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Supplementary Table 1: Bacterial strains and plasmids used in this study 37 

 38 

Strain or Plasmid Description Source 

E. coli strains   

ATCC 10536 

 

E. coli quality control strain ATCC 

S. aureus strains   

ATCC 6538 

 

S. aureus quality control strain ATCC 

E. faecalis strains   

JH2-2 

 

Laboratory strain, plasmid-free; rifr , fsr 

 

1 

M. smegmatis strains   

mc2155 Electrocompetent wild-type strain of M. 

smegmatis 

2 

Δcyd mc2155 with a markerless in frame 

deletion in the cydAB gene 

3 

∆qcr mc2155 with a markerless in frame 

deletion in the qcrB gene 

4 

M. tuberculosis strains   

H37Rv M. tuberculosis reference strain  

mc26230 Avirulent auxotrophic M. tuberculosis 

mutant (ΔRD1 ΔpanCD). Wild-type for 

this study. 

5 

mc26206 Avirulent auxotrophic M. tuberculosis 

mutant (ΔleuCD ΔpanCD).  

6 

AtpE(A63P) mc26206 with a G to C SNP at position 

187 bp atpE. 

This study 

Rv0678(G65fs) mc26206 with a single nucleotide 

deletion at position 193 bp of rv0678. 

Resulting protein is frameshifted. 

This study 

Rv3006(F134S) mc26230 with a X to X SNP at position 

X of Rv3006. 

This study 



Rv3006(R36S) 

 

mc26230 with a X to X SNP at position 

X of Rv3006. 

This study 

Mycobacterium bovis 

BCG 

Pasteur 1173P2 (NC_008769.1) 
 
 

7 

Plasmids   

pJLR965 CRISPRi cloning vector for M. 

tuberculosis 

8 

pCi73 pJLR965 containing sgRNA targeting 

atpB of M. tuberculosis 

9 

pCi7 pJLR965 containing sgRNA targeting 

mmpL3 of M. tuberculosis 

10 

pYUB28b Episomal expression vector for 

mycobacteria 

11 

pLHcyd pYUB28b with rv_1623c-rv1620c 

(cydABDC), containing C-terminal 

FLAG tag on cydB. 

12 
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Supplementary Table 2: IC50 values of the indicated compounds towards M. 41 

tuberculosis cytochrome bd oxidase. 42 

Compound IC50 [95% CI] (µM) IC50 (fold MIC) OCR at 1xMIC 

(%) 

HM2-16F 21.16 [10.88-39.09] 2.11 58.86 

BDQ 11.71 [4.57-27.03] 58.44 83.04 

Aurachin D* 0.15 [0.091-0.27] 0.019 3.70 

* The MIC of Aurachin D is determined from MIC testing against M. smegmatis Δqcr 43 

mutant (supplementary Table 1). 44 

45 



 46 

Supplementary Figure 1: Survival of M. tuberculosis after treatment with HM2-16F 47 

(20 M, 5 MIC) and bedaquiline (BDQ 2 M, 10 MIC). Hypoxia was achieved as 48 

cultures exhausted oxygen in the sealed serum vials as indicated by the 49 

decolorization of methylene blue (vertical dotted line) 12. Compounds were added at 50 

the indicated arrow. The horizontal dotted line indicates the limit of detection for all, 51 

but the first time point, where the limit of detection was 10 CFU mL-1.  Error bars 52 

indicate standard deviation from n = 3 biologically independent experiments. 53 
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Supplementary Figure 2: Control gene knockdown with a non-targeting sgRNA 58 

(pJLR965) was induced with the indicated amounts of ATc and the MIC of HM2-16F 59 

was determined.  Error bars indicate standard deviation from n = 3 biologically 60 

independent experiments. 61 

.62 



 63 

Supplementary Figure 3: Knockdown of the ATP synthase operon (atpB – pCi74) 64 

was induced with the indicated amounts of ATc, in the indicated strains and the 65 

growth relative to the vehicle control was determined. Raw OD600 absorbance values 66 

(path length = 0.33 cm) are plotted as indicated.  Error bars indicate standard 67 

deviation from n = 3 biologically independent experiments. 68 

. 69 

70 
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 72 

Supplementary Figure 4: Cell killing of the indicated M. tuberculosis strains after 10 73 

days incubation with HM2-16F at 5x MIC. The CFU at day 0 is indicated (Inoc). 74 

MC6206 = wild-type; HM2-16-resistant mutants, transcription factor Rv3066 G134fs 75 

and R38S (Supplementary Table 1). 76 
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 78 

Supplementary Figure 5: The top three docked poses for HM2-16F (blue, yellow, 79 

pink) docked into the BDQ-binding site of mycobacterial F1Fo-ATP synthase c-ring 80 

(PDB ID: 4V1F). The protein is shown as an electrostatic potential surface (red – 81 

electronegative, white – neutral, blue – electropositive; generated in PyMOL). 82 
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Supplementary Figure 6: Heatmap 84 

metabolite profile following 1d exposure 85 

of M. tuberculosis H37Rv to increasing 86 

concentrations of HM2-16F (1-10 MIC). 87 

Columns represent individual treatments 88 

as indicated. Rows denote individual 89 

metabolites measured. Hierarchical 90 

clustering was performed on the 91 

Euclidean distance matrix of this data 92 

and the resulting dendrogram and 93 

heatmap was visualized with ggplot2 in 94 

R. FC = Fold change. 95 
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