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Extended Methods13

Preparation and simulation of membrane-embedded OmpF. We used the X-ray structure of OmpF trimer (PDB ID: 3POX) (1),14

including all the crystal water molecules, as a starting point for our simulations. In each monomer, residues E296, D312, and15

D127 were protonated in accordance with previous studies(2–4). The OmpF trimer was embedded in a symmetric membrane16

composed of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) lipid molecules. Usage of an OM composition containing17

lipopolysaccharides (LPS) is not considered, since the membrane composition is unlikely to influence the dynamics of L3 as18

this internal loop is fully internalized in the protein fold and not exposed to the membrane. The protein-DMPC system was19

then solvated with TIP3P water (5) and buffered in 0.15 M NaCl. Each step of the membrane building process was carried out20

using the Membrane Builder module of CHARMM-GUI (6). The final system contained ∼140,000 atoms with dimensions of21

120× 120× 100 Å3. Then, 10 independent molecular dynamics simulations were run. In each simulation, the prepared system22

was minimized using the steepest descent algorithm for 2,000 steps, followed by an initial equilibration of 5 ns, during which23

the protein heavy atoms were harmonically restrained using a force constant of 5 kcal mol−1 Å−2. Then, 1µs of unrestrained24

production simulation was performed for each replica.25

Electric field simulations. Ionic current was calculated by performing simulations with a constant electric field normal to the26

membrane. Five replicas of ionic current simulations were performed with an OmpF monomer, for each of the three different27

OmpF conformations (O, CA, CB) derived from MSM analysis (see below). The starting point for each simulation was a28

representative OmpF monomer from each protein conformation. The OmpF monomers were independently embedded in a29

symmetric membrane composed of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) lipid molecules, solvated with TIP3P30

water (5) and buffered in 0.5 M NaCl to enhance sampling of ionic current in the simulation. For each simulation, the prepared31

system was minimized using the steepest descent algorithm for 2,000 steps, followed by an initial relaxation simulation of32

1 ns, during which the protein heavy atoms were harmonically restrained using a force constant of 1 kcal mol−1 Å−2. Each33

production simulation was then performed for 100 ns with an electric field corresponding to a membrane electric potential34

difference of 100mV. During these simulations, the protein heavy atoms were harmonically restrained using a relatively weak35

force constant of 0.1 kcal mol−1 Å−2 to maintain the respective conformational state of the protein (O, CA, or CB).36
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Ionic current (I) was computed by counting the number of ions (Na+ and Cl-) that cross the porin over time, i.e., I =37

N×q
τ
, where N is the number of ion crossing events over a time interval τ , and q is the charge of the ion (1.60217662×10−19

38

Coulombs for Na+, and -1.60217662×10−19 Coulombs for Cl-). The total current was simply the sum of the net Na+ current39

minus the net Cl- current. The conductance (C) was then calculated as C = I
V .”40

41

Antibiotic permeation free energy calculations. To investigate the energetics of permeation of fosfomycin in the open and closed42

states, two independent sets of bias exchange umbrella sampling (BEUS) simulations (7–11) were performed starting from the43

O and CA states derived from our MSM analysis (see below). The force field parameters for fosfomycin were generated using44

the CHARMM General Force Field (CGenFF) (12–14) with the ParamChem server.45

The initial seeds for these BEUS simulations were obtained using a Monte Carlo-based pathway search (MCPS) algorithm,46

specifically developed to improve sampling of the position and orientation of antibiotics in OM porins (15). Briefly, MCPS47

determines the most likely permeation pathway through OmpF using an energetic descriptor of the system, while systematically48

exploring all positions and orientations of the antibiotic in the region of interest based on an initial screening. To run MCPS,49

we first take a representative monomer of each protein conformational state (O or CA) and explore translational and rotational50

degrees of freedoms of the drug within the pore to generate datasets containing hundreds of thousands of discrete drug-protein51

poses. Each drug-protein pose is then minimized while fixing protein backbone. This dataset is then used to construct a52

multidimensional drug-protein interaction energy (IE) landscape along the translation (Z-coordinate) and two orientation53

angles (inclination angle, θ, and azimuthal angle, φ). Then, we walk through the resulting IE landscape using Monte Carlo54

(MC) moves to determine favorable (low energy) trajectories/pathways connecting extracellular and periplasmic spaces. The55

starting point within a trajectory is randomly selected from a pose in the extracellular space. To better sample putative56

pathways in our defined space, we generated 2,000 MCPS trajectories. These trajectories were then used to build a connected57

graph to be used in Dijkstra’s algorithm to determine the most favorable permeation pathway. A detailed description for each58

step is provided in our previous study (15).59

The most likely pathways for the drug, calculated independently for the two conformational states of OmpF (open and60

closed), were used to seed the BEUS simulations (7–11). The main part of the pathways used, namely the part within the61

protein, included poses with Z-values ranging from -10 to 24Å (relative to the midplane of the membrane) of 1Å width; to62

obtain reference free energies, we extended the number of windows in the extracellular and periplasmic spaces such that the63

terminal windows are at least 10Å away from any atom of the protein. To ensure adequate histogram overlap in BEUS,64

additional windows were added in between the original windows for the CR (Z =-3 to 12Å) such that the window width was65

0.5Å within this region. In total, 94 windows were used spanning 80Å from the extracellular (Z=46Å) to the periplasmic66

(Z = −34Å) space.67

To take into account the biologically relevant configuration of the system, for each window we built a trimeric, membrane-68

embedded, drug-bound system. To do this, we first aligned the backbone atoms of the β-barrel of the drug-bound monomer of69

each window to an OmpF monomer in the trimeric X-ray structure of the protein (PDB ID: 3POX) (1). Then, we merged the70

resulting coordinates of the aligned antibiotic-monomer system with the two additional monomers of the trimeric OmpF. In the71

generated trimer for each window, residues E296, D312, and D127 were protonated (2–4). The windows were then embedded72

in a symmetric membrane composed of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) lipid molecules in each leaflet73

generated using the Membrane Builder module of CHARMM-GUI (6). Each window was solvated with TIP3P water (5) and74

buffered in 0.15M NaCl to generate trimeric systems containing ∼140,000 atoms with dimensions of 120× 120× 100 Å3.75

Before performing BEUS simulations, each trimer was minimized using 10,000 steps of the steepest descent algorithm, and76

then the molecular system was relaxed at the center of each window during a 1-ns MD simulation while the drug and heavy77

atoms of the protein were restrained with a force constant of 1 kcalmol−1 Å−2. This was followed by 30 ns of BEUS simulations78

(until the convergence of the free-energy) during which the protein backbone heavy atoms were restrained with a force constant79

of 1 kcalmol−1 Å−2 , using the distance along the membrane normal (Z-axis) between the drug’s C.O.M and the C.O.M of the80

drug-containing monomer as the collective variable. The force constants were 2.0 kcalmol−1 Å−2 for all windows except for the81

windows in the CR, which had force constants of 7.0 kcalmol−1 Å−2. Using these force constants resulted in good window82

overlap for each drug-protein system. The first 10 ns of each window were discarded, and the rest was used in evaluating the83

free energy. A non-parametric variation of the weighted histogram analysis method (WHAM) (16), proposed by Bartels (17)84

and implemented by Moradi and Tajkhorshid (11) was used to estimate the free-energy profile from the BEUS simulations.85

Molecular dynamics (MD) simulation protocol. MD simulations in this study were performed using NAMD (18, 19) utilizing86

CHARMM36m (20) and CHARMM36 (21) force field parameters for proteins and lipids, respectively. A timestep of 2 fs was87

used in all simulations, and periodic boundary conditions were employed in all three dimensions. Bonded and short-range88

nonbonded interactions were calculated every timestep. The particle mesh Ewald (PME) method (22) was used to calculate89

long-range electrostatic interactions every 4 fs with a grid density of 1Å−3. A force-based switching function was employed for90

pairwise nonbonded interactions starting at a distance of 10Å with a cutoff of 12Å. Pairs of atoms whose interactions were91

evaluated were searched and updated every 20 fs. A cutoff (13.5Å) slightly longer than the nonbonded cutoff was applied to92

search for the interacting atom pairs. Constant pressure was maintained at a target of 1 atm using the Nosé-Hoover Langevin93

piston method (23, 24). Langevin dynamics maintained a constant temperature of 310K with a damping coefficient, γ, of94

0.5 ps−1 applied to all atoms. Simulation trajectories were collected every 10 ps.95
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Markov state model construction. We used our trajectory dataset to construct a Markov state model (MSM) using pyEmma (25),96

which enabled us to obtain kinetic and thermodynamic information about the system. To build the MSM, first the trajectory97

dataset was featurized using 26 residue-residue distance pairs with significant hydrogen bonding (occupancy greater than 25%98

during the simulations, or a maximum lifetime greater than 50 ns in at least one of the monomers of any replica) between99

the highly fluctuating residues of L3 (residues 116-123) and the barrel wall. A hydrogen bond was counted between an100

electronegative atom with a hydrogen atom (H) covalently bound to it (the donor, D), and another electronegative atom101

(the acceptor, A), if the D-A distance is less than 3Å and the D-H-A angle is greater than 120◦. For these residue pairs, the102

minimum distance (in each frame of every trajectory) between any donated H and any A atom was used to create the MSM103

feature space. Since the distance pairs are uncorrelated between monomers (Fig. S3), we considered each monomer as an104

independent trajectory, giving us an aggregate trajectory data of 30µs (10 independent runs × 3 monomers × 1µs).105

To remove redundant information within the feature space and identify the slowest reaction coordinates, time-structure based106

independent component analysis (tICA) was used to reduce the dimensionality of the feature space (X(t)) to the eigenvectors107

of an autocovariance matrix, 〈X(t)XT (t+ τ)〉, with a lag time, τ=1 ns (26–29). It is important to choose an optimal number108

of tICA eigenvectors since an MSM built using too many eigenvectors would have microstates with low statistical significance109

due to finite sampling error (30). We found that the first seven tICA eigenvectors are sufficient to construct the MSM because110

only the distribution of these eigenvectors significantly differed from the normal distribution (Fig. S4). Further statistical111

analysis using an MSM scoring method, VAMP-2 score (31), discussed further in the next section, showed that the quality of112

an MSM does not significantly improve when using more than five tICA eigenvectors (Fig. S5). Thus, we chose to reduce the113

number of eigenvectors to five in our study.114

The conformational space was then discretized into multiple microstates using k-means clustering. To choose the number of115

microstates to use in the model, we used the VAMP-2 score (31), to evaluate the quality of MSMs built with different numbers116

of microstates. The VAMP-2 score converged when using five tICA eigenvectors and 1,000 microstates (Fig. S5); thus, we used117

this parameter set to build our MSM.118

Then, a transition probability matrix (TPM) was constructed by evaluating the probability of transitioning between each119

microstate within a lag time, τ . To choose an adequate lag time to construct a TPM that ensures Markovian behavior, multiple120

TPMs were first created using multiple maximum-likelihood MSMs with different lag times. The implied timescales (τi = τ
ln(λi)

)121

were evaluated for each of these transition matrices, and saturation was observed at τ = 2 ns (Fig. S6). Thus, we built our final122

TPM using a maximum likelihood MSM with a lag time of 2 ns. This final TPM is symmetrized using a maximum likelihood123

approach to ensure detailed balance (25). This step did not significantly change the raw TPM (Fig. S14), indicating that the124

initial sampling was done under dynamic equilibrium conditions.125

To identify physically meaningful metrics for projecting the free energy of the conformational transitions, we used a protocol126

described by Pérez-Hernández et al. to choose the metric with greatest correlation to the second eigenvector of the TPM (29).127

The normalized correlation between the second eigenvector of the TPM and each of the 26 residue-residue distance pairs was128

evaluated as follows:129

Corr(rk, ψ̃2,s(t)) =
〈rkψ̃2,s(t)〉t − 〈rk〉t〈ψ̃2,s(t)〉t

〈r2
k〉t〈ψ̃2

2,s(t)〉t
,130

where rk is the kth residue-residue distance, ψ̃2 is the second eigenvector of the TPM, s(t) is the trajectory of microstates,131

and 〈〉t is the time average. The E117-Y22 and D121-R132 distances were chosen for this purpose, as these features showed132

the greatest positive and negative correlations with the second eigenvector, respectively (Fig. S7). Using these features, we133

projected the free energy landscape weighted with the stationary distribution obtained from the MSM (Fig.2C,D). The free134

energy landscape using the raw trajectory data, unweighted by the stationary distribution, is very similar to the weighted135

landscape (Fig. 2 and Fig. S15), indicating that the initial sampling used to build the MSM was sufficient to mitigate any136

sampling bias. To determine the error of the free energy landscape, we first used bootstrapping to alter the TPM, and to137

create new free energy landscapes. The error was then determined in every bin of the landscape (Fig. S13). We used the free138

energy landscape to lump our microstates into 5 macrostates depending on whether the microstate physically lies within a free139

energy minima (defined using an energy cutoff of 1.2 kcal/mol) shown in Fig2.C,D. Macrostates are classified according to their140

pore bottleneck radius (Fig. 3) leading to: an open state (O), two intermediate states (IA, and IB) and two closed states (CA,141

and CB).142

Transition path theory. To obtain kinetic information about the processes, the mean first passage times (MFPTs) for the143

O-CA and O-CB transitions were evaluated. The uncertainty in the MFPT was evaluated using a Bayesian estimated MSM,144

implemented in pyEmma (25). The transition path theory module in pyEmma (25) was used to identify the conformational145

transitions. This step was done by choosing the O and CA/CB states as the source and sink, respectively, and identifying the146

pathways connecting them.147

Construction of E. coli ompF mutants. Strains carrying various ompF alleles were constructed in three steps. All strains,148

plasmids, primers and gBlocks used in these constructions are shown in Tables S1 to S4. Initially, a strain carrying a complete149

deletion of the ompF locus (∆ompF8897::cat) was constructed by λ-red-mediated recombination as described elsewhere (32).150

To do this, BW26678 was transformed to CmR using a PCR product obtained using primers ompF-cloningF and ompF-cloningR151

with pKD3 as the template, creating WM8897. The ∆ompF8897::cat allele removes the entire ompF coding sequence and152

323 base-pairs upstream of the start codon containing the promoter and regulatory sequences. Second, a series of plasmids153
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carrying various ompF alleles were constructed using the pAH144 (33) as the vector. This plasmid encodes resistance to154

streptomycin and spectinomycin (Strep/SpecR) and can be inserted into the host chromosome in single copy at the Hong Kong155

phage attachment site (att-HK). Initially we constructed pMEM501, which carries the WT ompF gene and 610 upstream156

base-pairs, including the promoter and all known regulatory sequences. Plasmid pMEM501 was then modified by replacement157

of an appropriate internal restriction endonuclease fragment with a synthetic DNA fragment carrying the desired mutations.158

Finally, each of these plasmids was inserted into the chromosome of WM8901 by selection for Strep/SpecR. The inserts of all159

plasmids were verified by DNA sequencing. All strains were verified by PCR, including DNA sequencing of the PCR product,160

to confirm the presence of the ∆ompF8897::cat allele and the correct plasmid inserted in single copy.161

Accumulation assay protocol. The accumulation assay was performed in triplicate as outlined elsewhere (34, 35). A 5mL162

overnight culture was diluted into 250mL of fresh lysogeny broth (LB) and grown at 37◦C with shaking to an optical density163

(OD600) of 0.55-0.60. Once grown to mid-log phase, 200mL of culture was pelleted at 3,220 r.c.f. for 10 minutes (at 4◦C). The164

supernatant was discarded and cells resuspended in 40mL phosphate buffered saline (PBS), pelleted as before, and resuspended165

in 8.8mL PBS. Cells were aliquoted into 1.7mL Eppendorf tubes each with 875µL and incubated with shaking at 37◦C for 5166

minutes to equilibrate cells. Colony forming units (CFUs) were determined by a calibration curve. These time points were167

short enough to minimize metabolic and growth changes (no changes in OD600 or CFU count observed). Cells were treated168

with 50µM compound (8.75µL of 5mM compound stock) for 10 minutes at 37◦C with shaking. After incubation, 800µL169

of culture was layered over 700µL cold silicone oil (9:1 AR20/Sigma High Temperature, cooled to -78◦C) and cells pelleted170

at 13,000 r.c.f. for 2 minutes at room temperature to separate supernatant and extracellular compound from bacterial cells.171

The supernatant and oil were removed by pipette and the cell pellet was resuspended in 200µL MilliQ water. Samples were172

subjected to three freeze-thaw cycles of alternating 3 minute incubation periods in liquid nitrogen (-78◦C) and a 65◦C water173

bath. Lysed cells were pelleted at 13,000 r.c.f. for 2 minutes and 180µL of supernatant were collected. Cell pellets were174

washed in 100µL methanol, vortexed, and pelleted at 13,000 r.c.f. for 2 minutes. After pelleting, 100µL of supernatant was175

collected and combined with previous supernatants. Remaining debris were removed through centrifugation at 20,000 r.c.f.176

for 10 minutes at room temperature. Supernatants were analyzed with the QTRAP 5500 LC/MS/MS system (Sciex) in the177

Metabolomics Laboratory of the Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign. Software178

Analyst 1.6.2 was used for data acquisition and analysis. The 1200 Series HPLC System (Agilent Technologies) includes a179

degasser, an autosampler and a binary pump. The liquid chromatography separation was performed on an Agilent Zorbax180

SB-Aq column (4.6mm × 50mm; 5µm) with mobile phase A (0.1% formic acid in water) and mobile phase B (0.1% formic181

acid in acetonitrile). The flow rate was 0.3mL min−1. The linear gradient was as follows: 0–3 min: 100% A; 10–15 min: 2% A;182

16–20.5 min: 100% A. The autosampler was set at 15◦C. The injection volume was 1µL. Mass spectra were acquired under183

positive electrospray ionization with a voltage of 5,500V. The source temperature was 450◦C. The curtain gas, ion source gas 1184

and ion source gas 2 were 33, 65 and 60 psi, respectively. Multiple reaction monitoring was used for quantitation with external185

calibration. All compounds evaluated in biological assays were ≥ 95% pure, assessed by NMR and LC-MS.186
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HOLE (36)) in WT-OmpF and mutant G119D-OmpF crystal structures. (C) Radius profile of the pore calculated using HOLE (36) for each structure.
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calculated by determining the VAMP-2 score after running 5 iterations of the k-means clustering algorithm. The score converges with 5 tICs and 1000 clusters, indicating an
optimal parameter set.
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(colored in orange). The Cα atom for residues belonging to the periplasmic terminal of the helical part of of L3 (G110, Y111, Y112) are shown with VDW representation. (B)
Distribution of P116 φ/ψ angles (in degrees) for the three conformational states, highlighting the conformational restriction of P116 in state CB . (C) The probability of residues
located at the periplasmic terminal of L3 in each state to adopt a helical conformation.
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       OmpF:   AEIYNKDGNKVDLYGKAVGLHYFSKGNGENSYGGNGDMTYARLGFKGETQINSDLTGYGQ 60
       OmpC:   AEVYNKDGNKLDLYGKVDGLHYFSDNKD-----VDGDQTYMRLGFKGETQVTDQLTGYGQ 55
     PhoE:   AEIYNKDGNKLDVYGKVKAMHYMSDNAS-----KDGDQSYIRFGFKGETQINDQLTGYGR 55
   OmpE36:   AEIYNKDGNKLDLYGKAVGLHYFSDNDG-----NDGDKTYARLGFKGETKINDQLTGYGQ 55
   OmpK36:  AEIYNKDGNKLDLYGKIDGLHYFSDDKS-----VDGDQTYMRVGVKGETQINDQLTGYGQ 55

       OmpF:   WEYNFQGNNSEGADAQTGNKTRLAFAGLKYADVGSFDYGRNYGVVYDALGYTDMLPEFGG 120
       OmpC:   WEYQIQGNSAEN-ENN--SWTRVAFAGLKFQDVGSFDYGRNYGVVYDVTSWTDVLPEFGG 112
     PhoE:   WEAEFAGNKAESDTAQ--QKTRLAFAGLKYKDLGSFDYGRNLGALYDVEAWTDMFPEFGG 113
   OmpE36:   WEYNFQGNNSEGADAQSGNKTRLAFAGLKFGDAGSFDYGRNYGLVYDAIGITDMLPEFGG 115
   OmpK36:  WEYNVQANNTESSSDQ--AWTRLAFAGLKFGDAGSFDYGRNYGVVYDVTSWTDVLPEFGG 113

       OmpF:   DTAY-SDDFFVGRVGGVATYRNSNFFGLVDGLNFAVQYLGKNER--------------DT 165
       OmpC:   DTYG-SDNFMQQRGNGFATYRNTDFFGLVDGLNFAVQYQGKNGNPSGEGFTSGVTNNGRD 171
     PhoE:   DSSAQTDNFMTKRASGLATYRNTDFFGVIDGLNLTLQYQGKNEN--------------RD 159
   OmpE36:   DTGV-SDNFFSGRTGGLATYRNSGFFGLVDGLNFGVQYLGKNER--------------TD 160
   OmpK36:  DTYG-SDNFLQSRANGVATYRNSDFFGLVDGLNFALQYQGKNGSVSGEG----ATNNGRG 168

       OmpF:   ARRSNGDGVGGSISYE-YEG--FGIVGAYGAADRTNLQEAQ-PLGNGKKAEQWATGLKYD 221
       OmpC:   ALRQNGDGVGGSITYD-YEG--FGIGGAISSSKRTDAQNTAAYIGNGDRAETYTGGLKYD 228
     PhoE:   VKKQNGDGFGTSLTYD-FGGSDFAISGAYTNSDRTNEQNLQ-SRGTGKRAEAWATGLKYD 217
   OmpE36:   ALRSNGDGWATSLSYD-FDG--FGIVGAYGAADRTNAQQNL-QWGKGDKAEQWATGLKYD 216
   OmpK36:  WSKQNGDGFGTSLTYDIWDG--ISAGFAYSHSKRTDEQNSVPALGRGDNAETYTGGLKYD 226

       OmpF:   ANNIYLAANYGETRNATPITNKFTNTSGFANKTQDVLLVAQYQFDFGLRPSIAYTKSKAK 281
       OmpC:   ANNIYLAAQYTQTYNATRVG-----SLGWANKAQNFEAVAQYQFDFGLRPSLAYLQSKGK 283
     PhoE:   ANNIYLATFYSETRKMTPIT------GGFANKTQNFEAVAQYQFDFGLRPSLGYVLSKGK 271
   OmpE36:   ANNIYLAALYGEMRNAARLD------NGFANKTQDFSVVAQYQFDFGLRPSIAYYKSKAK 270
   OmpK36:  ANNIYLASQYTQTYNATRAG-----SLGFANKAQNFEVVAQYQFDFGLRPSVAYLQSKGK 281

       OmpF:   DVE-GIGDVDLVNYFEVGATYYFNKNMSTYVDYIINQIDSDN---KLGVGSDDTVAVGIV 337
       OmpC:   NLGRGYDDEDILKYVDVGATYYFNKNMSTYVDYKINLLDDNQFTRDAGINTDNIVALGLV 343
     PhoE:   DIE-GIGDEDLVNYIDVGATYYFNKNMSAFVDYKINQLDSDN---KLNINNDDIVAVGMT 327
   OmpE36:   DVE-GIGDEDYINYIDIGATYYFNKNMSTYVDYQINQLKDDN---KLGINNDDTVAVGLV 326
   OmpK36:  DLERGYGDQDILKYVDVGATYYFNKNMSTYVDYKINLLDDNSFTRNAGISTDDVVALGLV 341

       OmpF:   YQF 340
       OmpC:   YQF 346
     PhoE:   YQF 330
   OmpE36:   YQF 329
   OmpK36:  YQF 344

16 22 40 42

80 116 120

121 122 132

294 296 302 305 310

L3 residues

Fig. S10. Sequence alignment of OmpF (E. coli), OmpC (E. coli), PhoE (E. coli), OmpK36 (K. pneumoniae) and OmpE36 (E. cloacae). Each residue is represented by their
one-letter abbreviation. Important residues in the observed gating mechanism of OmpF are highlighted with a box and colored based on residue type (black: hydrophobic,
green: polar, red: acidic, and blue: basic). All other residues are colored gray. The alignment was performed on full-length sequences using the Clustal Omega (38) alignment
tool within Uniprot (39).
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Fig. S11. Conformational landscape of L3 in G119D-OmpF mutant. Free energy landscape for dynamics of L3, reweighted by the stationary distribution, is projected onto the
top two tICA eigenvectors. The pore bottleneck radii (BR) for the conformational states corresponding to energetic minima are highlighted on the free energy surface. Structural
characteristics in each metastable state are depicted by the top-down snapshots of OmpF, highlighting hydrogen bonds with > 20% occurrence probability between the most
fluctuating residues of L3 and the barrel residues.
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Fig. S12. Conformational landscape of L3 in G120D-OmpF mutant. Free energy landscape for dynamics of L3, reweighted by the stationary distribution, is projected onto the
top two tICA eigenvectors. The pore bottleneck radii (BR) for the conformational states corresponding to energetic minima are highlighted on the free energy surface. Structural
characteristics in each metastable state are depicted by the top-down snapshots of OmpF, highlighting hydrogen bonds with > 20% occurrence probability between the most
fluctuating residues of L3 and the barrel residues.
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Fig. S13. Free energy error for WT, K16D, R42D, and R132D-OmpF systems. The landscape is projected onto E117-Y22 and R132-D121 for WT-OmpF and K16D-OmpF, and
E117-Y22 and R82-D121 for R132D-OmpF.
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Fig. S14. Comparison of the TPM computed with maximum likelihood MSM and with the raw trajectory data. Shown is the log of each matrix element. No significant difference
is observed.
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Fig. S15. The conformational landscape of L3 projected onto the E117-Y22 and D121-R132 distance features using the raw trajectory data.
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Table S1. Escherichia coli strains used in the study

Strain Genotype
BW26678 laclq rrnB3 ∆lacZ4787 hsdR514 ∆araBAD567 ∆rhaBAD568 rph-1/pKD46
WM8897 laclq rrnB3 ∆lacZ4787 hsdR514 ∆araBAD567 ∆rhaBAD568 rph-1 ∆ompF8897::cat
WM8901 laclq rrnB3 ∆lacZ4787 hsdR514 ∆araBAD567 ∆rhaBAD568 rph-1 ∆ompF8897::cat /pAH69
WM8819 laclq rrnB3 ∆lacZ4787 hsdR514 ∆araBAD567 ∆rhaBAD568 rph-1 ∆ompF8897::cat att-HK::pMEM503
WM8820 laclq rrnB3 ∆lacZ4787 hsdR514 ∆araBAD567 ∆rhaBAD568 rph-1 ∆ompF8897::cat att-HK::pMEM504
WM8826 laclq rrnB3 ∆lacZ4787 hsdR514 ∆araBAD567 ∆rhaBAD568 rph-1 ∆ompF8897::cat att-HK::pMEM501

Table S2. Plasmids, carrying various ompF alleles, used in this study

Plasmid Description Construction or Reference
pKD3 Source of cat-cassette used for ompF deletion Datsenko and Wanner (32)
pAH144 att-HK integration plasmid, Strep/SpecR Haldimann and Wanner (33)

pAH69
Temperature-sensitive helper plasmid for chromosomal integra-
tion of att-HK plasmids

Haldimann and Wanner (33)

pMEM501 pAH144::ompF (wt)
Vector pAH144 cut with EcoRI-HF and SphI-HF (no SAP) ligated
with PCR amplified ompF (wt) using primers ompF-cloningF and
ompFcloningR

pMEM503 pAH144::ompF (G120D)
Hi Fi Assembly of MluI/PvuII-cut pMEM501 and ompF-G120D
gBlock

pMEM504 pAH144::ompF (R132D)
Hi Fi Assembly of MluI/PvuII-cut pMEM501 and ompF-R132D
gBlock
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Table S3. Primers used in this study

Name Purpose Sequence
ompF-
cloningF

cloning ompF (wt) GGCGCGCCGCATGCTTCCGTTCCCACGTACTCCG

ompF-
cloningR

cloning ompF (wt) GGCGCGCCGAATTCCAGGAGCGGCGGTAATGTTC

del-ompF-F
amplification of cat-cassette used for construction of ∆ompF
mutant

AGATTTTGTGCCAGGTCGATAAA-
GTTTCCATCAGAAACAAGTGTAGGCTGGAGCTGCTTC

del-ompF-R
amplification of cat-cassette used for construction of ∆ompF
mutant

GTCCTGTTTTTTCGGCATTTAAC-
AAAGAGGTGTGCTATTACATATGAATATCCTCCTTAG

HK022-P1 verification of single copy plasmid integration at att-HK GGAATCAATGCCTGAGTG
HK022-P2 verification of single copy plasmid integration at att-HK GGCATCAACAGCACATTC
HK022-P3 verification of single copy plasmid integration at att-HK. ACTTAACGGCTGACATGG
HK022-P4 verification of single copy plasmid integration at att-HK ACGAGTATCGAGATGGCA

Table S4. gBlocks used for construction of att-HK plasmids carrying mutated ompF alleles

Name

ompF-
G120D

CTCTGAAGGCGCTGACGCTCAAACTGGTAACAAAACGCGTCTGGCATTCGCGGGTCTTAAATACG-
CTGACGTTGGTTCTTTCGATTACGGCCGTAACTACGGTGTGGTTTATGATGCACTGGGTTACACC-
GATATGCTGCCAGAATTTGGTGATGATACTGCATACAGCGATGACTTCTTCGTTGGTCGTGTTGGCG-
GCGTTGCTACCTATCGTAACTCCAACTTCTTTGGTCTGGTTGATGGCCTGAACTTCGCTGTTCA-
GTACCTGGGTAAAAACGAGCGTGACACTGCACGCCGTTCTAACGGCGACGGTGTTGGCGGTTCTATC-
AGCTACGAATACGAAGGCTTTGGTATCGTTGGTGCTTATGGTGCAGCTGACCGTACCAACCTGCAAG-
AAGCTCAACCTCTT

ompF-
R132D

CTCTGAAGGCGCTGACGCTCAAACTGGTAACAAAACGCGTCTGGCATTCGCGGGTCTTAAATACG-
CTGACGTTGGTTCTTTCGATTACGGCCGTAACTACGGTGTGGTTTATGATGCACTGGGTTACACCGATAT-
GCTGCCAGAATTTGGTGGTGATACTGCATACAGCGATGACTTCTTCGTTGGTGATGTTGGCGGCGT-
TGCTACCTATCGTAACTCCAACTTCTTTGGTCTGGTTGATGGCCTGAACTTCGCTGTTCAGT-
ACCTGGGTAAAAACGAGCGTGACACTGCACGCCGTTCTAACGGCGACGGTGTTGGCGGTTCTATCAGCTAC-
GAATACGAAGGCTTTGGTATCGTTGGTGCTTATGGTGCAGCTGACCGTACCAACCTGCAAGAAGCT-
CAACCTCTT
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