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ARTICLE

Redefining tissue specificity of genetic
regulation of gene expression in
the presence of allelic heterogeneity

Marios Arvanitis,1,2,5 Karl Tayeb,1,5 Benjamin J. Strober,1 and Alexis Battle1,3,4,*
Summary
Uncovering the functional impact of genetic variation on gene expression is important in understanding tissue biology and the path-

ogenesis of complex traits. Despite large efforts to map expression quantitative trait loci (eQTLs) across many human tissues, our ability

to translate those findings to understanding human disease has been incomplete, and the majority of disease loci are not explained by

association with expression of a target gene. Cell-type specificity and the presence of multiple independent causal variants for many

eQTLs are potential confounders contributing to the apparent discrepancy with disease loci. In this study, we investigate the tissue spec-

ificity of genetic effects on gene expression and the overlap with disease loci while considering the presence of multiple causal variants

within and across tissues. We find evidence of pervasive tissue specificity of eQTLs, oftenmasked by linkage disequilibrium thatmisleads

traditional meta-analytic approaches. We propose CAFEH (colocalization and fine-mapping in the presence of allelic heterogeneity), a

Bayesian method that integrates genetic association data across multiple traits, incorporating linkage disequilibrium to identify causal

variants. CAFEH outperforms previous approaches in colocalization and fine-mapping. Using CAFEH, we show that genes with highly

tissue-specific genetic effects are under greater selection, enriched in differentiation and developmental processes, and more likely to be

involved in human disease. Last, we demonstrate that CAFEH can efficiently leverage the widespread allelic heterogeneity in genetic

regulation of gene expression to prioritize the target tissue in genome-wide association complex trait loci, thereby improving our ability

to interpret complex trait genetics.
Introduction

Understanding the mechanisms that underlie genetic

regulation of gene expression is crucial to explaining the

diversity that governs complex traits. Large scale expres-

sion quantitative trait locus (eQTL) studies have been

instrumental in identifying genetic variants that influence

the expression of target genes and can be used to identify

relevant genes for disease-associated genetic loci.1,2 This

is particularly useful for the large fraction of disease loci

in non-coding regions of the genome. However, the major-

ity of disease-associated genetic variants have not yet been

clearly explained by current eQTL data,3–5 frustrating at-

tempts to use these data to comprehensively characterize

disease loci.

One reported observation from recent studies of the ge-

netics of gene expression is that cis-eQTLs often appear to

be shared across different cell types and tissues.6–8 Howev-

er, linkage disequilibrium (LD) within each locus along

with the presence of multiple causal alleles within or be-

tween cell types may skew the quantification of sharing

of genetic effects between tissues and impede our ability

to identify causal variants. Indeed, recent research has

demonstrated that multiple causal variants are often pre-

sent in many eQTL and complex-trait-associated loci,9,10

suggesting that allelic heterogeneity may be more com-
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mon than previously anticipated and underscoring the

importance of disentangling causal signals in high-LD

regions. These complex patterns could hinder the identifi-

cation of regulatory effects for disease-associated genetic

variants, potentially obscuring both the relevant cell type

and target gene.

Here, we re-analyze tissue specificity of genetic effects in

the presence of LD and allelic heterogeneity. We demon-

strate that cis-eQTL effects appear to be predominantly tis-

sue specific, according tomethods that directly account for

LD. In fact, eQTL loci often have multiple distinct signals

across tissues in high LD, thus leading to inflated estimates

of tissue sharing by traditional meta-analysis methods.

Further, we propose a Bayesian method, CAFEH (colocali-

zation and fine-mapping in the presence of allelic hetero-

geneity), that incorporates genetic association signal and

LD structure across multiple traits, tissues, and studies

together to improve the identification of causal regulatory

variants across tissues and their relationship to disease loci.

We show that eQTL tissue specificity is associated with

signals of selection and disease relevance. That is, tissue-

specific genes are under greater selective pressure, and tis-

sue-specific eQTLs aremore likely to colocalize with disease

loci. Ultimately, we reveal that CAFEH can leverage cis-

eQTL tissue specificity to effectively prioritize the target tis-

sue and inform functional characterization of disease loci.
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Together, these data and CAFEH provide an improved

framework for interpreting tissue specificity and interro-

gate disease mechanism.
Material and methods

Evaluation of tissue sharing in GTEx v8
Theprimary source of data for this analysiswere eQTL summary sta-

tistics across 49 human tissues and cell types generated by theGTEx

Consortium v8 release.10 We additionally used individual-level

whole-genome and RNA sequencing by GTEx processed according

to the GTEx v8 protocol.10 Metasoft11 analysis was performed as

previously described in GTEx v8.10 To perform colocalization, we

employed COLOC with the approximate Bayes method12 for each

gene locus defined as all SNPs in a region within 1Mb from the cor-

responding gene transcription start site. COLOCwas performed in a

pairwise manner between all 49 GTEx v8 tissues for all genes that

were expressed in at least one tissue in GTEx v8. Priors for the

different colocalization probabilities were set at p1 ¼ 1 3 10�4,

p2 ¼ 1 3 10�4, p12 ¼ 1 3 10�6 according to the authors’ recom-

mendation in the original COLOC paper.12 Colocalization was

defined as a PPH4R 0.5 unless explicitly stated otherwise.Gene-tis-

sue pairs that did not have a signal for an associationwith genotype

in both tested studies (i.e., gene-tissue pairs with PPH3 þ PPH4 <

0.5) were excluded from the analysis of tissue sharing.

Because COLOC evaluates the probability of colocalization at

the locus level considering the locus signal as a whole, whereas

Metasoft m-values work on the variant level and determine the

probability for a given variant to be significant eQTL for a gene-tis-

sue pair, in order to perform comparisons between the two, we

defined that two tissues shared regulation for a given gene based

on Metasoft if the m-value for the variant with the minimum

eQTL p value across all GTEx tissues for that gene was R0.5 in

both tissues.

COLOCby default assumes atmost a single causal variant per lo-

cus. That assumption may influence the results in loci with multi-

ple causal variants, biasing them against colocalization. Therefore,

to test whether the substantial tissue specificity observed by CO-

LOC was significantly influenced by that limitation, we repeated

our colocalization analysis by using eCAVIAR,13 a software that re-

laxes the single-causal-variant assumption. A limitation of eCA-

VIAR is that it scales exponentially in the number of assumed

causal variants, making inference of colocalization substantially

slower as the number of variants increases. Consequently, even

assuming at most two causal variants per locus, this analysis was

not computationally feasible across all 35,848 genes and 49 tissues

evaluated with COLOC. Therefore, we performed eCAVIAR

assuming at most two causal variants per locus in a randomly

sampled subset of 1,000 genes out of the 35,848 to evaluate the

distribution of genes with shared and distinct regulation in

different tissues pairwise. We defined that two tissues colocalize

based on eCAVIAR if they share at least one variant with a mini-

mum causal posterior probability in both tissues R0.5.
Evaluation of tissue sharing between GTEx and other

datasets
We subsequently evaluated tissue sharing between all 49 tissues in

GTEx v8 and human tissues or cell types fromMuther14 and eQTL-

Gen.15 Specifically, for each of the three Muther tissues and cell

types that cis-eQTL data are available (fat, skin, and lymphoblas-
224 The American Journal of Human Genetics 109, 223–239, Februar
toid cell lines), we performed pairwise colocalization analysis for

all genes that were tested in both Muther and GTEx v8 between

the corresponding Muther tissue and all 49 GTEx tissues. We

plotted the colocalization posterior probability (PPH4) mean and

95% confidence intervals by using the subset of gene-tissue pairs

that had an eQTL signal in both tissues based on the COLOC

output (i.e., PPH3þ PPH4R 0.5).We followed the same procedure

to test for colocalization between eQTLGenwhole blood and all 49

GTEx tissues.
Cell-type deconvolution in GTEx whole blood
We performed cell type deconvolution analysis in GTEx whole

blood tissue by using CIBERSORT.16 Specifically, we ran CIBER-

SORT with default parameters by using as input the GTEx v8

whole blood expression in transcripts per million and the signa-

ture genes and average expression from a dataset of 22 circulating

human immune cell types.16 We classified a cell type as estimable

in GTEx if it had a corresponding CIBERSORT estimate> 0.05% in

more than 5% of the GTEx whole blood samples.17 We were able

to estimate cell-type proportions in GTEx for 15 different immune

cell types by using the above method.

After obtaining the CIBERSORT estimates, we performed inter-

action QTL calling by using MatrixEQTL18 and the following

linear model:

Y ¼ intercept þ a 3 cell composition þ b 3 genotype

þ c 3 covariates þ d 3 neutrophil percent

: genotype;

where Y is the processed gene expression, genotype is the geno-

type of the lead cis-eQTL SNP for that gene, cell composition is a

matrix containing the cell-type proportions for each of the 15

estimable cell types in GTEx, covariates include sex, PCR, plat-

form, 60 PEER factors, and five genotype PCs, and

neutrophil percent : genotype is the interaction term between the

SNP genotype and the proportion of neutrophils in each GTEx

sample. We evaluated statistical significance of the interaction

effect estimate d by using a two-sided Wald test and performed

Benjamini-Hochberg correction of the p values across tested

genes. We then selected the genes that had a significant interac-

tion QTL at different FDR thresholds and tested whether genes

that had high posterior probability for non-colocalization be-

tween eQTLGen and GTEx whole blood (PPH3 > 0.9) would

be enriched in genes with a significant interaction QTL

compared to genes that had high PPH4 > 0.9 (suggesting that

cell-type differences influence colocalization estimates between

the two datasets).
Simulations to evaluate COLOC performance
To evaluate the performance of COLOC under different underly-

ing LD patterns and numbers of causal variants in each locus,

we performed a series of simulations. To ensure we have a broad

representation of LD structures in our simulations, we first

computed LD scores for all variants in GTEx v8 whole-genome

sequencing that passed the standard GTEx v8 filters with the

ldsc software.19 Naturally, genes with higher LD score are expected

to be found in regions with higher LD on average. We then split

each gene that had a significant cis-eQTL in GTEx whole blood

into LD quintiles based on the LD score of its top eVariant. Subse-

quently, we randomly sampled 20 different genes from each LD

bin. For each gene we obtained genotypes for the corresponding
y 3, 2022



locus by selecting the SNPs within 1 Mb from the gene’s transcrip-

tion start site in four different datasets:

(1) GTEx whole blood,

(2) GTEx thyroid,

(3) 1000 Genomes Europeans, and

(4) 1000 Genomes Africans.

We evaluated three possibilities regarding the number of causal

variants:

(1) there is a single causal variant that was selected to be the

top cis-eVariant for the corresponding gene in GTEx whole

blood;

(2) there are two causal variants, one of which is the top cis-

eVariant for the corresponding gene in GTEx whole blood

and the others are selected randomly among the remaining

locus variants;

(3) There are five causal variants, one of which is the top cis-

eVariant for the corresponding gene in GTEx whole blood

and the others are selected randomly among the remaining

locus variants.

For all configurations, we simulated gene expression by using

the following linear model:

Yj ¼
Xn
i¼1

�
bi 3 xij

�þ ε

ε � Nð0;0:9Þ

bi � N

�
0;

0:1

n

�
;

where Yj is the simulated expression for the jth individual, n is the

number of causal variants, bi is the effect size for the ith causal

variant, assumed to have a normal distribution with heritability

ð10 =nÞ%, according to our prior knowledge on average cis herita-

bility of gene expression,4 xij is the genotype for causal variant i

and individual j, and ε is the residual error term with a normal,

zero-mean distribution.

For each run of the simulation, we simulated gene expression by

using the above method for GTEx whole blood individuals and

one of the four different genotype datasets listed above. After

simulating gene expression, we then obtained simulated eQTL

summary statistics for each variant in a locus by performing sim-

ple linear regression between the simulated gene expression and

the variant genotypes. COLOC was performed on the simulated

summary statistics between GTEx whole blood and each dataset

with the same priors as outlined above for the analysis of real

data. 100 independent simulations were performed for each data-

set and causal variant configuration.

CAFEH
CAFEH is a probabilistic model that performs colocalization and

fine-mapping jointly across multiple traits. Let Y be an N3 T ma-

trix of measurements from N individuals in T traits. Let X be an

N3G matrix of genotypes for each individual in G SNPs. We as-

sume an additive genetic model

Yit ¼XT
i bt þ ei;
The America
where bt is a sparse vector of effect sizes in trait t and εi � Nð0; t�1Þ
is i.i.d. noise. We model bt as

bt ¼
XK
k¼1

4kstkwtk

wtk � N
�
0;a�1

tk

�

stk � Bernoulli
�
p0k

�

4k � Categoricalðp0Þ:

Similar to SuSiE,20 bt is written as a sum of components where

each component captures the effect of a single causal variant.

Here, p0 ¼ ðp01; .; p0GÞ is a vector with the prior probability

that each SNP is the causal variant, and 4k is a one-hot vector of

length G indicating the SNP selected in the kth component. We

place a spike and slab prior on the effect sizes, parameterized as

the product of a Bernoulli and normal random variable stkwtk.

Here, p0k gives the prior probability that the kth component is

active (i.e., has non-zero effect) in each trait, and atk gives the prior

precision of the effect size.

Intuitively, CAFEH enforces that all traits have zero effect at SNPs

not selected by 41;.;4K. While the model enforces that at most K

SNPs have non-zero effect in each trait, a Bayesian treatment of

41;.;4K allows us to express uncertainty in which K SNPs have

non-zero effect. In practice, we cannot distinguish between the

causal SNP and other tightly linked SNPs included in the model;

however, the posterior mass of each 41;.;4K will concentrate on

groups of linked SNPs with shared association signal supported

by the data. Thus, inference on 41;.;4K constitutes fine-mapping.

The choice of a spike and slab prior on the effect sizes of each

component is motivated by the fact that we do not expect all

causal variants to be shared across all tissues. With our parameter-

ization, this can be seen easily; ðst1;.; stKÞ are binary variables that

select a subset of the K components to have non-zero effect in trait

t. When stk ¼ 0, component k does not contribute trait t and the

causal variant selected by component k is not considered causal in

trait t. Conversely, when stk ¼ 1, component k will have non-zero

effect in trait t and is considered causal. The sparsity induced by

the spike and slab leads to straightforward colocalization; two

traits, t1 and t2; colocalize in component k if they are both active

in component k, that is st1k ¼ st2k ¼ 1:20

To complete ourmodel specification, we place priors on the vari-

ance terms for our effect sizes and residuals.

atk � Gammaða0; b0Þ

tt � Gammaðc0; d0Þ

We emphasize the choice of giving each effect in each trait its own

precision parameter atk. While effects are modeled as normal, the

magnitude of effects are free to vary across traits and causal vari-

ants. Thus, CAFEH does not place strong assumptions on the dis-

tribution of effect sizes across traits or causal variants.

When T ¼ 1, CAFEH reduces to SuSiE with a spike and slab prior

on the effect sizes. CAFEH generalizes SuSiE by estimating causal

variants across multiple traits jointly. This enables straightforward

colocalization analysis and dramatically improves power to

perform fine-mapping of shared causal variants by sharing infor-

mation across multiple traits.
n Journal of Human Genetics 109, 223–239, February 3, 2022 225



We refer to this form of the CAFEH model as CAFEH-G to

emphasize that it is fit with individual-level genotype data.
Fitting CAFEH from summary statistics
To facilitate the application of CAFEH to genome-wide association

study (GWAS) with publicly available summary statistics, we

implement a version of CAFEH, CAFEH-S, that can be estimated

with summary statistics and a reference LD matrix by using the

RSS likelihood.20 The RSS likelihood relates the coefficients of a

multivariate regression to the effect sizes and standard errors of

themarginal univariate regressions. Let bbt and
dst

2 be vectors of ef-

fect sizes and standard errors from a simple linear regression of

phenotype t against a set ofG SNPs. Let bR be the sample LDmatrix

computed on X. Define s2i ¼ �bb2

ti=N
�þ bs2

ti and
bS a diagonal matrix

with ith diagonal equal to si: Up to a constant, the likelihood

pðYt j X;btÞ is equal to the likelihood of bbt under the model (Prop-

osition 2.1 in Zhu and Stephens20):

bbt � N
�bSbRbS�1

bt ; bSbRbS�:
Thus, we can equivalently do inference with summary statistics. In

practice, the sample LD matrix may not be available, and bR will

need to be estimated from a panel of reference genotypes.
Variational inference for CAFEH
The exact posterior distribution pðfwtkg; fstkg; f4kg; fatkg;
fttgjY;XÞ is intractable, so we approximate the posterior distribu-

tion by using variational inference. We select a family of distribu-

tions Q over the latent variables of the model that factorize as

qðfwtkg; fstkg; f4kg; fatkg; fttgÞ¼
YT
t¼1

YK
k¼1

qðwtkj4k; stkÞqðstkÞqðatkÞ

3
YK
k¼1

qð4kÞ
XT
t¼1

qðttÞ:

We perform coordinate ascent variational inference21 to find a

member of this variational family that (locally) minimizes the

Kullback Leibler (KL) divergence to the true posterior distribution.

All updates can be written in closed form. Detailed derivation of

the updates for CAFEH-G and CAFEH-S, as well as implementation

and initialization details, are available in the supplemental

methods, sections 2.4 and 2.3, respectively.

For CAFEH-S, to avoid costly matrix-vector multiplications at

every iteration, we implement stochastic variational inference by

using a Monte-Carlo estimate of the variational objective. Specif-

ically, we approximate expectations over qð4Þ by sampling. Details

are available in supplemental methods, section 3.3.
Setting hyperparameters
CAFEH users need to specify the number of components K and the

p0k; the prior probability, that each component is active in each

phenotype. K can be set to a large value (e.g., 20, 100), which is

an upper bound on the number of causal variants CAFEH can

detect. Irrelevant components will not be assigned to phenotypes.

Similar to SuSiE, unused components have their posterior mass

spread over a large number of variants, so they do not significantly

impact the posterior inclusion probabilities.

We conservatively choose a null initialization for CAFEH: the

posterior means of all effects in all traits are initialized to 0 (that

is bt ¼ 0 for t ¼ 1; .; T) and the residual variance of trait t,

t�1
t ; is initialized to the sample variance of trait t. We also initialize
226 The American Journal of Human Genetics 109, 223–239, Februar
the prior effect size variance a�1
tk ¼ 0:1, which we recommend as a

sensible default when running CAFEH with standardized geno-

types and traits. However, good initialization of a�1
tk depends on

the scale of genotypes, traits, and the expected contribution of

causal variants to trait variance.
Simulations
We compare the performance of CAFEH-S and CAFEH-G to popu-

lar fine-mapping methods, including CAVIAR, FINEMAP, and

SuSiE, and competing colocalizationmethods eCAVIAR and coloc.

In all simulations, CAVIAR and eCAVIAR are fit with a maximum

of two causal variants, SuSiE with a maximum of ten causal vari-

ants, and FINEMAP with a maximum of five causal variants. To

better understand the impact of the spike and slab prior on fine-

mapping, we run CAFEH in each simulated phenotype separately,

which we denote as (SuSiE-SS). We evaluate fine-mapping

methods by using the posterior inclusion probabilities (PIPs) re-

turned by each model. We evaluate colocalization by using coloc-

alization statistics of each method, PPH4, CLPP, and p_coloc for

coloc, eCAVIAR, and CAFEH, respectively.

Gene expression data is simulated from real genotypes from 838

individuals in GTEx. We select 100 genes at random and take XðiÞ

to be the genotype matrix for the G variants nearest the transcrip-

tion start site (TSS) of gene i.

Simulated expression is controlled by four parameters: q; the

number of causal variants in each phenotype; r; the percent vari-

ance explained by causal variants; r2max; the maximum pairwise r2

between causal variants; and T; the number of phenotypes simu-

lated. Effect sizes are drawn from Nð0; ð1 =pð1�pÞÞÞ;where p is the

allele frequency of the causal variant. In order to control the signal

strength, residual variance is added to achieve the proportion of

variance explained by genotype r. Specifically, given a sampled

vector of effects b, we set the residual variance t�1 such that r ¼
VarðXbÞ=ðt�1 þ VarðXbÞ:Þ. Within each simulation, traits are

randomly assigned to one of two groups. For each group of traits,

we sample a set of causal variants and then independently sample

causal effect sizes for each trait in that group. We ensure that the

two groups have distinct causal variants so that traits within the

same group colocalize (i.e., share causal variants) while traits in

different groups do not.

In the main set of simulations, we simulate T ¼ 4 traits,

r2max ¼ 0:8, taking all combinations of q ¼ 1;2;3 and

r ¼ 0:01;0:05;0:1;0:2 with G ¼ 1; 000. We also simulate more

extensive allelic heterogeneity across a larger set of SNPs, simu-

lating q ¼ 5; 10 and r ¼ 0:2 by using all variants within 1 Mb of

the TSS. eCAVIAR becomes computationally intractable on the

larger simulation over the full cis-region, so for that simulation

scenario, we run eCAVIAR by using only variants with Z

score > 2 in at least one study.

To further investigate the value of fine-mapping shared causal

variants jointly across traits, we generate simulations where causal

variants are shared across an increasing number of studies. In

particular, we simulate all combinations of T ¼ 4;8;16 traits

randomly assigned to two groups with q ¼ 1;2;3 causal variants

and r ¼ 0:05.

To demonstrate CAFEHs ability to perform fine-mapping and

colocalization under more complex patterns of causal variant

sharing, we simulate T ¼ 10 traits with q ¼ 10 causal variants,

where causal variants are randomly assigned to each trait with

probability 1/5. This simulation allows causal variants to be shared

across arbitrary subsets of traits, while, on average, each trait has
y 3, 2022



two causal variants and each variant is causal in two traits. This

simulation is repeated across a range of signal strengths r ¼
0:01; 0:05; 0:1.

While CAFEH is better able to fine-map variants that are shared

across multiple phenotypes, it is also possible for CAFEH to repre-

sent multiple tightly linked causal variants with a single compo-

nent, leading to false positive colocalization. To highlight this po-

tential limitation, we generate simulations with T ¼ 4 , q ¼ 1,

and r ¼ 0:1. We vary the r2 between the causal variant in each

group of studies in the ranges ð0;0:5Þ; ð0:5; 0:7Þ; ð0:7; 0:9Þ.
To explore the robustness of CAFEH under different effect size

distributions, we perform additional simulations where effect

sizes for normalized genotypes are sampled from a mixture of

0 centered normal distributions with variance a�1 ¼ 0:01; 0:05;

0:1; 0:5. Residual variance is fixed at t�1 ¼ 1: These simulations

capture the scenario where a causal variant may be shared across

multiple traits, but effect sizes differ in magnitude. We repeat this

simulation, now sampling effect sizes from a mixture of point

masses at
ffiffiffiffiffiffiffiffiffiffi
2
p
a�1

q
for a�1 ¼ 0:01;0:05;0:1;0:5. These values repre-

sent the expected magnitude of effect sizes under the normal

mixture.

To evaluate the sensitivity of CAFEH to the setting of hyperpara-

meters and initialization, we reevaluate tomain simulations across

a range of setting for p0k and initialization of the effect size preci-

sion parameters atk.

We also generate simulations to evaluate the performance of

CAFEH in the presence of causal structural variants (SVs). Using

the same parameters as the main simulations, we generate simula-

tions where causal variants are either SNPs or SVs. We then fit CA-

FEH and coloc by using only SNPs, only SVs, or SNPs and SVs.

Redefining colocalization with CAFEH
By design, CAFEH outputs credible sets of variants in each compo-

nent identified as active in at least one tested study for a locus.

Because each locus can (and often does) havemore than one active

component, there are many ways in which to define colocaliza-

tion between two studies. For our analyses, we chose the following

two approaches (although other combinations can also be

entertained).

(1) Colocalization in any component: defined as two studies

sharing at least one component that is active in both

studies with probability R 0.5.

(2) Colocalization in the top component: defined as two

studies sharing their top component. To select a top

component for each study, we generated a weight for all

variants in the 95% credible set of all active components

in the study defined as follows:

weight ¼ pactive 3
effect size

standard deviation of the effect
;

where pactive is the probability of the component being active

in the study, effect size is the effect size of the variant in the

component, and standard deviation of the effect is the standard

deviation of that effect.We subsequently labeled as top compo-

nent for each study the component that contains the variant

with the maximum absolute value of the weight across all var-

iants in the 95% credible sets of all components.
The America
Enrichment of CAFEH components in active regulatory

elements
To evaluate the ability of CAFEH to identify causal variants in real

data, we performed an enrichment analysis for variants in regula-

tory elements. Specifically, for each protein-coding gene-tissue

pair in GTEx, we selected the credible set variant that has the

maximumweight as defined above (see top component colocaliza-

tion) for that tissue. For each tissue, we then compared the vari-

ants selected by this approach for each gene and evaluated for

enrichment of those variants compared to a background of the

variants that had the minimum cis-eQTL p value for association

with the expression of each gene in that tissue. The approach en-

sures that the same number of variants are included in the test and

background sets because one variant is selected for each gene-tis-

sue pair. We then evaluated for overlap between these variant

sets and active regulatory elements in corresponding tissues

from Roadmap Epigenomics22 as defined in the main GTEx v8 pa-

per10 and performed a Fisher’s exact test to evaluate enrichment of

the test compared to the background variant set.
Gene set enrichment analysis
To evaluate whether genes with highly shared or very tissue-specific

regulation evaluated by CAFEH have distinct characteristics, we

performed gene set enrichment analysis based on sets defined by

Gene Ontology (GO)23 obtained by MSigDb.24 Our background

set of genes consisted of all protein-coding genes in GTEx v8 that

have a significant cis-eQTL in at least 20 tissues. We tested two

sets of genes against the background: a highly colocalizing set,

defined as the subset of background genes that are colocalizing in

their top component in at least 20 tissues and a poorly colocalizing

set, defined as the subset of background genes that are colocalizing

in their top component in <10 tissues. Fisher’s exact test was used

for the gene set enrichment analysis for each GO term and a Bon-

ferroni correction was applied for multiple testing. GO terms that

had a Bonferroni-adjusted p value < 0.05 were defined as enriched.

Similarly, the same sets of genes were evaluated for enrichment

in sets of genes identified by OMIM as associated with human

Mendelian diseases. We separated OMIM genes in two groups

based on the underlying patterns of inheritance: genes with auto-

somal dominant inheritance and genes with autosomal recessive

inheritance.

We also evaluated the relative selection status of the same set of

genes by using loss of function observed/expected upper bound

(LOEUF)25 and pLI26 as measures of selective pressures (lower

LOEUF and higher pLI mean that the gene is more intolerant to

variation). We compared the LOEUF and pLI distributions

between the two gene sets and the background set by using a

Wilcoxon rank-sum test.
Using CAFEH to infer sharing and target tissue in GWAS

loci
We used CAFEH to evaluate the degree of tissue sharing in causal

genome-wide association study (GWAS) signals. We first evaluated

19 highly powered GWA studies of diverse traits from the UK

Biobank.27 For each study, we performed colocalization by using

CAFEH for all genome-wide significant loci. For each genome-

wide significant locus, we assessed for colocalization genes for

which the sentinel variant of the GWAS was also a genome-wide

significant cis-eQTL for that gene in at least one of 49 GTEx v8

tissues. That process produced a set of genes to be tested for each

locus. CAFEH was then run separately for each gene (because of
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concerns that joint inference across genes might be influenced by

correlations between genes due to co-expression). Therefore, for

each CAFEH run, the input was the tested GWA locus and the

cis-eQTL summary statistics of one of the identified genes across

all 49 GTEx v8 tissues. GTEx v8 LD was used as reference. For

each CAFEH run, we extracted all components identified as active

by CAFEH in at least one GTEx v8 tissue (at a threshold of 0.5). We

then stratified those components in quartiles based on the num-

ber of GTEx v8 tissues that share the component that provides

an estimate of how tissue specific each component is (from the

most tissue-specific components on the first quartile to the most

tissue-shared components in the fourth quartile). To assess

whether tissue-specific components are more likely to be causal

in GWAS than tissue-shared components, we evaluated the

mean CAFEH posterior probability of a component’s being active

(p_active) in the GWAS across all components in each quartile.

To probe the overall association between the p_active in GWAS

and the number of tissues that share said component, we per-

formed a linear mixed model with the GWAS phenotype as the

random effects term and the number of tissues sharing the compo-

nent as the fixed effect. The model was the following: p_active

�number_tissues_sharing_component þ (1|trait). The addition

of the random effects term in the linear model was considered

necessary to account for a potential variation in the heritability

and evolutionary pressure induced by the different tested traits,

which may in turn influence the tested fixed effects relationship.

We then evaluated the converse question of whether compo-

nents active in GWAS are more likely to be tissue specific

compared to variants that regulate gene expression. For that, we

used a published GWAS meta-analysis of coronary artery disease

(CAD),28 which is a disease with high heritability that is known

to be enriched for the liver and the arterial wall. For each gene

within 1 Mb of each sentinel GWAS variant, we ran CAFEH-S

jointly between the GWAS and all tissues in GTEx v8 for which

that gene is expressed. From each CAFEH run, we selected the

components that are active in the GWAS (based on a threshold

of 0.5) and are also active in one of the tissues that are enriched

in CAD heritability (either one of three artery tissues or the liver).

We also performed CAFEH jointly across all GTEx v8 tissues for all

protein-coding genes and selected the components that are active

(at the same threshold of 0.5) in either one of three artery tissues or

the liver. We generated boxplots of the number of tissues that

share each of the selected components in a 2 3 2 factorial design

(CAD or GTEx tissue for each of the following tissues: artery or

liver). We then generated p values for the fixed effect term of linear

mixed models of the form: number of tissues sharing component

�Group_of_component (CAD versus GTEx tissue)þ (1|gene). The

gene random effects term in thatmodel was introduced to account

for a potential variation in the tested fixed effects relationship

based on the conservation status and relative importance of

each gene.

In addition, we used the same data from CAFEH to assess the

extent to which allelic heterogeneity in GWAS can be explained

by eQTLs active in different tissues for the same gene. For each

of the 19 tested GWAS traits, we counted the number of loci in

which CAFEH identifies more than one causal component that

also colocalize with eQTLs for a single gene in distinct tissues.

We then plotted the ratio of the above number divided by either

(1) all genome-wide significant loci, (2) genome-wide significant

loci that have >1 active components based on CAFEH, or (3) all

loci that have >1 active component in the GWAS and for which

the sentinel GWAS variant is also an eQTL for at least one tissue.
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In order to evaluate the effectiveness of CAFEH on prioritization

of the target tissue in GWAS, we evaluated CAFEH’s performance

in the same 19 highly powered GWA studies from the UK Bio-

bank.27 CAFEH was performed as described above in the first para-

graph of this section. We evaluated colocalization in any compo-

nent or the top component (as defined previously) between the

GWAS and the GTEx tissues for each genome-wide significant lo-

cus and we counted the number of loci for which each tissue co-

localizes with the corresponding GWAS (each locus could be

counted for more than one tissue if it colocalizes with multiple tis-

sues). If a GWAS locus sentinel variant was a significant eQTL for

more than one gene, the locus was included in multiple CAFEH

runs (one for each gene) and the counts of colocalizing tissues

across runs for that locus were aggregated such that each tissue

was counted one time if it colocalized with that locus for at least

one tested gene. The results of the aggregate colocalization counts

for each phenotype were compared to the results of partitioned LD

score (LDSC) regression for the same phenotype with tissue-spe-

cific genes from GTEx as previously described.29 The number of

loci colocalizing with partitioned LDSC-enriched versus non-en-

riched tissues was compared with a linear mixed model with

each phenotype defined as a random effect. In addition, for

more detailed visualization of the results, we ranked each tissue

based on the number of loci colocalizing in each GTEx tissue

and plotted the ranks.

This analysis established that expected tissues based on parti-

tioned LD score regression results and our prior knowledge of dis-

ease-specific pathogenesis can be identified and prioritized on the

basis of a colocalization approach for the majority of traits. We

should note that our expectation is that partitioned LD score

regression, by virtue of the fact that it leverages the whole

GWAS signal as opposed to genome-wide significant loci, may be

more effective at this broad tissue prioritization. In contrast, our

approach has the advantage of being able to identify putative

target tissues at a locus resolution, therefore prioritizing tissues

to be tested in downstream functional characterization of each lo-

cus. To demonstrate the effectiveness of CAFEH-S in identifying

tissues in specific GWAS loci, we performed a case study with

CAD as a complex trait. The choice of CAD was made on the basis

of the fact that it is a complex trait with a highly heritable compo-

nent and with published high-powered GWA meta-analyses.28 In

addition, CAD has a multifactorial pathogenesis that involves

multiple organ systems,30 thereby allowing for the possibility of

different tissues’ being relevant in different loci. Lastly, because

CAD was one of the first diseases to be studied in a GWAS

approach, several downstream functional characterization

studies have been undertaken for its significant loci, which pro-

vides gold-standard knowledge against which we can test the re-

sults of CAFEH-S.

To test CAFEH-S performance in CAD, we used a large-scale

GWAS meta-analysis28 and performed a literature review to select

loci that either (1) were in close proximity to a gene whose rare

variants are known to predispose to atherosclerosis—the root

cause of CAD—in a Mendelian fashion (LDLR, APOE, APOB,

PCSK9, ANGPTL4, LPL, ABCG8, CETP) or (2) loci for which func-

tional characterization followed by experimental validation

studies have been performed linking the GWAS locus to a specific

gene in a tissue or cell line.2,31–41 For each of the above loci, we ran

CAFEH-S jointly with the GWAS and the GTEx v8 eQTL summary

statistics for the putative target gene across all 49 GTEx v8 tissues.

We also ran COLOC pairwise between the GWAS locus and each

tissue for the target gene with the same parameters as described
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previously. We then compared the number of loci that colocalize

in the target tissue by using any component or the top component

colocalization according to CAFEH-S and those that colocalized

with the target tissue according to COLOC, stratified by whether

the GWAS sentinel variant is a genome-wide-significant eQTL for

the target gene in the target tissue. We also plotted detailed results

of colocalization on the basis of CAFEH-S.
Participant data
This study used de-identified participant data from GTEx v8 and

summary statistics from large-scale GWA studies. The study team

never had access to individual identifiers. Participant consent

was obtained as detailed in the original studies. GTEx v8 access

was authorized by dbGaP after an official data access request.
Results

Colocalization reveals pervasive tissue specificity in

gene regulation

Previous analyses of cis-eQTL effect sharing across tissues

have employed meta-analytic strategies that aggregate

the association signals from multiple tissues.6,10,11,42 A

crucial pitfall of these analyses lies in handling LD. Specif-

ically, if two distinct causal regulatory cis-eQTL variants

acting in separate tissues are in even moderate LD with

each other, those variants often falsely appear to be active

in both tissues, boosting each-other’s association signal

and providing an often false, high estimate of eQTL

sharing between tissues (example, Figure 1A). Indeed, tis-

sue sharing statistics reported by the GTEx Project,10 quan-

tified by Metasoft11 m-values, are strongly correlated with

LD score (Figure 1B), indicating tissue sharing estimates

are likely to be inflated by LD. This association remains af-

ter controlling for gene density and distance to the nearest

transcription start site (Figure S1).

We performed an alternative analysis of tissue sharing

among cis-eQTLs across 49 human cell types and tissues in

GTEx v810 using a colocalization approach (COLOC12)

that explicitly incorporates LD information to overcome

the confounding issuesobservedwithother approaches.Co-

localization has been commonly used for assessing the

causal overlap between eQTLs and GWA studies but infre-

quently used for assessing relationships between eQTLs.43

Our analysis revealed that for the majority of genes, distinct

causal variants are likely to be responsible for the cis-eQTL

signals in different tissues (Figures 1C and 1D), and there

was far less sharing than reported by meta-analysis ap-

proaches. Because COLOC is limited by the assumption of

a single causal variant per tested region, we also performed

another analysis with a second LD-aware colocalization

method, eCAVIAR,13 allowing up to two causal variants per

region. Because eCAVIAR is computationally expensive, it

was runona subset of 1,000 randomly sampled genes. These

results confirmed the pattern ofwidespread tissue specificity

in regulation of gene expression (Figures S2A and 2B).

We found that gene-tissue pairs were identified as shared

by Metasoft even when they had distinct top cis-eQTL var-
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iants in only moderate LD, whereas for colocalization,

sharing was identified only when the lead variants were

identical or in high LDwith each other, more likely tagging

the same causal effect (Figure 2A). Further, using colocali-

zation, tissues with similar origin had a higher degree of

sharing across genes, whereas with meta-analysis this ex-

pected pattern of sharing was far weaker, as evaluated

across the full range of PPH4 or m-values, respectively

(Figure 2B and Figure S3). We should note that the overall

degree of tissue sharing naturally changes depending on

the selection of different thresholds for each method. For

colocalization, even a remarkably lenient PPH4 threshold

of 0.1 reveals substantial tissue specificity (Figure S4). For

Metasoft, higher m-value thresholds do shift to a more tis-

sue-specific pattern (Figure S5A) but primarily by selecting

for eQTLs with a stronger p value in each tissue (Figure S6).

Additionally, even at more stringent Metasoft thresholds,

it does not identify the genes that appear to share effects

through colocalization (Spearman r between COLOC

PPH4 and Metasoft m-value ¼ 0.57). Specifically, shared

gene-tissue pairs identified by colocalization continue to

show stronger LD between their lead variants compared

to those identified as shared by Metasoft regardless of cho-

sen threshold (Figure S5B), suggesting more LD artifacts

with Metasoft regardless of threshold. The observed cis-

eQTL tissue specificity also extends to datasets with larger

sample size, such as the eQTLGen15 and Muther14 consor-

tia (Figure 2C, Figure S7), suggesting that it reflects true tis-

sue specificity as opposed to an artifact of low power, batch

effects or sequencing approach. We noted that estimates of

sharing in bulk tissue samples with cellular heterogeneity

are affected by cell type composition variability between

different datasets. Specifically, genes with a strong poste-

rior probability for separate, independent signals between

eQTLGen and GTEx whole blood tissue (PPH3 > 0.9)

were enriched for cell-type interaction QTL signals

compared to genes with colocalization between the two

datasets (PPH4 > 0.9) (Figure 2D).

CAFEH: A Bayesian method for colocalization and fine-

mapping across multiple studies

The observed pervasive tissue specificity across cis-eQTLs

when accounting for LD effects underscores the need for

approaches able to probe the full spectrum of allelic effects

across tissues and traits. Existing methods for colocaliza-

tion, despite accounting for LD better than meta-analysis

approaches, have several known limitations that preclude

full exploration of tissue-specificity and causal variant

sharing. First, most existing colocalization methods

require manual specification of the number of causal vari-

ants for each locus, and those that allow for more than one

causal variant become computationally intractable when

many causal variants are specified, thereby substantially

limiting evaluation of allelic heterogeneity. Further, even

when two studies have the same underlying LD, most co-

localization methods underperform in regions of high LD

in a manner biased against reporting colocalization.13
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Figure 1. Colocalization provides evidence of extensive eQTL tissue specificity
(A) Local Manhattan plots of cis-eQTLs for the WDR18 gene in four tissues of GTEx v8. The plots reveal allelic heterogeneity between
tissues (while thyroid and heart share the same pattern of genetic regulation, whole blood and fibroblasts have different causal variants).
The three lead variants across the four tissues are colored on the basis of their LD with variant rs113010808 (lead variant in both thyroid
and heart). All three variants have a Metasoft m-value of 1 in all four tissues. LD r2 between rs2240149 and rs4806884 is 0.79, while r2

between rs2240149 and rs113010808 is 0.15.
(B) Metasoft m-values are positively correlated with LD. When the LD score quantile of the tested variant increases, the average m-value
across tissues is higher.
(C) Pie-chart of all 38,518 genes in GTEx v8 that are expressed in at least one tissue based on the tissue specificity of their eQTLs esti-
mated by COLOC.
(D) Histograms depicting patterns of sharing of genetic regulation between tissues based on COLOC and Metasoft. From left to right:
histogram of mean PPH4 or m-value between tissue pairs for each gene; histogram of number of tissue pairs with shared cis-eQTLs
for each gene; and histogram of the ratio of shared tissue pairs divided by the tissue pairs in which the gene is expressed. COLOC reveals
more profound tissue specificity.
Nonetheless, we should note that this bias is not enough to

account for the observed cis-eQTL tissue specificity, as the

evidence of pervasive tissue specificity well beyond that re-

ported by meta-analysis methods remains present across

different underlying LD structures (Figure S8). Last, most

existing methods generally perform pairwise comparisons

between studies, therefore failing to aggregate evidence

from multiple studies or tissues jointly. All these limita-

tions are highlighted in simulations we performed across

a range of chosen number of causal variants, underlying

LD structures, and different populations assessed (Figures
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S9 and S10), which show suboptimal performance of co-

localization in the presence of allelic heterogeneity and

high LD by COLOC.

To overcome the limitations of existing approaches and to

robustly perform fine-mapping and colocalization in the

presence of multiple causal variants across many studies,

we developed CAFEH (colocalization and fine-mapping un-

der allelic heterogeneity). CAFEH is a probabilistic model

that fine-maps causal variants and estimates their effect sizes

and pattern of sharing across multiple studies. CAFEH iden-

tifies a set of causal components across all tested studies,
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Figure 2. Colocalization is superior to other methods that don’t account for LD
(A) Boxplots of the LD between the top variants per gene in tissue pairs that colocalize based on COLOC (in red) or Metasoft (in blue).
(B) Average sharing between groups of biologically similar tissues in GTEx v8 based on COLOC or Metasoft. Values are normalized by
dividing with the mean across all gene-tissue pairs.
(C) Average eQTL sharing between eQTLGen whole blood and all GTEx v8 tissues for genes that have an eQTL in both datasets, using
COLOC PPH4.
(D) Odds ratio of enrichment for non-colocalizing genes (PPH3 > 0.9) compared to colocalizing genes (PPH4 > 0.9) between eQTLGen
whole blood and GTEx whole blood. The odds ratios are stratified by the false discovery rate of interaction with cell type composition,
measured as the interaction between the lead eQTL variant for that gene in GTEx v8 and the relative proportion of neutrophils (themost
common whole blood cell type) in the GTEx sample.
tissues, or traits thatexplain theobservedassociationsignals.

Each component represents a single underlying causal

variant. As a result of LD, we are often unable to pinpoint

the exact causal variant that produces the observed signal

for each component and thereforeCAFEHoutputs a credible

set of variants for each component. Depending on availabil-

ity of individual-level genotype and phenotype data, we

developed two versions of the method, CAFEH-G

(Figure 3A), when individual-level data are available, and

CAFEH-S, which can be applied with summary statistics

alone. CAFEH is fit with a fast variational approximation,

which shows strong concordancewith the exactmodel (Fig-

ures S11 and S12)
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We explore the performance of CAFEH relative to other

popular colocalization and fine-mapping methods

through realistic simulations across a range of signal

strengths and genetic architectures (material and

methods). CAFEH performs similarly to existing methods

when those methods’ more restrictive assumptions about

the number of causal variants are satisfied and demon-

strates improved power to detect colocalization in the pres-

ence of more extensive allelic heterogeneity (Figure 3B and

Figure S13). In contrast to CAVIAR and eCAVIAR, CAFEH is

tractable for large K, and thus avoids a serious issue of

model misspecification. CAFEH is also able to dramatically

improve fine-mapping across the range of simulations
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Figure 3. CAFEH GTEx and simulations
(A) A schematic representation of CAFEH. CAFEH can be viewed as a sparse regression with a shared set of causal variants across all
studies. Entries of W are modeled with a spike and slab prior, so each study uses a subset of causal variants.
(B) Proportion of false discoveries (FDP) versus proportion of true positives (Power) across a range of colocalization thresholds.
(C) FDP versus Power across a range of thresholds of the posterior inclusion probability in competing fine-mapping methods.
(D) Enrichment of the top CAFEH variant of each gene in promoter (teal) and enhancer (red) elements in matched Roadmap cell-types
relative to top eQTL variants.
(E) Redefining colocalization with allelic heterogeneity. Top: representation of colocalization in any or the top component. Stars repre-
sent causal variants in each study. Bottom: Proportion of tissue pairs colocalizing in any or top CAFEH components at a 0.5 threshold.
(Figure 3C). Furthermore, compared to SuSiE, CAFEH’s

95% credible sets are smaller and detect a higher propor-

tion of causal variants (Figure S14). These improvements

in fine-mapping over single-trait methods demonstrate

the advantage of leveraging association signal across

studies; this effect becomes even more pronounced when

the number of traits sharing a causal variant is varied

from 1–12 (Figure S15). Those results are similar in the

presence of structural variation, provided that the actual

causal variants are included in the analysis (Figure S16).

CAFEH can perform colocalization and fine-mapping

robustly even when the distribution of effect sizes varies

across traits and causal variants (Figures S17 and S18) and

when patterns of causal variant sharing are more complex

(Figure S19). We observe an improved performance of CA-

FEH compared to existingmethods in the presence of more

than one causal variant per locus. Given a single causal

variant, CAFEH has better performance on fine-mapping

but slightly lower performance for colocalization. We

should note that even though CAFEH substantially im-

proves our ability to assess allelic heterogeneity compared

to existing methods across a range of LD thresholds, when

LD is very high (r2 > 0.7) between two causal variants, CA-

FEH is unable to distinguish between them and assigns

them in a single causal component (Figure S20). CAFEH’s

objective is non-convex and is thus optimized to a local

maximum. Despite this, we find that our default initializa-

tion performs well in practice, and among multiple initial-

izations, the evidence lower bound (ELBO) maximizing

initialization performs well (Figure S21).
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CAFEH corroborates the tissue specificity of cis-eQTLs

Importantly, when tested across 49 GTEx v8 tissues, CA-

FEH-G recapitulates the pervasive tissue specificity in ge-

netic regulation of gene expression (Figure 3D and

Figure S22–S24). Although, as expected due to eQTL detec-

tion power, the colocalization estimates across tissues are

influenced by the expression level of the corresponding

gene across tissues and lowly expressed genes have a bias

toward no colocalization, eQTL tissue specificity is widely

prevalent across all quintiles of median expression

(Figure S25). Moreover, similar to our analyses with CO-

LOC, CAFEH supports our findings of eQTL tissue speci-

ficity in eQTLGen (Figure S26) and the contribution of

cell-type proportions on bulk tissue colocalization esti-

mates (Figure S27) that we observed with COLOC.

Importantly, by identifying allelic heterogeneity within

each locus, CAFEH allows us to redefine colocalization on

the basis of different patterns of sharing of causal variants.

For example, two studies may share all causal variants from

either study, a very stringent definition of colocalization.

Alternatively, they may share their most strongly associ-

ated causal component, or any subset of their active causal

genetic components, a less stringent but still potentially

informative form of colocalization (Figure 3E). Using the

output from CAFEH, these and other customized criteria

may be applied to define colocalization by each user de-

pending on the particular goals of their study (supple-

mental methods). Notably, CAFEH-G reveals that the ma-

jority of genes have more than one causal variant per

tested tissue (Figure S28). Similarly, when tested across all
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49 GTEx v8 tissues, most genes have five or more total

different causal variants influencing their expression

among all tissues (Figure S28). Lastly, causal variants fine-

mapped by CAFEH in each tissue are enriched for promoter

elements in the corresponding tissues as defined by Road-

map chromHMM22 compared to top eQTL variants for the

corresponding genes (Figure 3C). We should note that by

nature of its joint cross-tissue inference, CAFEH prefers

components that have evidence for an active signal inmul-

tiple studies and hence has a slight bias toward colocaliza-

tion. However, that is offset by the increase in power that

the joint inference allows, hence improving overall accu-

racy in both fine-mapping and colocalization (Figures 3D

and 3E and Figure S13). We should also note that despite

this potential bias toward sharing, CAFEH still reveals sub-

stantial evidence for tissue specificity of cis-eQTLs.

Disease relevance, function, and selective pressure for

tissue-specific eQTLs

We observed that genes whose genetic transcriptional

regulation is predominantly tissue specific as defined by

CAFEH have different characteristics than those whose

regulation is shared across tissues. First, patterns of selec-

tive pressures were different between the set of genes

that are highly shared between tissues and those that are

predominantly tissue specific, restricting to genes that

have a significant cis-eQTL in at least 20 tissues each. Spe-

cifically, tissue-specific genes were found to be more varia-

tion intolerant as measured by LOEUF25 and pLI26

compared to background genes, which were in turn more

intolerant compared to the subset of genes with shared ge-

netic regulation (Figure 4A and Figure S29), a phenomenon

present regardless of the underlying strength of the eQTL

association (Figure S30). In parallel, we observed that

poorly colocalizing genes were enriched for participation

in human diseases with dominant inheritance patterns as

defined by OMIM44 (Figure 4B). Further, GO enrichment

analysis4 demonstrated that poorly colocalizing genes

were enriched in pathways related to development, differ-

entiation, cell-adhesion, and transcription factor activity,

suggesting that these pathways are critical to the differ-

ences between cell types in humans despite being broadly

expressed and genetically regulated in many tissues. In

contrast, highly colocalizing genes were enriched for mito-

chondria and the cytosolic ribosome, cellular structures

that are abundant in all tissues and cell types (Figure 4C

and Table S1).44 We then showed that causal eQTL compo-

nents shared by very few tissues are more likely to be active

in GWAS than those shared bymultiple tissues (Figure 4D).

Conversely, GWAS causal components that are also eQTLs

in known target tissues are more likely to be tissue specific

compared to general eQTL causal components in those tis-

sues (Figure 4E). Further, we discovered that in a large pro-

portion of GWAS loci that appear to have more than one

causal variant according to CAFEH, the GWAS components

colocalize with distinct tissues for the same gene, suggest-

ing that eQTLs in different contexts or cell types may
The America
each capture effects on complex trait pathophysiology

(Figure S31). These results are consistent with our finding

of greater selective pressure for genes with tissue-specific

regulation compared to tissue-shared genes and jointly

suggest that exploration of cell-type-specific and poten-

tially context-specific eQTLs could provide an explanation

of the effects of GWAS variants that lack a colocalizing

signal in currently available eQTL datasets.
Identification of tissues of interest for disease loci

The underappreciated yet extensive tissue specificity in cis-

eQTLs should also in theory provide a basis to probe the

tissue of interest in GWAS loci for a number of complex

traits. Indeed, we showed that CAFEH-S accurately priori-

tizes the target tissue for a number of diverse traits from

the UK Biobank and the tissue prioritization results agree

with stratified LD score regression estimates applied to

the same traits (Figure 5A, Figure S32). Next, we evaluated

whether CAFEH-S is able to prioritize the correct tissue in

GWAS variants where the active tissue is known. To do

that, we performed a case study in CAD. We selected

CAD as an example of a complex trait with substantial her-

itability28 and a pathophysiology that involves a variety of

different organ systems.45 We assessed the performance of

CAFEH-S in identifying the causal tissue for all CAD loci

that have either been subjected to experimental validation

of the causal tissue via genome editing or loci in which the

closest gene is an established CAD gene with a known tis-

sue-specific mechanism of action. CAFEH-S colocalizes

with the correct tissue in those loci 80% of the time and

outperforms COLOCwhen a significant eQTL signal is pre-

sent, demonstrating that the approach is effective in most

situations (Figures 5B and 5C, Figure S33) when highly

powered GWAS and corresponding tissue eQTL summary

statistics are available. Naturally, although the method

identifies colocalization even in weak (non-genome-

wide significant) eQTL signals (see SMAD3 locus in

Figure S33), it is unable to colocalize with the target tissue

when the eQTL signal is absent. We should note that of six

loci without a genome-wide significant eQTL signal, three

(ANGPTL4, APOE, LDLR)contain a coding variant of the

corresponding target gene in high LD (R2 > 0.6) with the

sentinel SNP, which may suggest their effects on pheno-

type may not be mediated by gene expression.
Discussion

Our study has important implications in the interpretation

of complex trait genetic association signals. First, we

showed that genetic regulation of gene expression is

much more tissue specific than previously appreciated

and demonstrated that tissue-specific eQTLs are more

likely than tissue-shared eQTLs to be regulating complex

traits. This finding suggests that the lack of a colocalizing

eQTL signal observed for the majority of non-coding

genomic loci in large scale GWA studies to-date1,42,46 could
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Figure 4. Characteristics of genes based on the degree of eQTL tissue sharing
(A) Average loss of function observed/expected upper bound (LOEUF) between genes that are colocalizing in at least 20 tissues (highly
colocalizing) and those that colocalize in less than five tissues (poorly colocalizing), comparing only genes that have an eQTL in at least
20 tissues. Colocalization was defined as sharing of the top causal component based on CAFEH.
(B) Enrichment in genes whose rare variation is associated with autosomal dominant or recessive human diseases based on OMIM (left)
between highly and poorly colocalizing genes.
(C) Gene Ontology enrichment analysis of genes that are colocalizing in at least 20 tissues (highly colocalizing) and those that colocalize
in less than five tissues (poorly colocalizing), comparing only genes that have an eQTL in at least 20 tissues. Colocalizationwas defined as
sharing of the top causal component based on CAFEH.
(D) Mean (95% CI) of probability of a cis-eQTL component’s being active in GWAS (as defined by CAFEH-S) stratified by the quartile of
the number of 49 GTEx tissues that share the given eQTL. The figure presents aggregate results of 19 diverse GWAS traits from the UK
Biobank. For each GWAS, we jointly run CAFEH-S between the GWAS summary statistics and GTEx v8 eQTL summary statistics among
genes for which the sentinel variant of a genome-wide significant disease locus is also a genome-wide eQTL in at least one tissue.We then
evaluate all components that are active in at least one GTEx tissue. Overall, there is a strong inverse association between the posterior
probability of a component being active in the GWAS and the number of tissues that colocalize with said component (linear mixed
model p ¼ 3.3 3 10�160).
(E) Boxplots of the number of tissues that share an active component identified by CAFEH, among components that are either active in a
CADGWAS and a GTEx tissue a priori believed to be relevant for CAD heritability (either artery on the left or liver on the right) among all
genes within 1Mb of genome-wide significant CAD locus, compared to components that are active only in a GTEx tissue (artery or liver)
among all protein-coding genes.
be partially explained by the inability of most existing co-

localization approaches to fully account for allelic hetero-

geneity, which can lead to inaccurate estimates of colocal-

ization and therefore hinder our ability to understand

GWAS signals.

Second, we proposed CAFEH, software that outperforms

existing approaches for colocalization and fine-mapping

when more than one causal variant is present in each

tested trait and allows for multi-trait and multi-tissue esti-

mation of allelic heterogeneity. CAFEH decomposes the ge-

netic association signal into individual components, and

each component corresponds to a single causal variant.

Unlike existingmethods,12,47 CAFEH does not rely on a pri-

ori knowledge of the number of causal variants in each

genomic locus and is computationally tractable even for
234 The American Journal of Human Genetics 109, 223–239, Februar
a large number of causal signals. In practice, this is

achieved by setting an arbitrarily high number of causal

components for each CAFEH run (in our study, we used

20 components per locus). The algorithm then automati-

cally removes any additional components beyond the

number needed to explain the tested association signals.

In addition, by leveraging genomic association signals

across multiple traits and studies, CAFEH can boost the po-

wer and accuracy of both fine-mapping and colocalization

as we showed in simulations. The approach of jointly eval-

uating colocalization across different traits has been shown

to improve colocalization estimates in prior work.48,49 CA-

FEH goes further by allowing users to explore the full

extent of allelic heterogeneity and perform fine-mapping

of the different causal variants across all tested traits.
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Figure 5. CAFEH identifies the target tissue in GWAS
(A) Number of colocalizing locus tissue pairs in 19 diverse GWAS traits from the UK Biobank. Colocalization is defined on the basis of any
component or top component in CAFEH and the counts are colored on the basis of whether the corresponding tissues are enriched for
that trait by partitioned LD score regression.
(B) Case study of loci in a large CADGWAS that have an established target tissue. The bars represent the proportion of loci colocalizing in
the known target tissue with any of three different methods (CAFEH colocalization in any component, CAFEH colocalization in the top

(legend continued on next page)
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Third, we showed that genetic regulation of gene expres-

sion is tightly linked to selective pressure. Indeed, genes

whose regulation is mostly tissue specific tend to be more

intolerant to loss of function and linked to general devel-

opmental processes whose disruption may cause a signifi-

cant fitness deficit to the organism. A natural explanation

for this finding would be that these genes cannot generally

afford genetic variation within their promoters or broadly

shared enhancers because of selection pressures and conse-

quently only tissue-specific regulation (perhaps in tissues

not crucial to the primary gene’s function) is observable

via common variant eQTL studies. Consequently, it is

not surprising that genes with primarily tissue-specific

eQTLs and variants that regulate gene expression in a tis-

sue-specific manner are more enriched in Mendelian and

complex human traits, as our analyses revealed.

Last, we demonstrated that CAFEH can be employed to

predict the target tissue in individual genomic GWAS

loci. Although researchers have increasingly relied on co-

localization to identify gene candidates for significant

GWAS associations,46 previous attempts to define the

target tissue on the basis of eQTL data have shown some

promise42 but the use of colocalization for the purpose of

establishing the tissue of interest in GWAS loci is still a

matter of debate. Several investigators have shied away

from recommending the use of eQTL information to prior-

itize target tissues in GWAS,42,50 citing the tissue-sharing of

cis-eQTLs in a large fraction of trait associations as one

reason.51 Recent work by us52 and others4,53,54 has demon-

strated the existence of tissue-specific eQTLs and shown

potential for leveraging those eQTLs to understand broad

patterns of tissue enrichment for human complex traits.

For example, Majumdar et al. showed that tissue-specific

eQTLs can be employed to generate tissue polygenic risk

scores for complex traits.54 Similarly, other groups have

shown enrichments of complex traits for biologically rele-

vant tissues by using colocalization or mediation ap-

proaches on eQTL data.4,53,55 However, as a result of the

inability of existing methods to fully evaluate allelic het-

erogeneity and LD, the extent of tissue specificity of eQTLs

has not been previously fully explored or harnessed. Spe-

cifically, it remains an open question whether the observed

tissue-specific enrichments are driven by a small number

of genes known to possess eQTLs only in specific tissues

or by pervasive patterns of tissue specificity confounded

by allelic heterogeneity and LD. Our study of eQTLs via

CAFEH strongly suggests the latter and opens the door to

using the allelic heterogeneity of eQTLs and GWAS to

generate mechanistic hypotheses of variant and tissue tar-

gets for GWAS loci broadly. Indeed, our findings suggest
component, COLOC). The results are stratified on the basis of wheth
cis-eQTL for any gene in at least one tissue in GTEx v8. We see that C
most cases when an eQTL signal is present.
(C) Example of CAFEH revealing allelic heterogeneity and identifyin
dominant component for the CAD GWAS in that locus with a 99
same component is shared by artery tissue in GTEx v8. Recent CRIS
influencing the expression of TWIST1 in that tissue.
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that when a colocalizing eQTL signal is present within

the GWAS locus, CAFEH can leverage its tissue-specific

regulation to improve accuracy in identifying target tissues

in which said component exerts its effect.

Naturally, we don’t expect that CAFEH will be able to

pinpoint the target genes and tissues in all GWAS loci.

Recent estimates from Yao et al.4 suggest that on average

only 11% of complex trait heritability is mediated via cis-

eQTLs in bulk tissues via data fromGTEx v7 and eQTLGen.

Although those estimates are derived from broad heritabil-

ity signals, including small subthreshold effects that may

not necessarily reflect the behavior of the strongest non-

coding GWAS loci, it is important to highlight situations

where a cis-eQTL colocalization approach would be ex-

pected to fail to show evidence for colocalization. First,

loci whose effects are mediated via coding variants may

not demonstrate eQTL effects and therefore cannot be

explored with CAFEH. Given the fact that non-synony-

mous coding variation is under strong selection pressure,

this phenomenon is most likely rare in GWA studies that

focus on common variant analysis.56 Second, certain com-

plex trait risk variants could influence splicing or could act

via effects on expression of distant genes. CAFEH can still

be employed in those cases if there is availability of splice

QTL or distant eQTL data for different tissues. Most impor-

tantly though, the observed pervasive tissue specificity of

eQTLs underscores the limitation of using bulk eQTL

data for the purpose of GWAS locus exploration and pro-

vides a potential explanation for the underwhelming esti-

mates of trait heritability mediated via cis-eQTLs. Indeed,

in the presence of pervasive allelic heterogeneity across tis-

sues, bulk tissue eQTLs are unlikely to be a good surrogate

for cell-type-specific signals, especially for cell types that

are not dominant in the tested tissues. In addition, it is

likely that context-specific effects, such as infection

response57 or development, could also mediate the effect

of certain common variants on complex traits. Therefore,

as we have shown here and previous studies support,57,58

a broader set of eQTL data from specific cell types and

different contexts is likely to improve our ability to iden-

tify the cell type of interest across different GWAS traits.

Lastly, we should note that colocalization does not neces-

sarily suggest mediation and it remains possible that coloc-

alizing signals can be observed without a linking causal

pathway due to horizontal pleiotropic effects.

Our study has several limitations. First, the current

version of CAFEH relies on a single LD matrix, therefore

large differences in LD between studies, due to ancestry dif-

ferences or other factors, could impact inference of coloc-

alization and fine-mapping. Second, CAFEH includes a
er or not the lead variant in the locus is a genome-wide significant
AFEH outperforms COLOC and can prioritize the target tissue in

g the target tissue in the TWIST1 CAD locus. CAFEH identifies a
% credible set that consists of a single variant (rs2107595). The
PR in human arterial smooth muscle cells confirmed its effects in
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simple prior on variant causality, assuming equal prior

probability across all evaluated variants for a locus. While

this performs well in our analysis, CAFEH could be

extended to incorporate informed priors based on variant

annotations such as regulatory element annotations or

conservation scores. Third, in its current form, CAFEH

does not handle missing data in the effect size matrix,

which implicitly assumes that the causal variants are pre-

sent in the tested datasets. A potential solution to this

problem would be to first impute missing variants via a

reference LD matrix and use the imputed variants as input

to CAFEH.53 Last, although CAFEH represents a significant

advance in evaluating allelic heterogeneity compared to

prior methods, it is still difficult distinguish the presence

of multiple signals among variants in nearly perfect or

very high LD with each other. In that case, one can expect

CAFEH to assign all variants in a high LD block almost

equal posterior inclusion probability in a single causal

component. More extensive evaluation of those cases

would require either an extension of our method to incor-

porate distinct LD structures from different populations (if

those are available) or experimental validation.

Our analysis has broad implications for the interpreta-

tion of disease-associated loci and the overlap with eQTLs

fromdiverse tissues and contexts. Previousworkwould sug-

gest that there are a large number of common variants in

the human genome with ubiquitous effects across tissues

but that are not the primary contributors to disease risk

given the limited causal overlap observed. Our refined anal-

ysis instead suggests much greater levels of tissue-specific

genetic effects than previously appreciated and a greater

ability to colocalize disease loci with genetic variants in

the correct tissue. However, we are still far from character-

izing every disease locus, and the patterns of disease over-

lap we observe indeed indicate that tissue-specific eQTLs

are more likely to underlie disease risk. Together, the pres-

ence of profound tissue and cell-type specificity of gene

expression regulation in our study and the observed pat-

terns of colocalization hint that bulk tissue eQTLs in adult

tissue may not be sufficient to explain complex trait associ-

ation signals, thereby underscoring the need formorewide-

spread cell-type- and context-specific eQTL studies.

In summary, our results provide evidence of pervasive

tissue specificity in genetic regulation of gene expression.

We develop a computational tool, CAFEH, to perform

fine-mapping and colocalization jointly across multiple

tissues and traits that allows multiple causal variants pre-

sent across studies and can better explore sharing in the

presence of allelic heterogeneity. We use that tool to

show that genes whose transcriptional regulation is tissue

specific, despite being broadly expressed and genetically

regulated, tend to be under greater selective pressure and

more relevant in disease and that causal GWAS signals

are more likely to be tissue specific than shared. Finally,

we demonstrate that the method is effective at leveraging

the tissue specificity of eQTLs to improve the identification

of target tissue in GWAS loci.
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A B

Figure S1: Association between metasoft m-value and LD structure. Average m-value across tissues stratified by the LD score quantile of the tested 
variant in quartiles of A. gene density (number of genes within 1Mb of the tested variant) or B. distance to nearest transcription start site (TSS). 



Figure S2: Comparison of cis-eQTL tissue sharing between COLOC, eCAVIAR and Metasoft in GTEx v8. A. Histograms depicting patterns of sharing of 
genetic regulation between tissues based on eCAVIAR, COLOC and Metasoft in a randomly sampled subset of 1000 genes among all 38,518 genes expressed 
in at least one tissue in GTEx v8. eCAVIAR and COLOC reveal substantial tissue specificity. B. Pie-chart of the same randomly sampled subset of 1000 genes 
in GTEx v8 based on the tissue specificity of their eQTLs estimated by eCAVIAR assuming ≤2 causal variants.



Figure S3: Heatmap of the average COLOC PPH4 or Metasoft m-value between pairs of tissues. Unlike the m-value, PPH4 reveals known biological 
patterns of tissue similarity.



Figure S4: Comparison of eQTL tissue sharing between COLOC and Metasoft at different PPH4 thresholds. Histograms depicting ratios of shared tissue 
pairs among all tissue pairs in which each gene is expressed for different thresholds of COLOC PPH4 and for metasoft m-value threshold of 0.5 in all tissues of 
GTEx v8. 



Figure S5: Comparison of eQTL tissue sharing between COLOC and Metasoft at different m-value thresholds. A. Histograms depicting ratios of shared 
tissue pairs among all tissue pairs in which each gene is expressed for different thresholds of metasoft m-value and for COLOC threshold of 0.5 in all tissues of 
GTEx v8. B. Boxplots of the LD between the top variants in tissue pairs that colocalize based on COLOC (in red) or Metasoft (in blue) at different metasoft
thresholds. 



Figure S6: Correlation between strength of eQTL association and degree of tissue sharing by Metasoft. We see that at higher m-value thresholds, 
Metasoft preferentially identifies eQTLs with a strongest association (denoted by the minimum eQTL p-value across tissues for that gene) as shared.



Figure S7: Average eQTL sharing between three tissues(Fat, Skin and LCL) in Muther and all GTEx v8 tissues for genes that have an eQTL in both 
datasets. 



Figure S8: Histograms of tissue sharing by COLOC and Metasoft in quartiles of LD for the top eQTL variant in the tested pair. COLOC reveals more 
tissue specificity in all quartiles.



Figure S9. Simulations of coloc PPH4 when causal variants are shared between studies stratified by LD. Average PPH4 between studies that share the same 
causal variants are stratified by the LD score of the causal variant in simulations. Each dot represents the mean across all simulations for that variant. Standard 
errors between simulations are also plotted, as is the fitted regression line. 



Figure S10: Simulations assessing COLOC performance in colocalizing studies. Left panel shows posterior probability of colocalization in all simulations 
(bottom) or in simulations that have an active signal in both tissues (top) across different populations and numbers of causal variants. Right panel shows relative 
importances of four parameters (LD score of the causal variant, Minor allele frequency of the causal variant, number of causal variants and population compared 
with GTEx) in determining the value of PPH4.



Figure S11: Variational inference vs exact inference in CAFEH: We simulate two traits with three causal variants where one causal variant is 
shared, and one causal variant is distinct to each trait. For each simulation we generate 50 “variants” from a multivariate normal distribution, with 
covariance set to reflect varying degrees of LD. For each level of LD we replicate the simulation 20 times. CAFEH (K=3) is fit using the variational 
approximation, or exact inference. Plots show posterior inclusion probabilities (PIPs) CAFEH’s variational approximation against the exact 
computation for the low, medium, and high LD simulations (left, center, right, resp). Causal variants are indicated in black.



Figure S12: CAFEH’s variational approximation identifies modes of the exact posterior. We simulate two traits with three causal variants 
where one causal variant is shared, and one causal variant is distinct to each trait. We plot the joint posterior distribution of two components (top) 
and component configurations for both traits (bottom) for the exact (left) and approximate (right) inference schemes. CAFEH’s approximate posterior 
identifies one of several equivalent modes in the true posterior. 



Figure S13: Comparison of colocalization and fine-mapping performance of various methods at varying signal strength. A. We compute power and 
false discovery proportion at varying thresholds of the colocalization statistics of each method (PPH4 for coloc, CLPP for eCAVIAR, p_coloc_any for CAFEH). B. 
We compute power and false discovery proportion at varying thresholds of the posterior inclusion probability for each method.



Figure S14: Comparison of 95% credible sets for CAFEH-G, SuSiE-SS, and SuSiE. A. coverage, proportion of 95% credible sets containing a causal SNP. 
B. Power, proportion of all causal SNPs detected in a credible set. C. Median credible set size. Confidence intervals computed from 100 bootstrap iterations. 
Simulations with 1-3 causal variants performed on 1000 SNPs, simulations with 5 and 10 causal variants performed on all SNPs in 1Mb region of gene 
transcription start site.



Figure S15: Improved fine-mapping of shared causal variants. We conduct a range of simulations where the causal variant is shared between 1-12 tissues.  
We vary the threshold of posterior inclusion probability (PIP) for each method and compute the proportion of false discoveries (FDP) and the proportion of 
causal variants detected (Power).



Figure S16: Structural variant simulations. We consider applicability of CAFEH to the colocalization of structural variants (SVs). Simulations are 
generated where the causal variant(s) are either SNPs (top) or SVs (bottom), and run CAFEH and coloc using only SNPs, SVs, or SNPs + SVs. Causal 
variants are sampled among SNPs or SVs with allele frequency > 0.05 A. Stacked bars count the number of true positives and false positives for coloc at a 
threshold of PPH4 > 0.9 (left) and CAFEH at a threshold of p_coloc > 0.9. B. LD scores, calculated as the sum of squared correlation between a variant and 
all other variants, for SVs (left) and SNPs (right) used in simulations. C. Allele frequency of  unique SVs (left) and SNPs (right) used in simulations.

A B

C



Figure S17: Colocalizing of mixture simulations: Causal variants are drawn from a mixture of 0 mean normal distributions (top) or a mixture of point masses 
(bottom). Plots show the trade off between power and false discovery at varying colocalization thresholds for simulations with a single causal variant (left) and 
multiple causal variants (right). 



Figure S18: Fine-mapping of mixture simulations: Causal variants are drawn from a mixture of 0-mean normal distributions (top) or a mixture of point 
masses (bottom). Plots show the trade off between power and false discovery at varying posterior inclusion probability thresholds for simulations with a single 
causal variant (left) and multiple causal variants (right).



Figure S19: Fine-mapping of point-normal simulations: We simulate 10 traits with a total of 10 causal variants. Causal variants are randomly assigned 
to each simulated trait with probability 1/5, effects are drawn from a 0-centered Normal distribution, Normal noise is added to achieve percent variance 
explained 0.01, 0.05, 0.1. Panels show a sample causal configuration generated under this simulation (left) and the trade off between power and false 
discovery at varying colocalization thresholds (middle) and posterior inclusion probability thresholds (right) across 50 replicates of each simulation.



Figure S20: Simulations of CAFEH and COLOC in different ranges of LD between the causal variants. Both methods have increased numbers of false 
positive colocalization findings in high LD although CAFEH has more false positives when higher thresholds for colocalization are chosen and LD R2 is > 0.9.



Figure S21: Sensitivity of CAFEH-G to initialization and hyperparameters. We vary the the prior spike probability and the initialization of effect size 
variance. Bold, black, dotted line indicates performance when selecting the model that maximized the evidence lower bound (ELBO) for each simulation. 
We observe that CAFEH is robust to various settings of the spike probability 𝜋!", and that our defaults (𝜋!" = 0.1, 𝑉𝑎𝑟 𝑤#" = 0.1) settings work well in our 
simulations. Among multiple initializations, choosing the ELBO maximizing initialization yields good results.



Figure S22: Protein coding genes classified by CAFEH colocalization conditions: we classify 17,985 genes expressed in at least one 
tissue in GTEx by the proportion of colocalizing tissue pairs in CAFEH. We consider a tissue active for a gene if it has at least one CAFEH 
component with p_active > 0.9. We consider two tissues colocalizing if they share a CAFEH component (p_active > 0.9).



Figure S23: Correlation of CAFEH component activity across GTEx protein coding genes.  Heatmap shows Pearson correlation of CAFEH component 
activity between GTEx tissues across 17,985 protein coding genes. Dendrogram denotes a hierarchical clustering of tissues. Similar tissues share more CAFEH 
components on average.



Figure S24: CAFEH reveals tissue specific colocalization of GTEx tissues.  GTEx tissues are grouped into related tissues. For each 
tissue category, the the average of pairwise colocalization between tissues, calculated as max

"$%…'
min(𝑝#!" , 𝑝#""), is taken across 17,985 

protein coding genes. Values are normalized to the average colocalization of all tissue pairs.



Figure S25. Influence of gene expression level on colocalization. All protein coding genes tested in at least one tissue in GTEx v8 (n=17601) were 
stratified into quintiles based on their median expression levels across tissues. Histograms of proportions of colocalizing tissue pairs are plotted for each 
expression quintile based on CAFEH colocalization in any component (left panel) or top component (right panel).



Figure S26: CAFEH colocalizes eQTLGen with relevant GTEx Tissues. CAFEH-S was run on cis-eQTL summary statistics from eQTLGen and 49 GTEx
tissues for 9,744 protein coding genes. Plot shows average component activity (95% boostrap CI) for the top eQTLGen component in 49 GTEx tissues. We 
see highest average colocalization with GTEx Whole Blood.



Figure S27: Enrichment of cell-type interacting genes in genes that do not colocalize in CAFEH. We consider GTEx Whole Blood and eQTLGen
colocalizing if GTEx is active in the top eQTLGen component and both GTEx and eQTLGen have p_active > 0.9.



Figure S28: Extent of allelic heterogeneity in cis-eQTLs. A. Number of CAFEH components active in at least one tissue across GTEx v8 protein coding 
genes. B. Number of components per tissue across GTEx v8 protein coding genes. C. Number of components per tissue with a genome-wide significant eQTL
across GTEx v8 protein coding genes.



Figure S29. Gene LOEUF stratified by colocalization probability. Average probability of loss of function intolerance (pLI) between genes that are 
colocalizing in at least 20 tissues (highly colocalizing) and those that colocalize in less than 5 tissues (poorly colocalizing), comparing only genes that 
have an eQTL in at least 20 tissues. Colocalization was defined as sharing of the top causal component based on CAFEH. Similar to LOEUF, this 
alternative conservation metric also demonstrates higher conservation of genes that are poorly colocalizing according to CAFEH. 



Figure S30: Average probability of loss of function intolerance (pLI) between genes that are colocalizing in at least 20 tissues (highly colocalizing) 
and those that colocalize in less than 5 tissues (poorly colocalizing) compared to all genes that have an eQTL in at least 20 tissues at different 
quantiles of the geometric average eQTL p-value of the strongest associated variant for each gene. Colocalization was defined as sharing of the top 
component based on CAFEH. We see that poorly colocalizing genes are more conserved compared to highly colocalizing genes in all quintiles.



Figure S31: Proportion of loci in 19 UK Biobank GWAS traits that have multiple active components colocalizing with different tissues for the same 
gene based on CAFEH. The figure displays boxplots of the median proportions across the 19 tested GWAS traits. The red panel displays proportion of the loci 
that have the characteristics of the title divided by all genome-wide significant loci. The green panel displays the proportion divided by loci that have multiple 
components based on CAFEH. The blue panel displays the proportion divided by loci that have a genome-wide significant eQTL in at least one GTEx v8 tissue 
and also have multiple active components based on CAFEH. Colocalization was defined as p_active >=0.5 in both the GWAS and the tested tissue based on 
CAFEH.



Figure S32: Heatmap of the prioritized tissues based on CAFEH for different UK Biobank GWAS traits. Tissues are colored based on their ranks which 
are determined based on the number of colocalizing loci based on CAFEH top component colocalization. Ranks range from 1-49 with 1 being the highest (most 
colocalizing) tissue. Tissues that are also enriched based on LD score regression are annotated. We see significant overlap in tissue prioritization between 
CAFEH and LDSC.



Figure S33: Colocalization of functionally characterized CAD GWAS loci in different GTEx v8 tissues based on CAFEH.



Supplemental Methods

In this document we review variational inference and describe the variational
approximation used in CAFEH. Then we derive the coordinate ascent updates
for CAFEH-G and CAFEH-S. Finally, we describe how to use stochastic varia-
tional inference to improve speed of CAFEH-S optimization.

1 Variational Inference Review

1.0.1 Problem set up

Given a model p(Y, θ) where Y are observed data and θ are latent variables, we
want to compute the posterior distribution p(θ|Y ). When the exact posterior
distribution is intractable, we can approximate the posterior using variational
inference.

In variational inference, we recast inference as an optimization problem. We
posit a family of distributions Q over the latent variables in the model θ and
find the member of that family that minimizes the KL-divergence to the true
posterior.

q∗(θ) = argminq∈QKL [q(θ)||p(θ|Y )] (1)

When p(θ|Y ) ∈ Q this optimization yields the true posterior distribution.
In practice, we choose Q so that we can efficiently optimize over the parameters
of the family. Specifically it is often useful to choose a family of variational
distributions that factorize over latent variables: q(θ) =

∏
i q(θi).

We can solve this optimization by maximizing the Evidence Lower Bound
(ELBO), which is a lower bound to the marginal data likelihood p(Y |X) =∫
θ
p(Y, θ|X)dθ

ELBO = Eq [ln p(Y, θ|X)] + Eq [ln q(θ)] (2)

It can be shown that optimizing the ELBO with respect to the variational
parameters is equivalent to minimizing the KL divergence in (1) [1].

The ELBO may be equivalently expressed as

ELBO = Eq [p(Y |X, θ)]−KL [q(θ)||p(θ)] (3)
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1.0.2 Deriving updates

We want to derive the udpate for a variational factor q(z). where z is some
subset of the latent variables in the model. Modifying the logic from [1] consider
decomposing the ELBO

ELBO = Eq(z) [L]− Eq(z) [ln q(z)] + C (4)

Where L are all terms of the ELBO that depend on z, and q(z) is a density
function which satisfies

∫
q(z) = 1. Using Lagrange multipliers to encode this

constraint

d

dq(z)
ELBO =

d

dq(z)

{
Eq(z)

[
Eq(−z) [L]

]
− Eq(z) [ln q(z)] + λEq(z)[1]− 1

}
(5)

= Eq(−z) [L]− ln q(z) + λ (6)

Setting the derivative equal to 0 we find

ln q(z) = Eq(−z) [L] + λ (7)

Recognizing that q(z) must integrate to one and that the normalizing factor
does not depend on z

q∗(z) ∝ exp
{
Eq(−z) [L]

}
(8)

This suggests an approach for deriving our updates: compute Eq(−z) [L] and
identify the parameters for q(z) satisfying (8). Note that in general, identifying
this distribution is not straight-forward. However, for a special class of mod-
els, of which CAFEH is a member, the coordinate-wise optima are exponential
family distributions and their parameters can be computed analytically.

2 CAFEH-G

2.1 Model

For clarity we restat the model. Let Y an N × T matrix of measurements in N
individuals across T phenotypes. Let X be a N ×G matrix of genotypes in N
individuals across G SNPs. The CAFEH model is written as
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Yt ∼ (Xbt, τ
−1
t I) (9)

bt =

K∑
k=1

φkwtkstk (10)

wtk|αtk ∼ N (0, α−1tk ) (11)

stk ∼ Bernoulli(p0k) (12)

φk ∼ Categorical(π0) (13)

αtk ∼ Γ(a0, b0) (14)

τt ∼ Γ(c0, d0) (15)

2.2 Variational Approximation

Let θ = {wtk} ∪ {stk} ∪ {φk} ∪ {αtk} ∪ {τt} denote the set of latent variables.
We select Q to factorize as follows:

q∗(θ) =
∏
k

∏
t

q(wtk|φk, stk)q(stk)q(αtk)
∏
k

q(φk)
∏
t

q(τt) (16)

In particular we choose to a variational family that maintain dependence of
wtk on φk and stk so that we can accurately estimate effect sizes under different
causal configurations. This is similar to the choice made in for the variational
approximations chosen for SuSiE [3] and [2].

We optimize the ELBO via coordinate ascent, iteratively updating each
q(w|φ, s), q(φ), q(s), q(α) and q(τ), while holding the others fixed. Note, that
while we have not specified a parametric form for the factors of the variational
distribution, the model and factorization imply the optimal form of each varia-
tional factor:

q∗(stk) ∼ Bernoulli(γtk)

q∗(φk) ∼ Categorical(πk)

q∗(αtk) ∼ Γ(atk, btk)

q∗(τt) ∼ Γ(ct, dt)

q∗(wtk|φk = i, stk = 1) ∼ N (µtki, σ
2
tki)

(17)

{µ, σ2, γ, π, a, b, c, d} (omitting subscripts) are variational parameters that
we optimize over. We provide the full updates and their derivation below.
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2.3 Evidence Lower Bound (ELBO)

ELBO = Eq(θ) [ln p(Y|θ)]−KL [q(θ)||p(θ)] (18)

= Eq(θ)

[∑
t

lnN (Yt|bt, τ−1I)

]
−
∑
t,k

Eq(stk,αtk,φk) [KL [q(wtk|stk, φk)||p(wtk|αtk)]]

−
∑
t,k

KL [q(stk)||p(stk)]−
∑
t,k

KL [q(αtk)||p(αtk)]

−
∑
k

KL [q(φk)||p(φk)]−
∑
t

KL [q(τt||p(τt)]

(19)

2.3.1 Expected conditional

Eq(θ)
[
lnN (Yt|Xbt, τ

−1I)
]

=

− M

2
ln 2π +

M

2
〈ln τt〉 −

〈τt〉
2

[
YT
t Yt − 2YT

t 〈Xbt〉 −
〈
bTt X

TXbt
〉]
(20)

The expectation of bt is

〈bt〉 =
∑
k

(πk ◦ µtk)γtk (21)

Letting di = eTi X
TXei and 〈btk〉 = (πk ◦ µtk)γtk and noting s2tk = stk we

can get a nice expression for the quadratic term

〈
bTt X

TXbt
〉

=

〈(∑
k

φkwtkstk

)T
XTX

(∑
k

φkwtkstk

)〉
(22)

=
∑
k

〈
w2
tkstkdφk

〉
+
∑
k 6=j

〈
wtkstkφ

T
k

〉
XTX 〈φjwtjstj〉 (23)

=
∑
k,i

(µ2
tki + σ2

tki)γtkπkidi + 〈bt〉T XTX 〈bt〉 −
∑
k

||X 〈btk〉 ||2

(24)

2.3.2 KL computations

To compute the ELBO and coordinate ascent updates, we need to compute
E [KL [q(w|φ, s)||p(w|α)]], where expectations are taken over q(α), q(stk) and/or
q(φk) depending on the setting. s and φ appear linearly, while α does not. Here
we write the expectation of the KL divergence w.r.t α in terms of the the KL
of the expectation plus a positive correction.
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〈
KL

[
N (µ, σ2) ||N (0, α−1) (25)

=

〈
1

2

[
αµ2 + σ2α− 1− lnσ2 − lnα

]〉
(26)

=
1

2

[
〈α〉µ2 + σ2 〈α〉 − 1− lnσ2 − 〈lnα〉

]
(27)

=
1

2

[
〈α〉µ2 + σ2 〈α〉 − 1− lnσ2 − ln 〈α〉

]
+

1

2
(ln 〈α〉 − 〈lnα〉)

(28)

= KL
[
N (µ, σ2)||N (0, 〈α〉−1)

]
+

1

2
(ln 〈α〉 − 〈lnα〉) (29)

2.3.3 Residualized likelihood

As we write our variational updates it will be useful to define rtk = Yt−Xbt +
Xbtk where btk = φkwtkstk. That is, rtk is the residual with all but the k-th
component removed. The conditional likelihood may be written

N (Yt|Xbt, τ
−1
t ) = N (rtk|Xbtk, τ

−1
t ) (30)

Then, when considering updates for a particular component k, we can write
the ELBO as

ELBO = Eq(θ)

[∑
t

−τt
2

[
−2rTtkXbtk + bTtkX

TXbtk
]
]

]
−KL [q(θ)||p(θ)] (31)

2.4 Coordinate Ascent updates

2.4.1 Update for q∗(wtk|φk = i, stk = 1

Where xi is the ith column of X, the genotypes at SNP i.

q∗(wtk|stk = 1, φk = i) (32)

∝ exp
{〈

lnN (rtk|wtkxi, τ−1t I)
〉

+ 〈ln p(wtk|αtk)〉
}

(33)

∝ exp
{
〈τt〉
2

(
−2 〈rtk〉T xiwtk + diw

2
tk

)
+
〈αtk〉

2
(w2

tk)

}
(34)

Completing the square we find

σ2
tki = (di 〈τt〉+ 〈αtk〉)−1 (35)

µtki = σ2
tki 〈τt〉 〈rtk〉

T
xi (36)

q∗(wtk|φk = i, stk = 1) = N (wtk|µtki, σ2
tki) (37)
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2.4.2 Update for q∗(wtk|φk, stk = 0)

q∗(wtk|stk = 1, φk = i)

∝ exp
{〈

lnN (rtk|0, τ−1t I)
〉

+ 〈ln p(wtk|αtk)〉
}

∝ exp
{
〈αtk〉

2
(w2

tk)

} (38)

q∗(wtk|stk = 0, φk = i) = N (w + tk|0, 〈αtk〉−1) ∀i ∈ {1, . . . , N} (39)

2.4.3 Update for q∗(stk)

q∗(stk) ∝ exp {
〈
lnN (rtk|Xφkwtk, τ−1t I)

〉
1(stk = 1)

+ 〈KL [q(wtk, αtk|stk = 1, φk)||p(wtk, αtk)]〉1(stk = 1)

+ ln p0k1(stk = 1)〈
lnN (rtk|0, τ−1t I)

〉
1(stk = 0)

+ 〈KL [q(wtk, αtk|stk = 0, φk)||p(wtk, αtk)]〉1(stk = 0)

+ ln(1− p0k)1(stk = 0)

(40)

Grouping terms where stk = 1 and stk = 0 we can write

q∗(stk) ∝ exp {(a+ ln p0k)1(stk = 1) + (b+ ln(1− p0k))1(stk=0)} (41)

a =− 〈τt〉
2

[
−2 〈rtk〉T X(πk ◦ µtk) +

∑
i

(µ2
tki + σ2

tki)πki

]
−
∑
i

πki 〈KL [q(wtk, αtk|stk = 1, φk = i)||p(wtk, αtk]〉
(42)

b =− 〈KL [q(wtk, αtk|stk = 0)||p(wtk, αtk]〉 = −1

2
(ln 〈α〉 − 〈lnα〉) (43)

Setting γtk = eap0k
eap0k+eb(1−p0k)

q∗(stk) = Bernoulli(stk|γtk) (44)

6



2.4.4 Update for q∗(αtk)

q∗(αtk) ∝ exp
{〈

lnN (wtk|0, α−1tk ) ln p(αtk)
〉}

∝ exp
{

1

2
lnαtk −

αtk
2

〈
w2
tk

〉
+ (a0 − 1) lnαtk − b0αtk

}
∝ exp

{(
a0 +

1

2
− 1

)
lnαtk −

(
b0 +

〈
w2
tk

〉
2

)
αtk

}

∝ exp
{(

a0 +
1

2
− 1

)
lnαtk −

(
b0 +

∑
i πki(µ

2
tki + σtki)

2

2

)
αtk

}
(45)

Let a = a0 + 1
2 and b = b0 +

∑
i πki(µ

2
tki+σtki)

2

2

q∗(αtk) = Γ(αtk|a, b) (46)

2.4.5 Update for q∗(φk)

q∗(φk) ∝
∑
i

ρki1(φk = i) (47)

ρki =
〈
lnN (rtk|stkwtkxi, τ−1I

〉
−〈KL[q(wtk, αtk|φk = i) || p(wtk|αtk)]〉+ lnπ0ki

(48)

ρki =− 〈τt〉
2

[
−2 〈rtk〉T xiµtkγtk + γtk(µ2

tki + σ2
tki)
]

− 〈KL[q(wtk, αtk|stk = 1, φk = i) || p(wtk|αtk)]〉 γtk
− 〈KL[q(wtk, αtk|stk = 0, φk = i) || p(wtk|αtk)]〉 (1− γtk) + lnπ0ki

(49)

Then

πki =
eρi∑
i e
ρik

(50)

2.4.6 Update for q∗(τt)

ln q∗(τt) ∝
〈
N (β̂t|Xbt, τ

−1
t I) + ln p(τt)

〉
∝ 1

2
ln τt −

τt
2

〈
(β̂t −Xbt)

T (β̂t −Xbt)
〉

+ (c0 − 1) ln τt − d0τt
(51)

Let c = c0 + 1
2 and d = d0 +

〈(β̂t−Xbt)
T (β̂t−Xbt)〉
2

q∗(τt) = Γ(τt|c, d) (52)

7



3 CAFEH-S model

CAFEH-S has an identical prior on the effect sizes bt as CAFEH-G, however
the likelihood is written in terms of summary statistics using the RSS likelihood
[4]. β̂t are the vector of effect sizes for marginal linear regression of G SNPs in
phenotype t. R is an LD matrix containing the pairwise correlation of SNPs. S
is a diagonal matrix where S2

ii = β2/nti + ŝ2 + ti. nti and ŝti are the sample
size and standard errors for the corresponding tests.

β̂t ∼ (SRS−1bt, SRS) (53)

bt =

K∑
k=1

φkwtkstk (54)

wtk|αtk ∼ N (0, α−1tk ) (55)

stk ∼ Bernoulli(p0k) (56)

φk ∼ Categorical(π0) (57)

αtk ∼ Γ(a0, b0) (58)

3.1 Evidence Lower Bound (ELBO)

We write the ELBO, lumping terms that are constant w.r.t the variational
parameters into a constant C. Letting

D = S−1RS−1

ELBO = Eq

[∑
t

lnN (β̂t|SRS−1bt, SRS)

]
−KL [q||p] (59)

= Eq

[∑
t

−1

2

(
−2β̂Tt S

−2bt + bTt Dbt

)]
−KL [q||p] + C (60)

3.1.1 Residualized likelihood

Our coordinate ascent updates are performed by updating one component while
holding all other components and fixed. It will be convenient to rewrite the
likelihood in terms of the residual with all but one component removed

btk = wtkskφk (61)

b−tk =
∑
j 6=k

btj (62)

rtk = β̂t − SRS−1b−tk (63)

So that

N (β̂t|SRS−1bt, SRS) = N (rtk|SRS−1btk, SRS) (64)
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Notice that the term rTtk(SRS)−1rtk does not depend on component k. For
the purpose of optimization of the variational parameters of component k we
may write the ELBO

ELBO = Eq

[∑
t

−1

2

(
−2rTtkS

−2bt + bTt Dbt
)]
−KL [q||p] + C (65)

3.2 Coordinate Ascent updates

3.2.1 Update for q∗(wtk|φk, stk = 1)

With di = Dii

q∗(wtk|stk = 1, φk = i) ∝
exp

{〈
lnN (rtk|SRS−1btk, SRS) + lnN (wtk|0, αtk)

〉}
exp

{
−1

2

[
−2 〈rtk〉T S−2eiwtk + diw

2
tk + 〈αtk〉w2

tk

]} (66)

Completing the square we arrive at

σ2
tki = (di + 〈α〉)−1

µtki = σ2
tki 〈rtk〉

T
S−2ei

q∗(wtk|φk = i, stk = 1) = N (wtk|µtki, σ2
tki)

(67)

3.2.2 Update for q∗(wtk|φk, stk = 0)

q∗(wtk|stk = 0, φk = i) ∝ exp
{
−1

2
〈αtk〉w2

tk

}
(68)

It follows that

q∗(wtk|φk, stk = 0) = N (wtk|0, 〈αtk〉−1) (69)

3.2.3 Update for q∗(stk)

We group terms of the ELBO where stk = 1:

a = Eq|stk=1

[
logN (rtk|SRS−1btk, SRS)

]
+Eq(wtk,φk,stk=1) [log p(wtk|αtk)]

+Eq(φk) [H(q(wtk|stk = 1, φk)] + log p0k + C

(70)
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Evaluates to

a = −1

2

(
−2 〈rtk〉T S−2(πk ◦ µtk) +

∑
i

(µ2
tki + σ2

tki)diπki

)
+Eq(wtk,φk,stk=1) [log p(wtk|αtk)]

+Eq(φk) [H(q(wtk|stk = 1, φk)] + log p0k + C

(71)

And stk = 0:

b = Eq|stk=0

[
logN (rtk|SRS−1b, SRS)

]
+Eq(wtk,φk,stk=0) [log p(wtk|αtk)] +

Eq(φk) [H(q(wtk|stk = 0, φk)] + log(1− p0k) + C

(72)

Evaluates to

b = 0

+Eq(wtk,φk,stk=0) [log p(wtk|αtk)]

+Eq(φk) [H(q(wtk|stk = 0, φk)] +

log(1− p0k) + C

(73)

q∗(stk) ∝ exp {a1(stk = 1) + b1(stk = 0)} =⇒ γtk =
ea

ea + eb
(74)

3.2.4 Update for q∗(φk)

Grouping terms where φk = i

ai = Eq|φk=i

[
logN (rtk|SRS−1btk, SRS)

]
+Eq(wtk,stk|φk=i) [p(wtk|αtk)]

+Eq(stk) [H(q(wtk|stk, φk = i)]

(75)

ai = −1

2

[
−2 〈rtk〉T S−2eiµtkiγtk + γtk(µ2

tk + σ2
tki)di

]
+Eq(wtk,stk|φk=i) [p(wtk|αtk)]

+Eq(φk) [H(q(wtk|stk, φk = i)]

(76)

q∗(stk) ∝ exp

{∑
i

ai1(φk = i)

}
=⇒ πki =

eai∑
i e
ai

(77)
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3.3 Stochastic Variational Inference

3.3.1 Monte-Carlo estimate of the ELBO

Recall the ELBO for CAFEH-S

ELBO = Eq

[∑
t

−1

2

(
−2rTtkS

−2bt + bTt Dbt
)]
−KL [q||p] + C (78)

The CAFEH-S updates, (equivalently, evaluating the gradient of the ELBO),

require the repeated evaluation of 〈rtk〉 = β̂t − SRS−1 〈b−tk〉. This involves a
matrix-vector multiplication that grows with the number of SNPs, and causes
CAFEH-S to be slow to run with a large number of variants.

We propose using a Monte-Carlo estimate for the expectation over q(φ).
Rather than averaging over all SNPs, and incurring the expensive matrix-vector
multiplication, we sample SNPs. We write btk(φk) to emphasize the dependence
of btk on φk.

Eq(φk)

[
Eq(−φk)btk(φk)

]
≈ 1

L

L∑
l=1

Eq(−φk)btk(z
(l)
k ) = b̃tk (79)

Where z
(1)
k , . . . , z

(L)
k are iid samples from Categorical(πk), the current set-

ting of q(φk). This approximation yields a noisy but unbiased estimate of the
ELBO, satisfying the core requirement for performing stochastic optimization.

Importantly for moderate choice of L, LK << G. Thus, b̃t is sparse and
SRS−1b̃tk can be computed quickly.

3.3.2 Stochastic Variational Inference

For models where all the complete conditionals are an exponential family, coor-
dinate ascent on stochastic estimates of the ELBO is stochastic gradient ascent
(in the natural parameter space) [cite]. In short, we can use the same updates
as above, replacing expectations over q(φk) with their Monte-Carlo estimate, to

compute λ̂ an intermediate estimate of our variational parameter λ. We update
our estimate of λ as a weighted average of our old estimate and the intermediate
estimate

λ(t+1) = (1− ρt)λt + ρtλ̂t (80)

Where t indicates iteration, and ρt are weights. When the sequence (ρt)
∞
t=1

satisfy the Robbins Monro conditions
∑
ρt =∞ and

∑
ρ2t <∞, the stochastic

optimization is guaranteed to converge to a local optimum.
We note that for well behaved causal components, where q(φk) places most

of its mass on a set of tightly linked SNPs, the Monte-Carlo estimate will be
very close to the true expectation.
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