Neuron, Volume 101

Supplemental Information

A Selectivity Filter Gate Controls

Voltage-Gated Calcium Channel

Calcium-Dependent Inactivation

Fayal Abderemane-Ali, Felix Findeisen, Nathan D. Rossen, and Daniel L. Minor Jr.

Supplementary material for

A selectivity filter gate controls voltage-gated calcium channel calcium-dependent inactivation

Fayal Abderemane-Ali¹, Felix Findeisen¹, Nathan D. Rossen¹, and Daniel L. Minor, Jr.^{1-5**†}

¹Cardiovascular Research Institute
²Departments of Biochemistry and Biophysics, and Cellular and Molecular Pharmacology
³California Institute for Quantitative Biomedical Research
⁴Kavli Institute for Fundamental Neuroscience
University of California, San Francisco, California 93858-2330 USA

⁵Molecular Biophysics and Integrated Bio-imaging Division

Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA

*Correspondence to: daniel.minor@ucsf.edu

[†]Lead contact

Figure S1 Exemplar Ca²⁺ currents for Ca_V1.2, Ca_V1.3, Ca_V2.1, and mutants co-expressed with Ca_V β_{2a} . Related to Figures 1, 2, and 4. Exemplar traces recorded in A, *Xenopus* oocytes expressing Ca_V1.2 or the indicated mutants, B, HEK 293 cells expressing Cav1.2 or the indicated mutants, C, HEK 293 cells expressing Ca_V1.3 or the indicated mutants, and D, HEK 293 cells expressing Ca_V2.1 or the indicated mutants. Currents were evoked using a multi-step activation protocol (insets).

Figure S2 SFII (+1) mutants do not dramatically reduce Ca_V selectivity properties. Related to Figures 1, 2, and 4. A, Exemplar recordings at +20 mV in Ca²⁺ (black) or Ba²⁺ (grey) from *Xenopus* oocytes expressing Ca_V1.2 or indicated mutants, **B**, from HEK293 cells expressing Ca_V1.2 or indicated mutants, **C**, from HEK293 cells expressing Ca_V1.3 or indicated mutants, and **D**, HEK293 cells expressing Ca_V2.1 or indicated mutants. Right panels represent averaged values of ratios between Ba²⁺ and Ca²⁺ peak current amplitude at +20 mV or Ca_V1.2 and Ca_V1.3 or at +10 mV for Ca_V2.1. '*' indicates p<0.01, '**' indicates p<0.001, and 'N.S.' indicates 'not statistically significant' compared to wild-type channels. n values for all bar graphs are in Table 1. All recordings were made with Ca_Vβ_{2a}.

Figure S3 Ca_v1.2 selectivity filter mutations affect CDI independently of Ca_v\beta. Related to Figure 1. A, Exemplar raw traces recorded at +20 mV in Ca²⁺ (black) or Ba²⁺ (grey) from *Xenopus* **oocytes expressing Ca_v1.2 or the indicated mutants with Ca_v\beta_3. B**, Normalized traces from 'A'. **C**, Ratio of normalized I_{Ca}/I_{Ba} currents (net CDI, (Barrett and Tsien, 2008; Findeisen and Minor, 2009)) showing average plots ± s.e.m. **D**, net CDI 300-ms post-depolarization. '*' indicates p<0.01 and '**' indicates p<0.001 compared to Cav1.2. n = 5-10.

Figure S4 DII (+1) aspartate mutations affecting CDI spare VDI. Related to Figure 1. A, Exemplar two electrode voltage clamp recordings at +20 mV from *Xenopus* oocytes expressing Ca_V1.2 (black), Ca_V1.2 D707A (grey), Cav1.2 D707E (light blue), or Cav1.2 D707N (orange) with Ca_Vβ₃. **B**, τ inactivation (τ_{inact}) for '**A**'. n = 6-15. **C**, Exemplar two electrode voltage clamp recordings at +20 mV from *Xenopus* oocytes expressing Ca_V1.2 (black), Ca_V1.2 D707A (grey), Cav1.2 D707A (grey), Cav1.2 D707A (grey), Cav1.2 D367A (green), Cav1.2 E1119A (blue), or Cav1.2 D1420A (pink) with Ca_Vβ₃. **D**, τ inactivation (τ_{inact}) for '**C**'. n = 9-19. '*' indicates p<0.001, and 'N.S.' indicates 'not statistically significant' compared to Ca_V1.2. **E**, Voltage-dependent inactivation curves representing channel availability after a steady-state inactivation at the indicated potentials.

Figure S5 SF (+4) mutations affecting VDI spare CDI. Related to Figure 1. A, Exemplar traces recorded in *Xenopus* oocytes co-expressing Ca_V1.2, Ca_V1.2 E1119A, or Cav1.2 D1420A with Cav β_{2a} in response to the indicated protocol. **B**, Exemplar normalized recordings at +20 mV in Ca²⁺ (black) or Ba²⁺ (grey) from *Xenopus* oocytes expressing Ca_V1.2, Ca_V1.2 E1119A, or Cav1.2 D1420A. **C**, Fractional current remaining 300 ms post-depolarization (R₃₀₀) as a function of the membrane potential for channels in '**B**'. **D**, Average fraction CDI (f) at +20 mV. 'N.S.' indicates 'not statistically significant'. n values are found in Table 1. **E**, Voltage-dependent activation curves for Ca_V1.2 (black circles), Ca_V1.2 E1119A (blue triangles), and Cav1.2 D1420A (red inverted triangles). **F**, I-V relationships for the indicated channels. Symbols are the same as '**E**'.

Figure S6 Ca_v1.2 CDI requires a negative charge at +1 position on DII, DIII, or DIV, not DI, regardless of the amount of Ca²⁺ influx. Related to Figures 3 and 5. A, Exemplar Ca²⁺ currents in response to a +20 mV depolarization from *Xenopus* oocytes, co-expressing Ca_v1.2 or the indicated mutants with Cav β_{2a} in the absence (black) or presence of 5 μ M Bay K8644 (blue). Raw traces (upper panels) and normalized traces (lower panels) are shown to illustrate Bay K8644 effects on both the peak current and inactivation, respectively. **B**, Exemplar normalized Ba²⁺ currents from *Xenopus* oocytes expressing Ca_v1.2 or the indicated mutants, in response to a +20 mV depolarization in absence (black) or in presence of 5 μ M Bay K8644 (blue). **C**, Ratio of Ca²⁺ current amplitudes in presence, I_{Ca}(BayK), and in absence, I_{Ca}, of Bay K8644. 'N.S.' indicates not statistically different. n = 4-7. **D** and **E**, Percentage of inactivation 300 ms post-depolarization (t_{i300}) in the absence (dark bars) and presence of Bay K8644 (light bars) on recordings performed using **D**, Ca²⁺, or **E**, Ba²⁺ as the charge carrier. '*' indicates p<0.01 and '**' indicates p<0.01. n= 6-11. **F**, Difference in t_{i300} induced by Bay K8644 in Ca²⁺(dark bars) and Ba²⁺ (light bars).