Supplemental Information

Hepatic Fis1 regulates mitochondrial integrated stress response and improves metabolic homeostasis

Yae-Huei Liou, Jean Personnaz, David Jacobi, Nelson H. Knudsen, Mayer M. Chalom, Kyle A. Starost, Israel C. Nnah, and Chih-Hao Lee

Supplemental Figures

Supplemental Figure 1. Chronic over-nutrition is associated with mitochondrial dysfunction and enhanced IFN-stimulated gene expression in mouse livers. (A) Representative confocal images of liver cryosections (20 µm) from NC or HFD fed mice collected at ZT2 (8 am). C56BL/6J male mice were infected with Ad-Cox8-GFP to label mitochondria. Quantification of mitochondrial morphology was analyzed using ImageJ. n=6. (B) Relative expression of IFNstimulated genes determined by real-time PCR in the liver and (C) in primary hepatocyte from male mice fed a NC or HFD for 8 weeks starting at 6-week old of age. n=5-6. Experiments repeated in 2 mouse cohorts. Values are presented as mean \pm SEM. Significance was determined by unpaired, two-tailed Student's *t* test. **p*<0.05, **p*<0.01, **p*<0.001.

Supplemental Figure 2. Reduced hepatic Fis1 activity worsens oxidative stress and glucose intolerance. (A) *Fis1* gene expression by real-time PCR to assess the knockdown efficiency of Ad-shFis1 in primary hepatocytes. Ad-shCtl: scrambled shRNA control adenovirus. (B) Mitochondrial ROS (mROS) was measured 48 hours after Ad-shCtl and Ad-shFis1 infection in primary hepatocyte. mROS was determined using mean fluorescence intensity of the MitoSOX signal and presented as fold change of Ad-shFis1 vs Ad-shCtl. n=3. (C) Immunoblotting showing LC3B, p62 and Fis1 protein levels in hepatocytes infected with Ad-shCtl or Ad-shFis1 for 48 hours, followed by 0.2 mM paraquat treatment for indicated time points. Paraquat was used to trigger oxidative stress. Tubb served as a loading control. (D) Glucose tolerance test (GTT) in HFD fed (4 weeks) male mice infected with Ad-shCtl or Ad-shFis1. n=5. (E) Immunoblotting (left panel) and qPCR (right panel) showing Fis1 protein and mRNA levels in liver of HFD fed male mice infected with Ad-shCtl or Ad-shFis1. n=5. A-C: repeated 3 times and D-E:conducted in 2 separate cohorts. Values are presented as mean \pm SEM. Significance was determined by Two-way ANOVA for GTT and unpaired, two-tailed Student's *t* test for two group comparisons. **p*<0.05.

Supplemental Figure 3. Fis1 induces integrated stress response in mouse hepatocytes. (A) Evaluation of Fis1 and Dnm11 (Drp1) over-expression by Ad-Fis1 and Ad-Dnm11 using immunoblotting. Primary hepatocytes were infected with Ad-LacZ (control), Ad-Fis1 and Ad-Dnm11 for 48 hours. Actb protein level was used for loading control. n=2, repeated 3 times. (B) Mitochondrial morphology in LacZ (Ad-LacZ, control), Fis1 (Ad-Fis1) or Dnm11 (Ad-Dnm11) over-expressing primary hepatocytes. Hepatocytes were co-infected with Ad-Cox8-mCherry to label mitochondria and cultured in the EBSS (with 1 g/L glucose) low nutrient medium to trigger fusion (elongated mitochondrial networks). Experiments repeated 3 times. (C) RPKM dot plot analysis of gene expression in Ad-LacZ infected hepatocytes comparing two independent RNAseq experiments to assess potential variables contributed by different adenovirus preparations. The Pearson Correlation Coefficient r=0.97, p < 0.001. (D) Venn diagram comparing genes significantly changed (FDR < 0.001) by Ad-Fis1 or Ad-Dnm11 (vs Ad-LacZ) in hepatocytes identified by RNAseq. (E) Heatmap showing representative genes/pathways from functional clustering of Ad-Fis1 up-regulated genes. (F) Validation of RNA-seq results for oxidoreduction and vesicle trafficking genes of Ad-Fis1 or Ad-LacZ infected hepatocytes by real-time qPCR. n=4-5. (G) Immunoblotting showing phosphorylated and total Gcn2, Ddit3, LC3B, p62 and Fis1 protein levels. Primary hepatocytes of NC fed male mice were infected with Ad-GFP or Ad-Fis1 for 24 or 48 hours. n=2, repeated twice. (H) Summary of metabolomic analysis (left panel) and the fold change of selected

metabolites (right panel) regulated by Ad-Fis1, compared to Ad-LacZ in primary hepatocytes. n=4 for one experiment. (I) Expression of stress responsive transcription factors in the liver of mice with hepatic *Fis1* over-expression (Ad-Fis1 vs Ad-LacZ, see mouse cohort in Figure 2A) or (J) in mice with hepatic *Fis1* knockdown (Ad-shFis1 vs Ad-shCtl, see mouse cohort in Supplemental Figure 2D). n=5. (K) Assessing the efficiency of knocking down *Atf5* or *Fis1* in primary hepatocytes (Ad-shFis1 or shAtf5 vs Ad-shCtl; data was associated with Figure 3D). n=3. (L) Relative expression of *Fis1* and *Atf5* by real-time PCR in hepatocytes infected with combinations of Ad-GFP/Ad-Fis1 and Ad-shCtl/Ad-shAtf5. Data was associated with Figure 3E and 4D. n=3. Values are presented as mean \pm SEM. Significance of F, H, I and J were determined by unpaired, two-tailed Student's *t* test; K and L by One-way ANOVA followed by Sidak multiple comparisons test. **p*<0.05, #*p*<0.001.

Supplemental Figure 4. Nuclear localized Atf5 regulates IFN-I response. (A) Assessing *Fis1* and *Atf5* genes expression in primary hepatocytes infected with Ad-LacZ, Ad-Fis1 or Ad-Atf5 with/without Poly I:C stimulation (see Figure 4E). n=3. (B) Immunoblotting showing cellular localization of Atf5 (with C-terminal HA-tag) in Hepa1-6 mouse hepatoma cells. Cell lysates from control (Ctl) and *Atf5* over-expressing Hepa1-6 stable lines were fractionated to obtain the nuclear (NUC), mitochondria (MIT) and cytosolic (CYT) fractions. An equal amount of protein was loaded. Anti-HA antibody was used to probe Atf5 protein. Lmnb1, Sdhb and Tubb were used to assess the purity of the nuclear, mitochondrial and cytosolic fraction, respectively. (C) *Atf5*, *Ifna4* and *Ifnb1* gene expression in control and *Atf5* over-expressing Hepa1-6 stable lines stimulated with/without 100 ng/well Poly I:C for 24 hours. n=5-6. Data represent 1 of the 3 repeated experiments. Values are presented as mean \pm SEM. Significance was determined by One-way ANOVA followed by Sidak multiple comparisons test. #p<0.01, \$p<0.001.

Supplemental Figure 5. Atf5 interacts with Irf3. (A) Immunoblotting showing coimmunoprecipitation of Atf5 with Irf3. AD293 cells were transfected with expression vectors for Atf5 (CMV-Atf5-HA), Irf3 (CMV-FLAG-Irf3) or Atf5/Irf3. Thirty-two hours later, cells were stimulated with/without 100 ng/well Poly I:C for an additional 16 hr. IP: immunoprecipitation with anti-FLAG M2 affinity gel; IB: immunoblotting with anti-HA antibody; Input: 1/20 of the cell lysate used for IP. Lmnb1 was used for loading control. (B) Atf5 suppresses the transactivation activity of Irf3. AD293 cells were co-transfected with a luciferase reporter driven by SV40 promoter with 4 copies of the Gal4-binding site and an expression vector for Gal4 control or Gal4-Irf3, together with a control (Ctl) or *Atf5* expression vector (driven by CMV promoter). CMV-βgalactosidase was included to monitor the transfection efficiency. Cells were transfected with/without 100 ng/well Poly I:C for the last 16 hours. The luciferase activity was normalized by the β-galactosidase activity. Relative light unit (RLU) was presented as fold change of Gal4-Irf3 vs Gal4. n=5. Data represent 1 of the 3 repeated experiments. Values are presented as mean ± SEM. Significance was determined by One-way ANOVA followed by Sidak multiple comparisons test. #p<0.01, \$p<0.001.

Supplemental Figure 6. Fumarate increases ATF5 activity. (A) Relative expression of lymphocyte (Cd8 and Cd4) and macrophage (F4/80) markers by real-time PCR. Male mice fed a HFD for 2 months were infected with either Ad-GFP, Ad-Fis1 or Ad-Atf5. Five days after infection, livers were collected, pooled and mechanically dissociation to release hepatocytes and immune cells, CD8⁺ cells were enriched using a negative selection method that pulled down CD8⁻ immune cells with magnetic beads. RNA extraction was performed in both the bead and flowthrough (CD8⁺ T cell enriched) fractions to assess the purification efficiency. Experiments conducted in one mouse cohort. (B) Relative expression of genes in IFN-I signaling by real-time PCR in CD8⁺ T cells from livers of Ad-GFP, Ad-Fis1 or Ad-Atf5 infected mice. (C) Monomethyl fumarate (MMF) increases the transactivation activity of Atf5. AD293 cells were co-transfected with a luciferase reporter driven by SV40 promoter with 4 copies of the Gal4-binding site and an expression vector for Gal4 control or Gal4-Irf3, together with CMV-β-galactosidase to monitor the transfection efficiency. Cells were treated with MMF at the indicated doses for 16 hours. The luciferase activity was normalized by the β -galactosidase activity to determine relative light unit (RLU). n=5. Statistical analysis: MMF treated vs untreated condition. (D) Relative expression of Atf5 and Ddit3 by real-time PCR in primary hepatocyte infected with Ad-shCtl or Ad-shAtf5 treated with MMF at indicated doses for 24 hours. n=3. C-D: experiments repeated 3 times. Values are presented as mean \pm SEM. Significance of A was determined by unpaired, two-tailed Student's t test; **B-D** by One-way ANOVA followed by Sidak multiple comparisons test. p < 0.05, p < 0.01, p < 0.001.

	Ad-shCtl (n=5)	Ad-shFis1 (n=5)
Body weight (g)	28.60 ± 1.22	28.80 ± 0.70
Triglycerides (mg/dL)	33.12 ± 2.92	32.10 ± 5.82
Free fatty acids (mM)	0.83 ± 0.07	0.83 ± 0.05
Total cholesterol (mg/dL)	130.90 ± 6.17	137.20 ± 5.31
Glucose (mg/dL)	186.20±9.45	192.00±3.96
Insulin (ng/mL)	1.37 ± 0.22	0.83 ± 0.19

Supplemental Table 1. Fasting blood chemistry in the Ad-shFis1 vs Ad-shCtl mouse cohort

C57BL/6J male mice were fed a HFD for 4 weeks starting at 6-week old of age. Data are presented as means \pm SEM.

	Ad-LacZ (n=7)	Ad-Fis1 (n=7)
Body weight (g)	34.03 ± 1.00	32.83 ± 0.94
Triglycerides (mg/dL)	78.40 ± 6.13	$51.78 \pm 9.01*$
Free fatty acids (mM)	2.37 ± 0.12	$1.70 \pm 0.14^{\#}$
Total cholesterol (mg/dL)	118.80 ± 4.73	$103.90 \pm 1.95*$
Glucose (mg/dL)	128.10±5.53	86.67±4.20 ^{\$}
Insulin (ng/mL)	n.d.	n.d.

Supplemental Table 2. Fasting blood chemistry in the Ad-Fis1 vs Ad-LacZ mouse cohort

C57BL/6J male mice were fed a HFD for 4 weeks starting at 6-week old of age. Data are presented as means \pm SEM. Significance was determined by unpaired, two-tailed Student's *t* test. **p*<0.05, **p*<0.01, **p*<0.001 for Ad-Fis1 vs Ad-LacZ. n.d.: not determined.

	Ad-GFP (n=5)	Ad-Atf5 (n=5)
Body weight (g)	38.58 ± 2.37	37.02 ± 1.97
Triglycerides (mg/dL)	44.73 ± 1.52	$34.57 \pm 1.63^{\#}$
Free fatty acids (mM)	0.64 ± 0.03	0.60 ± 0.04
Total cholesterol (mg/dL)	196.00 ± 17.90	$133.10 \pm 11.90*$
Glucose (mg/dL)	183.20±7.57	158.30±5.18*
Insulin (ng/mL)	1.53 ± 0.31	$0.57 \pm 0.16*$

Supplemental Table 3. Fasting blood chemistry in the Ad-Atf5 vs Ad-GFP mouse cohort

C57BL/6J male mice were fed a HFD for 12 weeks starting at 6-week old of age. Data are presented as means \pm SEM. Significance was determined by unpaired, two-tailed Student's *t* test. **p*<0.05, #*p*<0.01 for Ad-Atf5 vs Ad-GFP.

Supplemental Table 4. Fasting blood chemistry in the monomethyl fumarate (MMF) treatment mouse cohort

	Vehicle (n=5)	MMF (n=5)
Body weight (g)	36.52 ± 1.25	32.72 ± 1.94
Triglycerides (mg/dL)	56.61 ± 16.58	56.22 ± 3.12
Free fatty acids (mM)	0.72 ± 0.06	0.65 ± 0.01
Total cholesterol (mg/dL)	125.50 ± 11.40	117.00 ± 6.50
Glucose (mg/dL)	187.00±13.48	133.50±8.84*
Insulin (ng/mL)	0.55 ± 0.06	0.40 ± 0.08

C57BL/6J male mice were fed a HFD with or without MMF for 6 weeks starting at 12-week old of age. Data are presented as means \pm SEM. Significance was determined by unpaired, two-tailed Student's *t* test. **p*<0.05, MMF vs vehicle.

Туре	Designation	Vender	Catalog#
Antibody	ody		10956-1-
Antibody	Rabbit polyclonal anti-Fis1	Proteintech	AP
Antibody	Rabbit monoclonal anti-Dmn11		
Antibody	(D8H5)	Cell Signaling	5391
Antibody	Rabbit monoclonal anti-Irf3		
Antibody	(D83B9)	Cell Signaling	4302
Antibody	Rabbit polyclonal anti-FLAG	Sigma-Aldrich	F7425
Antibody	Rabbit monoclonal anti-HA		
Antibody	(C29F4)	Cell Signaling	3724
Antibody	Rabbit polyclonal anti-LC3B	Sigma-Aldrich	L7543
Antibody	Rabbit monoclonal anti-Actb		
Antibody	(D6A8)	Cell Signaling	8457
Antibody	Rabbit monoclonal anti-Tubb (9F3)	Cell Signaling	2128
Antibody	Rabbit monoclonal anti-		
Antibody	SQSTM1/p62 (D6M5X)	Cell Signaling	23214
Antibody	GCN2 antibody	Cell Signaling	3302
Antibaday	Rabbit monoclonal Anti-Phospho-		
Antibody	GCN2 (Thr899)(E1V9M)	Cell Signling	94668
A	Rabbit monoclonal anti-Lmnb1		
Antibody	(D9V6H)	Cell Signaling	13435
Antibody	Rabbit monoclonal anti-Sdhb		
Antibody	(EPR10880)	Abcam	175225
Antibody	Mouse monoclonal anti-CHOP		
Antibody	(L63F7)	Cell Signaling	2895
Chemical			
compound	Paraquat	Sigma-Aldrich	856177
Chemical			
compound	Valinomycin	Sigma-Aldrich	V0627
Chemical			
compound	Monomethyl fumarate	Sigma-Aldrich	651419
Chemical	cOmplete TM Protease Inhibitor		11873580
compound	Cocktail	Sigma-Aldrich	00
Chemical		ThermoFisher	
compound	MitoSOX Red superoxide indicator	Scientific	M36008
Chemical		ThermoFisher	
compound MitoReacker Green		Scientific	M7514
Chemical			
compound Seahorse XF24 FluxPak		Agilent	102070-00
Sequence			
based reagent	based reagent Poly I:C (HMW)		Tlrl-pic
Recombinant			
protein	Recombinant mouse IFNβ1	BioLegend	581302

Supplemental Table 5. List of antibodies and reagents

A 1.4	Infinity TM Triglycerides Liquid	ThermoFisher	
Assay Kit	Stable Reagent	Scientific	TR22421
A googy Vit		Fujifilm	
Assay KI	Cholesterol E	Helthcare	999-02601
Accov Vit		Fujifilm	
Assay Kit	HR Series NEFA-HR(2)	Helthcare	999-34691
Assay Kit	Protein Carbonyl Content Assay kit	Abcam	ab126287
Assav kit			23223,
Tissuy Kit	BCA Protein Assay Kit	Pierce	1859078
Assay kit	Clarity Western ECL	BioRad	170-5061
Assav Kit		Meso Scale	K152BZC
110000 1110	Mouse/Rat Insulin Kit	Discovery	-1
Assay kit	Bradford Reagent	BioRad	500-0006
Recombinant	pBABE-puro retroviral expression		1.5.4
DNA reagent	vector (plasmid)	Addgene	1764
Recombinant			100505
DNA reagent	IFN-Beta_pGL3 (plasmid)	Addgene	102597
Liquid	Dulcecco's Modified Eagle's	CODUDIC	10-014-
Medium	Medium, Ig/L glucose	CORNING	CV
Liquid	Dulcecco's Modified Eagle's	CODVIDIC	10-013-
Medium	Medium, 4.5g/L glucose	CORNING	CV
Liquid	FDCC	0.1	141550(2
	EB55	Glbco	14155065
Liquid	Williams' Madium E	Cibaa	12551 022
Medium	AD202 (house an and more high to be	GIDCO	12551-052
Cell Line	AD293 (numan embryonic kidney	Agilant	240085
	Phoonix AMPHO (human kidnov	Agiiciit	240083
Cell Line	enithelial cells)	ATCC	CRI -3213
Cell Line	Hena 1-6 (mouse henatoma cells)	ATCC	CRL-3213
		Jackson	CIXL-1050
Mouse strain	C57BL 6/L	Laboratory	000664
Mouse diet	Rodent diet 20	PicoLab	5053
	Mouse Diet High Fat Fat Calories	TICOLUO	5055
Mouse diet	(60%)	Bio-Serv	F3282
			#ADV-
Adenovirus	Ad-Atf5	Vector BioLab	253209
			#ADV-
Adenovirus	Ad-Dmn11	Vector BioLab	257347
	Ad-shCtl: scrambled shRNA		
Adenovirus	control	Vector BioLab	#1122N
A 1 ·			shADV-
Adenovirus	Ad-shFis1	Vector BioLab	259434
A 1 ·			shADV-
Adenovirus	Ad-shAtf5	Vector BioLab	253209

Other		ThermoFisher	
Other	Verso cDNA synthesis kit	Scientific	AB1453B
Other		Macherey-	
Other	NucleoSpin RNA Plus kit	Nagel	740984
Other			54011190
Other	Liberase TM TM	Sigma-Aldrich	01
Other			17-0891-
Other	Percoll	Sigma-Aldrich	01
Other			GE17-
Other	Ficoll Paque Plus	Sigma-Aldrich	1440-02
Other	TranslT-LT1 Transfection Reagent	Mirus	MIR 2300
Other		Gemini Bio-	
Other	Bovine serum albumin	Products	700-107P
Other	Mouse CD8T Lymphocyte		
Ouller	Enrichment Set	BD	558471
Other	Anti-FLAG M2 affinity Gel	Sigma-Aldrich	A2220

	Gene Forward Sequence		Reverse Sequence	
Hspa5		GACTGCTGAGGCGTATTTGG	AGCATCTTTGGTTGCTTGTCG	
	Irf3	TGCCTCACTCCCAGGAAAAC	GCTTGGCAGTTGTTGAGAAGG	
	Irf7	CTTCCGAGAACTGGAGGAGTTT	CTTGCCCAAAACCCAGGTAGA CTGGGTCACGTTGGATGAGG	
	Acox2	CACCCTGACATAGACAGTGAAAG		
	Mff	CAGTTGGCAGGCTAAAAAGAGA	GCCCTACGAGTAGAAGACTGG	
	Fis1	AGGCTCTAAAGTATGTGCGAGG	GGCCTTATCAATCAGGCGTTC	
	Mfn2	CTTCTCCTCTGTTCCAGTTG	CATCTCGCCAGTTTATATGCAG	
	Atf4	GCCGGTTTAAGTTGTGTGCT	CTGGATTCGAGGAATGTGCT	
	Asns	GAGAAACTCTTCCCAGGCTTTG	CAAGCGTTTCTTGATAGCGTTGT	
	Atf5	TGGGCTGGCTCGTAGACTAT	GTCATCCAATCAGAGAAGCCG	
	Atf6	CGGTCCACAGACTCGTGTTC	GCTGTCGCCATATAAGGAAAGG	
	Tom20	GCCCTCTTCATCGGGTACTG	ACCAAGCTGTATCTCTTCAAGGA	
	Timm8a1	CAGATGACGGAACTTTGCTGG	AAGACGGGTTTGGACTTCTGG	
	Nbr1	AGCTACCTGGAGATGTTCCGA	AATAGGCATTGAGACTTCTGTGG	
	Dlat	CTTTAGCCTCCAAAGCGAGAG	AGATTGTAAATGTTCCACCCTGG	
	Dbt	AGACTGACCTGTGTTCGCTAT	GAGTGACGTGGCTGACTGTA	
	VPS13c	GAAGCTAAAGTAAAAGCCCACGA	ACACATCAGAGGTGTTGACAATG	
	Vps13b	CAGTAAAGAGTCTCACGCTACAG	TGTTCCAGGGATGTCACCAGA	
	Copb1	GCCGAGAACGTGTGCTATAC	GCGAATGATTGTCATCAGGAGTC	
	Сора	ACCAAATTCGAGACGAAGAGC	CCGATAGTCCCATAACTGGATGA	
	Sec23a	TCGAGTCGTCTGGAAGCTACA	AGGTGGAAACTGATTCCTTTGG	
	Snx5	AGGACCGCAGCAAGTTAAGAT	GGGCTCTGAAATGTGGACAGT	
	Lars2	CATAGAGAGGAATTTGCACCCTG	GCCAGTCCTGCTTCATAGAGTTT	
	Sars	CGGGTGGATAAAGGAGGGGA	TGCCCGAAATCTGCATCGTC	
	Rpl2211	CCTGGAGGTTTCATTTGGACC	ACGTAGCCAATCACGGAGATTA	
	Rps20	GAGAAGGTTTGTGCGGACTTG	AAATCAATGAGTCGCTTGTGGA	
	Ddx51	GCTCAAGGGCTCTTTGCTTCA	TGTGCTGATAAGGAGCTGGAT	
	Dhx34	GAATTGTCCAGAGACTCGTTGT	TGGGAGGTCTTGAGGTGCT	
	Eer1	TGGACGGACAGAATACACCAT	CTGCATAGTCAAAATAGGTGGCA	
	Ube2j2	CTTGAATGGCATTATGTTGTCCG	CAGCCTTGTGTGTGCACTTAAATC	
	Dnajb9	TCAGAGCGACAAATCAAAAAGGC	CTATTGGCATCCGAGAGTGTTT	
	Nars	GAGCTGTATGTATCTGACCGAGA	AAATGGTGGGAAATGGCTCTTT	
	Vars	GTCCAGCAGTGGGTCAGTTAT	GCAGCAGTAAGGCTGTCAC	
	Farsb	ATGAAGAGTTTGACGAACTGTGT	GAGGTCGTATCTGTTGGCAGG	
Ho1AAGCCGAGAATGCTGAGTTCAIfitm3CCCCCAAACTACGAAAGAATCAIfit2AGTACAACGAGTAAGGAGTCACT		AAGCCGAGAATGCTGAGTTCA	GCCGTGTAGATATGGTACAAGGA	
		CCCCCAAACTACGAAAGAATCA	ACCATCTTCCGATCCCTAGAC	
		AGTACAACGAGTAAGGAGTCACT	AGGCCAGTATGTTGCACATGG	
	lfitl	CTGAGATGTCACTTCACATGGAA	GTGCATCCCCAATGGGTTCT	
	Aox1	GAGGAAGAATCTCCGACTCACA	TGGTGACTGCTGTACCATGTAG	
	Mthtd2	AGTGCGAAATGAAGCCGTTG	GACTGGCGGGGATTGTCACC	
	Mthfd11	GCATGGCCTTACCCTTCAGAT	GTACGAGCTTCCCCAGATTGA	
	Aldh1l2	ACCAGCCGGGTTTATTTCAAA	ACTCCCACTACTCGGTGGC	

Supplemental Table 6. List of primer sequences used for RT-qPCR

Shmt2	TGGCAAGAGATACTACGGAGG	GCAGGTCCAACCCCATGAT	
Ifit3	ATGAGTGAGGTCAACCGGGAAT	CATTGTTGCCTTCTCCTCAGAG	
Ddx58	AAGAGCCAGAGTGTCAGAATCT	AGCTCCAGTTGGTAATTTCTTGG	
Dhx58	CAACACCATCTTGAGCCGGTA	AATTCGCACAAAGCTGTAGGA	
Zbp1	TCAGGAAGGCCAAGACATAGCT	TCTGGATGGCGTTTGAATTGG	
Usp18	TTGGGCTCCTGAGGAAACC	CGATGTTGTGTAAACCAACCAGA	
Ifnb1	CAGCTCCAAGAAAGGACGAAC	GGCAGTGTAACTCTTCTGCAT	
Ifna4	TGATGAGCTACTACTGGTCAGC	GATCTCTTAGCACAAGGATGGC	
Tlr3	CCTCCAACTGTCTACCAGTTCC	GCCTGGCATAGTTATTGTGC	
Cd4	TGCCCCCACCGGATGCAGAA	CAGGTGGTGGGCTGCAGGTG	
Cd8	TGCAAATGTCCCAGGCCGCT	TGTAGCTTCCTGGCGGTGCC	
F4/80	CTTTGGCTATGGGCTTCCAGTC	GCAAGGAGGACAGAGTTTATCGTG	
Ifi44	CCTGGTTCAGCAAACACGAGT	TGGCCTTGATGGAATATGTCCT	
36b4	AGATGCAGCAGATCCGCAT	GTTCTTGCCCATCAGCACC	

Cohort info	Cohorts/	Age	Gender	Animal	Figures
	repeats*				
NC & 8W-HFD	2	14-week-old	Male	4/group	1B-1D, S1A
ZT2 & ZT14					
NC & 12W-HFD	2	18-week-old	Male	5/group	S1B, S1C
24 hours fasted or 19	2	8-week-old	Male	3/group	1A
hours fasted/5 hours refed					
4W-HFD	2	9-week-old	Male	7/group	2A-2E, S3H
Ad-Lacz or Ad-Fis1					
infected					
12W-HFD	1	18-week-old	Male	6/group	2F-2H, 4C
Ad-GFP or Ad-Fis1					
infected					
4W-HFD	2	9-week-old	Male	5/group	S2A, S2B, S2D,
Ad-shCtl or Ad-shFis1					S2E, S3I
infected					
11W-HFD	2	17-week-old	Male	6/group	6A-6E
Ad-GFP or Ad-Atf5					
infected					
8W-HFD	2	15-week-old	Male	2/group	S6A, S6B
Ad-GFP or Ad-Fis1 or					
Ad-Atf5 infected					
6-week-HFD, 45mg MMF	2	18-week-old	Male	5/group	6F
per Kg body weight					

Supplemental Table 7. Description of animal cohorts

*For experiments performed in two cohorts, data from one of the two were presented. Similar results were observed between two experiments. NC: normal chow; HFD: high fat diet.

Supplemental Dataset 1 (separated file). List of differentially expressed genes (FDR<0.001) identified by RNA-seq comparing Ad-Fis1 vs Ad-LacZ infected primary hepatocytes.

Supplemental Dataset 2 (separated file). List of differentially accumulated metabolites (p < 0.05) comparing Ad-Fis1 vs Ad-LacZ infected primary hepatocytes.

Supplemental Dataset 3 (separate file). List of transcription factors identified by Homer analysis of up- or down-regulated genes (Ad-Fis1 vs Ad-LacZ) identified by RNA-seq.