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ARTICLE

Harnessing tissue-specific genetic variation to dissect
putative causal pathways between body mass index
and cardiometabolic phenotypes

Genevieve M. Leyden,1,2,* Chin Yang Shapland,1 George Davey Smith,1 Eleanor Sanderson,1

Michael P. Greenwood,2 David Murphy,2 and Tom G. Richardson1,3,*
Summary
Bodymass index (BMI) is a complex disease risk factor known to be influenced by genes acting via bothmetabolic pathways and appetite

regulation. In this study, we aimed to gain insight into the phenotypic consequences of BMI-associated genetic variants, which may be

mediated by their expression in different tissues. First, we harnessed meta-analyzed gene expression datasets derived from subcutaneous

adipose (n ¼ 1257) and brain (n ¼ 1194) tissue to identify 86 and 140 loci, respectively, which provided evidence of genetic colocaliza-

tion with BMI. These two sets of tissue-partitioned loci had differential effects with respect to waist-to-hip ratio, suggesting that the way

they influence fat distribution might vary despite their having very similar average magnitudes of effect on BMI itself (adipose¼ 0.0148

and brain ¼ 0.0149 standard deviation change in BMI per effect allele). For instance, BMI-associated variants colocalized with TBX15

expression in adipose tissue (posterior probability [PPA] ¼ 0.97), but not when we used TBX15 expression data derived from brain tissue

(PPA ¼ 0.04) This gene putatively influences BMI via its role in skeletal development. Conversely, there were loci where BMI-associated

variants provided evidence of colocalization with gene expression in brain tissue (e.g., NEGR1, PPA ¼ 0.93), but not when we used data

derived from adipose tissue, suggesting that these genes might be more likely to influence BMI via energy balance. Leveraging these tis-

sue-partitioned variant sets through a multivariable Mendelian randomization framework provided strong evidence that the brain-tis-

sue-derived variants are predominantly responsible for driving the genetically predicted effects of BMI on cardiovascular-disease end-

points (e.g., coronary artery disease: odds ratio ¼ 1.05, 95% confidence interval ¼ 1.04–1.07, p ¼ 4.67 3 10�14). In contrast, our

analyses suggested that the adipose tissue variants might predominantly be responsible for the underlying relationship between BMI

and measures of cardiac function, such as left ventricular stroke volume (beta ¼ 0.21, 95% confidence interval ¼ 0.09–0.32, p ¼
6.43 3 10�4).
Introduction

Obesity is a major risk factor for several of the world’s most

prevalent diseases, including coronary artery disease

(CAD) and type 2 diabetes (T2D).1 A body mass index

(BMI) greater than 30 kg/m2 is typically used to classify

obesity, which is a complex trait known to have a substan-

tial genetic component.2–4 Large-scale genome-wide

association studies (GWASs) have been successful in iden-

tifying genetic variants robustly associated with BMI across

the human genome, and approximately 900 independent

loci have been uncovered to date.5 However, the func-

tional mechanisms explaining the associations at these

loci are for the most part poorly understood. Furthermore,

although BMI is commonly used in investigations of

adiposity, it is renowned for being heterogeneous,6 sug-

gesting that it is a surrogate measure of various pheno-

types. For example, BMI on its own cannot distinguish

between fat and lean mass and will also be influenced by

traits, such as bone mineral density, that are unrelated to

adiposity.7 As such the genetic variants robustly associated

with BMI likely exert their effects on this composite trait

via alternate biological pathways.
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Efforts to obtain insight into BMI-associated loci identi-

fied by GWAS have shown that the putatively responsible

genes are predominantly expressed in neural tissue.8

Further studies have implicated multiple brain regions in

obesity susceptibility,9,10 extending influences beyond

the central role implicated for the hypothalamus in appe-

tite regulation in monogenic and rare forms of severe

obesity.11–13 Taken together, these findings establish an

important role for the central nervous system in regulating

overall body composition and obesity. However, despite

this, previous evidence has suggested that the mean effect

size of BMI-associated variants on T2D and CAD risk does

not drastically differ when clustered by brain-derived tis-

sue types (n ¼ 114 to 205) and other randomly selected

sets of BMI SNPs.10

Additionally, recent studies have provided evidence of a

link between BMI-increasing alleles, higher fat mass, and

lower risk of cardiometabolic disease for a small proportion

of variants, consistent with a protective effect mediated

via adipose storage capacity and, potentially, site of stor-

age.14,15 In this scenario, a protective effect has been attrib-

uted to specific adiposity-increasing alleles on lipid and

cardiometabolic traits. Thishas been shown tobe influenced
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through an effect on fat distribution whereby the adiposity-

increasing allele is associated with an increased capacity to

store fat subcutaneously as opposed to viscerally (see Loos

andKilpeläinen16 for a review). As such, the extent towhich

BMI-associated SNPs relate to fat distribution could be

important in evaluation of the relationship between excess

adiposity (indicated by BMI) and disease.

These findings highlight divergent mechanisms by

which BMI-increasing alleles might influence metaboli-

cally ‘‘favorable’’ adiposity as opposed to the typically

‘‘unfavorable’’ adiposity leading to obesity and adverse car-

diovascular outcomes. The parsimonious explanation for

these effects could be that BMI-influencing genes ex-

pressed in brain tissue might be more likely to do so via

appetite regulation, whereas adipose-expressed genes

might have a greater effect in specific fat depots and path-

ways related to muscle development.16,17 Understanding

the relationship that BMI variants and their distinct effects

in individual tissue types have with the development of

obesity and body composition might prove critical in es-

tablishing effective preventative interventions for related

co-morbidities.

In this study, we sought to develop insight into the

causal pathways by which genetic variants exert their ef-

fects on BMI variation by using meta-analyzed gene

expression quantitative trait loci (eQTL) datasets derived

from subcutaneous adipose and brain-tissue samples. We

analyzed these datasets by using Bayesian colocalization

to investigate whether the causal variant for BMI variation

at each of the known �900 genome-wide loci was also the

causal eQTL for a proximal gene’s expression in either ad-

ipose or brain tissue. Given the amount of heterogeneity

detected in conventional Mendelian randomization (MR)

analyses of BMI,18 we next reasoned that partitioning

BMI variants by predominantly brain and adipose colocal-

ization profiles might provide novel insight into the tissue-

specific effects on BMI and their individual contribution to

disease risk. To this end, we employed a multivariable MR

framework to estimate the independent BMI effects puta-

tively mediated by gene expression in subcutaneous

adipose and brain gene expression separately on disease

outcomes and measures of cardiac structure and function

for which BMI has a known causal effect.19–23
Material and methods

Overview
A flowchart providing an overview of the analytical pipeline

applied in this study can be found in Figure S1.
BMI data
We obtained summary-level data for 2,336,260 SNPs from a meta-

analysis of BMI data from the Genetic Investigation of Anthropo-

metric Traits (GIANT) consortium and the UK Biobank (UKB).5

This meta-analysis involved BMI data from the UK Biobank (UKB)

study and the GIANT consortium (which did not include data

from the UKB cohort), which the original authors conclude as hav-
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ing negligible sample overlap. To ensure that the highest SNP

coverage available was implemented for colocalization analyses,

we combined these data with summary statistics from a BMI

GWAS involvingparticipants of Europeanancestry fromtheUKBio-

bank only (n ¼ 463,005) to obtain summary statistics for SNPs not

included in the meta-analysis with GIANT. Further description of

the QC information gathered in these GWAS efforts can be found

inDocument S1, supplementary note 1.We identified independent

SNPs robustly associated with BMI (on the basis of p< 53 10�8) by

using the PLINK softwaretool24 to apply disequilibrium (LD) clump-

ing. The clumping method retains SNPs that have the strongest in-

dependent association with BMI across the genome to identify the

number of loci where genetic variation influences this trait.

Although all SNPs correlatedwith these top hits are removed during

clumping, we then reintroduce all SNPs in the region prior to coloc-

alization analyses (as described below) to test whether there is any

evidenceof a sharedcommonvariant at each locuswithgeneexpres-

sion in either brain or adipose tissue. 915 independent SNPs were

identified on the basis of a reference panel comprising data on

10,000 unrelated individuals (r2 < 0.01) in the UKB of European

ancestry.25
Tissue-specific gene expression data
Meta-analyzedbraineQTLdatawereobtained fromastudyconduct-

ed byQi et al.26 This study included data from theGTEx consortium

v7,27 the CommonMind Consortium (CMC),28 and the Religious

Orders Study and Memory and Aging Project (ROSMAP),29 n ¼
1,194. The neural tissue included in these studies was derived from

10 brain regions (anterior cingulate cortex, caudate basal ganglia,

cerebellar hemisphere, cerebellum, cortex, frontal cortex BA9, hip-

pocampus, hypothalamus, nucleus accumbens basal ganglia, and

putamen basal ganglia).26 To ensure that adipose eQTL data of a

comparable sample size were included in our study, we performed

a meta-analysis of subcutaneous adipose eQTL data by using sum-

mary data from two publicly available resources; theMuTHER study

(n ¼ 766)30 and individuals of European ancestry in the GTEx con-

sortium v831 (n ¼ 491) (n ¼ 1,257). Consistent with the BMI and

brain eQTL data, all adipose eQTL variant data were mapped to the

hg19 genome build via the GRCH37 reference assembly. The

MuTHER and GTEx eQTL probes were harmonized via Ensembl

Genemappingsprior tometa-analysis.Non-autosomeandnon-pro-

tein coding genes as defined by Ensembl were omitted from down-

stream analyses. Summary-level adipose eQTL data were converted

to SMR (summary Mendelian randomization) input format with

the ‘‘gwas-summary’’ function in the SMR software package (v.

1.03).32 We applied the SMR package MeCS method, which has

been described previously,26 to meta-analyze the harmonized adi-

pose eQTL datasets. A summary of the primary data resources used

in this work are summarized in Table S1.
Genetic colocalization
Genetic colocalization is a statistical approach that tests the hy-

pothesis that the same causal variant at a locus is responsible for

both a GWAS and a gene-expression-association signal. We sys-

tematically applied the Bayesianmethod ‘‘coloc’’33 by using default

parameters to evaluate the posterior probability (PPA) for colocal-

ization between the 915 independent BMI GWAS SNPs based on

LD clumping and the expression of proximal genes within a

200 kb window. The ‘‘coloc’’ method estimates the posterior prob-

ability of five competing hypotheses: no association with either

trait (PPA0); association with one trait (PPA1, PPA2); association
n Journal of Human Genetics 109, 240–252, February 3, 2022 241



with both traits but with distinct causal variants (PPA3); and asso-

ciation with both traits with a common causal variant (PPA4).33

Colocalization analyses were conducted twice at each locus, first

with eQTL data derived from our adipose tissue meta-analysis and

then repeated separately with the eQTL data from brain tissue. A

PPA4> 0.8 was considered to be strong evidence of colocalization,

as recommended by the authors of the method. Variants within

the MHC region (chr6: 25,000,000–35,000,000) were excluded

from analyses. Although evidence of genetic colocalization might

indicate that changes to a gene’s expression reside along the causal

pathway to BMI in this study, there is currently no robust method

to rule out horizontal pleiotropy as a possible explanation for

these findings.34

Locuszoom plots were generated with code adapted from the

‘‘gassocplot’’ R package. The estimated LD matrix was based on a

reference panel comprising 10,000 unrelated individuals in the

UKB, as described above.
Characterization of SNPs implemented as instrumental

variables
We investigated the association between the BMI SNPs identified in

the colocalization analysis and various adiposity traits derived from

publicly available GWAS summary statistics. These traits included

body-fat percentage; hip circumference; leg-fat percentage (left

and right); trunk-fat percentage; subcutaneous adipose tissue

(SAT) volume; visceral adipose tissue (VAT) volume; subcutaneous

adipose tissue attenuation; visceral adipose tissue attenuation; ratio

of visceral-to-subcutaneous adipose tissue volume; andwaist-to-hip

ratio (WHR). We did this by calculating Pearson correlation coeffi-

cients to estimate the correlation of each set of SNPs’ estimates

for BMI (calculated as Z scores (i.e., beta/standard error)) with

each adiposity trait in turn. A heatmap illustrating the SNP:trait cor-

relations based on hierarchical k-means clustering was generated

with the ‘‘pheatmap’’ package in R. A summary of the GWAS data

implemented in the analysis is provided in Table S2.

Pathway-enrichment and gene-ontology analyses were carried

out with the ConsensusPathDB-human web application.35 The

approach mines publicly available data from 32 databases to

perform over-representation analyses with cellular-interaction

networks. Enrichment analyses were also undertaken with gene

expression data from GTEx version 8.31 We first leveraged these

data to evaluate whether our brain-tissue-partitioned set of vari-

ants was enriched in 13 specific areas of the brain by using the

FUMA tool36. We next assessed whether our variants were also

eQTLs in all other tissue types from GTEx v8 after excluding adi-

pose- and brain-related tissue types (on the basis of a false discov-

ery rate < 0.05 according to results from GTEx).
Mendelian randomization
We estimated the genetically predicted effect of BMI on six car-

diovascular disease outcomes (coronary heart disease, type 2

diabetes, atrial fibrillation, heart failure, peripheral artery dis-

ease, and stroke) and four measures of cardiac structure and

function (left-ventricular end-diastolic volume, left-ventricular

end-systolic volume, stroke volume, and left-ventricular ejec-

tion fraction) by applying univariable Mendelian randomiza-

tion (MR).37,38 We achieved this by using individual-level data

from the UKB study by generating a genetic risk score (GRS)

with all 915 BMI-associated SNPs weighted by their effect esti-

mates in up to 334,398 unrelated individuals of European

descent. This sample size was determined after the removal of
242 The American Journal of Human Genetics 109, 240–252, Februar
individuals who had withdrawn consent, who had evidence of

genetic relatedness, or who were not of ‘‘white European

ancestry’’ on the basis of a K-means clustering (K ¼ 4). Full de-

tails are as described previously.39 MR estimates were then calcu-

lated with either linear or logistic regression on all 10 outcomes

and adjusted for age, sex, the top 10 principal components, and

a binary variable indicating genotype chip. We calculated the

type 1 error rate attributed to the proportion of overlap between

our GRS derivation dataset and the number of affected indivi-

dals and controls analyzed in the UKB sample with the ‘‘sample

overlap’’40 web application reported in the Web Resources sec-

tion. This suggested that, on the basis of the F statistics of our

instruments, the bias introduced in our analyses as a result of

overlapping samples is likely to be very minimal (type 1 error

rate < 0.05).

Next, we repeated the analysis above but used the sets of ad-

ipose and brain eQTLs that colocalized with BMI on the basis of

PPA4 > 0.8 to derive two separate weighted GRSs (i.e. one based

on BMI-associated SNPs with evidence of colocalization in adi-

pose tisue and the other with SNPs with evidence of colocaliza-

tion in brain tissue). In analyses using the score consisting of ad-

ipose-colocalized eQTLs, we refer to this exposure as ‘‘adipose-

tissue-instrumented BMI’’ hereafter, whereas when using the

GRSs derived from brain-colocalized eQTLs we refer to this

exposure as ‘‘brain-tissu-instrumented BMI.’’ We then applied

an approach known as multivariable MR, which is used for esti-

mating the independent effects of multiple exposures on an

outcome by simultaneously estimating their effects in the

same model.41,42 Multivariable MR has previously been applied

to separate the effects of extremely correlated traits, such as LDL

cholesterol and apolipoprotein B.43 We applied this approach in

this study to investigate the genetically predicted effects of adi-

pose- and brain-tissue-instrumented BMI independent of each

other on the 10 outcomes in turn. We achieved this by simulta-

neously modeling the adipose- and brain-tissue-derived GRSs

together. An overview of this approach is depicted in

Figure S2. Effect estimates are interpretable as a 1-standard-devi-

ation BMI change instrumented with variants that colocalize in

one tissue while the contribution of BMI instrumented via var-

iants in the other tissue is accounted for.

In the form of sensitivity analyses, we repeated univariable MR

analyses in a two-sample setting by using various techniques

developed for investigating whether findings were robust to as-

sumptions. This included the inverse-variance weighted (IVW),44

MR Egger, and weighted median methods and allowed us to

leverage findings from large-scale GWASs on the 10 outcomes

investigated.45–49 Global heterogeneity among instrumental vari-

ables was calculated via Cochran’s Q statistic. A calculated Q value

greater than L-1 (where L is equal to the number of instrumental

variables) is indicative of heterogeneity between instrumental var-

iables in the analysis.50 These analyses were all conducted with the

‘‘TwoSampleMR’’ R package. We quantified an evaluation of weak

instrument bias by calculating the F statistics of genetic instru-

ments and using the conventional threshold of F > 10 to indicate

that our instruments were not prone to this source of bias.51 We

additionally applied the MR-Clust approach to evaluate whether

our adipose- and brain-tissue-derived instrument sets overlapped

with the clusters identified by this approach.52 Finally, we investi-

gated the potential issue whereby SNPs used as instruments could

influence BMI prior to their effects on gene expression, which in

theory could introduce collider bias into analyses.53 For this

reason, we applied the ‘‘Steiger’’ method to remove SNPs more
y 3, 2022



strongly correlated with BMI thanwith tissue-derived gene expres-

sion. All outcome data sources analyzed with both one- and two-

sample MR are described in Table S3.
Results

Systematically applying genetic colocalization to

highlight loci where BMI and adipose- or brain-derived

gene expression share a causal variant

Applying genetic colocalization identified 86 loci

where BMI-associated variants colocalized with proximal

adipose-derived gene expression (Table S4) and 140 where

such variants colocalized with proximal brain-derived

gene expression (on the basis of PPA4 > 0.8) (Table S5).

In total, 43 variants colocalized with proximal gene expres-

sion in both adipose and brain tissues. A subset of candi-

date loci that are distributed across the genome and pro-

vide evidence of colocalization with BMI-associated

variants and gene expression in either adipose or brain tis-

sue are highlighted in Figure 1 as an exemplar.

There weremany instances where variation in BMI at a lo-

cus colocalizedwithgeneexpressionderived fromeither sub-

cutaneous adipose or brain-derived tissue but not the other.

For example, the ADAMTS9 (a disintegrin-like and metallo-

protease with thrombospondin type-1 motif-9) and TBX15

(T-box transcription factor 15) loci provide examples where

stronger evidence of colocalization was detected between

BMI and their expression in adipose tissue (both PPA4 ¼
0.97) but not in brain tissue (PPA4 ¼ 0.03 and PPA4 ¼ 0.04,

respectively) (Table S6). A locuszoom plot illustrating this

contrast at the ADAMTS9 locus is shown in Figure 2A.

ADAMTS9 is a secreted metalloproteinase whose expression

has beenpreviously linkedwithdecreased insulin sensitivity

and signaling in human skeletal muscle,54 whereas TBX15

plays an important role in skeletal development.55

Conversely, NEGR1 (PPA4 ¼ 0.93) and KCNK3 (PPA4 ¼
0.97) provided strong evidence for colocalization between

BMI-associated variants and gene expression when ana-

lyses were performed with brain tissue but not when

they were performed with gene expression data from adi-

pose tissue (PPA4 ¼ 0.04 and PPA4 ¼ 0.18, respectively)

(Table S6). NEGR1 encodes neuronal growth regulator 1,

which is involved in synapse formation and neural devel-

opment,56,57 whereas KCNK3 (potassium two pore domain

channel subfamily K member 3) has been previously re-

ported to play a role in taste signaling.58 We also identified

loci that provided evidence of colocalization with BMI-

associated variants and eQTLs from both adipose and brain

tissue; for example, FGFR1, which encodes fibroblast

growth factor receptor 1, has an essential role in embry-

onic development.59 Results at this locus provided evi-

dence of colocalization when we analyzed data from

both brain (PPA4 ¼ 0.97) and adipose (PPA4 ¼ 0.92) tissue.

The association signal with FGFR1 expression was stronger

in the region when we used data derived from brain tissue

(p¼ 3.533 10�8) thanwhenwe used data derived from ad-
The America
ipose tissue (p ¼ 1.64 3 10�5), as depicted in Figure 2B

(pcomparison ¼ 0.08). A list of the loci that provided border-

line evidence of colocalization (on the basis of PPA4 > 0.7)

can be found in Table S7.

Characterization of variants that colocalized with

adipose and brain tissue

To investigatehowtheBMIvariants carried forward fromthe

colocalizationanalysis relate todifferentmeasuresofanthro-

pometry, we comprehensively compared the correlation be-

tween the SNP-BMI associations and 12 GWAS traits repre-

senting various aspects of adiposity and body composition.

Overall, the SNPs that colocalized with adipose- and brain-

tissue BMI shared similar correlation relationships with the

majority of adiposity traits and were broadly represented

within the two clusters identified by hierarchical k-means

clustering (Figure S3). The only exception to this was in rela-

tion toWHR and VAT; effect estimates for SNPs that colocal-

ized with BMI-associated variants in brain tissue were more

strongly correlated with WHR (r ¼ 0.733) and VAT (r ¼
0.554) than were estimates for SNPs that colocalized with

BMI-associated variants in adipose tissue (WHR: r ¼ 0.445;

VAT: r ¼ 0.254) (pcomparison ¼ 0.001 and pcomparison ¼
0.0088, respectively) (Table S8). This suggests that BMI-asso-

ciated variants that colocalized with brain-derived gene

expression are more likely to play a role in abdominal fat

deposition than are variants that colocalized with adipose-

derived gene expression. This is particularly noteworthy

given that the average effect size of the adipose- and brain-

derived variants on BMI were comparable (mean absolute

standard deviation change in BMI per effect allele for

variants in the adipose set ¼ 0.0148 and brain set ¼
0.0149). Estimates were similarly comparable after the

removal of variants common to both adipose- and brain-tis-

sue-colocalized sets; the adipose variants had a marginally

smaller mean magnitude of effect than those specific to

brain (adipose¼ 0.0141 and brain¼ 0.0146 standard devia-

tion change in BMI).

As an additional sensitivity analysis, we applied this

approach on data relating to WHR adjusted for BMI

(WHRadjBMI), which found that our adipose subset of

SNPs were typically more strongly correlated with this trait

(r ¼ �0.423) than were those in the brain subset (r ¼
�0.191) (pcomparison¼ 0.06). However, we note that caution

is required when one interprets these findings because ad-

justing WHR for BMI might have induced collider bias into

these GWAS results.

Pathway analyses provided several examples of overrep-

resented biological pathways highlighted in each dataset,

which could be reflective of important tissue-specific

processes related to BMI. For example, genes at adipose-tis-

sue-colocalized lociwere enriched among severalmetabolic

pathways, including the malate-aspartate shuttle pathway,

which is integral to glycolysis (p ¼ 5.22 3 10�7) (Table S9).

Similarly, the fibroblast growth factor (FGF) pathway was

enriched for genes at brain-tissue-colocalized loci (p ¼
3.45 x 10�5); proteins in this pathway constitute a
n Journal of Human Genetics 109, 240–252, February 3, 2022 243



Figure 1. Loci that provided evidence of genetic colocalization between BMI-associated variants and gene expression derived from
brain, adipose tissue, or both
A Manhattan plot illustrating loci and their association with BMI, which showed evidence for colocalization with gene expression in
brain tissue (red), adipose tissue (purple), or both (blue). The �log10 of the p value reflecting associations between genetic variants
and BMI are plotted on the y axis, and the genomic locations of variants are plotted along the x axis. A subset of loci are annotated
here as an exemplar. The complete list of loci that had evidence for colocalization are reported in Tables S4–S6. Gene annotations are
based on the gene with the highest PPA4 in the results of the colocalization analysis.
dominant family of signaling molecules in the brain and

play important roles in the development and function of

the hypothalamus and neuroendocrine system.60,61

Enrichmentanalyses across 13 individualbrain regions for

our partitioned sets of SNPs found that the expression of our

brain-tissue-colocalized variants tended to be over or under-

represented in certain brain regions compared to others,

although overall the evidence of enrichment in these ana-

lyses was not particularly strong (full results available in

Table S10). Furthermore, after removing SNPs that colocal-

ized in both adipose- and brain tissue, we also found that

our sets of variants were on average expressed in various

other types of tissues by using data from GTEx v8. In brief,

brain-tissue-colocalized variants were eQTLs in a mean of

15.2 (standard deviation [SD] ¼ 10.9) other tissue types

(excluding adipose- and brain-related tissues), whereas our

adipose partitioned SNPs were eQTLs in a mean of 14.3 (SD

¼ 9.9) other tissues (full results in Table S11).

Using Mendelian randomization instrumented with

adipose and brain-regulatory variants to disentangle

the putative effects of BMI on disease endpoints

Univariable MR analyses provided strong evidence of a

genetically predicted effect between BMI and the cardio-

vascular endpoints as assessed with a weighted GRS con-

sisting of all 915 SNPs, as well as on themeasures of cardiac

structure and function with the exception of left ventricu-

lar (LV) ejection fracture (beta: �0.025, 95% confidence in-

terval [CI]: �0.143–0.093, p ¼ 0.06) (Figure 3A, Table S12).

Repeating analyses in a two-sample analysis via the IVW

method supported these findings (Table S13). The esti-

mated Q statistics generated in these analyses (all p <

2.44 3 10�14) highlight the large amount of global hetero-

geneity associated with the total set of 915 BMI SNPs when

these are analyzed against each outcome, suggesting that

there are most likely multiple pathways underlying the

relationship between these instruments, BMI, and pheno-
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typic endpoints (Table S14). Furthermore, we applied

the MR-Clust52 approach, which identified many clusters

of BMI variants with comparable effect estimates on

outcomes, although none of these clusters substantially

overlapped with our adipose- and brain-tissue-expression-

partitioned sets (Figure S4, Table S15).

Wenext investigated the effects of ‘‘adipose-‘‘ and ‘‘brain-

tissue-instrumented BMI’’ on each outcome by using GRS

derived fromour subsets of 86 adipose- and 140 brain-tissue

variants, respectively. A summary of the adipose- andbrain-

tissue instruments used, and their effect estimates on BMI,

can be found in Table S16. Plots depicting the effect esti-

mates of tissue-partitioned instruments in relation to T2D

can be found in Figures S5 and S6 as an exemplar. Broadly,

both adipose- and brain-tissue-instrumented BMI provided

evidence of an effect on increased risk of cardiovascular dis-

ease and increased measures of cardiac structure, with the

exception of stroke and peripheral arterial disease, where

adipose-tissue-instrumentedBMIdidnotprovide strong ev-

idence of an effect (Table S17). Estimates derived in a two-

sample setting based on the weighted-median and MR-Eg-

ger methods are summarized in Table S18. Repeating ana-

lyses with genetic instruments where evidence of colocali-

zation was identified only in adipose or brain tissue (but

not the other tissue, on the basis of PPA4> 0.8) didnot dras-

tically alter findings (Table S19).We also applied the Steiger

method to filter out instruments that might influence gene

expression as a result of their initial effects onBMI variation

(Tables S20 and S21).53 This analysis removed two instru-

ments from both the adipose- and brain-tissue sets,

although this did not alter overall findings (Table S22).

Next, to separate the effects of adipose- and brain-tissue-

instrumented BMI on each outcome, we estimated their in-

dependent effects from one another by usingmultivariable

MR. For each of the 6 disease outcomes assessed, the inde-

pendent effect of adipose-tissue-instrumented BMI was

shown to attenuate upon our accounting for the effect of
y 3, 2022



Figure 2. LocusZoom plots illustrating the association between variants at the ADAMTS9 and FGFR1 loci with body mass index, and
each of these genes’ expression in adipose and brain tissue
Variants are plotted according to their chromosomal location at the ADAMTS9 (A) and FGFR1 (B) loci along the x axis, as indicated by the
gene track. The strength of their association with each trait is indicated by�log10(p) on the y axis. Recombination rate is calculated from
the linkage disequilibrium (LD) structure in the region on the basis of a reference panel of 10,000 individuals of European descent from
the UK Biobank (see Methods). LD with respective lead variants in the region is indicated by the color scheme portrayed in the figure
legends.
brain-tissue-instrumented BMI in the multivariable MR.

For example, the total effect of adipose-tissue-instru-

mented BMI on coronary heart disease (CHD) risk pro-

vided strong evidence of an effect (odds ratio [OR] ¼
1.04; 95% CI ¼ 1.03–1.05; p ¼ 7.45 3 10�10), although

when adipose-tissue-instrumented BMI was analyzed

simultaneously with brain-tissue-instrumented BMI in

the multivariable model effect estimates attenuated (OR

¼ 1.01; 95% CI ¼ 1.00–1.03; p ¼ 0.04).

In contrast, the multivariable MR estimates for brain-tis-

sue-instrumented BMI were consistent with a strong

increasing effect on CHD risk (OR ¼ 1.05; 95%

CI ¼ 1.04–1.07; p ¼ 4.67 3 10�14) independent of the ef-

fect of BMI instrumented with adipose-tissue SNPs. Simi-

larly, the results of the multivariable MR analysis provided

strong evidence of an effect between brain-tissue instru-

mented BMI and type 2 diabetes (T2D) risk (OR ¼ 1.12;

95% CI ¼ 1.09–1.13; p ¼ 7.16 3 10�46), consistent with

the total effect derived in the univariable model (OR ¼
1.13; 95% CI ¼ 1.11–1.14; p ¼ 8.13 3 10�69). In contrast,

evidence of an independent effect for adipose-tissue-in-

strumented BMI on T2D attenuated in comparison to evi-
The America
dence from the univariable analysis (OR ¼ 1.02; 95% CI ¼
1.00–1.04; p ¼ 0.003). For detailed results of MR analyses,

see Table S17. Figure 3B illustrates similar findings for the

other cardiovascular disease endpoints.

In contrast to the analysis above on disease outcomes,

applying this approach to themeasures of cardiac structure

and function revealed that adipose-tissue-instrumented

BMI typically predominated in the multivariable model.

For example, the univariable MR estimate for adipose-tis-

sue-instrumented BMI on LV stroke volume (beta ¼ 0.23,

95% CI ¼ 0.13–0.34; p ¼ 1.42 3 10�5) remained robust

when we accounted for the effect of brain-tissue-

instrumented BMI (beta ¼ 0.21, 95% CI ¼ 0.09–0.32,

p ¼ 6.43 3 10�4). Conversely, univariable estimates for

brain-tissue-instrumented BMI (beta ¼ 0.15, 95% CI ¼
0.05–0.26, p ¼ 0.004) attenuated to include the null in

the multivariable analysis (beta ¼ 0.06, 95% CI ¼ �0.06–

0.18, p ¼ 0.33). All multivariable MR estimates from this

analysis are also depicted in Figure 3B. A comparison of

all univariable and multivariable estimates from the ana-

lyses involving tissue-partitioned instruments can be

found in Figure S7.
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Figure 3. Forest plots illustrating the Mendelian randomization results
Summary of Mendelian randomization results for BMI on six disease outcomes and four left-ventricular cardiac phenotypes on the basis
of (A) univariable analyses using the total set of BMI variants and (B) analyses instrumented in a multivariable setting with tissue-par-
titioned variants. Forest plots illustrating the odds ratios or effect estimates per standard deviation (SD) change in risk factor and 95%
confidence intervals (CIs) for each disease outcome analyzed by MR are shown. The effect estimates of BMI instrumented with all
915 BMI SNPs is illustrated in (A), and the independent effect estimates of BMI instrumented by adipose- (purple) and brain (red)-tis-
sue-derived instruments in the multivariable MR model are illustrated in (B). Circles representing central estimates are filled in when
confidence intervals, as illustrated by lines, do not overlap with the null. Abbreviations are as follows: PAD, peripheral artery disease;
and LV, left ventricular.
Discussion

We have performed extensive genetic colocalization ana-

lyses to gain insights into the distinct contribution of ge-

netic effects on BMI variation putatively mediated by

gene expression in adipose and brain tissue. Our findings

demonstrate that BMI-associated variants clustered by evi-

dence of colocalization with adipose- and brain-tissue gene

expression show differential effects on WHR and VAT, as

well as enrichments among biological pathways. This

finding is consistent with earlier studies that have sug-

gested that distinct molecular processes and metabolic

mechanisms might contribute differentially to fat distribu-

tion.8,62,63 Finally, we have undertaken a novel analysis

involving these partitioned sets of BMI variants harnessed

as genetic instruments by using a multivariable MR frame-

work. Our results suggest that selecting genetic instru-
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ments for MR on the basis of their tissue-dependent effects

can help elucidate the biological pathways by which an

exposure influences disease susceptibility and phenotypic

traits.

The genes identified by the colocalization analysis high-

light different biological features that might reside along

the causal pathway to overall body size. Several candidate

genes identified by our analysis converge on processes un-

derlying appetite and feeding behavior. For example,

NEGR1 has been implicated in conferring risk of obesity

in a number of studies64–66 and is highly expressed in the

hypothalamus, where it is known to affect the central regu-

lation of energy balance.67,68 Our results provide further

evidence linking the functional effect ofNEGR1 expression

variants in the brain to phenotypic variation in BMI. Inter-

estingly, eQTLs in the FGFR1 locus showed evidence for co-

localization with BMI in both adipose and brain tissue, but
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the association with FGFR1 expression was stronger in

brain tissue at this region, which might be indicative of

its functional role with respect to adiposity. Inhibition of

FGFR1 has been linked to appetite suppression, which is

most likely mediated by hypothalamic FGFR1 signaling

cascades underlying energy intake.69,70 Additionally,

FGFR1 activation by FGF21 in peripheral tissues has been

found to be important for glucose homeostasis and

relaying information on nutritional state.71–73 Impor-

tantly, the endocrine signaling cascade affects the central

nervous system by enacting a change in preference for car-

bohydrate consumption, and this has been shown to

directly affect weight regulation.74–76 Some genes high-

lighted by our analysis have been implicated in rare forms

of monogenic obesity. For example, BDNF (encoding

brain-derived neurotrophic factor) has been implicated in

a rare case of monogenic obesity most likely arising from

impaired BDNF expression during hypothalamic develop-

ment.77 BDNF is an important effector immediately down-

stream of MC4R (melanocortin-4) in the melanocortin

pathway regulating energy balance.78 MC4R is one of the

most common genes implicated in monogenic obesity,79

although evidence of colocalization between BMI-associ-

ated variants and brain-tissue expression at this locus

narrowly missed out on the heuristic threshold applied

in this study (PPA ¼ 0.71). Taken together, these results

suggest that genetic effects influencing feeding behaviors

and the central regulation of body composition play an

important role in overall adiposity variation.

Additionally, our colocalization analysis highlighted

examples where genetic effects on body composition

are most likely mediated by pathways independent to

the central regulation of appetite or energy homeostasis

in light of evidence of colocalization of BMI-associated

variants with gene expression in adipose but not brain tis-

sue. For example, the mesodermal development gene

TBX1555,80,81 is differentially expressed within distinct

fat depots82–84 and has been shown to affect adipocyte dif-

ferentiation, metabolism, and triglyceride storage.85,86 The

evidence presented here for colocalization between TBX15

expression in subcutaneous adipose and BMI-associated

variants provides further support for the functional rela-

tionship between the pathways driving heterogeneity in

adipogenesis and fat distribution.87,88 Similarly, ADAMTS9

has been implicated in insulin secretion in peripheral tis-

sues,54,89 which highlights the putative role that this

gene might have in insulin metabolism within adipose tis-

sue and fat composition.62

As a result of the distinct sets of BMI-partitioned variants

identified by our colocalization analysis, along with their

differential effects on WHR and VAT, we hypothesized

that the separate biological pathways to which these vari-

ants contribute might have differential effects on disease

risk. The results of our multivariable MR analysis suggest

that BMI instrumented with brain-tissue eQTLs has an in-

dependent effect on increased risk for cardiovascular dis-

ease endpoints when one accounts for the contribution
The America
of BMI instrumented with adipose-tissue eQTLs. One

such mechanism by which these SNPs exert their effects

on BMI is via appetite regulatory and energy expenditure

pathways, highlighting the critical importance of neuro-

genic adiposity as a risk factor for all-cause mortality.

Conversely, the results of our multivariable MR analysis

suggest that the expression of BMI-associated genes in sub-

cutaneous adipose tissue might underlie the relationship

between BMI and measures of cardiac structure and func-

tion. Previous studies focusing on fat distribution rather

than BMI have found that lean body mass is more strongly

related to left ventricular traits than BMI or fat mass.90

Given that the enrichment analyses conducted in this

study provided evidence that variants colocalizing with ad-

ipose-tissue gene expression are more likely to be involved

in fat distribution than variants that colocalized with

brain-derived gene expression, our results provide further

support for the hypothesis that therelationship between

body composition and variation in left ventricular remod-

eling phenotypes is of prognostic importance.91,92

The findings in this study provide insight into the

complexity of the genetics of BMI and propose an innova-

tive method of differentiating between the effects of

adiposity- and anthropometry-increasing alleles in spe-

cific phenotypic contexts. Therefore, although our study

was not focused on identifying effects consistent with

favorable adiposity, it could be of interest to triangulate

our results from alternative approaches in this paradigm

to further investigate BMI-associated loci throughout the

genome. However, although our approach might prove

valuable in terms of developing insight into disease mech-

anisms, it should be noted that the overall effect of

adiposity on disease risk might be the same regardless of

which tissue or pathway it results from (as described

by the gene-environment equivalence assumption in

MR93). In the present context, if the associations of the

two sets of instruments with all aspects of body composi-

tion across life were known, then their differential associ-

ations with disease outcomes could be shown to be

entirely due to these differences in body composition.

A limitation of this work is that cell-type-specific effects

within bulk adipose-tissue biopsies or brain transcriptomic

datasets have not been accounted for. Integrating cell-type

data from large samples when they become available is

therefore particularly warranted. For example, adipose tis-

sue is comprised of adipocytes, endothelial cells, and mul-

tiple immune cell subtypes, which vary proportionally

within population data andmight contribute differentially

to functional changes in tissue composition.94 Although

the inclusion of meta-analyzed gene expression data

from multiple datasets provided larger statistical power

for this study, the development of methods to deconvolute

tissue heterogeneity is a growing area of research that

could yield higher resolution into molecular and cell-regu-

latory changes on disease risk.94,95 The findings presented

in this study are based on data derived from individuals of

European descent, which is primarily due to the lack of
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available eQTL datasets in the field in non-European par-

ticipants. However, the approach presented in this manu-

script should be worthwhile applying in non-European

samples once these data are available in sufficient sample

sizes. Additionally, sex-dependent differences in adiposity

will also be an important area for future research given

that adipose deposition is known to vary between males

and females.96 The work presented here focused on non-

sex-stratified analyses to initially demonstrate the novel

methodology we have developed and has therefore har-

nessed the most highly powered datasets available. More-

over, the current lack of publicly available tissue-specific

eQTL datasets poses a challenge to sex-stratified analyses,

as well as sex-differential participation bias in the UK Bio-

bank study.97

Among our adipose- and brain-tissue-derived sets of in-

struments, we found that there was still a substantial

amount of heterogeneity on the basis of Cochran’s Q sta-

tistics. We postulate that the most parsimonious explana-

tion for this is that, although integrating tissue-specific

data can help bring us closer to understanding the under-

lying biology of trait-associated variants, there most likely

exist various granular-level mechanisms which require

further investigation. For instance, we believe it is unlikely

that all 140 variants that colocalized with brain-derived

gene expression influence BMI via appetite regulation,

but additionally via other types of regulatory pathway.

We also note that, although adipose and brain tissues

were the focus of this study as a result of sample-size avail-

ability and their biological relevance to BMI,98 they might

not necessarily be the primary tissue by which our colocal-

ized sets of variants influence this trait. Therefore,

although our MR framework can exploit the shared tissue

specificity among these instrument sets, further research

using datasets derived using other tissues is required for

comprehensive characterization of each of these BMI

SNPs on a case-by-case basis (once these data are accessible

in sufficient samples).

It is also important to note that the adipose-tissue-ex-

pressed instruments in this study were derived from subcu-

taneous tissue, and therefore interpretation of these results

might not extend to other adipose-related tissues such as

visceral fat (the intra-abdominal adipose adjacent to inter-

nal organs) and other fat deposits. Furthermore, although

in this study we applied the weighted median and MR-Eg-

ger methods, which are typically regarded to be more

robust to horizontal pleiotropy than the IVW approach,

they cannot rule out extensive correlated pleiotropy.99

Finally, as discussed previously, we acknowledge that

genetic correlation is necessary, but not sufficient, for

causality.34

The results of this study demonstrate that genetic vari-

ants underlying complex traits such as BMI, when parti-

tioned according to tissue-specific molecular data, can

yield insight into causal pathways and disease etiology

via genetic colocalization and MR. Future studies adopting

a similar approach should prove valuable in elucidating
248 The American Journal of Human Genetics 109, 240–252, Februar
the distinct contributions of modifiable exposures to

phenotypic variation and disease risk.
Data and code availability

GWAS summary statistics on adipose- and brain-tissue-derived

gene expression were obtained from the resources in the URL sec-

tion above. BMI and WHR GWAS summary data were obtained

from the GIANT consortium via the link also presented in the

URL section. Summary statistics regarding measures of visceral

and subcutaneous adipose-tissue volumes were accessed via the

NIH GRASP download portal. All other summary-level data

analyzed in this study are publicly available from the OpenGWAS

Project. Software used in this study can be accessed from the SMR

homepage (see web resources). All other code used in this study

was taken from various R packages as referenced throughout the

manuscript.
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Supplemental information can be found online at https://doi.org/

10.1016/j.ajhg.2021.12.013.
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Web resources

BMI GWAS, https://zenodo.org/record/1251813#.XCLJ7vZKhE4

Brain expression meta-analysis data, https://cnsgenomics.com/

software/smr/#DataResource

Coloc, https://cran.r-project.org/web/packages/coloc/coloc.pdf

COJO/GCTA, https://cnsgenomics.com/software/gcta/#COJO

ConsensusPath-DB, http://cpdb.molgen.mpg.de/

GTEx, https://www.gtexportal.org/home/

Locuszoom, https://github.com/jrs95/gassocplot

MuTHER adipose data, http://www.muther.ac.uk/Data.html.

NIH GRASP, https://grasp.nhlbi.nih.gov/FullResults.aspx

OpenGWAS Project, https://gwas.mrcieu.ac.uk/

SMR, https://cnsgenomics.com/software/smr/#Overview

MeCS, https://cnsgenomics.com/software/smr/#MeCS

Sample overlap and type 1 error rate, https://sb452.shinyapps.io/

overlap/
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Supplementary Figures 
 
 
 

 
Figure S1 Analysis overview Flowchart illustrates a summary flowchart of the analytical pipeline undertaken in this study (left panel), data integrated into analyses is summarized 
(right panel). GWAS – genome-wide association study, eQTL – expression quantitative trait loci, BMI – body mass index, UKB – UK Biobank, nsnps – number of single nucleotide 
polymorphisms, PPA – posterior probability of association,  



Supplementary Note 1: 
 
Yengo et al: 
 
SNPs were imputed with reference to the HRC imputation reference panel based on a quality score >0.31. For each UKB participant, 
genotypes were called based on a posterior probability >0.9 and SNPs which survived >0.95 call rate, minor allele frequency >0.0001 
and P-value for Hardy–Weinberg test >10-6 were retained for analysis: 
 
UK Biobank only GWAS (to bolster SNP coverage): 
 
Pre-imputation QC in the UK Biobank, along with phasing and imputation, are described elsewhere2. A graded filtering was applied 
for SNP selection with varying imputation quality for different allele frequency ranges. Therefore, rarer genetic variants are required 
to have a higher imputation INFO score (Info>0.3 for MAF >3%; Info>0.6 for MAF 1-3%; Info>0.8 for MAF 0.5-1%; Info>0.9 for MAF 
0.1-0.5%) with MAF and info scores being determined using the ‘European’ subset. Genotyping rate > 0.015 and Hardy-Weinberg 
equilibrium p-value < 0.0001 were additionally applied. 
 
 
	



 

Figure S2 Summary of Mendelian randomization (MR) (A) and multivariable MR analyses (B) The ‘total’ effect of BMI on disease outcomes eg. coronary artery disease (CAD) is 
estimated by instrumenting BMI using a genetic risk score (GRS) derived using the full set of 915 independent genome-wide significant BMI variants (A). BMI instrumented with a 
GRS derived from BMI variants identified by colocalization in adipose and brain tissue to estimate the ‘independent’ effect of BMI via gene expression in each tissue when taking 
into account their effect in the other tissue (B).  BMI – body mass index, SNPs – single nucleotide polymorphisms, CAD – coronary artery disease  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure S3 Heatmap based on hierarchical k-means clustering  representing the relationship between adipose and brain tissue derived BMI instruments and measures of 
adiposity Association between BMI SNPs identified in the colocalization analysis and various adiposity traits derived from publicly available GWAS summary statistics including: 
waist-to-hip ratio adjusted for BMI (WHRadjBMI), visceral adipose tissue volume (VAT) , subcutaneous adipose tissue volume (SAT), subcutaneous adipose tissue attenuation 
(SATHU), visceral adipose tissue attenuation (VATHU), ratio of visceral-to-subcutaneous adipose tissue volume (VASAT).waist-to-hip ratio (WHR), hip-circumference, leg-fat 
percentage (right and left), trunk-fat percentage, body-fat percentage, Pearson correlation coefficients were calculated to estimate the correlation each set of SNPs’ estimates for 
BMI (calculated as Z scores (i.e. beta/standard error)) with each adiposity trait in turn 



 

 
 Figure S4 MR-Clust analysis representing effect estimates between genetic effects between BMI (exposure) and coronary artery 
disease (outcome) Each point represents a genetic variant, error bars are 95% confidence intervals for each variant 

 
 
 
 
 
 



 

 
 
 

 
 

Figure S5 Comparison of effect estimates between adipose-tissue (purple, left) and brain-tissue (red, right) partitioned instruments on type 2 diabetes (T2D) risk Each point 
represents a genetic variant, error bars are 95% confidence intervals for each variant’s association.  



 
 

 
 
 
 

Figure S6 Comparison of effect estimates between adipose-tissue (purple, left) and brain-tissue (red, right) partitioned instruments on type 2 diabetes (T2D) risk after 
removing overlapping instruments between sets Each point represents a genetic variant, error bars are 95% confidence intervals for each variant’s association.  

 



	
	
	
	
	
	

Figure S7 Mendelian randomization results for BMI instrumented using tissue-partitioned sets of variants in the univariable model (A) and in the multivariable model (B). 
Forest plot illustrating the odds ratios per 1-standard deviation (SD) change in risk and 95% confidence intervals (CI) for each outcome analyzed in Mendelian randomization (MR) 
analyses using genetic risk scores (GRS) derived from adipose- and brain-tissue partitioned variants to instrument BMI. Circles representing central estimates are filled in when 
confidence intervals as illustrated by lines do not overlap with the null.  
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