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Figure S1: Network architecture of the expert DNN. The expert DNN builds on the V-
net framework, which is a 3D DNN with an encoder-decoder framework. The encoder extracts
multi-scale features using 3D convolution kernels of size 3× 3× 3 with stride 1. Each layer in the
encoder decreases the spatial dimensions by 2× while doubling the number of channels. Spatial
feature maps at different scales from the encoder are forwarded to the decoder via skip connections
for preserving high resolution information. The bottleneck layer contains the “latent code” of size
8 × 8 × 7 with 256 channels. The decoder also contains multiple 3D convolution layers with
3× 3× 3 convolution kernels, and convolutional upsampling, with the additional incorporation of
high resolution features from the skip connections. The single-channel output from the decoder is
converted to a probability map using the sigmoid layer, in which each voxel value represents the
likelihood of the voxel belonging to a particle (vs. belonging to the background).
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Figure S2: Network architecture of the expert encoder Ei and synthesized decoder Ds

within the DSN. (a) The architectures of all the encoders Ei (i ∈ {1, 2, 3}) are identical, and
are derived from a modified V-net. The encoders extract features from the 3D input, which are
then used by the decoder for generating the DNN output. Since V-net uses multi-scale feature
forwarding by skip connections, we record the encoder extracted features at each spatial scale
(denoted by Fi0–Fi3), together with the latent feature map Fi4. This combined set of feature
maps is labeled as Fi = [Fi0;Fi1;Fi2;Fi3;Fi4] associated with the corresponding encoder Ei.
(b) The architecture of the synthesized decoder Ds is derived from the modified V-net decoder.
Each network parameter in Ds is a weighted sum of the corresponding parameters in the three
expert decoders Di: Ds =

∑3
i=1 αiDi. Once Ds is synthesized, it decodes the corresponding

synthesized multi-scale feature maps Fs = [Fs0;Fs1Fs2;Fs3;Fs4] for generating the output, where

Fsx =
∑3

i=1 αiFix, and x ∈ {0, 1, 2, 3, 4} indices the feature set.
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Figure S3: Gating network structure. The GTN follows the VGG structure to predict the
synthesis weights αi. The input hologram is first downsampled by 4× by selecting every 4th pixel
along each axes. Next, the GTN extracts multi-scale spatial features from the 2D hologram using
two 2D convolutional layers, each containing a convolution with a bank of 3×3 kernels, followed by
2× maxpooling to decrease the spatial dimensions. The first layer contains 32 channels; the second
layer contains 64 channels. After the convolutional layers, the 8× 8× 64 feature map is flattened
and then passed through a fully connected layer. The output is a 3×1 vector representing the three
synthesis weights {α1, α2, α3}. The sum of the weights are enforced to be unity, i.e.

∑3
i=1 αi = 1

through the use of the softmax nonlinear activation function at the last layer.
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Figure S4: Schematic diagram of the feature map flow in the DSN. We show the maximum
z-projection of an example 3D feature map. (a) The feature maps extracted by the three expert
encoders. (b) The feature maps in the synthesized DSN. The synthesized encoder features are
directly concatenated to the decoder by the skip connections. (c) The input and output of the
DSN.
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Figure S5: DSN Feature maps at different particle densities. The feature maps (shown in
z-projects) of a low density and a high density are shown. F1,F2,F3 represent the three expert
encoders within the DSN. Layer1–Layer5 represent the encoder layers within the DSN, the same
as Fig. S4(a).
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Figure S6: Performance comparison: two vs three expert encoder-decoder pairs within
the DSN. We compare the performance of the DSN with two (in dashed red) and three (in solid
green) experts on the test set which has the same particle size, refractive index contrast and density
as the training set. It is evident that the three-expert DSN performs better especially for higher
particle densities (ρ ≥ 3.2× 104 particles µL−1). The results highlight the significance of the extra
degrees of freedom provided by the additional expert within the DSN.
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Figure S7: The synthesis weights with Xavier-random initialization of the experts. The
synthesis weights of four different scattering densities (ρ) predicted by the GTN, co-trained with the
random initialized experts, are shown for the simulated testing set (refractive index is 0.26, particle
diameter is 1.0 µm). Different expert DNNs have different weights α, which suggest that they
contribute differently to the descattering. The larger values of α2 indicate the major contributions
of F2 and D2 to the DSN. The small values of α3 indicates the fine-tuned contributions from
F3 and D3 to the DSN. The synthesis weights are consistent for a given density and tailored to
each input, as quantified by the mean and standard deviation for each case. The general trend
of the synthesis weights are similar to those obtained from the DSN using the pre-trained weight
initialization scheme, shown in the Figure 6. As the particle density increases, α1, α3 decreases
while α2 increases, which indicates that E2 are important for the DSN to adapt to higher density
cases. The differences in the weight values compared with Figure 6 are expected from the different
initialization schemes, the stochastic training process, and the severe ill-posedness of problem.
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Figure S8: Performance comparison: expert vs Xavier-random initialization of the
encoders and decoders within the DSN. Particle localization performance is quantitatively
compared between the DSNs that are trained using two initialization schemes, including the pre-
trained expert weights (solid green) and Xavier random weights (dashed red) using the Jaccard
Index (JI). Each subplot indicates the results on the test set (refractive index is 0.26, particle
diameter is 1.0 µm) at the particle density labeled above each plot. The two initialization schemes
provide almost the same performance.
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Figure S9: Experimental setup and schematics. (a) An inline holography setup consists of
a collimated HeNe laser (632.8 nm, 500:1 polarization ratio, Thorlabs HNL210L) for illumination
and a 4F system consisting of a 20× objective lens (0.4 NA, CFI Plan Achro) and a 200 mm tube
lens for imaging. A CMOS sensor (FLIR GS3-U3-123S6M-C) is used to record the holograms.
The 3D sample consists of polystyrene microspheres with diameter 0.994±0.021 µm (Thermofisher
Scientific 4009A) suspended in water held in a quartz-cuvette with inner dimensions 40 mm × 40
mm × 0.5 mm. (b) A plane-wave is incident on the 3D sample containing distributed particles.
The field undergoes multiple scattering and then propagates to the hologram plane.
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Figure S10: Scatterer-density and depth-dependent artifacts in representative holo-
graphic 3D backpropagation volumes used in the DSN training. Maximum intensity
y−projections of (a) ground-truth volume (particles shown in white, background in black), and
(b) holographically backpropagated volume. Characteristic scatterer-density and depth-dependent
artifacts are clearly visible. As the particle density increases, more severe scattering artifacts
throughout the volume are shown. More elongation and reduced intensity in the backpropagated
particle traces are observed at deeper depths due to reduced effective light collection angular range.

11



Simulated 

hologram
Raw 

histogram

Preprocessed 

histogram

×
1
0
4
/μ
L

(a
) 
𝜌
=
1
.6

(b
) 
𝜌
=
1
2
.8
2

0.5

1.0

1.5

2.0

2.5

0.5

1.0

1.5

2.0

2.5

0

0.5

1

1.5

2

0

0.5

1

1.5

2

× 104

× 104

0

0.3

1.5

0.6

0.9

1.2

0

0.3

1.5

0.6

0.9

1.2

× 104

× 104

20 μm

Figure S11: The preprocessing result of holograms. (a) A simulated hologram at a low
density (ρ = 1.6 × 104 particles µL−1), refractive index contrast 0.26, particle size 1 µm), the
raw intensity histogram, and the histogram after preprocessing. (b) A simulated holograms at a
high density (ρ = 12.82× 104 particles µL−1) particles, refractive index contrast 0.26, particle size
1 µm), the raw intensity histogram, and the histogram after preprocessing. The raw histograms
from the two particle densities are obviously different in both mean and standard deviation. After
preprocessing, both histograms approximately follow the same Gaussian distribution.
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Figure S12: Comparison between the DSN and the baseline generalist on unseen den-
sities. Each subplot indicates the results on the testing data at the particle density labeled above
each plot. ‘Expert ρ’ represents the expert DNN trained on the data with a particle density ρ
(×104 particles µL−1). The DSN and the baseline generalist are trained using the same data from
four other densities, as detailed in the main text. The DSN provides markedly higher accuracy
than the generalist, in particular for high particle densities (ρ ≥ 9.61× 104 particles µL−1).
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Figure S13: Comparison between the DSN and the generalist networks on seen scat-
tering densities. Each subplot indicates the results on the testing data at the particle density
labeled above each plot with refractive index contrast 0.26 and particle size 1 µm. The DSN, the
baseline generalist (labeled as Generalist 1×) and the 3× generalist (labeled as Generalist 3×) are
trained using the same data from four other densities, as detailed in the main text. The DSN and
the 3× generalist perform similarly in the three lower densities. For the highest density, the 3×
generalist performs slightly better than the DSN at the shallow depths.
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Figure S14: Generalization of the baseline generalist to unseen scattering conditions.
The baseline seen cases are shown in solid lines; the “unseen” test conditions are in dashed lines.
The testing cases are identical to that for the DSN in Fig. 4, including: (a) unseen refractive index
contrast; (b) unseen particle size; (c) unseen particle density; (d) unseen refractive index contrast
and particle size; (e) unseen refractive index contrast, particle size and density; (f) Uniformly
distributed random refractive index contrast, δn% denotes the variation range with respect to
the central refractive index contrast; (g) Uniformly distributed random particle size, δd% denotes
the variation range with respect to the central size; (h) Uniformly distributed random refractive
index and particle size. In (f)-(h), the green dash-dotted line is the baseline unseen case at
ρ = 6.41×104 particles µL−1, with a fixed refractive index contrast ∆n = 0.20 and a fixed particle
size D = 1.0 µm.
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Figure S15: Generalization of the 3× generalist to unseen scattering conditions. The
baseline seen cases are shown in solid lines; the “unseen” test conditions are in dashed lines. The
testing cases are identical to that for the DSN in Fig. 4, including: (a) unseen refractive index
contrast; (b) unseen particle size; (c) unseen particle density; (d) unseen refractive index contrast
and particle size; (e) unseen refractive index contrast, particle size and density; (f) Uniformly
distributed random refractive index contrast, δn% denotes the variation range with respect to
the central refractive index contrast; (g) Uniformly distributed random particle size, δd% denotes
the variation range with respect to the central size; (h) Uniformly distributed random refractive
index and particle size. In (f)-(h), the green dash-dotted line is the baseline unseen case at
ρ = 6.41×104 particles µL−1, with a fixed refractive index contrast ∆n = 0.20 and a fixed particle
size D = 1.0 µm.
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Figure S16: Experimental results from the simulator-trained DNNs. Particle 3D localiza-
tion is shown for experimentally measured holograms using the simulator-trained (i) expert, (ii)
generalist, and (iii) DSN networks at two higher particle densities. Each panel shows (Top left)
the 3D rendering of the localization result with depth color-coded particles, with an inset showing
a zoom-in of the measured hologram, (Top right) the maximum intensity z− projection, and (Bot-
tom) the y−projection of the DSN’s 3D localization result (in green), overlaid on the respective
y− and z−projections of the corresponding holographic backpropagated volumes.
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Table S1: The numbers of True Positive (TP), False Positive (FP), False Negative (FN)
(mean ± standard deviation) for each particle number.

Expert
Particle number TP FP FN
250 247.2± 2.9 3.0± 1.3 2.8± 2.9
500 477.6± 4.6 3.9± 3.2 22.4± 4.6
1000 863.4± 14.4 93.9± 15.3 136.6± 14.4
2000 1239.4± 23.3 518.0± 46.3 760.6± 23.3

Generalist
Particle number TP FP FN
250 248.5± 2.3 7.8± 5.9 1.5± 2.3
500 482.4± 10.0 21.3± 8.2 17.6± 10.0
1000 864.3± 16.8 140.3± 13.3 135.7± 16.8
2000 1215.4± 24.6 630.4± 27.3 784.6± 24.6

DSN
Particle number TP FP FN
250 244.8± 3.6 13.7± 6.0 5.2± 3.6
500 479.4± 6.2 15.7± 7.4 20.6± 6.2
1000 868.2± 4.8 65.7± 11.5 131.8± 4.8
2000 1246.3± 23.2 436.3± 29.7 753.7± 23.2
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Table S2: The kernel size and number of input, ouput channels of the Generalist
network.

Expert/Generalist
Layer
number

x y z Input channel Output channel Total parameter

1 3 3 3 1 16 448
2 3 3 3 16 16 7168
3 2 2 2 16 32 4608
4 3 3 3 32 32 28672
5 2 2 2 32 64 18432
6 3 3 3 64 64 114688
7 2 2 2 64 128 73728
8 3 3 3 128 128 458752
9 2 2 2 128 256 294912
10 3 3 3 256 256 1835008
11 2 2 2 128 256 294912
12 3 3 3 128 128 458752
13 2 2 2 64 128 73728
14 3 3 3 64 64 114688
15 2 2 2 32 64 18432
16 3 3 3 32 32 28672
17 2 2 2 16 32 4608
18 3 3 3 16 16 7168
19 1 1 1 16 1 32

Total 1233 1713 3837408
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Table S3: The kernel size and number of input, ouput channels of the 3× Generalist.

3X Generalist
Layer
number

x y z Input channel Output channel Total parameter

1 3 3 3 1 28 784
2 3 3 3 28 28 21952
3 2 2 2 28 56 14112
4 3 3 3 56 56 87808
5 2 2 2 56 112 56448
6 3 3 3 112 112 351232
7 2 2 2 112 224 225792
8 3 3 3 224 224 1404928
9 2 2 2 224 448 903168
10 3 3 3 448 448 5619712
11 2 2 2 224 448 903168
12 3 3 3 224 224 1404928
13 2 2 2 112 224 225792
14 3 3 3 112 112 351232
15 2 2 2 56 112 56448
16 3 3 3 56 56 87808
17 2 2 2 28 56 14112
18 3 3 3 28 28 21952
19 1 1 1 16 1 32

Total 2145 2997 11751408
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