Supplemental 4

Feature Similarity

Similarity on Arita2018

Figure S30: Similarity of the models on dataset Arita2018. The best model is framed with a blue border, models that were significantly different to the best model are not shown. Statistical significance was tested using a DeLong test.

Similarity on Carvalho2018

LDA	0.16 AUC:0.62 (p=0.238) #Features: 4	-0.05 AUC:0.62 (p=0.223) #Features: 2	0.18 AUC:0.61 (p=0.152) #Features: 4		0.15 AUC:0.62 (p=0.207) #Features: 4		0.02 AUC:0.6 (p=0.144) #Features: 4	0.23 AUC:0.61 (p=0.159) #Features: 2
Logistic Regression	0.23 AUC:0.62 (p=0.214) #Features: 8	-0.05 AUC:0.62 (p=0.228) #Features: 2	0.18 AUC:0.61 (p=0.144) #Features: 4		0.16 AUC:0.62 (p=0.221) #Features: 8	0.26 AUC:0.61 (p=0.128) #Features: 16	0.02 AUC:0.61 (p=0.166) #Features: 4	0.23 AUC:0.62 (p=0.21) #Features: 2
Naive Bayes	0.16 AUC:0.62 (p=0.211) #Features: 16	-0.05 AUC:0.61 (p=0.145) #Features: 2	0.27 AUC:0.61 (p=0.131) #Features: 16		0.11 AUC:0.62 (p=0.229) #Features: 16			0.23 AUC:0.61 (p=0.189) #Features: 2
Neural Network	0.11 AUC:0.65 (p=0.547) #Features: 64	-0.01 AUC:0.64 (p=0.474) #Features: 64	0.23 AUC:0.65 (p=0.746) #Features: 8	0.03 AUC:0.63 (p=0.339) #Features: 16	0.16 AUC:0.65 (p=0.748) #Features: 8	0.26 AUC:0.66 (p=0.848) #Features: 16	0.07 AUC:0.63 (p=0.303) #Features: 64	0.81 AUC:0.67 (p=1.0) #Features: 16
RBF-SVM	0.16 AUC:0.65 (p=0.612) #Features: 4	-0.05 AUC:0.61 (p=0.215) #Features: 2	0.18 AUC:0.6 (p=0.116) #Features: 4		0.15 AUC:0.65 (p=0.642) #Features: 4	0.26 AUC:0.62 (p=0.195) #Features: 16	-0.01 AUC:0.59 (p=0.093) #Features: 2	0.81 AUC:0.66 (p=0.705) #Features: 16
Random Forest	0.23 AUC:0.62 (p=0.202) #Features: 8	0.01 AUC:0.62 (p=0.218) #Features: 8	0.27 AUC:0.6 (p=0.085) #Features: 16		0.16 AUC:0.63 (p=0.327) #Features: 8		0.1 AUC:0.6 (p=0.055) #Features: 32	0.36 AUC:0.65 (p=0.59) #Features: 4
SVM	0.16 AUC:0.62 (p=0.208) #Features: 4	-0.05 AUC:0.62 (p=0.242) #Features: 2	0.18 AUC:0.61 (p=0.138) #Features: 4		0.15 AUC:0.62 (p=0.204) #Features: 4	0.26 AUC:0.61 (p=0.129) #Features: 16	0.02 AUC:0.6 (p=0.14) #Features: 4	0.23 AUC:0.62 (p=0.218) #Features: 2
XGBoost	0.16 AUC:0.62 (p=0.254) #Features: 4	0.01 AUC:0.59 (p=0.054) #Features: 8	0.17 AUC:0.62 (p=0.296) #Features: 32	0.05 AUC:0.59 (p=0.062) #Features: 8	0.11 AUC:0.63 (p=0.318) #Features: 16	0.18 AUC:0.62 (p=0.317) #Features: 8		0.36 AUC:0.65 (p=0.673) #Features: 4
	ANOVA	charwa	ŵ	FCBH	Kendall	LA550	why .	NRMRe
aratio								

Figure S31: Similarity of the models on dataset Carvalho2018. The best model is framed with a blue border, models that were significantly different to the best model are not shown. Statistical significance was tested using a DeLong test.

Similarity on Hosny2018A

Figure S32: Similarity of the models on dataset Hosny2018A. The best model is framed with a blue border, models that were significantly different to the best model are not shown. Statistical significance was tested using a DeLong test.

Similarity on Hosny2018B

Figure S33: Similarity of the models on dataset Hosny2018B. The best model is framed with a blue border, models that were significantly different to the best model are not shown. Statistical significance was tested using a DeLong test.

Similarity on Hosny2018C

Figure S34: Similarity of the models on dataset Hosny2018C. The best model is framed with a blue border, models that were significantly different to the best model are not shown. Statistical significance was tested using a DeLong test.

Similarity on Ramella2018

Figure S35: Similarity of the models on dataset Ramella2018. The best model is framed with a blue border, models that were significantly different to the best model are not shown. Statistical significance was tested using a DeLong test.

Similarity on Lu2019

Figure S36: Similarity of the models on dataset Lu2019. The best model is framed with a blue border, models that were significantly different to the best model are not shown. Statistical significance was tested using a DeLong test.

LDA	0.66 AUC:0.62 (p=0.386) #Features: 4	0.44 AUC:0.61 (p=0.306) #Features: 2	0.3 AUC:0.61 (p=0.325) #Features: 1		0.45 AUC:0.64 (p=0.607) #Features: 2	0.0 AUC:0.54 (p=0.067) #Features: 1	0.0 AUC:0.58 (p=0.122) #Features: 4	0.29 AUC:0.64 (p=0.621) #Features: 1
Logistic Regression	0.66	0.55	0.3	-0.03	0.45	-0.01	0.0	0.29
	AUC:0.62 (p=0.395)	AUC:0.61 (p=0.288)	AUC:0.61 (p=0.331)	AUC:0.57 (p=0.096)	AUC:0.64 (p=0.595)	AUC:0.54 (p=0.062)	AUC:0.59 (p=0.155)	AUC:0.64 (p=0.611)
	#Features: 4	#Features: 4	#Features: 1	#Features: 64	#Features: 2	#Features: 2	#Features: 4	#Features: 1
Naive Bayes	0.43 AUC:0.62 (p=0.328) #Features: 32	0.43 AUC:0.61 (p=0.241) #Features: 16	0.2 AUC:0.61 (p=0.248) #Features: 64	-0.03 AUC:0.55 (p=0.059) #Features: 64	0.49 AUC:0.64 (p=0.585) #Features: 16		0.0 AUC:0.6 (p=0.24) #Features: 4	0.29 AUC:0.64 (p=0.621) #Features: 1
Neural Network	0.66	0.55	0.31	-0.03	0.45	-0.01	0.0	0.29
	AUC:0.62 (p=0.431)	AUC:0.65 (p=0.721)	AUC:0.63 (p=0.5)	AUC:0.65 (p=0.772)	AUC:0.64 (p=0.649)	AUC:0.66 (p=0.936)	AUC:0.66 (p=0.88)	AUC:0.66 (p=0.9)
	#Features: 4	#Features: 4	#Features: 8	#Features: 64	#Features: 4	#Features: 4	#Features: 64	#Features: 1
RBF-SVM	0.59	0.43	0.3	-0.01	0.49	-0.01	0.0	0.29
	AUC:0.6 (p=0.187)	AUC:0.58 (p=0.147)	AUC:0.61 (p=0.343)	AUC:0.63 (p=0.578)	AUC:0.61 (p=0.343)	AUC:0.62 (p=0.497)	AUC:0.59 (p=0.194)	AUC:0.59 (p=0.187)
	#Features: 8	#Features: 16	#Features: 2	#Features: 8	#Features: 16	#Features: 4	#Features: 64	#Features: 1
Random Forest	0.59	0.5	0.31	-0.03	0.49	-0.01	0.0	0.29
	AUC:0.63 (p=0.382)	AUC:0.59 (p=0.101)	AUC:0.6 (p=0.207)	AUC:0.62 (p=0.407)	AUC:0.64 (p=0.636)	AUC:0.61 (p=0.398)	AUC:0.57 (p=0.068)	AUC:0.62 (p=0.412)
	#Features: 8	#Features: 8	#Features: 8	#Features: 64	#Features: 16	#Features: 4	#Features: 32	#Features: 1
SVM	0.66	0.43	0.3	-0.03	0.45	0.0	-0.01	0.29
	AUC:0.63 (p=0.454)	AUC:0.64 (p=0.66)	AUC:0.59 (p=0.2)	AUC:0.59 (p=0.342)	AUC:0.64 (p=0.624)	AUC:0.56 (p=0.104)	AUC:0.56 (p=0.09)	AUC:0.63 (p=0.558)
	#Features: 4	#Features: 16	#Features: 1	#Features: 32	#Features: 2	#Features: 1	#Features: 2	#Features: 1
XGBoost	0.59	0.44	0.3	-0.03	0.49	-0.01	0.0	0.29
	AUC:0.67 (p=1.0)	AUC:0.63 (p=0.534)	AUC:0.63 (p=0.506)	AUC:0.65 (p=0.789)	AUC:0.65 (p=0.69)	AUC:0.63 (p=0.547)	AUC:0.63 (p=0.57)	AUC:0.63 (p=0.561)
	#Features: 8	#Features: 2	#Features: 4	#Features: 64	#Features: 16	#Features: 4	#Features: 4	#Features: 1
	Anova	charwa	ŵ	FCBF	Kendall	LA550	NWW	MRMRe
exercities .								X.

Similarity on Sasaki2019

Figure S37: Similarity of the models on dataset Sasaki2019. The best model is framed with a blue border, models that were significantly different to the best model are not shown. Statistical significance was tested using a DeLong test.

Similarity on Toivonen2019

Figure S38: Similarity of the models on dataset Toivonen2019. The best model is framed with a blue border, models that were significantly different to the best model are not shown. Statistical significance was tested using a DeLong test.

LDA	0.0 AUC:0.65 (p=0.137) #Features: 4	0.0 AUC:0.64 (p=0.117) #Features: 1	0.0 AUC:0.65 (p=0.183) #Features: 2		0.0 AUC:0.65 (p=0.191) #Features: 1		0.0 AUC:0.68 (p=0.709) #Features: 8	0.01 AUC:0.64 (p=0.109) #Features: 8
Logistic Regression	0.0 AUC:0.66 (p=0.233) #Features: 16	0.02 AUC:0.66 (p=0.27) #Features: 64	0.0 AUC:0.66 (p=0.242) #Features: 8	-0.01 AUC:0.65 (p=0.126) #Features: 64	0.0 AUC:0.65 (p=0.185) #Features: 1	0.17 AUC:0.68 (p=0.145) #Features: 2	0.0 AUC:0.68 (p=0.787) #Features: 8	0.01 AUC:0.64 (p=0.147) #Features: 8
Naive Bayes	0.01 AUC:0.65 (p=0.225) #Features: 32	0.02 AUC:0.66 (p=0.356) #Features: 64	0.0 AUC:0.66 (p=0.299) #Features: 32	-0.01 AUC:0.64 (p=0.154) #Features: 64	0.05 AUC:0.65 (p=0.151) #Features: 64	0.21 AUC:0.65 (p=0.137) #Features: 4	0.0 AUC:0.67 (p=0.629) #Features: 8	
Neural Network	0.0 AUC:0.66 (p=0.338) #Features: 4	0.0 AUC:0.65 (p=0.213) #Features: 1	0.0 AUC:0.65 (p=0.134) #Features: 1		0.03 AUC:0.65 (p=0.195) #Features: 16	0.17 AUC:0.68 (p=0.56) #Features: 2	0.0 AUC:0.67 (p=0.655) #Features: 8	0.01 AUC:0.64 (p=0.21) #Features: 32
RBF-SVM	0.0 AUC:0.64 (p=0.063) #Features: 64	0.0 AUC:0.65 (p=0.213) #Features: 1	0.02 AUC:0.63 (p=0.054) #Features: 64	-0.01 AUC:0.63 (p=0.053) #Features: 64	0.0 AUC:0.65 (p=0.153) #Features: 4	0.17 AUC:0.66 (p=0.107) #Features: 2	0.0 AUC:0.66 (p=0.403) #Features: 8	0.02 AUC:0.67 (p=0.459) #Features: 64
Random Forest	0.0 AUC:0.64 (p=0.18) #Features: 64	0.02 AUC:0.67 (p=0.466) #Features: 64	0.0 AUC:0.64 (p=0.168) #Features: 8		0.05 AUC:0.66 (p=0.441) #Features: 64	0.18 AUC:0.64 (p=0.074) #Features: 32	0.0 AUC:0.64 (p=0.118) #Features: 32	0.02 AUC:0.68 (p=0.725) #Features: 64
SVM	0.0 AUC:0.66 (p=0.374) #Features: 16	0.0 AUC:0.65 (p=0.143) #Features: 1	0.0 AUC:0.65 (p=0.247) #Features: 2		0.0 AUC:0.65 (p=0.221) #Features: 4	0.17 AUC:0.69 (p=1.0) #Features: 2	0.0 AUC:0.68 (p=0.715) #Features: 8	0.01 AUC:0.64 (p=0.162) #Features: 8
XGBoost	0.0 AUC:0.65 (p=0.28) #Features: 16	0.0 AUC:0.63 (p=0.132) #Features: 16	0.0 AUC:0.65 (p=0.305) #Features: 8		0.02 AUC:0.65 (p=0.236) #Features: 8	0.18 AUC:0.63 (p=0.069) #Features: 32	0.0 AUC:0.66 (p=0.445) #Features: 32	0.02 AUC:0.64 (p=0.156) #Features: 64
	Anova	charwa	¢	FCBK	Kendall	LA550	NWW	MRMRe
Static .								

Figure S39: Similarity of the models on dataset Keek2020. The best model is framed with a blue border, models that were significantly different to the best model are not shown. Statistical significance was tested using a DeLong test.

Similarity on Li2020

Figure S40: Similarity of the models on dataset Li2020. The best model is framed with a blue border, models that were significantly different to the best model are not shown. Statistical significance was tested using a DeLong test.

Similarity on Park2020

Figure S41: Similarity of the models on dataset Park2020. The best model is framed with a blue border, models that were significantly different to the best model are not shown. Statistical significance was tested using a DeLong test.

Similarity on Song2020

Figure S42: Similarity of the models on dataset Song2020. The best model is framed with a blue border, models that were significantly different to the best model are not shown. Statistical significance was tested using a DeLong test.

Similarity on Veeraraghavan2020

Figure S43: Similarity of the models on dataset Veeraraghavan2020. The best model is framed with a blue border, models that were significantly different to the best model are not shown. Statistical significance was tested using a DeLong test.