Table S1

Bacterial strain or plasmid	Relevant features or genotype	Reference
<i>Clostridioides difficile</i> UK1	Clinical isolate	(Sorg and Sonenshein, 2010)
<i>Escherichia coli</i> DH5α	endA1 recA1 deoR hsdR17 ($r_{K} m_{K}^{+}$)	NEB
Escherichia coli S17-1	Strain with integrated RP4 conjugation transfer function; favors conjugation between <i>E. coli</i> and <i>C. difficile</i>	(Teng et al., 1998)
Clostridioides difficile UK1::pdcB	UK1 with intron insertion within <i>pdcB</i> (<i>CDR20291_0685</i>)	This study
Clostridioides difficile UK1::codY	UK1 with intron insertion within <i>codY</i>	(Nawrocki et al., 2016)
pMTL007-CE5	ClosTron plasmid	(Heap et al., 2010)
pMTL007-CE5:Cdi- pdcB-840-841s	pMTL007-CE5 with group II intron targeted to pdcB	This study
pMTL007-CE5:Cdi- <i>recV</i> -143-144a	pMTL007-CE5 with group II intron targeted to recV	This study
pRPF185	E. colil C. difficile shuttle plasmid	(Fagan and Fairweather, 2011)
pBA042	pRPF185 containing 1.5 kb upstream region of <i>pdcB</i> in Translucent orientation.	This study
pBA043	pRPF185 containing ~1.5 kb <i>pdcB</i> upstream region locked in Translucent orientation	This study
pBA045	pRPF185 containing 1.5upstream region of <i>pdcB</i> in Opaque orientation.	This study
pBA046	pRPF185 containing ~1.5 kb <i>pdcB</i> upstream region locked in Opaque orientation	This study
pBA048	pRPF185 containing PdcB-EAL domain	This study
pBA050	pRPF185 containing PdcA-EAL domain	This study
pBA051	pRPF185 containing the <i>tet</i> promoter alone	This study
pBA052	pRPF185 containing <i>dccA</i> under <i>tet</i> promoter	This study

References:

- Fagan, R.P., Fairweather, N.F., 2011. *Clostridium difficile* Has Two Parallel and Essential Sec Secretion Systems. J. Biol. Chem. 286, 27483–27493. https://doi.org/10.1074/jbc.M111.263889
- Heap, J.T., Kuehne, S.A., Ehsaan, M., Cartman, S.T., Cooksley, C.M., Scott, J.C., Minton, N.P., 2010. The ClosTron: Mutagenesis in Clostridium refined and streamlined. J. Microbiol. Methods 80, 49–55. https://doi.org/10.1016/j.mimet.2009.10.018

- Nawrocki, K.L., Edwards, A.N., Daou, N., Bouillaut, L., McBride, S.M., 2016. CodY-Dependent Regulation of Sporulation in Clostridium difficile. J. Bacteriol. 198, 2113–2130. https://doi.org/10.1128/JB.00220-16
- Sorg, J.A., Sonenshein, A.L., 2010. Inhibiting the initiation of Clostridium difficile spore germination using analogs of chenodeoxycholic acid, a bile acid. J. Bacteriol. 192, 4983– 4990. https://doi.org/10.1128/JB.00610-10
- Teng, F., Murray, B.E., Weinstock, G.M., 1998. Conjugal transfer of plasmid DNA from Escherichia coli to enterococci: a method to make insertion mutations. Plasmid 39, 182– 186. https://doi.org/10.1006/plas.1998.1336

Name	Sequence (5' \rightarrow 3')	Description
EBS-U	CGAAATTAGAAACTTGCGTTCAGT AAAC	Group II intron specific primer
ORG771	GACTGAGCTCTGGGGAAATGTGTTTGATGA GATAAAAAAATTAGTAAAATA	Forward primer with with SacI to clone <i>CDR20291_0685 (pdcB)</i> in pRPF185
ORG772	AACTGGATCCTCACTTATCGTCGTCATCCT TGTAATCCTTTGATAGTTGAAATTTATAAA ATTCAGAGGCAC	Reverse primer with with BamHI to clone <i>CDR20291_0685</i> (<i>pdcB</i>) in pRPF185
ORG788	GAGCTCAAGAGGAGTGGTTGAAAATGGCAA CAAGACCTATAGAAATAG	Forward primer with SacI to amplify recV
ORG789	GGATCCTTAATGATGATGATGATGATGACC AATAAAGAAATTTTCACTAGCTTCATTAAT AGCTTGCTGAG	Reverse primer with BamHI and 6X His to amplify <i>recV</i>
ORG844	GTTGTAAAAAAGTTACTATTTATTGAAAAT TTAGATACTTTTCTAAAATTATCTATG	Forward primer for CodY binding site in <i>pdcB</i> upstream region in Opaque orientation
ORG845	CATAGATAATTTTAGAAAAGTATCTAAATT TTCAATAAATAGTAACTTTTTTACAAC	Reverse primer for CodY binding site in <i>pdcB</i> upstream region in Opaque orientation
ORG852	GGTACCAGTTTAGGATAAAGTATTGCAAGA ACCAATCAG	Forward primer with KpnI site to clone ~1.5 kb upstream region of <i>pdcB</i> gene
ORG853	GAGCTCCTTTTCCCCCTACAATATTACTAT TAGTGTAGTTTAATCAAC	Reverse primer with Sacl site to clone ~1.5 kb upstream region of <i>pdcB</i> gene
ORG866	ATGTATATTTTTATAGCTATTTTATTATAA AAAAAAGAACCCTCGCATGTGTAAGGGTT ACTTTTTTTCTCTATTTTTTTTTT	Forward primer to mutagenize inverted repeat from translucent orientation
ORG867	TCAGTATAATGGAAAAAATGTCAAAATATT GAAATAGGGAAAAAATAGTGATATAATAAA AAAAATAGAGAAAAAAAGTAACCCTTACAC ATGCGAGGGTTCTTTTTTTTTATAATAAAA TAGCTATAAAAATATACAT	Reverse primer to mutagenize inverted repeat from translucent orientation
ORG868	CATAAATTTAACTATTAACATAGATAATTT TAGAAAAGTATCTAAATTTTCAATAAATAG TAACTTTCGCATGTGTAAGGGTTACTTTTT TTCTCTATTTTTTTTTT	Forward primer to mutagenize inverted repeat from opaque orientation
ORG869	GTCAAAATATTGAAATAGGGAAAAAATAGT GATATAATAAAAAAAA	Reverse primer to mutagenize inverted repeat from opaque orientation
ORG879	GTATTATTTTGGTAAATATATTGTTACAAA AGGTTTATATTTTGC	Forward primer (<i>cmrRST</i> upstream): specific for orientation similar to published (410 bps)

Table S2 Oligonucleotides used for PCR reactions

ORG880	GGAAATATTGACAAAATAATATTACAATGT TAGAATAA	Reverse primer common for both orientation or <i>cmrRST</i> .
ORG881	AGTATAATGCTATTATAATAAGAAAATAAC TTTTTTATAAACATTGAGAT	Forward primer (<i>cmrRST</i> upstream): specific for flipped orientation (540 bps)
ORG882	GAGCTCGGGGGAAAAGATGTATCCAGAAGA TGGAGATAATTATTTAGATTTATTTAAACA	Forward primer with <i>SacI</i> to clone PdcB- EAL in pRPF185
ORG883	GGATCCTCACTTTGATAGTTGAAATTTATA AAATTCAGAGGCACTTACAGGTCTTCC	Reverse primer with <i>BamHI</i> to clone PdcB-EAL in pRPF185
ORG884	GAGCTCGGAGGAGATAAGATGCAAGAAATA TTAAAAAATAAAAT	Forward primer with <i>SacI</i> to clone PdcA- EAL in pRPF185
ORG885	GGATCCTTAATTATCTAGCTTTAAAAGGTC AAAGATTTCTGTTGCTGTCTGCGGTTTTCC	Reverse primer with <i>BamHI</i> to clone PdcA-EAL in pRPF185
ORG886	ТААТААААТАGCТАТАААААТАТАСАТАТС АААТСАААТТААG	Forward primer to amplify the flip orientation of <i>pdcB</i> upstream in Translucent strain.
ORG887	CTTCTTAATTTGATTTGATATGTATATTTT TATAGC	Forward primer to amplify the flip orientation of <i>pdcB</i> upstream in Opaque strain.
ORG888	CTGGATTTTTAAATTTATGTACTTTAAAAT GGATATCC	Reverse primer to amplify the flip orientation both translucent and opaque of <i>pdcB</i> upstream.
ORG846	GGTCTAAACTTAAAGAGTTCGATTCTTCTC TCATCTTTTCCCCCTACAATATTACTATTA GTG	SP1 primer for 5' RACE
ORG847	CTCTAAGTATTTCATTAAAAAGATGTTAGT AATGACCACTAAATAAAAGTGGACGATTTT GTGG	SP2 primer for 5' RACE
ORG848	CAATTATTTTATCCATGTAAAAATCATGTA CTTTTATCTCAACGAATGTCCC	SP3 primer for 5' RACE
ORG921	ATGGAAACTATGTACGTAATAATTAAAATA AAA	Forward primer to amplify <i>pdcB</i> promoter_1
ORG922	ACATTGACATTCTAATTCTGTAGTGTAATC GTA	Forward primer to amplify <i>pdcB</i> promoter_2
ORG925	ACTATTTATTGAAAATTTAGATACTTTTCT AAAATTATCTATG	Forward primer to amplify <i>pdcB</i> promoter_3
ORG926	ATACTTTTCTAAAATTATCTATGTTAATAG TTAAAT	Forward primer to amplify <i>pdcB</i> promoter_3

Supplementary Methods

Toxin ELISA

C. difficile cytosolic toxins were measured as described previously (46,47). In brief, one ml of *C. difficile* 16 h cultures were harvested. The cells were centrifuged at 17,000 g for 1 min and washed with sterile 1X PBS. The resulting pellets were resuspended in 200 µl of sterile 1X PBS, sonicated and centrifuged to harvest the cytosolic protein. 100µg of cytosolic proteins was used to measure the relative toxin levels using *C. difficile* premier Toxin A &B ELISA kit from Meridian Diagnostics Inc. (Cincinnati, OH).

Surface Motility assay

C. difficile cultures were grown until mid-exponential phase in TY broth at 37 °C. After adjusting their OD600 to 0.5, 10µl of each strain was spotted in TY media plates with 0.5% w/v agar for swimming motility and 1.8% w/v agar for swarming motility. The plates were incubated at 37 °C for 72 hours and the motility was quantified by measuring the diameter of the spotted cultures. Since the spotted cultures were not a perfect circle, multiple diameters were taken for a single spotted culture and calculated the average. Motility assay was independently repeated at least three times.

Biofilm Assay

Biofilm assay was carried out as described previously (Purcell *et al.*, 2017) with slight modification. *C. difficile* cultures were grown until mid-exponential phase in TY broth at 37°C. After adjusting their OD600 to 0.5, cultures were seeded at 1:100 dilution to an untreated 24 well tissue culture plates containing 0.8 ml of TY medium. The plates were incubated at 37°C in an anaerobic chamber for 72 hours. The culture medium was carefully removed and the adherent biofilm was washed once with 1XPBS. The biofilm was stained for 30 min at room temperature with 0.1% (wt/vol) crystal violet in water. Excess crystal violet was carefully removed, and the biofilm were

washed twice with 1XPBS. To quantify the biofilms, the crystal violet was solubilized with ethanol and absorbance was read at 570 nm. Experiments were done at least three times.

Genomic DNA extraction

UK1 T and UK1 O cultures streaked from a single colony were allowed to grow overnight in TY agar at 37°C. Ten mI PBS was used to harvest the cells grown in the TY agar plate and was collected by centrifuging at 3,000g for 30 min at 4°C. Cell pellets were washed with 1 ml of TE (Tris-EDTA) buffer. After centrifugation, cell pellets were resuspended in 600 µl of genomic DNA solution. 60 µl of 50 mg/ml of lysozyme solution was added and the mixture was allowed to incubate for 2 hours at 37°C. 100 µl of 20% Sarkosyl, 15 µl of RNAase A (10mg/ml) and 15 µl of proteinase K (10 mg/ml) were added and incubated for additional 30 min at 37°C. 600 µl of 25:24:1 (v/v/v) phenol/chloroform/isoamyl alcohol was added and mixed by vortexing. The mixture was centrifuged at maximum speed for 10 min. The upper aqueous phase was transferred into a new clean tube. The process was repeated 3 times to collect as much of the upper aqueous phage. 200 µl of chloroform was added to the collected upper aqueous phage, mixed and centrifuged at maximum speed for 10 min. The resulting upper phase was transferred into a clean tube. DNA precipitation was carried out by adding 50 µl of 3M sodium acetate, pH 5.2 and 150 µl of 95% ethanol. The mixture was stored overnight at -20°C. DNA pellet was recovered by centrifuging at maximum speed for 5 min. The pellet was washed with 500 µl of 70% ethanol. The ethanol was allowed to dry at room temperature and DNA was dissolved in 50 µl of Nuclease Free Water (NFW).

General DNA techniques

PCR reactions were carried out using gene specific primers (Table S 3.2). PCR products were extracted from the gel using Geneclean Kit (mpbio). Plasmid DNA was extracted using QIAprep Spin Miniprep Kit (Qiagen). Standard procedures were used to perform routine cloning.

CRISPRi silencing of *pdcB*

The single guide RNA (sgRNA) specific for *pdcB* was identified using CRISPRscan program and was synthesized by Genewiz. It was later cloned in between the MscI and NotI sites in CRISPRi vector pIA33. Transconjugants selected were streaked on TY+Thio plates with or without 1% xylose. The vector pIA33 expresses the defective Cas9 (dCas9) enzyme from a xylose inducible promoter. Thus, inducing the cultures with xylose will express the dCas9 enzyme which will pair with the sgRNA to block the transcription of *pdcB*.

UK_O	GTTGTAAAAAAGTT ACTATTTATTGAAAATTTAGATACTTTTCTAAAAATTATCTATGTTAATAGTTAAAT
UK T	GTTGTAAAAGGGTT CTTTTTTTTTTTATAATAAAATAGCTATAAAAATATACATATCAAATCAAATTAAGAA
R20291	GTTGTAAAAGGGTTCTTTTTTTTTTTATAATAAAATAGCTATAAAAATATACATATCAAATCAAATTAAGAA

UK_OGTATATTTTTATAGCTATTTTATTATAAAAAAAAGTAACCCTTTTACAACUK_TAATTTTTAGAAAAGTATCTAAATTTTCAATAAATAGTAACTTTTTTACAACR20291AATTTTTAGAAAAGTATCTAAATTTTCAATAAATAGTAACTTTTTTACAAC

UK1 UK1::*recV*

UK1 WT

С

UK1::*recV*

В