Appropriate exercise level attenuates gut dysbiosis and valeric acid increase to improve neuroplasticity and cognitive function after surgery in mice

Zhongmeng Lai, Weiran Shan, Jun Li, Jia Min, Xianzhang Zeng, Zhiyi Zuo

REAGENT or RESOURCE	RESOURCE	IDENTIFIER
Antibodies		
Rabbit polyclonal anti-PSD95	Abcam	Cat#GR326885-1
Rabbit polyclonal anti- Synapsin 1	Abcam	Cat#GR3275672-2
alpha-Tubulin rabbit Ab	cell signaling Technology	Cat#2144S
Rabbit monoclonal anti-C3 antibody	Abcam	Cat#GR3273564-7
Goat monoclonal anti-GFAP antibody	Millipore	Cat#GR3313543-1
Rat monoclonal anti-C3ar antibody	Hycult Biotech	Cat#HM1123-
		27428M0819-A
Rabbit monoclonal anti-Iba-1	Wako Chemical Co.	Cat#019-19741
antibody		
Rat monoclonal anti-BrdU antibody	Abcam	Cat#GR3289293-1
Donkey anti-goat IgG antibody	Invitrogen	Cat#1463163
conjugated with Alexa Fluor 488		
Donkey anti-rabbit IgG antibody	Invitrogen	Cat#1987293
conjugated with Alexa Fluor 594		
Donkey anti-rat IgG antibody	Invitrogen	Cat#1979379
conjugated with Alexa Fluor 594		
Donkey anti-rabbit IgG antibody	Invitrogen	Cat#1826679?
conjugated with Alexa Fluor 647		
Hoechst 33342	Thermo Scientific	Cat#U12842162
Drugs		
Amoxicillin/Clavulanic acid	Sigma-Aldrich	Cat#SM800607
Metronidazole	Sigma-Aldrich	Cat#M3761
Cefazolin	West-Ward	Cat#319033.1

KEY RESOURCES TABLE

Valeric sodium	Toronto Research	Cat#V091420
	Chemicals	
Critical Commercial Assays		
Nylon cell strainer	Fisher Scientific	Cat#08-771-2
RNeasy Micro kit	QIAGEN	Cat#74004
5X All in-One MasterMix	Applied Biological	Cat#G485
	Materials	
NovaSeq 6000 S4 Reagent kit	Illumina	Cat#20012866
DNA isolation kit	QIAGEN	Cat#12855-100
AMPure XP magnetic beads	Beckman Coulter	Cat#A63881
Nextera XT Index Kit	Illumina	Cat#FC-131-2001
Qubit dsDNA HS assay kit	Thermo Scientific	Cat#Q33230
FD Rapid GolgiStain kit	FD NeuroTechnologies	Cat#PK401
Mouse IL-1β ELISA kits	R&D SYSTEM	Cat#SMLB00C
Mouse IL-6 ELISA kits	R&D SYSTEM	Cat#SM6000B
Mouse C3 ELISA kits	Abcam	Cat#ab263884
Mouse GDNF ELISA kits	Biosensis	Cat#BEK-2229-2P
Chemicals		
Recombinant mouse GDNF	Abcam	Cat#GR2862-22
C3ar-agonist	cayman chemical	Cat#21683
C3ar-antagonist	Sigma-Aldrich	Cat#559410
BrdU	Sigma-Aldrich	Cat#APN17133-1-1
9-chloromethylanthracene	TCI America	Cat#: A5502
18-Crown-6	Sigma-Aldrich	Cat#: 80833
2-Ethylbutyric acid	Millipore Sigma	Cat# 109959
10×RIPA buffer	Thermo Scientific	Cat#89901
Protease inhibitor cocktail	Sigma-Aldrich	Cat#SRE0055
Tetramethylammonium hydroxide	TCI America	Cat# T0138

Figure legends for supplemental figures

Fig. S1. Exercise altered gut microbiota. Nine-week old male mice were with or without exercise for 4 weeks. Presentation of α diversity is in panels A and B. Presentation of β diversity is in panel C. Bacterial abundance is presented in panel D. n = 16 for all panels. C-S: control mouse samples harvested before surgery, E-ES: exercise mouse samples harvested before surgery.

Fig. S2. Exercise stabilized gut microbiota after surgery. Nine-week old male mice with or without exercise for 4 weeks were subjected to left carotid artery exposure (surgery) under isoflurane anesthesia. Presentation of α diversity is in panels A to D. Presentation of β diversity is in panels E and F. n = 8 for all panels. S: surgery mouse samples harvested just before surgery, SP3: surgery mouse samples harvested on post-surgery day 3, SP7: surgery mouse samples harvested on post-surgery day 7, ES: exercise mouse samples harvested just before surgery, ESP3: exercise mouse samples harvested on post-surgery day 3, ESP7: exercise mouse samples harvested on post-surgery day 7.

Fig. S3. Antibiotics reduced gut microbiota. Nine-week old male mice were treated with antibiotics to eliminate their native gut microbiota. A: bacterial DNA concentrations in feces. Presentation of α diversity is in panels B to D. Presentation of β diversity is in panels E and F. Bacterial abundance is presented in panel G. n = 8 for all panels. C; control, Anti: antibiotics.

Fig. S4. Transplantation with feces from exercise mice altered gut microbiota. Nineweek old mice were treated with antibiotics to eliminate their native gut microbiota and then transplanted with feces from exercise mice (ET) or control mice (CT). Presentation of α diversity is in panels A and B. Presentation of β diversity is in panel C. Bacterial abundance is presented in panel D. n = 8 for all panels.

Fig. S5. Successful establishment of transplanted gut microbiota. Nine-week old male mice received transplantation of feces from control mice or mice with surgery. Presentation of α diversity is in panels A, B and C. Presentation of β diversity is in panels D and E. Bacterial abundance is presented in panel F. n = 10. CT: control mouse received transplantation of feces from surgery mice.

Fig. S6. Transplantation of gut microbiota from surgery mice induced learning and memory dysfunction. Nine-week old mice received antibiotic treatment for 7 days (Antibiotic) or transplantation of feces from control mice (Trans-Control) (panels A to C). In another

experiment, nine-week old male mice received transplantation of feces from control mice (Trans-Control) or mice with surgery (Trans-Surgery) (panels D to F). A and D: training sessions of Barnes maze test. B and E: memory assessment of Barnes maze test. C and F: novel object recognition test. Results in panels A and D are mean \pm S.D. and results in panels B, C, E and F are median \pm interquartile range with presentation of value of individual mouse (n = 11 – 12 for panels A to C, = 16 – 17 for panels D to F).

Fig. S7. Changes of short chain fatty acids (SCFAs) under various experimental conditions. Blood and feces were harvested from mice 2 weeks after fecal transplantation (for panels A and D), 7 days after surgery (panel B) or 4 weeks after the onset of exercise protocol (panel C). Results are mean \pm S.D. (panels A, C, D) with presentation of value of individual mouse or median \pm interquartile range (panel B) with presentation of value of individual mouse (n = 7 for all panels). Trans-Control: mice transplanted with feces from control mice, Trans-Exe: mice transplanted with feces from exercise mice, Exe: exercise, Sur: surgery, NS: normal saline, Val: valeric acid.

Fig. S8. Intracerebroventricular injection of small dose of valeric acid failed to induce learning and memory dysfunction. Thirteen-week old male mice received intracerebroventricular injection of normal saline (NS) or valeric acid (Val). A: training sessions of Barnes maze test. B: memory assessment of Barnes maze test. C: novel object recognition test. Results in panel A are mean \pm S.D. and results in panels B and C are median \pm interquartile range with presentation of value of individual mouse (n = 14 – 15).

Fig. S9. Exercise via regulating gut microbiota and blood valeric acid concentrations attenuated surgery-induced immune and inflammatory responses. Hippocampus of 9-week old mice with or without 4-week exercise was harvested at various times after surgery for immunostaining or ELISA. A: representative Iba-1 and C3ar immunostaining images of hippocampus harvested 48 h after surgery. B and C: quantification of Iba-1 and C3ar immunostaining of hippocampus harvested 48 h after surgery. D and E: quantification of C3. F and G: IL-1 β quantified by ELISA. H and I: IL-6 quantified by ELISA. Results are mean \pm S.D. with presentation of value of individual mouse (n = 6 for panels B and C, = 9 for panels D to F and H, = 10 for panels G and I). Trans-Control: mice transplanted with feces from control mice, Trans-Exe: mice transplanted with feces from exercise mice, Exe: exercise, Sur: surgery, NS: normal saline, Val: valeric acid, post: post-surgery.

Fig. S10. Exercise via regulating gut microbiota and blood valeric acid concentrations attenuated surgery-induced decrease of brain cell genesis and dendritic arborization. Brain of 9-week old mice with or without 4-week exercise was harvested 19 days after surgery for immunostaining or Golgi staining. A: representative GFAP and BrdU immunostaining images of hippocampus. B and C: quantification of GFAP and BrdU positively stained cells in the hippocampus. D and E: representative Golgi staining images of hippocampus. F and G: quantification of intersections among the dendritic branches and spine density in the hippocampus. Results are mean \pm S.D. with presentation of value of individual mouse (n = 6 for panel B, = 8 for other panels). Trans-Control: mice transplanted with feces from control mice, Trans-Exe: mice transplanted with feces from exercise mice, Exe: exercise, Sur: surgery, NS: normal saline, Val: valeric acid.

Fig. S11. Exercise attenuated surgery-induced reduction of PSD95 and synapsin 1. Hippocampus was harvested 2 days after surgery for Western blotting. A and B: representative Western blotting images. C and D: quantification of PSD95 and synapsin 1. Result in panel C is median \pm interquartile range with presentation of value of individual mouse and result in panel D is mean \pm S.D. with presentation of value of individual mouse (n = 8 for all panels). Trans-Control: mice transplanted with feces from control mice, Trans-Exe: mice transplanted with feces from exercise mice, Exe: exercise, Sur: surgery, Syn-1: synapsin 1.

Fig. S12. Exercise stabilized gut microbiota of mice with surgery in old mice. Nineteenmonth old male mice with or without exercise for 4 weeks were subjected to left carotid artery exposure (surgery) under isoflurane anesthesia. Presentation of α diversity is in panels A, B, D, E, G, H, J and K. Presentation of β diversity is in panels C, F, I and L. Bacterial abundance is presented in panels M and N. n = 16 for panels A, B, C and M, and = 8 for other panels. OC-OS: old control mouse samples harvested before surgery, OE-OES: old exercise mouse samples harvested before surgery, OS: old surgery mouse samples harvested just before surgery, OSP: old surgery mouse samples harvested on post-surgery day 7, OES: old exercise mouse samples harvested before surgery, OESP: old exercise mouse samples harvested on post-surgery day 7.

Fig. S13. Exercise attenuated surgery-induced reduction of PSD95 and synapsin 1 in old mice. Hippocampus was harvested 2 days after surgery for Western blotting. A: representative Western blotting images. B: quantification of PSD95 and synapsin 1. Results are mean \pm S.D.

with presentation of value of individual mouse (n = 8). Exe: exercise, Sur: surgery, Syn-1: synapsin 1.

Fig. S2

Fig. S3

Fig. S4

Fig. S5

Time after training sessions

Time after training sessions

Fig. S6

Fig. S7

Time after training sessions

Fig. S8

Fig. S10

Fig. S11

0.94

OES OESP

Fig. S12

Fig. S13