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Figure S1: Association between metasoft m-value and LD structure. Average m-value across tissues stratified by the LD score quantile of the tested
variant in quartiles of A. gene density (number of genes within 1Mb of the tested variant) or B. distance to nearest transcription start site (TSS).
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Figure S2: Comparison of cis-eQTL tissue sharing between COLOC, eCAVIAR and Metasoft in GTEx v8. A. Histograms depicting patterns of sharing of
genetic regulation between tissues based on eCAVIAR, COLOC and Metasoft in a randomly sampled subset of 1000 genes among all 38,518 genes expressed
in at least one tissue in GTEx v8. eCAVIAR and COLOC reveal substantial tissue specificity. B. Pie-chart of the same randomly sampled subset of 1000 genes
in GTEx v8 based on the tissue specificity of their eQTLs estimated by eCAVIAR assuming <2 causal variants.
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Figure S3: Heatmap of the average COLOC PPH4 or Metasoft m-value between pairs of tissues. Unlike the m-value, PPH4 reveals known biological
patterns of tissue similarity.
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Figure S4: Comparison of eQTL tissue sharing between COLOC and Metasoft at different PPH4 thresholds. Histograms depicting ratios of shared tissue
pairs among all tissue pairs in which each gene is expressed for different thresholds of COLOC PPH4 and for metasoft m-value threshold of 0.5 in all tissues of
GTEx v8.
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Figure S5: Comparison of eQTL tissue sharing between COLOC and Metasoft at different m-value thresholds. A. Histograms depicting ratios of shared
tissue pairs among all tissue pairs in which each gene is expressed for different thresholds of metasoft m-value and for COLOC threshold of 0.5 in all tissues of
GTEXx v8. B. Boxplots of the LD between the top variants in tissue pairs that colocalize based on COLOC (in red) or Metasoft (in blue) at different metasoft
thresholds.
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Figure S6: Correlation between strength of eQTL association and degree of tissue sharing by Metasoft. We see that at higher m-value thresholds,
Metasoft preferentially identifies eQTLs with a strongest association (denoted by the minimum eQTL p-value across tissues for that gene) as shared.
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Figure S7: Average eQTL sharing between three tissues(Fat, Skin and LCL) in Muther and all GTEx v8 tissues for genes that have an eQTL in both
datasets.
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Figure S8: Histograms of tissue sharing by COLOC and Metasoft in quartiles of LD for the top eQTL variant in the tested pair. COLOC reveals more
tissue specificity in all quartiles.



Simulation results of coloc performance in different LD
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Figure S9. Simulations of coloc PPH4 when causal variants are shared between studies stratified by LD. Average PPH4 between studies that share the same
causal variants are stratified by the LD score of the causal variant in simulations. Each dot represents the mean across all simulations for that variant. Standard

errors between simulations are also plotted, as is the fitted regression line.
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Figure S10: Simulations assessing COLOC performance in colocalizing studies. Left panel shows posterior probability of colocalization in all simulations
(bottom) or in simulations that have an active signal in both tissues (top) across different populations and numbers of causal variants. Right panel shows relative
importances of four parameters (LD score of the causal variant, Minor allele frequency of the causal variant, number of causal variants and population compared
with GTEX) in determining the value of PPH4.
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Figure S11: Variational inference vs exact inference in CAFEH: We simulate two traits with three causal variants where one causal variant is
shared, and one causal variant is distinct to each trait. For each simulation we generate 50 “variants” from a multivariate normal distribution, with
covariance set to reflect varying degrees of LD. For each level of LD we replicate the simulation 20 times. CAFEH (K=3) is fit using the variational
approximation, or exact inference. Plots show posterior inclusion probabilities (PIPs) CAFEH’s variational approximation against the exact
computation for the low, medium, and high LD simulations (left, center, right, resp). Causal variants are indicated in black.
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Figure S12: CAFEH’s variational approximation identifies modes of the exact posterior. We simulate two traits with three causal variants
where one causal variant is shared, and one causal variant is distinct to each trait. We plot the joint posterior distribution of two components (top)
and component configurations for both traits (bottom) for the exact (left) and approximate (right) inference schemes. CAFEH’s approximate posterior
identifies one of several equivalent modes in the true posterior.



Colocalization

PVE = 0.01 PVE = 0.05 PVE = 0.1 PVE = 0.2
1.00 ; ; ; ; i A
i i e /’_’4 Model
07 i i a : | N S _ , | T —— CAFEH-G
2 0.50 | : s S z }/’/L_' ! z : ! CAFEH-S
& L g ,§ gl g4 gl —— eCAVIAR
0.25 E E A E i i i i i coloc
| et AN : : : : :
0.00 — } : . i { : . i } : , i i :
0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20
FDP FDP FDP FDP
Fine-mapping
05 PVE = 0.01 PVE = 0.05 PVE = 0.1 PVE = 0.2
. i i i i i i i i Model
0.4 i | i i E L —— CAFEH-G
. | | N i | N . ' ' Sl
s ! ! g ; i g g , E SuSiE
Q0.2 | | 8 /r’:/_/)_/f 8 8 | : —— SUSIE-SS
: : | 1 H 1 : : I CAV'AR
0-1 : : ﬂ : : : —— FINEMAP
1 1 1 1 1 1 1
0.0 ; '. i : . n. a .
05 010 015 020 000 0.05 O0. 0
F

0 015 0.20 0.00 O. 0 015 020 0.00 O.
p p

FDP

Figure S13: Comparison of colocalization and fine-mapping performance of various methods at varying signal strength. A. We compute power and
false discovery proportion at varying thresholds of the colocalization statistics of each method (PPH4 for coloc, CLPP for eCAVIAR, p_coloc_any for CAFEH). B.
We compute power and false discovery proportion at varying thresholds of the posterior inclusion probability for each method.
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Figure S14: Comparison of 95% credible sets for CAFEH-G, SuSiE-SS, and SuSiE. A. coverage, proportion of 95% credible sets containing a causal SNP.
B. Power, proportion of all causal SNPs detected in a credible set. C. Median credible set size. Confidence intervals computed from 100 bootstrap iterations.
Simulations with 1-3 causal variants performed on 1000 SNPs, simulations with 5 and 10 causal variants performed on all SNPs in 1Mb region of gene
transcription start site.
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Figure S15: Improved fine-mapping of shared causal variants. We conduct a range of simulations where the causal variant is shared between 1-12 tissues.
We vary the threshold of posterior inclusion probability (PIP) for each method and compute the proportion of false discoveries (FDP) and the proportion of
causal variants detected (Power).
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Figure S16: Structural variant simulations. We consider applicability of CAFEH to the colocalization of structural variants (SVs). Simulations are
generated where the causal variant(s) are either SNPs (top) or SVs (bottom), and run CAFEH and coloc using only SNPs, SVs, or SNPs + SVs. Causal
variants are sampled among SNPs or SVs with allele frequency > 0.05 A. Stacked bars count the number of true positives and false positives for coloc at a
threshold of PPH4 > 0.9 (left) and CAFEH at a threshold of p_coloc > 0.9. B. LD scores, calculated as the sum of squared correlation between a variant and
all other variants, for SVs (left) and SNPs (right) used in simulations. C. Allele frequency of unique SVs (left) and SNPs (right) used in simulations.
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Figure S17: Colocalizing of mixture simulations: Causal variants are drawn from a mixture of 0 mean normal distributions (top) or a mixture of point masses
(bottom). Plots show the trade off between power and false discovery at varying colocalization thresholds for simulations with a single causal variant (left) and
multiple causal variants (right).
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Figure S18: Fine-mapping of mixture simulations: Causal variants are drawn from a mixture of 0-mean normal distributions (top) or a mixture of point
masses (bottom). Plots show the trade off between power and false discovery at varying posterior inclusion probability thresholds for simulations with a single
causal variant (left) and multiple causal variants (right).
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Figure S19: Fine-mapping of point-normal simulations: We simulate 10 traits with a total of 10 causal variants. Causal variants are randomly assigned
to each simulated trait with probability 1/5, effects are drawn from a 0-centered Normal distribution, Normal noise is added to achieve percent variance
explained 0.01, 0.05, 0.1. Panels show a sample causal configuration generated under this simulation (left) and the trade off between power and false
discovery at varying colocalization thresholds (middle) and posterior inclusion probability thresholds (right) across 50 replicates of each simulation.
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Figure S20: Simulations of CAFEH and COLOC in different ranges of LD between the causal variants. Both methods have increased numbers of false
positive colocalization findings in high LD although CAFEH has more false positives when higher thresholds for colocalization are chosen and LD R2 is > 0.9.
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Figure S21: Sensitivity of CAFEH-G to initialization and hyperparameters. We vary the the prior spike probability and the initialization of effect size
variance. Bold, black, dotted line indicates performance when selecting the model that maximized the evidence lower bound (ELBO) for each simulation.
We observe that CAFEH is robust to various settings of the spike probability 7., , and that our defaults (7, = 0.1, Var(w,,) = 0.1) settings work well in our
simulations. Among multiple initializations, choosing the ELBO maximizing initialization yields good results.
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Figure S22: Protein coding genes classified by CAFEH colocalization conditions: we classify 17,985 genes expressed in at least one
tissue in GTEx by the proportion of colocalizing tissue pairs in CAFEH. We consider a tissue active for a gene if it has at least one CAFEH
component with p_active > 0.9. We consider two tissues colocalizing if they share a CAFEH component (p_active > 0.9).
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Figure S23: Correlation of CAFEH component activity across GTEx protein coding genes. Heatmap shows Pearson correlation of CAFEH component
activity between GTEX tissues across 17,985 protein coding genes. Dendrogram denotes a hierarchical clustering of tissues. Similar tissues share more CAFEH
components on average.
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Figure S24: CAFEH reveals tissue specific colocalization of GTEx tissues. GTEx tissues are grouped into related tissues. For each
tissue category, the the average of pairwise colocalization between tissues, calculated as max min(p;, «, Pt,k), IS taken across 17,985

protein coding genes. Values are normalized to the average colocalization of all tissue pairs.
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Figure S25. Influence of gene expression level on colocalization. All protein coding genes tested in at least one tissue in GTEx v8 (n=17601) were
stratified into quintiles based on their median expression levels across tissues. Histograms of proportions of colocalizing tissue pairs are plotted for each
expression quintile based on CAFEH colocalization in any component (left panel) or top component (right panel).
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Figure S26: CAFEH colocalizes eQTLGen with relevant GTEx Tissues. CAFEH-S was run on cis-eQTL summary statistics from eQTLGen and 49 GTEx

tissues for 9,744 protein coding genes. Plot shows average component activity (95% boostrap Cl) for the top eQTLGen component in 49 GTEx tissues. We

see highest average colocalization with GTEx Whole Blood.
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Figure S28: Extent of allelic heterogeneity in cis-eQTLs. A. Number of CAFEH components active in at least one tissue across GTEx v8 protein coding
genes. B. Number of components per tissue across GTEx v8 protein coding genes. C. Number of components per tissue with a genome-wide significant eQTL
across GTEXx v8 protein coding genes.
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Figure S29. Gene LOEUF stratified by colocalization probability. Average probability of loss of function intolerance (pLl) between genes that are
colocalizing in at least 20 tissues (highly colocalizing) and those that colocalize in less than 5 tissues (poorly colocalizing), comparing only genes that
have an eQTL in at least 20 tissues. Colocalization was defined as sharing of the top causal component based on CAFEH. Similar to LOEUF, this
alternative conservation metric also demonstrates higher conservation of genes that are poorly colocalizing according to CAFEH.
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Figure S30: Average probability of loss of function intolerance (pLI) between genes that are colocalizing in at least 20 tissues (highly colocalizing)
and those that colocalize in less than 5 tissues (poorly colocalizing) compared to all genes that have an eQTL in at least 20 tissues at different
quantiles of the geometric average eQTL p-value of the strongest associated variant for each gene. Colocalization was defined as sharing of the top
component based on CAFEH. We see that poorly colocalizing genes are more conserved compared to highly colocalizing genes in all quintiles.
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Figure S31: Proportion of loci in 19 UK Biobank GWAS traits that have multiple active components colocalizing with different tissues for the same
gene based on CAFEH. The figure displays boxplots of the median proportions across the 19 tested GWAS traits. The red panel displays proportion of the loci
that have the characteristics of the title divided by all genome-wide significant loci. The green panel displays the proportion divided by loci that have multiple
components based on CAFEH. The blue panel displays the proportion divided by loci that have a genome-wide significant eQTL in at least one GTEx v8 tissue
and also have multiple active components based on CAFEH. Colocalization was defined as p_active >=0.5 in both the GWAS and the tested tissue based on

CAFEH.
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Figure S32: Heatmap of the prioritized tissues based on CAFEH for different UK Biobank GWAS traits. Tissues are colored based on their ranks which
are determined based on the number of colocalizing loci based on CAFEH top component colocalization. Ranks range from 1-49 with 1 being the highest (most
colocalizing) tissue. Tissues that are also enriched based on LD score regression are annotated. We see significant overlap in tissue prioritization between
CAFEH and LDSC.
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Supplemental Methods

In this document we review variational inference and describe the variational
approximation used in CAFEH. Then we derive the coordinate ascent updates
for CAFEH-G and CAFEH-S. Finally, we describe how to use stochastic varia-
tional inference to improve speed of CAFEH-S optimization.

1 Variational Inference Review

1.0.1 Problem set up

Given a model p(Y,0) where Y are observed data and 6 are latent variables, we
want to compute the posterior distribution p(6]Y). When the exact posterior
distribution is intractable, we can approximate the posterior using variational
inference.

In variational inference, we recast inference as an optimization problem. We
posit a family of distributions Q over the latent variables in the model 6 and
find the member of that family that minimizes the KL-divergence to the true
posterior.

¢*(0) = argmingeo KL [q(0)||p(0Y)] (1)

When p(0]Y) € Q this optimization yields the true posterior distribution.
In practice, we choose Q so that we can efficiently optimize over the parameters
of the family. Specifically it is often useful to choose a family of variational
distributions that factorize over latent variables: ¢(0) =[], q(6;).

We can solve this optimization by maximizing the Evidence Lower Bound
(ELBO), which is a lower bound to the marginal data likelihood p(Y|X) =
Jop(Y,0|X)d6

ELBO =E,[Inp(Y,0|X)] + E, [In¢(0)] (2)

It can be shown that optimizing the ELBO with respect to the variational
parameters is equivalent to minimizing the KL divergence in (1) [1].
The ELBO may be equivalently expressed as

ELBO = Eq [p(Y|X,0)] = KL[q(0)[[p(0)] (3)



1.0.2 Deriving updates

We want to derive the udpate for a variational factor ¢(z). where z is some
subset of the latent variables in the model. Modifying the logic from [1] consider
decomposing the ELBO

ELBO = Eq(2) [£] — Ey() [Ing(2)] + C (4)

Where £ are all terms of the ELBO that depend on z, and ¢(z) is a density
function which satisfies [ ¢(z) = 1. Using Lagrange multipliers to encode this
constraint

d d
MELBO - m {Eq(z) [Eq(*z) [‘C]] - IEq(z) [ln Q(Z)] + )\Eq(z)[l] — 1} (5)
=Eq(—z) [£] —Ing(z) + A ©)

Setting the derivative equal to 0 we find

ng(=) = By [£] + A ™)

Recognizing that ¢(z) must integrate to one and that the normalizing factor
does not depend on z

q* (Z) X exp {Eq(fz) [‘c]} (8)

This suggests an approach for deriving our updates: compute E,(_.) [£] and
identify the parameters for g(z) satisfying (8). Note that in general, identifying
this distribution is not straight-forward. However, for a special class of mod-
els, of which CAFEH is a member, the coordinate-wise optima are exponential
family distributions and their parameters can be computed analytically.

2 CAFEH-G
2.1 Model

For clarity we restat the model. Let Y an N x T matrix of measurements in NV
individuals across T phenotypes. Let X be a N x G matrix of genotypes in NV
individuals across G SNPs. The CAFEH model is written as



Y; ~ (Xby, 7, ) (9)

K
= Z ¢kwtk3tk (10)

Wik | NJ\/ 0,0;,") (11)
Stk ~ Bernoulh(pok) (12)
o ~ Categorical(m) (13)
Qg ~ F(ao, 0) (14)

Tt ~ F(Co, d()) (15)

2.2 Variational Approximation

Let 0 = {wy } U {stx} U{dr} U{aw} U {7} denote the set of latent variables.
We select Q to factorize as follows:

= [T IT aCwerlén. sen)as)aten) [T alow) [T a(m) (16)
Kkt k t

In particular we choose to a variational family that maintain dependence of
wek on ¢ and s¢ so that we can accurately estimate effect sizes under different
causal configurations. This is similar to the choice made in for the variational
approximations chosen for SuSiE [3] and [2].

We optimize the ELBO via coordinate ascent, iteratively updating each
q(w|g, s), q(@), q(s), ¢(a) and ¢(7), while holding the others fixed. Note, that
while we have not specified a parametric form for the factors of the variational
distribution, the model and factorization imply the optimal form of each varia-
tional factor:

q*(stx) ~ Bernoulli(yy)
q*(¢r) ~ Categorical ()
q*(aer) ~ T(awk, bik) (17)
q* (1) ~ T(ct, dy)
0 (wik|pr = 1, 50 = 1) ~ N (bakiy 07;)

{u,0%, 7,7, a,b,¢,d} (omitting subscripts) are variational parameters that
we optimize over. We provide the full updates and their derivation below.



2.3 Evidence Lower Bound (ELBO)
ELBO = Eqg) [Inp(Y|0)] — KL [q(6)||p(0)] (18)
=Eyo) | >IN (Yi[by, 7 '1)
t

=Y Eotsuamse) KL [a(wenl s, o)l lp(werl )]

t,k (19)
- ZKL (str)||p(se)] ZKL () [Ip(ven)]
tk tk

—ZKL (d1)||Ip(or)] ZKL (7e]|p(Te)]

2.3.1 Expected conditional

Eq@) [InN (Y| Xbe, 77'1)] =
M M
-5 In 27 + 5 (InT,) — % [Y{Y, —2Y] (Xb;) — (b/ X" Xb,)]
(20)
The expectation of by is

(by) = Z(Wk O [tk )Vtk (21)

k

Letting d; = el XTXe; and (by) = (7k © pur) ek and noting s%, = sy we
can get a nice expression for the quadratic term

(b{ X"Xb,) < (Z ¢kwtk5tk> XX <Z ¢kwtk8tk) > (22)

= Z <wtk8tkd¢k —+ Z wtkstk(]Sk > X X <¢]wt18tj> (23)
k#j
= Z(Htm + ot ) yermrids + (b))t XTX (by) = > [|X (b |2
(24)

2.3.2 KL computations

To compute the ELBO and coordinate ascent updates, we need to compute
E [KL[q(w|®, s)||p(w|a)]], where expectations are taken over g(«), ¢(st) and/or
q(¢x) depending on the setting. s and ¢ appear linearly, while « does not. Here
we write the expectation of the KL divergence w.r.t o in terms of the the KL
of the expectation plus a positive correction.



(KL [N, 0% [IN(0,a7h) (25)
—<; [au2+02a11n021n0¢]> (26)
- % [(a) u? + 0% (@) — 1 —Ino? — (Ina)] (27)
= % [{a) p?+o*{a)—1—Ino® —1In (a)] + %(ln (a) = (Ina))

(29)
= KL [N(u.o)W(0,(@)7)] + 5(n () ~ (na)  (29)

2.3.3 Residualized likelihood

As we write our variational updates it will be useful to define ry, = Y; — Xb; +
Xby, where by, = ¢dpwirst,. That is, ry is the residual with all but the k-th
component removed. The conditional likelihood may be written

N(Y;/‘th»Ttil) :N<rtk|thk?Tt71) (30)

Then, when considering updates for a particular component k, we can write
the ELBO as

-
ELBO =Eqyq) |y —é [—2rf, Xby, + b}, X" Xby || — KL[q(0)|[p(0)] (31)
t
2.4 Coordinate Ascent updates
2.4.1 Update for ¢*(wi|dr =14, st = 1
Where x; is the ith column of X, the genotypes at SNP <.

¢ (wi|su = 1, ¢, = 1) (32)
o< exp { (In N (ryp|wex;, Tt_11)> + (In p(wer| k) } (33)
o ea:p{ % (—2 (rtk>T X; Wik + diwfk) + %m(wfk)} (34)

Completing the square we find

0 = (d; (o) + () ™! (35)
fii = 00 (7e) (rae) " % (36)
q (k| =1, 5o = 1) = N (W | frenis 07;) (37)



2.4.2 Update for ¢*(wig|dk, st = 0)

¢ (Wil s = 1, dr, = 1)
o exp {<ln./\/'(rtk|0,7't_11)> + (1np(wtk|atk)>}

e 03]

¢ (weg|sek = 0, ¢ = 1) = N (w + tk|0, (atkyl) Vie{l,...,N}

2.4.3 Update for ¢*(s¢)

q*(sex) o< exp{ <1nN(rtk|X¢kwtk,thlI)> 1(se = 1)
+ <KL [Q(wtkyatk|5tk, = 17¢k)||p(wtk,04tk)]> ]]-(Stk = 1)
+ Inpor (s = 1)
(NN (re]0, 77 'T)) L(s¢s, = 0)
+ (KL [q(wi, agg|sex = 0, ) [[p(wik, aer)]) T(sex = 0)
+ In(1 — por) L(sex = 0)

Grouping terms where si, = 1 and sy, = 0 we can write

q" (str) < exp{(a+Inpor)L(see = 1)+ (b+ In(1 — por))1(stk=0)}

.
a=— % -2 (rtk>T X (7 © pier) + Z(Hf}m‘ + 07 ki

= ki (KL [q(wik, okl ser = 1, dr = )| |[p(wi, o)

7

b=— (KL [q(w, s = 0)||p(wk, awi]) = —%(ln (@) — (Ina))

e“pok

Setting v, = e porteb(1—por)

q* (str) = Bernoulli(sy|ver)



2.4.4 Update for ¢*(ay)

q* () o< exp {{In N (w0, ah) Inp(auk))}
Atk

oy <wt2k> + (a0 — 1) Inay — bOatk}

1 2
x exp { (ao + 3~ 1) In oy, — (bo + <w2tk:>> atk}

{1
x exp §lnatk —

1 i ([ i)?
ocexp{(a0+2—1> Inag — <b0+217rk (M + ouni) )atk}

Let a = ag + 3 and b= by + i WM(HZMJFUW)Z
q" (our) = I'(ourla, b)

2.4.5 Update for ¢*(¢y)

" (¢r) < Y pril(d = i)

7

pri = (N (| sppweex;, 77 1T)

— (K L[g(wek, ask|pr = 1) || p(wir|a)]) + Inmop;
-
Pki = — <27t> [—2 <7’tk>T X btk Ve + 'Ytk(:uz%ki + Gfki)}
— (K L[q(wik, cr|ser = 1, op = 1) || plwir|ak)]) ver
— (K Llg(wik, cur|sik = 0, ¢ = 1) || pwer]aer)]) (1 — vyer) + Inmop
Then

epi

Tkt = ZZ epPik

2.4.6 Update for ¢*(7})

Ing* (1) <N(Bt|th,Tt_II) + hlp(Tt)>

1 T A S
X 5 lnTt — Et <(ﬂt — th)T(Bt — th)> + (C() — 1) lnTt — dO’Tt

v TA
Let ¢ = ¢o + % and d =do + (& th)z(ﬁt Xb.))

q" (1) = L(7i|c, d)

(47)

(48)

(49)

(51)



3 CAFEH-S model

CAFEH-S has an identical prior on the effect sizes by as CAFEH-G, however
the likelihood is written in terms of summary statistics using the RSS likelihood
[4]. B are the vector of effect sizes for marginal linear regression of G SNPs in
phenotype t. R is an LD matrix containing the pairwise correlation of SNPs. S
is a diagonal matrix where Sfi = 52/%2’ + 5% 4+ ti. ny and 8y are the sample
size and standard errors for the corresponding tests.

By ~ (SRS~ by, SRS) (53)
K
b; = Z PrWik Stk (54)
k=1
Wikl ~ N(0, 0,1 (55)
st ~ Bernoulli(poy) (56)
¢ ~ Categorical (o) (57)
ay ~ I(ag, by) (58)

3.1 Evidence Lower Bound (ELBO)

We write the ELBO, lumping terms that are constant w.r.t the variational
parameters into a constant C. Letting

D=S5"1RS!

ELBO =E, — KL[qllp] (59)

> InN(B:|SRS™ by, SRS)
t

:Eq

2. —% (—28757%b, + thDbt)] ~KL[gllp]+C  (60)
t

3.1.1 Residualized likelihood

Our coordinate ascent updates are performed by updating one component while
holding all other components and fixed. It will be convenient to rewrite the
likelihood in terms of the residual with all but one component removed

by = Wik sk Pr (61)
by =Y by (62)
j#k
ik = B — SRS b_y, (63)
So that
N (B:|SRS™ by, SRS) = N (r1x| SRS 'byi, SRS) (64)



Notice that the term r}, (SRS) ™ 'ry, does not depend on component k. For
the purpose of optimization of the variational parameters of component k we

may write the ELBO

1
ELBO =E, | -5 (=2rf,S b, + b{ Db,) | — KLIg||p] + C

t

3.2 Coordinate Ascent updates
3.2.1 Update for ¢*(wig|dr, st = 1)
With d; = Dy;

q" (wik|si = 1, = 1)
exp {<lnN(rtk|SRS_1btk, SRS) 4+ In N (w0, atk)>}

1
exp {—2 [—2 <Ttk>T S 2e;wyy + diwfk + (o) wfk} }

Completing the square we arrive at

Oipi = (di + ()"
puni = o (ren) S 2e
¢ (wek|pr = 1, se = 1) = N (we | fitni, )

3.2.2 Update for ¢*(w|dk, sk = 0)

* . 1
¢ (wek| st = 0, dp, = 1) x exp {—2 <atk>w152k}

It follows that

¢ (Wik| P, stk = 0) = N (w0, <atk>71)

3.2.3 Update for ¢*(ss)
We group terms of the ELBO where sy, = 1:
a=Eg,,=1 [logN(rtk|SRS_1btk, SRS)]

+EQ(wtk,<251c,8tk:1) [logp(wtﬂatk)}
+Eq(6) [H(q(wen|six = 1, ¢r)] + log por + C

(66)



Evaluates to
1
a=—3 (2 <Ttk>T S72(my 0 k) + Z(uf,ﬂ + Ufki)diﬂ—ki>
Z’ (71)
FE g (wik,prsen=1) 108 P(Wek|over)]
+Eq () [H(q(wir|ser = 1, ¢r)] + log pox + C

And sy, = 0:
b=Egys,.—0 [log N'(rex| SRS ™', SRS)]

FEq(wir,on500=0) 108 P(wek|over)] + (72)
Eq(pr) [H (q(wik|ser = 0, ¢x)] +log(1 — pox) + C
Evaluates to
b=0
+]E(I(wtk»¢k-,stk:0) [Ing(wtk‘atk)] (73)
+Eq(pn) [H(q(wer|ser = 0, dx)] +
log(1 — pox) + C
* Ea
0 () o eaplal(s = 1)+l = 0} = =~ (74)
3.2.4 Update for ¢*(¢y)
Grouping terms where ¢, = ¢
a; = Eyjp,=i [log N (ree| SRS~ bei, SRS)]
+E¢Z(wtk75zk\¢k:i) [p(wtk|atk)] (75)
FEq (s, [H (q(wek|sek, o = )]
1 _
@i =—3 [—2 (re)” S™2eipuenivin + ek (g + Gfki)di]
76
FEq(wer il gn=i) [P(Wek| )] (76)
+Eq(py) [H (q(wik|st, b = )]
— (77)

q" (sex) o exp{zi:ail(cbk = i)} = ki = S et
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3.3 Stochastic Variational Inference
3.3.1 Monte-Carlo estimate of the ELBO
Recall the ELBO for CAFEH-S

1
ELBO =E, ) -5 (=2rf.S™?b, + b]' Dby) | — KL|q|[p] + C (78)
t

The CAFEH-S updates, (equivalently, evaluating the gradient of the ELBO),
require the repeated evaluation of (ry) = B, — SRS—! (b_¢). This involves a
matrix-vector multiplication that grows with the number of SNPs, and causes
CAFEH-S to be slow to run with a large number of variants.

We propose using a Monte-Carlo estimate for the expectation over g(¢).
Rather than averaging over all SNPs, and incurring the expensive matrix-vector
multiplication, we sample SNPs. We write by (¢ ) to emphasize the dependence
of by on ¢y.

L
Eqon) [Bq(—o1) Pk (01)] = Z a(—on () = b (79)
Where z,(cl), ceey z,(CL) are iid samples from Categorical(my), the current set-

ting of ¢(¢x). This approximation yields a noisy but unbiased estimate of the
ELBO, satisfying the core requirement for performing stochastic optimization.

Importantly for moderate choice of L, LK << G. Thus, b, is sparse and
SRS~'by, can be computed quickly.

3.3.2 Stochastic Variational Inference

For models where all the complete conditionals are an exponential family, coor-
dinate ascent on stochastic estimates of the ELBO is stochastic gradient ascent
(in the natural parameter space) [cite]. In short, we can use the same updates
as above, replacing expectations over g(¢y) with their Monte-Carlo estimate, to
compute \ an intermediate estimate of our variational parameter A\. We update
our estimate of \ as a weighted average of our old estimate and the intermediate
estimate

NG (1 — po)Ae + Y (80)

Where ¢ indicates iteration, and p; are weights. When the sequence (p¢),
satisfy the Robbins Monro conditions Y~ py = 0o and ) p7 < oo, the stochastic
optimization is guaranteed to converge to a local optimum.

We note that for well behaved causal components, where g(¢y) places most
of its mass on a set of tightly linked SNPs, the Monte-Carlo estimate will be
very close to the true expectation.
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