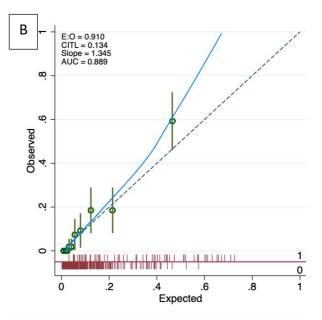
eTable 12. Final Model Performance in Patients With ARVC and No ICD at Baseline (n = 96)

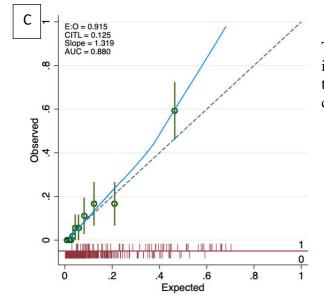

Holter predictors of an SVA event in the upcoming 12 months					
Fixed Effects					
	OR	C.I.	р		
24-h PVC burden (log)	1.504	[0.954-2.375]	0.079		
Presence of a PVC Spike	7.835	[2.127-28.858]	0.002		
Presence of nsVT	2.191	[0.692-6.940]	0.182		
Random Effects					
	Estimate	Standard Error	C.I.		
Patient	0.689	0.436	[0.081–5.834]		

eTable 13. Final Model Performance in Patients With ARVC Implanted With ICD at Baseline (n = 73)

Holter predictors of an SVA event in the upcoming 12 months Fixed Effects					
24-h PVC burden (log)	1.600	[1.033-2.479]	0.035		
Presence of a PVC Spike	4.472	[1.527–13.099]	<0.001		
Presence of nsVT	2.056	[0.835-5.059]	0.117		
Random Effects					
	Estimate	Standard Error	C.I.		
Patient	0.806	0.436	[0.279–2.326]		


eFigure 1. PVC Burden Modification During Follow-up Stratifying Patients by β-Blocker Therapy


No significant difference in the trend of reduction of the PVC burden was observed between patients on and off beta-blocker therapy.



eFigure 2. Calibration Plots for Final Model

- A) Final model, using the PVC spike definition from the main manuscript;
- B) Final model, using a PVC spike definition with 50% increase as % increase threshold;
- C) Final model, using a PVC spike definition with 100% increase as % increase threshold;

The overall results of the 3 model are comparable, both in overall significance and in with the model included in the manuscript using a 75% increase as a percentage cut-off presenting a slightly superior discrimination.