
Supplementary Information

Supplementary Note 1
The image analysis algorithm has been implemented in C++ and uses Eigen (1) for the lin-
ear algebra routines, libigl (2) for basic geometry processing, and PolyFEM for finite element
simulation (3). The reference implementation used to generate the results is attached to the
submission and will be released as an open-source project.

The input of our algorithm is a chronological sequence of images I(x, y, z, t) acquired by
confocal microscopy containing, for each timestamp, a stack of 3D gray-scale images revealing
the location of the bleached pattern. The output are time dependent traction stresses σ sampled
at the nodes of a triangular mesh representing the bleached pattern. An intermediate result of the
algorithm is a sequence of time dependent positions for each vertex V t of the mesh with faces
F , which are used to compute the traction stresses and, optionally, displacement and strains in
the BM.

The algorithm (Algorithm 1) has three main components: (1) detection of the markers and
lattice mesh generation for the first frame (line 1), (2) mesh warping to fit moved markers on the
next time frame (line 18), and (3) volumetric finite element (FE) analysis to compute traction
forces (line 26).

At a high level, our algorithm is based on a numerical method designed to find the location
and size of a marker by identifying cylinder-like structures θ parametrized by a position θxyz and
a radius θr (the height of the cylinder is fixed to 1.0 micrometer) in a 3D image volume (Figure
1). Our algorithm requires an initial position and radius which we sample with nx, ny, nz, and
nr uniform samples (line 5). In our implementation, by default, we sample 10000 xy locations
for every z-slice, and for each location we evaluate the energy for θr = 3, 4, 5, 6 pixels. The
initial uniform sampling narrows down the possible locations for θ; to further refine the position
and radius we minimize an energy function using a quasi-Newton method (line 8, Section 2).
Note that, since the quasi-Newton method requires the image to be differentiable; in the first
step we fit a quadratic B-spline to every frame’s 3D image (lines 2 and 19, Section 1), which we
use as a proxy for the original image data. We then cluster the optimized cylinders Θ (line 12,
Section 3): the clustered cylinders will correspond to regions with a high density of candidate
positions. Since the optimization (line 8, Section 2) refines only the xy-location and the radius,
we run another optimization to find the optimal z-location of every clustered cylinder (line 13).
Finally, we fit a regular lattice mesh to the detected markers (line 14) using an iterative closest
point algorithm. The result is the optimal cylinders Θ and a regular lattice F connecting them.

We track and refine the previously optimized cylinder over different time frames. To esti-
mate the new location of the cylinders, we use optical flow (line 20, Section 5) to avoid repeating
the computationally expensive uniform sampling in the first frame. To further increase the ac-
curacy of the result estimated by optical flow, we optimize the moved cylinder (line 22). The
result is a new cylinder set Θ optimized for the new time frame. Note that we do not need to
compute a new lattice as all frames share the same one. This procedure is repeated for all the

1

Algorithm 1 Overview of our algorithm to compute traction stresses.
1: function INITIALIZATION(I(x, y, z, t))
2: S0(x, y, z)← FIT SPLINE(I(x, y, z, 0))
3: w, h, d← IMAGE SIZE(I)
4: Θ← ∅
5: for x ∈ [0, . . . , nx], y ∈ [0, . . . , ny], z ∈ [0, . . . , nz], r ∈ [0, . . . , nr] do
6: θ ← (w/x, h/y, d/z, 3 + 4/r)
7: if E(θ, S0) < εg then
8: θ ← FIT CYLINDER XYR(θ, S0)
9: Θ← Θ ∪ θ

10: end if
11: end for
12: Θ← CLUSTER(Θ)
13: Θ← FIT CYLINDER(Θ, S0)
14: F ← MESH ICP(Θxyz)
15: return Θ, F
16: end function
17:
18: function NEXT FRAME(I(x, y, z, t),Θt−1, t)
19: St(x, y, z)← FIT SPLINE(I(x, y, z, t))
20: d← OPTICAL FLOW(I(x, y, z, t− 1), I(x, y, z, t))
21: Θ← (Θt−1

xyz + d, Θt−1
r)

22: Θ← FIT CYLINDER(Θ, St)
23: return Θ
24: end function
25:
26: function ANALYSIS(I(x, y, z, t), R, rx, ry, rz)
27: Θ0, F ← INITIALIZATION(I(x, y, z, t))
28: V 0 ← Θ0

xyz

29: σ ← ∅
30: for t ∈ [1, . . . , tmax] do
31: Θt ← NEXT FRAME(I(x, y, z, t),Θt−1, t)
32: V t ← REMOVE GLOBAL DISPLACEMENT(V 0,Θt

xyz, R)
33: σ ← σ∪ FEM(V 0, F, V t − V 0, rx, ry, rz)
34: end for
35: return σ
36: end function

2

Fig. 1. Example of an image I with a bleached marker and its corresponding cylinder θ.

time-frames of the sequence (line 30), obtaining a 3D reconstruction of the BM.
Before solving the FE analysis to reconstruct the traction stresses that induced the observed

displacement (line 33, Section 6), we remove the global displacement of the BM using a refer-
ence region R specified by the user (line 32). To compute traction stresses, we create a volu-
metric tetrahedral mesh of the image volume, and use the tracked mesh as a Dirichlet boundary
condition for an elastic deformation, from which we can extract the traction stresses required to
induce such a deformation.

1 Spline Approximation
The input image I is normalized with a maximum cutoff brightness value to remove bright out-
liers (we use the 99.5% quantile of the first frame). As our algorithm requires the computation
of first derivatives of the image, we convert each time-frame t into a 3D quadratic B-spline
St(x, y, z). We set the number of control points in each dimension as 70% the number of pixels
in that dimension to avoid overfitting the image. We expose this parameter to the user to allow
lowering the control point density for stronger smoothing effect and faster computation. To
compute the spline’s control ctijk points we solve

min
ctijk

‖I(xi, yi, zi, t)−
∑
i

∑
j

∑
k

ctijkBi(xi)Bj(yi)Bk(zi)‖2,

with xi, yi, zi the voxel coordinates of I in least square sense using the conjugate gradient al-
gorithm with inverse diagonal preconditioner. To speedup the convergence we use the closest
voxel as the initial guess for ctijk. Figure 2 shows how the image I is smoothed with different
numbers of control points.

3

Input 90% 70% 50% 30%

Fig. 2. Example of B-spline smoothing for different number of control points.

2 Markers Parametrization and Optimization
Marker Parametrization The BM marks have an approximately cylindrical shape, which we
parameterize as (x, y, z, r) and the height is fixed to be 2.5 pixels, or roughly 1.0 micrometer in
our case. (x, y, z) ∈ R3 is the coordinate of the bottom center of the cylinder and r ∈ R is the
radius (Figure 1). Due to the protocol we use for bleaching and the physiology of the zebrafish
embryo, we know that a cylinder θ needs to satisfy a set of properties:

1. It is not too close to the image boundary. In particular, a larger cylinder at position θxyz
whose radius is Kθr must be completely inside the image.

2. The radius θr is larger than 2 pixels, which correspond to 0.65 micrometer in our setup.

3. The marker is in the volume of the basement membrane, which we detect by enforcing
the surrounding of a marker to be bright. We also allow the user to optionally provide a
binary mask m identifying the membrane.

These properties help us filter out other features of the image that resemble cylinders, such
as random tiny speckles. We define a cylinder that satisfies all these properties as valid.

Energy Function The energy function characterizes an ideal cylinder by considering the
sharp brightness change inside the cylinder and in the circular region with radius Kθr out-
side it (Figure 1). It is defined as the weighed subtraction of the density of the inner part and
outer part of a cylinder θ for an interpolated image S

E(θ, S) = (1− α)mc(θ, S)/V (θ)− αma(θ, S)/Va(θ)

where
V (θ) = 2.5θ2rπ Va(θ) = 2.5θ2rπ(K2 − 1),

4

mc(θ, S) =

∫ 2.5

0

∫ θr

0

∫ 2π

0

S(θx + ` sin(β), θy + ` cos(β), θz + h) dβ d` dh,

ma(θ, S) =

∫ 2.5

0

∫ Kθr

θr

∫ 2π

0

S(θx + ` sin(β), θy + ` cos(β), θz + h) dβ d` dh,

and α ∈ [0, 1] is a hyper-parameter. Intuitively, the ratio K controls how large is the peripheral
annulus and the scalar α controls how severe we penalize the annulus. The default radius ratio
K is

√
2 and α is set to be 1/2 and, we did not modify them throughout this project.

Numerical Integration. The evaluation of the energy function entails the computation of
cylindrical numerical integration in mc and ma. Since the integration along the height of the
cylinder is independent with respect to the one in the cylinder’s plane, by virtue of the Fubini’s
theorem, we decompose the cylindrical integration into a disk integral and a 1D line integral.

The disk integration is computed with the Cools-Kim circular quadrature rules of order
17 (4), extracted from the library (5). We experimentally found that order 17 provides the op-
timal compromise between number of quadrature points and accuracy. We compared different
quadrature order with a reference order of 59, and discovered that at order 15 the difference is
around 10−4 which is acceptable; we added 2 orders for safety.

The 1D integration in the z-direction is computed with a standard Gaussian quadrature of
order 7, which we choose as it has 4 sample points, that is roughly one sample every half pixel.

Algorithm 2 Minimization of the energy.
1: function FIT CYLINDER XYR(θ, S)
2: H ← Id
3: for i ∈ [1, . . . , 50] do
4: d← LINE SEARCH(E(θ, S,∇xyrE(θ, S), H)
5: θ = θ − d
6: if ‖d‖ < ε then
7: break
8: end if
9: H ← UPDATE HESSIAN(H, θ, d)

10: end for
11: return θ
12: end function

Minimization. We optimize the energy function with the LBFGS Quasi-Newton algorithm,
using the library (6) (Algorithm 2). The gradients are computed using automatic differentiation
(7). The optimization stops at either 50 LBFGS iterations, or when the norm of the gradient is
smaller than 10−4 times the maximal entry in the current solution (optimEpsilon parameter
in lbfgspp). The optimization uses backtracking line search with Armijo conditions. The only

5

modification to the standard LBFGS is in the line search (line 4): we reject a step if the resultant
cylinder is invalid.

Algorithm 3 Algorithm to find the optimal depth.
1: function FIT CYLINDER(θ, S)
2: θ ← SEARCH Z(θ, S, 4, 0.2) . first round: resolution is 0.2 pixel
3: θ ← SEARCH Z(θ, S, 0.2, 0.01) . first round: resolution is 0.01 pixel
4: return θ
5: end function
6:
7: function SEARCH Z(θ, S, o, δ)
8: Θ← ∅, E ← ∅
9: for z ∈ [θz − o : δ : θz + o] do

10: θ̄ ← (θx, θy, z, θr)
11: θ̄ ← FIT CYLINDER XYR(θ̄, S)
12: if ‖θxy − θ̄xy‖ ≤ 4 then
13: Θ← Θ ∪ θ̄, E ← E ∪ E(θ̄, S)
14: end if
15: end for
16: Es ← ∅
17: for i ∈ [2, . . . ,SIZE(E)−2] do
18: t← SORT(E[i− 2, i+ 2])
19: Es ← Es ∪ (t[1] + t[2] + t[3])/3 . average excluding largest and smallest
20: end for
21: i← arg min(Es)
22: return Θ[i]
23: end function

Fit Depth. We do not optimize the depth or height (z-coordinate) in the quasi-Newton mini-
mization step, since the optimization is slow and there would be a large number of local minima
if the height dimension is included. To overcome this limitation we design an algorithm that
first samples the z-direction then fits x, y, and r for every sample (Algorithm 3). We start by
uniformly sampling the depths centered at the current depth (line 9). First we sample with an
offset o of 4 pixels at a distance δ = 0.2 pixels (line 2), then we do a second pass at higher
resolution (o = 0.2, δ = 0.01, line 3). For each depth, we minimize its energy (line 11) and, if
the resultant (x, y) is over 4 pixels away from the original one, we ignore that depth (line 12).

The result of the z-sampling is a set of cylinders along the z-direction and their optimized
energy. To find the optimal z-position we locate the minimum of the energy curve (line 21)
of a cylinder moving across the depth (Figure 3). Intuitively, as the cylinder “moves” over
its correct position, the energy first decreases to the minimum and then increases when the

6

Ideal

0 20 40 60 80 100
Z Axis

-0.22

-0.2

-0.18

-0.16

-0.14

-0.12

-0.1

En
er

gy

Rare Outliers

0 20 40 60 80 100
Z Axis

-0.2

-0.18

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

En
er

gy

Unrecognizable

0 20 40 60 80 100
Z Axis

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

En
er

gy

Fig. 3. Example of energy E (blue) profiles along the z-direction, Smoothing the curves (or-
ange) successfully removes outliers and makes finding the minimum easy.

cylinder moves further. To reduce the interference of random outliers, we smooth the energy
along the z-direction by a mean filter, excluding the two extrema, applied with a window size
of 5 (line 17).

In practice, most of the markers can be properly optimized as long as the quality of the image
is reasonable. We discovered that the image regions where the algorithm struggles usually
correspond to region that are impossible to annotate even for a human expert.

3 Filtering and Clustering.
We filter and merge the optimized cylinders to finalize the 3D locations of the markers in the
first frame. For every bleached marker, there should be only one cylinder remaining after this
step. To filter and group the cylinders Θ, we (1) remove outliers, (2) create clusters, (3) filter
clusters, and (4) merge each clusters in a single cylinder.

Remove outliers. The optimized position from the initial uniform sampling might contain
several outliers. To exclude them we design three heuristics based on the current protocol. Note
that, the heuristic can be changed in the UI if the bleached pattern differs from ours. We first
exclude any cylinder whose energy is larger than εE , which we pick as−0.1 and whose radius is
larger than εr = 6. The energy function E (Section 2) is smooth and for a normal configuration,
the LBFGS usually converge in no more than 10 iterations. We exploit this consideration to
exclude any cylinder that took more than 49 iterations to converge. Finally, since the markers
are bleach marks on the BM, we exclude cylinders whose location are not on the BM.

Create cluster. In our experiments we noticed that if there is a marker nearby, most of the
sampled cylinders converge to the marker’s location with the similar correct radii. Exploiting
this observation we cluster the cylinders whose distance in the xy-plane is smaller than 0.01
pixel. This operation is done independently for every depth layer.

7

Filter clusters. We observe that the number of cylinders is a good metric to estimate how
reliable a cluster is. Thus we exclude clusters based on their size; in our experiment we exclude
any cluster with less than 4 cylinders per unit area. In case there exists a wrong large cluster,
our tool provides a handy functionality allowing the user to manually delete clusters by clicking
on them. After this step, all the remaining groups must represent true markers.

Depth clustering. Since we can now trust the clusters, we merge all the clusters with varying
depths but similar xy-coordinate to one large cluster. For every large cluster, we project it into
a unique cylinder by averaging the positions and radii of its compositing cylinders.

4 Lattice Mesh Generation
Iterative Closest Point (ICP) matches two point clouds by performing translational and rota-
tional transformations (8). In order for ICP to work, prior knowledge of the reference point
cloud is necessary. By default, the program uses a regular triangular-lattice as the reference set
to find the best match with the detected marker locations.

Two challenges lie in the way of ICP matching: The first is that the detected cylinder pattern
could be distorted. The second is that the edge length in the reference pattern needs to be
determined because ICP cannot handle scaling. The program automatically estimates the edge
length by averaging the distance of all markers to its closest marker. Aside from that, the user
can manually translate, rotate, distort and scale the reference pattern.

5 Mesh Warping
We compute the Horn-Schunck (9) optical flow vector field between every two consecutive
frames to estimate the new position of the markers. Optical flow computes the optimal 3D
smooth vector field V to transform I(x, y, z, t) to I(x, y, z, t + 1). The smoothness can be
controlled by a parameter α. We run the algorithm for 30 iterations, with a default smoothness
factor α = 0.1. We move every cylinder θt at time t using V (interpolated across voxels) to their
new position at t+ 1. As aforementioned, the final position of θt+1 is further refined (Section 2)
to obtain the optimized new location. To handle any potential optimization or tracking failures,
the user can manually move the markers in any frame by selecting and dragging them with the
mouse. It is worth noting that this functionality should only be used to guide the optimization
to the correct direction. The user can initiate the marker optimization again after manually
correcting the loccation of an incorrectly tracked cylinder.

8

6 Traction Stress Computation
The traction stresses are computed using a finite element (FEM) simulation. To compute such
simulation we need to: (1) generate a tetrahedral mesh and (2) setup a material model and
boundary conditions. The result is a displacement field defined everywhere in the mesh that can
be used to compute the traction stresses.

We generate the tetrahedral mesh using TetGen (10) by extruding the BM mesh (V0, F)
along the positive and negative z-direction by one half the diagonal length of the mesh. To
increase the accuracy of the simulation we generate a mesh with higher density than F by
specifying the area parameter to TetGen. By default, the mean edge length of the tetrahedral
mesh approximates the edge length of the BM mesh as if we upsample it twice.

We setup the problem by imposing zero Dirichlet boundary condition on the top/bottom
flat side and the BM’s displacement for the middle part. Note that, since the BM mesh is
refined, we extend the displacement of the BM using radial basis function interpolation with
thin-plate r2 log(r) as radial function. To accurately compute the displacement in the volume,
we approximate the FEM solution with quadratic tetrahedra. We use a linear material model

div(σ[u]) = 0,

where
σ[u] = 2µε[u] + λtr(ε[u])I ε[u] =

1

2

(
∇uT +∇u

)
,

with λ = (Eν)/((1 + ν)(1− 2ν)), and µ = E/(2(1 + ν)).
By solving the aforementioned equation for uwe obtain a displacement in the whole volume

of the cube, from which we compute the traction stresses on the BM as

F = σ[u]n,

where n is the normal of the face of a triangle on the BM.

9

References
1. Guennebaud, G., Jacob, B. et al. Eigen v3 (2010). URL http://eigen.tuxfamily.

org.

2. Jacobson, A., Panozzo, D. et al. libigl: A simple C++ geometry processing library (2018).
Https://libigl.github.io/.

3. Schneider, T., Dumas, J., Gao, X., Zorin, D. & Panozzo, D. Polyfem. https:
//polyfem.github.io/ (2019).

4. Cools, R. & Kim, K. A survey of known and new cubature formulas for the unit disk.
Journal of Applied Mathematics and Computing 7, 477–485 (2000).

5. Schlomer, N. Quadpy (2020). Https://github.com/nschloe/quadpy.

6. Qiu, Y. lbfgspp (2021). Https://lbfgspp.statr.me.

7. Jakob, W. Mitsuba autodiff (2021). Https://www.mitsuba-renderer.org/misc.html.

8. Arun, K. S., Huang, T. S. & Blostein, S. D. Least-squares fitting of two 3-d point sets.
IEEE Trans. Pattern Anal. Mach. Intell. 9, 698–700 (1987). URL https://doi.org/
10.1109/TPAMI.1987.4767965.

9. Horn, B. K. P. & Schunck, B. G. Determining optical flow. Artif. Intell. 17, 185–203
(1981). URL https://doi.org/10.1016/0004-3702(81)90024-2.

10. Si, H. Tetgen, a delaunay-based quality tetrahedral mesh generator. ACM Trans. Math.
Softw. 41 (2015). URL https://doi.org/10.1145/2629697.

10

http://eigen.tuxfamily.org
http://eigen.tuxfamily.org
https://polyfem.github.io/
https://polyfem.github.io/
https://doi.org/10.1109/TPAMI.1987.4767965
https://doi.org/10.1109/TPAMI.1987.4767965
https://doi.org/10.1016/0004-3702(81)90024-2
https://doi.org/10.1145/2629697

Supplementary Table 1

 Supplementary Table 1

Genotyping PCR primers

lamC1(sa9866)

 Forward outer primer (5'-3') TTCAGTTCATCGGGTTGC

 Reverse outer primer (5'-3') GTAACAGTTAGGGCACTGC

 Forward inner primer (5'-3') GTTTTCCTGCGTTGACGCTT

 Reverse inner primer (5'-3') GGTGTCGAGCGGTTGTAGAA

tln1(d4)

 Forward outer primer (5'-3') CAAGTGGCTCCGCCTGTACT

 Reverse outer primer (5'-3') ATAGGCCTAAAGGTATGCCAGC

 Forward inner primer (5'-3') GAGTAGCAGTGGCACAGTCC

 Reverse inner primer (5'-3') TGATGGACTCACGCTGGC

tln2a(i23)

 Forward primer (5'-3') CAGTTTGAGCCCTCAACGGCTGTATATGACGCATGCCcGGG

 Reverse primer (5'-3') CCCATATTCTGAAGCTGAGG

tln2b(d10)

 Forward outer primer (5'-3') CAGGTGACCCCATAGACACG

 Reverse outer primer (5'-3') TGCATTGGTCACCTCTCCAG

 Forward inner primer (5'-3') TGTCCAAGGGTGTGAAGCTG

 Reverse inner primer (5'-3') CCTCTCCAGACGTGGGCTC

itgb1a(d34)

 Forward outer primer (5'-3') GAGTTTCTGAAGCAGGGAG

 Reverse outer primer (5'-3') ATGGTGTTGCTTTCACACGC

 Forward inner primer (5'-3') AAAGAGGCTGCGCAGAAGAT

 Reverse inner primer (5'-3') TTTCTGAGGCTGGATCTGCG

itgb1b(i70)

 Forward outer primer (5'-3') GATTGGACGCCGGGTATGTC

 Reverse outer primer (5'-3') AAACAGGCTGGAACTCCTCG

 Forward inner primer (5'-3') GGAATGTCACTCGTCTCC

 Reverse inner primer (5'-3') CATGGTGTAAATGTTATCCTGC

CRISPR-Cas9 primers

The chimeric gRNA backbone primer (5'-3')

 gttttagagctagaaatagcaagttaaaataaggctagtccgttatcaacttgaaaaagtggcaccgagtcggtgcggatc

tln1 (tln1 target sequences are underlined)

 gRNA1 (5'-3') TAATACGACTCACTATAACGACGCCTGTCGAATCATCgttttagagctagaaatagcaag

 gRNA2 (5'-3') TAATACGACTCACTATAACAGGCGTCGTACACCACTGgttttagagctagaaatagcaag

 gRNA3 (5'-3') TAATACGACTCACTATAGGCGCTGTCGCTGAAGATCGgttttagagctagaaatagcaag

 gRNA4 (5'-3') TAATACGACTCACTATATCTCTCCCTGATGATTCGACgttttagagctagaaatagcaag

tln2a (tln2a target sequences are underlined)

 gRNA1 (5'-3') TAATACGACTCACTATACATGCCGGGTCATCAGAGAGgttttagagctagaaatagcaag

 gRNA2 (5'-3') TAATACGACTCACTATATGTCTCTGAAGATCTGTGTGgttttagagctagaaatagcaag

 gRNA3 (5'-3') TAATACGACTCACTATACATGCAGTTTGAGCCCTCAAgttttagagctagaaatagcaag

 gRNA4 (5'-3') TAATACGACTCACTATAGAACCCTCTCTCTGATGACCgttttagagctagaaatagcaag

tln2b (tln2b target sequences are underlined)

 gRNA1 (5'-3') TAATACGACTCACTATAGGCCCCTGTGAGGGTCCTCGgttttagagctagaaatagcaag

 gRNA2 (5'-3') TAATACGACTCACTATAAGCCGCGAGGACCCTCACAGgttttagagctagaaatagcaag

 gRNA3 (5'-3') TAATACGACTCACTATAAGAACCTGATGGGAGCCGCGgttttagagctagaaatagcaag

 gRNA4 (5'-3') TAATACGACTCACTATACAAGGGTGTGAAGCTGCTGGgttttagagctagaaatagcaag

itgb1a (itgb1a target sequences are underlined)

 gRNA1 (5'-3') TAATACGACTCACTATACCGGTGACCAACCGCAAGAAgttttagagctagaaatagcaag

 gRNA2 (5'-3') TAATACGACTCACTATAGAGAATCCTGAAGAATACACgttttagagctagaaatagcaag

 gRNA3 (5'-3') TAATACGACTCACTATAGATAAGATCGAGAACCCGCAgttttagagctagaaatagcaag

itgb1b (itgb1b target sequences are underlined)

 gRNA1 (5'-3') TAATACGACTCACTATACGTCATGCTCATGAGCTGAGgttttagagctagaaatagcaag

 gRNA2 (5'-3') TAATACGACTCACTATATGTAAATGTTATCCTGCAGAgttttagagctagaaatagcaag

 gRNA3 (5'-3') TAATACGACTCACTATAGCATCGTGCTTCCTAATGACgttttagagctagaaatagcaag

Whole mount in situ hybridization PCR primers

tln1

 Forward (5'-3') ATGGTACGGGGGCTGGAGAG

 Reverse (5'-3') ACCGCGCGAGCAGCAGCAGC

tln2a

 Forward (5'-3') TCCGGTATGTCAGGAGCAGC

 Reverse (5'-3') GGTTTCAACTGTCCCTCAGA

tln2b

 Forward (5'-3') TCGACTCCGCTCTCAGTGCT

 Reverse (5'-3') AATACTAATACGACTCACTATAGCACAAGCAGTTTCTTACTGG

itgb1a

 Forward (5'-3') GAAGCGGGAGAATCCAGAGG

 Reverse (5'-3') AATACTAATACGACTCACTATAGTCCATGGTCTTGACGACGTG

itgb1b

 Forward (5'-3') CCTACGTCTCCCACTGCAAG

 Reverse (5'-3') AATACTAATACGACTCACTATAGATTCGCACGTTCCACAAACG

itgb1b.1

 Forward (5'-3') AAAACCCCTGTTTTCCAAGCG

 Reverse (5'-3') AATACTAATACGACTCACTATAGCTCCGTTCTTGCAGTGGGAG

itgb1b.2

 Forward (5'-3') ATGTACTGAGCTTGACGGACG

 Reverse (5'-3') AATACTAATACGACTCACTATAGTGGACACACCATCAGGTAGC

itgb2

 Forward (5'-3') ATCCCCAAATCTGCAGTCGG

 Reverse (5'-3') AATACTAATACGACTCACTATAGCGTCGCATTCACAGTGTTCG

itgb3a

 Forward (5'-3') TCTGGGCAATAATCTGGCCG

 Reverse (5'-3') AATACTAATACGACTCACTATAGCGTGCCAACTGAAGGGTAGT

itgb3b

 Forward (5'-3') TCCAACCAGCAAAATGCACG

 Reverse (5'-3') AATACTAATACGACTCACTATAGATTTTGTCCTTGCACACGGC

itgb4

 Forward (5'-3') ACAATTTAGAATCGCGCTTCACC

 Reverse (5'-3') AATACTAATACGACTCACTATAGCGTTGGGTTTTCGGGGTTTC

itgb5

 Forward (5'-3') GTCACCCGCTGTGGAAGGATG

 Reverse (5'-3') AATACTAATACGACTCACTATAGATAGCGAGAGGTCCATGAGGTAG

itgb6

 Forward (5'-3') AAGATGCGCCTCCAGCTTAG

 Reverse (5'-3') AATACTAATACGACTCACTATAGGCTTCATGGAGTCGTTTCGC

itgb7

 Forward (5'-3') CATGTGCAGCTGTGACGAAG

 Reverse (5'-3') AATACTAATACGACTCACTATAGTCTCATGACAGGAGCCGCTAC

itgb8

 Forward (5'-3') GCCACCTAGAGGACAACGTC

 Reverse (5'-3') AATACTAATACGACTCACTATAGGTAGTGCAGGACGAGGGTTC

	Supplementary Note 1
	Spline Approximation
	Markers Parametrization and Optimization
	Filtering and Clustering.
	Lattice Mesh Generation
	Mesh Warping
	Traction Stress Computation

	Supplementary Table 1

