
SUPPLEMENTARY NOTE: ASSOCIATIONS REMAIN VALID DESPITE TEMPORAL 
CHANGES IN MICROBIAL CONTENT 

As shown in the Supplementary Figure 1 below, the t-SNE plot based on the relative abundances 
across all microbial genera shows some apparent grouping by date of processing, roughly into 
four time periods: September 2005 - January 2011, February 2011 - November 2011, December 
2011 - February 2013, and March 2013 - February 2017.  

 
Supplementary Figure 1: tSNE coordinates of individual patient samples colored by processing date.  

 

To ensure that these temporal differences did not lead to artifactual results, in this Supplementary 
Note we re-perform the statistical analyses presented in the Results section of the main text, this 
time controlling for membership in these four time periods. Controlling for time period entails either 
adjusting for time period in the statistical model (where possible) or re-performing the analysis 
within each time period separately. As we show here, the conclusions remain valid even while 
accounting for temporal effects, demonstrating that the temporal effects are not confounders in 
our analyses. 

Clustering by disease subtype in both tSNE and principal coordinate space 

As shown in Figure 1b of the main text, MDS patients cluster together. The substantial majority 
(467 of 640, 73%) of MDS patients fall within the first (September 2005 – January 2011) time 
period shown in the Figure above. To ensure that the clustering observed in Figure 1b is not an 
artifact of the temporal clustering, we recomputed the t-SNE coordinates for patient samples from 
the September 2005 – January 2011 time period. As shown in Supplementary Figure 2 below, 
even within this time period the MDS patients show strong clustering. For instance, 226 of 467 
MDS patients (48%) in this time period have second t-SNE coordinates larger than 10, while only 
10 of 494 (2%) non-MDS patients do (P < 2.2 x 10-16).   



 

 
Supplementary Figure 2: tSNE coordinates of individual patient samples processed September 2005-January 2011 colored 
by MDS status.  

Next, the main text reports an association (Figure 1f; chi-squared test P < 2.2 x 10-16) between 
patient disease subtypes and principal coordinate clusters. Testing for association between 
subtype and cluster membership within each of the four time periods yields chi-squared P-values 
of 8.2 x 10-41, 2.8 x 10-7, 0.047, and 0.158 for the first, second, third, and fourth time periods, 
respectively. Since all but the last time period showed at least nominal significance, it is unlikely 
that the observed association between subtype and principal coordinate cluster was confounded 
by temporal factors.    

Cluster association with karyotypic features 

Figure 1g in the main text demonstrates differences in prevalence of karyotypic features among 
the principal coordinate clusters. The P-values in the figure are calculated using logistic 
regression. We can adjust for time period by adding binary indicator variables to the logistic 
regression model, as follows: 

logit(p) = β0 + β1 x I(September 2005-January 2011) + β2 x I(February 2011-November 2011) + 

                                 β3 x I(December 2011-February 2013) + β4 x PCo_cluster  (1) 

where p = probability of the karyotypic feature, PCo_cluster is a categorical variable indicating 
patient membership in one of the four principal coordinate clusters, and I(x) is the indicator 
function/dummy variable  

 I(x) = �1 if the patient was processed in time period x
0 otherwise

      (2) 

                             



P-values for the logistic regression model are computed using ANOVA. Without controlling for the 
time periods, the P-values (as shown in Figure 1g) are 0.00096, 1.83 x 10-6, and 0.023 for 
associations between cluster and complex karyotype, normal karyotype, and trisomy 8, 
respectively. After adjusting for time period, these P-values become 0.00019, 7.7 x 10-5, and 
0.015, respectively. The associations remain significant, suggesting that the temporal changes 
are not confounders here.    

Viral involvement in MDS 

In the main text, we report that MDS patients show the highest viral prevalence (logistic regression 
P = 2.51 x 10-5) and highest viral burden (Wilcoxon P = 1.12 x 10-8) among the four disease 
subtypes. The former still holds true when the logistic regression model is adjusted for time period 
in a manner similar to that shown in the logistic regression equation above (P = 2.81 x 10-5), and 
indeed the higher viral burden in MDS holds true within each of the four time period groups as 
shown in Supplementary Figure 3 below (although not all are statistically significant likely owing 
to smaller sample sizes, they all show higher median burden in MDS), further demonstrating that 
temporal change is not a confounder here: 

 
Supplementary Figure 3: Viral burden, within each time period, stratified by MDS status.  

In MDS patients, worse overall survival was associated with EBV presence as reported in the 
main text (Figure 2d; age-adjusted Cox proportional hazards test HR 1.32, 95% CI 1.04 – 1.67, P 
= 0.022). When further adjusting for time period by adding terms into the Cox model (as in the 
logistic regression model above), we found a very similar association (HR 1.31, 95% CI: 1.03 - 
1.67, P = 0.025).   

We also reported in the main text that EBV presence/absence stratified the patients with “Low” 
IPSS-R risk scores to resemble the Intermediate/Very Low categories, respectively, with regard 
to survival. Specifically, as expected, individuals with IPSS-R Low had better survival than those 
with IPSS-R Intermediate (age-adjusted Cox P = 0.002) and worse survival than those with IPSS-
R Very Low (age-adjusted Cox P = 0.098). However, when IPSS-R Low individuals are stratified 
by presence/absence of EBV, their survival is statistically indistinguishable from IPSS-R 
Intermediate/Very Low patients, respectively (P = 0.328 and 0.299, respectively). When adjusting 



the model further for time period as above, the P-values remain similar (unstratified Low vs. 
Intermediate P = 0.008; unstratified Low vs. Very Low P = 0.082; Low w/ EBV vs. Intermediate P 
= 0.46; Low w/o EBV vs. Very Low P = 0.28).  

It follows from these analyses that temporal changes are not a confounder in the observed role 
of EBV in MDS.    

 

Higher fungal detection in MDS 

The main text reported higher prevalence of detected fungal reads among MDS patients 
(logistic regression P = 0.00586). When adjusting for time period as above, the association 
remains significant (P = 0.00143). 

 

Relationships between disease subtypes and bacterial relative abundance/diversity 

We report overall association between disease subtypes and Proteobacteria relative abundance 
in the main text (age-adjusted ANOVA P = 7.1 x 10-7). If we further adjust for time period as above, 
the result remains significant (P = 0.0087). For AML in particular, we found the highest 
Proteobacteria relative abundance (Wilcoxon P < 2.2 x 10-16). As shown in Supplementary Figure 
4 below, higher Proteobacteria relative abundance in AML is consistent within each time period: 

 
Supplementary Figure 4: Proteobacteria relative abundance, within each time period, stratified by AML status.  

It was also shown in the main text that AML patients had the lowest α-diversity and richness 
(Figures 3c and 3e). To control for time period, for each taxonomic level we fit a logistic regression 



model, modeling probability of (binary) AML status as a function of α-diversity, while controlling 
for age and time period. Specifically, the model is: 

logit(p) = β0 + β1 x I(September 2005-January 2011) + β2 x I(February 2011-November 2011) + 

                          β3 x I(December 2011-February 2013) + β4 x age + β5 x α-diversity     (3) 

where p = probability of AML and I(x) is the indicator function/dummy variable for time period as 
above. We also fit the model controlling only for age (i.e. omitting the β1, β2, and β3 terms). As can 
be seen in Supplementary Figure 5 below, the coefficient estimates are negative for the α-diversity 
terms whether or not we control for time period, indicating that AML subtype consistently tracks 
with lower α-diversity (and is usually statistically significant, as indicated by the P-values 
accompanying each test, shown in figure) when controlling for time period:  

 
Supplementary Figure 5: Coefficient estimates for α-diversity term in Supplementary Equation (3), both with (right panel) 
and without (left panel) time-period adjustment.  

With regard to richness, it can be seen from Supplementary Figure 6 below that the lower richness 
we observe across the entire cohort is largely consistent within time periods (although the 
numbers of AML samples in the last time period are admittedly too small (n = 24) to observe much 
difference). 

Taken together, these results indicate that our observed relationships between disease subtype 
and bacterial relative abundance/diversity are not confounded by temporal factors. 

Machine learning disease subtype classifiers 

In the main text we demonstrate the ability of random forest-based classifiers to distinguish among 
disease subtypes based on bacterial content. To demonstrate that these classifiers were not 
affected by temporal changes in microbial content, we show here that classification models still 
perform substantially better than chance when trained and validated within each of the four time 
periods (see Supplementary Table 1 below). The performances of the within-time period 



classifiers, as measured by AUROC, are not as strong as for the entire cohort, but this is to be 
expected since the numbers of patient training samples are much smaller within each time period, 
leading to a less-accurate classifier. Nonetheless, all of the AUROC estimates are above 0.5 
(chance), and nearly all of the 95% confidence intervals are above 0.5, indicating that the temporal 
effects do not drive the subtype signal from microbial content.  

Supplementary Figure 6: Rarefaction plots for AML vs. all other disease subtypes, within each time period separately.  

 

 
Supplementary Table 1: AUROC estimates for all five disease subtype classifiers, both overall and within each time period.  

 

 

Entire cohort Sep 2005-Jan 2011 Feb 2011-Nov 2011 Dec 2011-Feb 2013 Mar 2013-Feb 2017
AML vs. all 0.87 (0.84-0.90) 0.89 (0.85-0.93) 0.75 (0.64-0.85) 0.64 (0.56-0.72) 0.57 (0.39-0.75)
MDS vs. all 0.84 (0.81-0.88) 0.88 (0.85-0.91) 0.77 (0.65-0.86) 0.70 (0.55-0.80) 0.77 (0.65-0.88)
MDS/MPN vs. all 0.75 (0.70-0.80) 0.73 (0.61-0.84) 0.56 (0.35-0.83) 0.66 (0.51-0.76) 0.62 (0.53-0.70)
MPN vs. all 0.79 (0.75-0.83) 0.77 (0.70-0.84) 0.78 (0.61-0.91) 0.58 (0.42-0.77) 0.67 (0.59-0.74)
four-way classifier 0.84 (0.84-0.84) 0.83 (0.82-0.83) 0.71 (0.70-0.73) 0.64 (0.61-0.65) 0.61 (0.58-0.63)

AUROC estimate (95% CI)



Relationships between blast percentage and microbial features 

In the main text, we report associations between patient blast percentage and microbial features: 
viral detection, viral burden, Proteobacteria relative abundance, and α-diversity. We recomputed 
the significance of each of these associations by using regression models incorporating time 
period as above. Supplementary Table 2 below shows the P-values and directions of these 
associations, both adjusted and unadjusted for time period. 

 
Supplementary Table 2: P-values for associations between blast percentage and microbial characteristics, both adjusted 
and unadjusted for time period.  

Relationships between bacteriome and host mutations 

Using logistic regression models, in the main text we report significant associations between 
DNMT3A mutations and genus α-diversity, as well as between FLT3 and NPM1 mutations and 
Proteobacteria levels. Incorporating time period terms into the model as above, the associations 
remain significant (P = 0.00018, 0.00062, and 0.019, respectively), and in the same direction as 
the original associations.  

unadjusted for time period adjusted for time period
viral read presence (logistic regression) 0.0017 (-) 0.0021 (-)
viral burden (linear regression) 0.0012 (-) 0.0012 (-)
proteobacteria relative abundance 1.0 x 10-10 (+) 2.7 x 10-6 (+)
phylum α-diversity (linear regression) < 2.2 x 10-16 (-) 1.5 x 10-11 (-)
class α-diversity (linear regression) 0.018 (-) 0.014 (+)
order α-diversity (linear regression) 3.7 x 10-8 (-) 0.62 (-)
family α-diversity (linear regression) 5.1 x 10-12 (-) 0.0031 (-)
genus α-diversity (linear regression) 0.45 (+) 0.12 (+)
species α-diversity (linear regression) 0.02 (-) 0.40 (+)

(+) positive correlation, (-) negative correlation

Associations between blast % and microbial characteristics : P-value (direction of association)
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Supplementary Figure 7: t-SNE plots colored by sample characteristics. 1870 cases and 12 controls colored by a) 
blood/bone marrow status, b) age, and c) sex. 
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Supplementary Figure 8: Principal coordinate plots colored by sample characteristics. 1870 cases colored by a) blood/bone marrow 
status, b) age, and c) sex. For clarity, two outliers are not shown (bone marrow from males, ages 48 and 81). 



Supplementary Figure 9: Genome-length-adjusted viral prevalence. Estimated number of patients each 
viral species would have been observed in had each virus had the same length (2442 bp). 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 10: Concordance between read-depth-based and qPCR-based EBV abundance estimated. 18 DNA 
samples from our patient cohort were analyzed for EBV presence and abundance using qPCR. a) qPCR EBV copy number 
estimates over n = 3 independent experiments per sample. All three measurements for each sample are shown, and bar 
height indicates mean of the three experiments. b) Of the 18 samples, nine were deemed EBV-negative according to read-
depths because no EBV reads were observed. Of these (lower left corner of plot), eight were also deemed negative based 
on qPCR, whereas the ninth (MLL_00009) was only barely detectable via qPCR. For the remaining nine samples, both 
quantification methods were concordant with regard to which samples were outliers (MLL_11162 and MLL_11328) with 
regard to EBV levels, and which had intermediary levels. Two-sided P-value is computed using cor.test in R with 
method=”spearman”. 
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