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Nomenclature. When numbering the six phenols, we followed the conventions in the PDB

file. This differs from the numbering convention in ref. 1, which instead assigns phenols 1,

2, and 3 to the “top” trimer, and phenols 4, 5, and 6 to the “bottom” trimer. Furthermore,

our nomencalutre for protein chains also differs from ref. 1. In particular, for WT insulin, we

choose the nomenclature such that both the A and B chain belong to the insulin monomer

closest to phenol 4, which we use to study the phenol unbinding process for WT insulin.

From there, the naming trends are identical to the PDB/literature naming convention, with

chains ranging from A to L - only the starting point (which chain we designate as A) is

shifted. For the mutant systems, we simulate the release of phenol 2, instead of phenol 4.

For these systems, then, we followed a similar convention, and denote the monomer closest

to phenol 2 as having the A and B chains.

Selecting starting structures for unbiased simulations. To ensure sampling in all

areas of our CV space even with relatively short trajectories (40 ns), we initialize the unbiased

simulations as follows. We first run a large number of adiabatic-bias molecular dynamics

(ABMD) simulations to bias the system toward phenol release, as discussed in the main text.

We then define a grid of 10 × 10 × 10 points that covers the sampled regions and find the

single frame from our driven database closest to each point (Figure S1). Although there are

1000 grid points, the same structure can be the closest to more than one grid point. In the

WT case, we obtain 326 unique structures.

DGA details. DGA requires the use of a basis set. We used a basis set of 298 modified

pairwise distances and one constant function as described in the main text. A summary of

the distances is given in Table S1. For categories involving the phenol, we measure distances

from both C1 and C4; thus there are 2 × 22 = 44 distances to the Cα atoms of the 22

residues in the binding pocket and 2× 4 = 8 distances to the Cα atoms of the 4 gatekeeper

residues for PW1 and PW4. The PW3 gatekeeper residues in Table S1 are A2, A19, and B25.
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Figure S1: A schematic showing how we chose unique starting structures for the unbiased sampling. (A)
3D representation in the space of NA10, NA13, and RMSPP. Data from our ABMD database is shown by the
black dots, and our desired starting points are shown by the red squares. (B) A two-dimensional slice of (A),
more clearly showing the r and θ dependence of our desired starting points. (C) A schematic illustrating
how we select the closest structures to each desired point. The frame from the ABMD data set closest to
each desired starting point is represented by the orange X. For clarity, we only display six desired starting
points that lead to five unique starting structures.

Table S1: Description and number of pairwise distances used as inputs to make our DGA
basis functions. Note that to make the eventual 299-dimensional set of basis functions, we
also include the constant function.

Type of Distance Number
Phenol C1/C4 atoms to Binding Pocket Cα atoms 44
Binding Pocket Cα atoms to Binding Pocket Cα atoms 231
Phenol C1/C4 atoms to PW1/PW4 gatekeeper Cγ atoms 8
PW1/PW4 Cγ atoms to PW1/PW4 gatekeeper Cγ atoms 6
Phenol C1/C4 atoms to PW3 gatekeeper Cα atoms 6
PW3 gatekeeper Cα atoms to PW3 gatekeeper Cα atoms 3
Total 298

In this work, we modified the guess functions ψbinding(x) and ψunbinding(x) from their

definitions in ref. 2, so ψbinding(x) = 1− ψunbinding(x):

ψbinding(x) =
d2unbound

d2bound + d2unbound
(1)

ψunbinding(x) =
d2bound

d2bound + d2unbound
(2)

These choices ensure that qunbinding = 1−qbinding. Above, dbound and dunbound are the smallest

Euclidean distances in the 298-dimensional space of pairwise distances ( Table S1) from any

point in the reactive domain (i.e., outside the bound and unbound states) in the data set to
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any point in the bound and unbound states, respectively.

Since DGA does not enforce the fact that committors are probabilities and thus must

be between zero and one, it produces estimates between –0.2 and 1.2. We shift those below

zero to zero and those above one to one before using them for further analysis (plotting and

reactive current calculations).

In addition, one of the essential parameters for DGA is the lag time2 (see also refs. 3

and 4). We calculated statistics for lag times ranging from 10 ps to 10 ns. For WT insulin,

we found that the qunbind = 0.5 surface was approximately constant as the lag time changed

from 500 ps to 5 ns. For the mutant simulations, this was only the case for lag times greater

than 1.25 ns. Similar behavior was observed for the relative weights of the six pathways

(Figure S2).

Figure S2: The relative weight of the six identified pathways as a function of lag time for (A) WT insulin,
(B) A10 Ile → Val insulin, and (C) B13 Glu → Gln insulin.

Cooperativity of phenol release. We examined whether there was evidence in our

ABMD simulations of positive intra-trimer cooperativity and negative inter-trimer coop-

erativity for phenolic binding, as suggested by stopped-flow spectroscopy5 and isothermal

titrating calorimetry.6 In addition to the 276 simulations described in the main text, which

favored increasing the distance dn (1 ≤ n ≤ 6) between each phenol and the closest bound

zinc ion, we also performed 140 simulations that instead favored decreasing the number of

non-hydrogen contacts between the protein and each phenol. 10 simulations (each of length
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5 ns) were run for each of 14 force constants evenly spaced between 3 × 10−9 to 16 × 10−9

kJ/mol. In general, fewer phenols were released, and none of the 140 simulations led to

dissociation of all six phenols, compared to 77/276 for the simulations biasing on dn.

Plots summarizing the sequences of release for the ABMD simulations are shown in

Figure S3. For clarity, transitions observed in less than 10% of each set of simulations are

not drawn. For both sets of simulations, the most common sequence of release is phenol 4,

followed by phenol 6 (both in the same trimer, here labeled trimer 1). For the simulations

biasing on the number of non-hydrogen contacts between phenol and protein (Figure S3B),

the next most likely release is that of phenol 2, also in trimer 1. For the simulations biasing

of the distance between the phenol and the nearest bound zinc, the most likely third release

is either phenol 2 or phenol 1, which is in trimer 2. These data support the existence of

negative inter-trimer cooperativity, as the phenols in trimer 1 are preferentially released over

the phenols in trimer 2. Because we do not see any large-scale motions that correlate with

the sequence of release, we presume that the cooperativity in the simulations reflects subtle

differences between the two trimers in the starting structure, but which differences are most

important is not apparent.

Figure S3: The sequence of phenol release for the ABMD simulations biasing on (A) the distance between
each phenol and the closest bound zinc, and (B) the number of non-hydrogen contacts between phenol and
protein. Phenols bound to trimer 1 and trimer 2 are represented by the blue and red circles, respectively.
The size of an arrow represents the relative weight of the indicated transition. (C) The hexamer, colored as
in (A) and (B), with phenols labeled.
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Figure S4: Averages of observables, taken from our unbiased data set, associated with different aspects of
channel opening, and projected using NPW1, NPW4, and NPW3. The star, circle, square, and triangle mark
the same landmarks as in Figures 2 and 3 in the main text. (A) The average of dPW1 (left) and dPW4 (right)
as a function of NPW1 and NPW4, with contours shown every 0.1 Å. (B) The average of NHP, with contours
from the WT insulin PMF overlaid. (C) The average of Ahel as a function of NPW1 and NPW4 (left) and as a
scatter plot in the space of NPW1, NPW4, and qunbinding (middle). A structural representation of the melted
C-terminal A-chain α helix (red) along PW3 (triangle) is shown in the right panel. Gatekeeper residues are
shown as in the main text.

Channel opening analysis. Using our unbiased data, we can characterize channel open-

ing by describing dPW1 and dPW4, the distances between the α carbons of the gatekeeper

residues along PW1 and PW4, respectively (Figure S4A). We also calculate NHP, the two-

step rolling average of the number of hydrogen bonds between the phenol and both the

backbone carbonyl of CysA6 and the backbone amide NH of CysA11 (Figure S4B). Finally,

we calculate Ahel, the helicity of the C-terminal A-chain α helix, A13-A21 (Figure S4C).

This is the effective number of six-residue segments in the selection in an idealized α helical

conformation, based on RMSD;7 a value of four corresponds to a fully structured C-terminal

α helix, while a value of zero corresponds to a fully melted helix.

To further probe the stability of the phenolic escape channel, normal mode analysis was
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performed on the crystal structure of the WT hexamer. We used WebNMA 3.3,8 which

creates an elastic network model from all of the α carbons in a protein, and solves for the

normal modes of this oscillator system. The normalized squared displacements of these α

carbons for the four lowest modes (excluding the translational/rotational modes and any

identical modes due to the symmetry of the system) are shown in Figure S5, where the

displacements have been averaged across all 6 monomers to provide a representative set of

displacements.

The areas of highest flexibility for the dominant normal modes correlate well with the

A-chain α helices and the B-chain β turn, shown in gray on the left and right, respectively.

The spikes at B1 and B31 are attributed to the large flexibility of terminal residues. These

data suggest an area of flexibility between the A chains and adjacent B-chain β turns in the

hexameric structure, the same area that forms the phenolic binding pocket/escape channel.

Figure S5: Squared displacements from normal mode analysis, where each mode has been normalized so
that the sum of the displacements equals 100. The displacements are averaged across the six monomers.
The gray areas mark relevant secondary structure elements: the N and C terminal α A-chain helices, A1-A9
and A13-21, respectively, and the B-chain β turn, B18-B22.

Comparing the REUS PMF and the DGA PMF. To validate the PMF generated

by DGA, we ran Replica Exchange Umbrella Sampling (REUS) simulations and used them

to compute an independent PMF. To generate starting structures for the REUS, we first

created a 20× 20 evenly spaced grid in the cylindrical space of (r, θ), where NPW1 = r cos θ

and NPW4 = r sin θ. Structures closest to each one of these grid points were drawn from our
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unbiased simulation database and used to initialize the windows. Harmonic biases were then

placed on NPW1 and NPW4, with window strengths, k, set by applying eq. 4 in ref. 9, with

a maximum possible k = 3 kJ/mol. The simulation and 2D exchange procedure of ref. 9

was also followed, simulating for a total of 2 ns per window, for an aggregate sampling time

of 800 ns. The PMF was constructed from this sampling using the Eigenvector Method for

Umbrella Sampling (EMUS)10 extended to replica exchange data.9 The resulting PMF and

related statistics are shown in Figure S6.

Figure S6: Comparison of PMFs generated using REUS and DGA. (A) DGA and (B) REUS PMFs with
contours shown every 1 kBT . (C) The difference of the two PMFs , subtracting (A) from (B), with contours
from the DGA PMF superimposed to guide the eye. (D) The asymptotic variance of the REUS PMF.

The qualitative features of the DGA and REUS PMFs are quite similar, including stable

and metastable basin positions. Relative to the REUS PMF, the DGA PMF appears to
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overestimate the free energy of the bound state by approximately 2 kBT and to underestimate

the free energy in the upper left corner of the PMF (along PW4) by approximately 1-2 kBT .

However, we take the overall agreement to be an indication that our sampling is sufficient.

Figure S7: The PMF in the space of NPW1, NPW4, and qunbind, shown at indicated slices of qunbind.
Contours spacing is 1 kBT . The minimum free energies for the panels in the first row (q = 0 to q = 0.15)
are 4.0, 5.7, 7.0, and 8.2 kBT , from left to right.

We also projected the DGA-generated PMF into the space of NPW1, NPW4, and qunbind

as discussed in the main text. This PMF is shown for multiple different slices of qunbind in

Figure S7. In this representation, the free energy barrier for PW4 is the same as for the

2D projection (approximately 5-6 kBT ). In contrast, the free energy barrier for PW1 is

somewhat higher (6-8 kBT in the 3D case compared with 4-5 kBT in the 2D case). This is

not unexpected, as the 3D projection allows us to more easily separate PW1 from PW1a,

and from the area of the PMF associated with the (energetically stable) HisF5 ring flip in

the bound state. Despite these minor differences, we conclude that the free energy barriers

for PW1 and PW4 are comparable.
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Figure S8: The committor and other statistics projected into three dimensions. (A) The unbinding
committor qunbind projected into the space of NPW1, NPW4, and NPW3. The qunbind = 0.5 transition state
ensemble is highlighted by the black arcs. The large arc near NPW3 ≈ 80−100 corresponds to the transition
state along PW3. The two small arcs near NPW1 ≈ 60 and NPW4 ≈ 60 correspond to the transition states
along PW1 and PW4, respectively. (B) The value of NPW3 projected into NPW1, NPW4 ,and qunbinding. (C)
The value of RMSDP projected into the same space as (B).

Describing PW3 in 3D CV space. To help determine the transition state ensemble

for PW3, we projected the unbinding committor qunbind onto the space of NPW1, NPW4, and

NPW3 (Figure S8). This shows that the qunbind = 0.5 surface occurs where NPW3 ≈ 80− 100,

the maximum value NPW3 obtains along PW3. This is in contrast to the transition states

along PW1 and PW4, which occur when NPW1 ≈ 60 or NPW4 ≈ 60. These states correspond

to phenol having already partially escaped from the crystallographic binding pocket, which

occurs once the number of contacts with the corresponding gatekeeper residues have begun to

decrease. In contrast, along PW3, the phenol has to push through a sterically occluded region

of the A chain to reach the gatekeeper residues, meaning that the phenol has already partially

escaped the binding pocket by the time it reaches them. Thus, despite the seemingly different

locations of the qunbind = 0.5 surface along PW1, PW3, and PW4, all of the transition states

exist once the phenol has partially escaped from the binding pocket.

Furthermore, the projection of NPW3 into the space of NPW1, NPW4, and qunbinding (Figure

S8) shows where this region of large NPW3 occurs in the projection used in the main text,

further verifying the pathway definitions described there. Similarly, RMSDP projected onto

the same space shows that the areas of elevated RMSDP correspond to PW1a, PW4a, and

PW3, with the highest values corresponding to PW3. This is consistent with both the

channel opening (along PW1a and PW4a) and the melting of the A-chain C-terminal α
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helix (along PW3) previously noted.

Choice of the dividing surface. For measuring the relative weights of different binding

pathways, one needs to introduce a dividing surface between the bound and unbound states,

and to partition that surface into patches corresponding to different pathways. The relative

weight of each specific pathway is the sum of the current flowing normal through its patch on

the surface, normalized by the total amount of current flowing normal to the full surface. The

binding current, Jbind, was calculated with a lag time of 500 ps in the space of NPW1, NPW4,

and qbind. This was binned into a 50×50×50 uniform grid, covering 0 ≤ NPW1, NPW4 ≤ 100,

and 0 ≤ qbind ≤ 1. After binning in this CV space, the results were smoothed with a Gaussian

filter, using a kernel with standard deviation of 4 bins.

We chose to use the binding statistics (Jbind and qbind) to determine the relative weights of

the six pathways, instead of using the unbinding statistics (Junbind and qunbind) as in the rest

of our analysis. In the limit of infinite sampling, one would expect the binding and unbinding

statistics to mirror each other exactly, as the dynamics are reversible. However, we found

that finite sampling led to small but noticeable differences in the reactive currents (Jbind and

Junbind) that made the determination of the six pathways from Junbind more difficult (Figure

S9). In particular, the area of high reactive current along the NPW4 axis is much more diffuse

in Figure S9B than Figure S9A, as PW4 and PW4a blur together when using the unbinding

statistics. While slightly less visible due to the color scale, a similar blurring occurs for PW1

and PW1a when using the unbinding statistics instead of the binding statistics.

We use a plane of constant qbind as the dividing surface. Based on visual inspection of

Figure S10, we determined that qbind = 0.63 provided the best separation of the pathways.

We used it to define the patches for both WT and mutant insulins as follows:

• PW4: NPW4 > 66

• PW1: NPW1 > 64 and not the above

• PW4a: NPW4 > 32 and not any of the above
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Figure S9: Comparison of reactive currents for the unbinding and binding directions. In each case, we show
the dividing surface that best separates the six pathways. (A) The qbind component of Jbind at qbind = 0.67.
(B) The qunbind component of Junbind at qunbind = 0.33.

• PW1a: NPW1 > 40 and not any of the above

• PW3: NPW1 < 20 and NPW4 < 16

• PW2: None of the above

These choices are consistent with our ABMD simulations as well. Using these patches, we

calculated the relative weights of different pathways as a function of the value of qbind, shown

in Figure S11. Over the range of qbind values shown, we find the results to be insensitive to

the specific choice of dividing surface.

Table S2: The relative weights for phenol unbinding along our six identified pathways,
measured after removing trajectories along the described pathways.

Data set PW1 (%) PW1a (%) PW2 (%) PW3 (%) PW4 (%) PW4a (%)
Full 692 trajectories 11.2 11.2 16.3 12.6 13.7 35.0
-25 PW1 11.3 9.7 16.6 13.2 13.9 35.2
-50 PW1 9.7 9.7 17.0 13.3 13.9 36.2
-25 PW4 10.7 11.6 15.9 13.1 14.1 34.5
-50 PW4 11.3 11.3 16.6 13.1 13.1 34.7

To probe the robustness of these relative weights, we measured them as we varied the

sampling distribution. In particular, we identified 50 trajectories from our unbiased data set

(692 total trajectories) which started along PW1/PW1a, and we identified a similar set of
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Figure S10: The qbind component of Jbind at various different slices of qbind.

50 trajectories that started along PW4/PW4a. We removed some of these trajectories and

re-measured the relative weights for phenol unbinding along each of our six pathways (Sup-

plemental Table S2). As we remove trajectories, from either PW1/PW1a or PW4/PW4a,

the relative weights of the six observed pathways change very little (with all changes being

≤ 1.5%). This provides evidence that our sampling is robust enough to converge the relative

weight estimates from DGA.

Mutant simulation details. In addition to that for the wildtype protein, we constructed

models for two hexamers with one point mutation each (A10 Ile→ Val, B13 Glu→ Gln). In
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Figure S11: The relative weights for the six identified pathways as a function of the value of qbind for the
dividing surface.

each case, we used CHARMM-GUI (version 3.2) to modify the 1ZNJ crystal structure at the

six sites that differed in sequence and then solvated the system following a similar procedure

to that described for WT. Below, we will comment on any differences between the workflow

described in the main text and the workflow we followed for each of these mutants.

For the A10 Ile → Val mutant, 54 K+ and 44 Cl− additional ions were aded to achieve

a neutral 150 mM KCl solution, for a total of 51,060 atoms. ABMD simulations were used

only to generate initial structures for the unbiased simulations. 140 ABMD simulations

of 5 ns each were originally run: 28 simulations for each of five force constants between

k = 6 and k = 14 kJ / (mol nm). For two of these simulations, the binding pocket, which

was open after we solvated the system, was observed to close. From each of these closed

structures, 16 additional ABMD simulations were run at all five of the previously described

force constants, plus k = 16 and k = 18 kJ / (mol/nm), as stronger force constants were

needed to encourage dissociation once the channel had been closed. Finally, supplemental

ABMD trajectories (28 at k = 6 and 28 at k = 14 kJ / (mol nm)) were run from one existing

trajectory that sampled PW3 as identified by ref. 1. In total, this driven data set thus
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consisted of 28× 5 + 32× 7 + 28× 2 = 420 trajectories, each of length 5 ns.

The grid in the cylindrical space of our CVs (again with NA10 = r cos θ, NA13 = r sin θ,

and RMSDP) was changed to a 13×13×10 grid in (r, θ, RMSDP) space, in order to generate

a similar number of unbiased simulations as we did previously; 356 unique structures were

selected from the ABMD database. From each of these points, two 40 ns simulations were

launched. To further sample PW3, as before, 20 structures from that pathway were identified

from the ABMD database, and from each of those structures, two 40 ns simulations were

launched. Thus, this unbiased data set consisted of 752 simulations, each of length 40 ns,

for an aggregate simulation time of 30.08 µs.

For the B13 Glu→ Gln mutant, 47 K+ and 47 Cl− additional ions were added to achieve

a neutral 150 mM KCl solution, for a total of 51,196 atoms. Since the mutated glutamine

residues could form a series of hydrogen bonds with one another, PyMOL 2.3.011 was used

to individually rotate each side chain to flip the carbonyl and amine groups, creating 26 = 64

different conformations. We used the steepest descent algorithm to minimize the energy of

each of these conformations until the maximum force felt by the system was below 1000

kJ/mol nm. The lowest energy conformation was selected for all further simulations of this

mutant.

To generate initial structures for the unbiased simulations, 140 ABMD simulations of 5 ns

each were originally run: 28 simulations for each of five force constants between k = 15 and

k = 23 kJ / (mol nm). From these simulations, four structures were chosen that exhibited

channel opening. For each of these structures, 40 additional ABMD simulations were run at

k = 23 kJ / (mol nm), for a total of 28 × 5 + 40 × 4 = 300 trajectories, each of length 5

ns. We used a 15× 15× 10 grid in (r, θ, z) space to select 331 unique starting structures. In

addition, 24 structures were chosen from the ABMD database that exhibited phenol release

along PW3. From each of these 355 structures, two unbiased simulations of length 40 ns

were launched, leading to a database of 710 trajectories (aggregate length 28.4 µs).
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Unimolecular and bimolecular rate constant estimates. The results for unimolec-

ular rates/equilibrium constants are presented as a function of lag time in Figure S12. To

calculate the bimolecular association rate, we must account for diffusion. To do this, we

adapt the approach of McCammon and coworkers.12 We define two distances b and c (b < c),

each measured from the center of mass of the two central Zn2+ ions. The distance b should

be large enough that interactions between the phenol and hexamer can be considered cen-

trosymmetric; based on our definition of the unbound state in the main text (NPW1 < 2,

NPW4 < 2, and NProt < 5), we set b to be 3.3 nm. The distance c was set to 5.3 nm, similar

to previous simulations.13 For the statistics in this section, we redefine the unbound state

to be the center of mass of the phenol at radii larger than c. The probability of diffusing

from a sphere of radius c to a sphere of radius b is Ω = b/c.14 Using this, the association

rate constant is k′bind = 4πDbp, where D is the diffusion constant and p is the probability of

ultimately binding once the phenol first reaches a distance b. Adapting results from ref. 12,

this quantity can be calculated from DGA using the relation:

p =
q′bind

1− Ω(1− q′bind)
, (3)

where q′bind is the binding committor with the bound state defined as in the main text and the

unbound state defined as above. The factor p can also be used to correct the dissociation

rate for re-binding: k′unbind = k′DGA(1 − Ωp), where k′DGA is the unimolecular unbinding

rate constant computed by DGA with the bound state as defined in the main text and the

unbound state defined as above. Note that q′bind and k′unbind differ from qbind and kunbind in

the main text owing to the redefinition of the unbound state.

The diffusion constant was calculated as a sum of the self-diffusion constants for the

phenol and the hexamer determined separately, D = Dphenol + Dhexamer. The phenol was

solvated and equilibrated using the same procedures as described for the full hexamer in the

main text: the total number of atoms was 48,453, including 46 K+ and 46 Cl− ions. The
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Figure S12: Unimolecular rate constants and their ratio at a range of DGA lag times for WT insulin and
the two mutants, IleA10 → ValA10 (A10 in the legend) and GluB13 → GlnB13 (B13 in the legend). We show
the inverse unbinding rate constant, k−1unbinding (A), the inverse binding rate constant k−1binding (B), and their
ratio K = kunbinding/kbinding (C).

Figure S13: Bimolecular rate constant estimates as functions of DGA lag times for WT insulin and the
two mutants, IleA10 → ValA10 (A10 in the legend) and GluB13 → GlnB13 (B13 in the legend). We show (A)
the inverse unbinding rate constant, 1/k′unbind, (B) the inverse binding rate constant 1/k′bind, and (C) the
dissociation constant, KD = k′unbind/k

′
bind.

box size was (7.839 nm)3. Both diffusion constants were determined by measuring the slope

of the mean squared displacement of the center of mass of the relevant species, once it had

achieved linearity. For this, the phenol was simulated for 20 ns at 303.15 K, and Dphenol

was 2.7× 10−5 cm2/s. The diffusion constant Dhexamer was measured for each insulin species

(WT, A10 Ile → Val, and B13 Glu → Gln) by analyzing a 40 ns trajectory with all six

phenols bound, and DWT, DA10, and DB13 were 4 × 10−7, 1 × 10−7, and 2 × 10−7 cm2/s,

respectively.

The bimolecular results are presented as a function of lag time in Figure S13, and for two

representative lag times (as in the main text) in Table S3. The results are in good agreement
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with measured values15 given expected sources of error. First, the choice of b is likely too

short for orientational effects to be negligible, which will tend to increase p. Second, diffusion

in TIP3P water at 298 K is known to be a factor of 2.45 too high.16 Third, both k′bind and

k′unbind are products, compounding statistical uncertainties. Fourth, the experiments were

performed with Co2+ and p-aminobenzoate as bound ligands, instead of Zn2+ and Cl− as in

these simulations.

Table S3: Bimolecular rate constant estimates: The inverse unbinding rate constant,
1/k′unbind, the inverse binding rate constant 1/k′bind, and the dissociation constant, KD =
k′unbind/k

′
bind. Ranges derive from taking lag times between 500 ps and 1.25 ns.

Statistic WT A10 B13
1/k′unbinding (µs) 0.22 - 0.25 0.36 - 0.63 0.44 - 0.70
1/k′binding (µs M) 1.5 - 1.5× 10−5 1.5 - 1.6× 10−5 1.5 - 1.5× 10−5

KD (M) 6.0 - 6.8× 10−5 1.5 - 2.6× 10−5 3.5 - 2.2× 10−5

KD experiment (M)15 18× 10−5 N/A 25× 10−5

Mutant DGA parameter choices. To the greatest extent possible, we used the same

simulation parameters for DGA for WT and mutant insulins. Differences were as follows.

For the A10 Ile → Val mutant, the bound state was redefined to reflect the means and

standard deviations of NPW1, NPW4, and RMSDP in a 10 ns equilibrium simulation of the

mutated structure with a closed channel. The means were 52.3, 29.8, and 0.076 Å, and the

standard deviations were 5.18, 4.03, and 0.014 Å.

Comparing the PMFs for WT insulin and B13 Glu → Gln insulin, the most stable basin

moves to where HisF5 is flipped inward, facing the phenol (Figure S14). As a result, the

bound state shifted; the corresponding CV means were 77.3, 26.6, and 0.096 Å, and the

CV standard deviations were 5.92, 4.40, and 0.016 Å. For the B13 Glu → Gln mutant, we

also used a longer lag time (1.25 ns compared with 500 ps for WT insulin) because the

pathway weights converged more slowly (Figure S2). In turn, because the reactive current

Jbind becomes noisier as the lag time increases, the standard deviation of the Gaussian filter

for Jbind was increased from 4 to 5 bins.
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Statistics for mutant insulins. Comparing the WT and A10 Ile → Val PMFs (Figure

S14A), we see that this mutation stabilizes the basin corresponding to the partially open

escape channel (see main text Figure 3 for the location of this region), making it lower in

free energy than the normal bound state. At the same time, the mutation causes a shift in

the binding reactive current from PW1, PW1a, and PW2 to PW3 and PW4 (Figure S14).

The current flowing through PW4a generally shifts slightly upward in NPW4. Overall, the

total amount of reactive current flowing through the dividing surface is very similar to that

for WT insulin, and as result the rates are similar as well (Figure S12).

Figure S14: Comparing statistics for phenol escape between WT and mutant insulins. In each row, the
first and third panels correspond to the IleA10 → ValA10 mutant and GluB13 → GlnB13 mutant, respectively.
The second and fourth panels are the differences between the described mutant and WT insulin. (A) The
potential of mean force, with contours shown every kBT . For the differences, the contours from the WT
insulin PMF are overlaid. (B) The average unbinding committor qunbind, with contours shown every 0.1, and
the qunbind = 0.5 surface shown in purple. For the differences, the contours from the WT insulin PMF are
overlaid. (C) The qbind component of the binding reactive current Jbind, taken when qbind = 0.63.
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Figure S15: Interaction energies between B13 residues and the combination of SerB9/HisB10 as a function
of NPW1 and NPW4, with contours shown every 10 kJ/mol. Arrows representing PW1a and PW4a are
overlaid in green and black, respectively. The star, circle, square, and triangle mark the same landmarks as
in Figures 2 and 3 in the main text. This is shown for both (A) WT insulin, and (B) the B13 Glu → Gln
mutant.

By contrast, B13 Glu → Gln insulin is dominated by a large-scale loss in Jbind through

all six pathways. As a result, the binding rate is slower. Looking at the level of individual

pathways, the largest area of reactive current loss corresponds to PW4a, and the areas

corresponding to PW1 and PW4 lose comparatively little reactive current.

To understand the changes in the unimolecular ratio K = kunbinding/kbinding upon muta-

tion, we calculated the interaction energies between the mutated residues and all 50 other

protein residues, as well as the bound Zn2+/Cl− ions, and the solvent (including the phenols).

We then averaged these quantities across the free and bound state for both WT insulin and

the relevant mutant, and measured ∆∆E = ∆Emutant−∆EWT, where ∆E = Efree−Ebound.

For the B13 Glu→ Gln mutation, all such interactions where |∆∆E| > 1 kJ/mol are shown

in Table S4.

The interactions with the largest magnitude of ∆∆E upon the B13 Glu→ Gln mutation

are B13 with SerB9 and HisB10, as discussed in the main text. Phenol unbinding and channel

opening are correlated, and in the unbound/open state, the B13 side chain is able to rotate

to interact with the backbone residues of SerB9 and HisB10. By making the B13 Glu →
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Table S4: The change in interaction energies between the free and bound state for WT
insulin and the B13 Glu → Gln mutant

Interaction ∆EWT (kJ/mol) ∆EB13 (kJ/mol) ∆∆E (kJ/mol)
B13 - Bound Zn2+, Cl− –3.9 1.5 5.4
B13 - B13 3.9 5.1 1.3
B13 - B12 –0.9 0.4 1.3
B13 - B10 2.3 –3.5 –5.7
B13 - B9 14.9 –1.0 –15.9

Gln mutation, we replace a repulsive interaction between the carboxylate side chain and

the backbone carbonyl with a energetically-favorable hydrogen bond between the amide side

chain and the same backbone carbonyl. These interactions, which stabilize the unbound state

upon mutation, partially explain why K increases upon mutation. We calculated a similar

set of interactions for the A10 Ile → Val mutant, shown in Table S5. For this mutant, no

single interaction is comparably dominant.

Table S5: The change in interaction energies between the free and bound state for WT
insulin and the A10 Ile → Val mutant

Interaction ∆EWT (kJ/mol) ∆EA10 (kJ/mol) ∆∆E (kJ/mol)
A10-B1 –1.6 –0.4 1.2
A10-B5 0.8 1.9 1.1
A10-B2 2.9 1.6 –1.3
A10-Solvent –0.5 –3.7 –3.2

To understand the effect of the B13 Glu → Gln mutation on the relative weights for the

six pathways (and for PW1a and PW4a in particular), we projected the B13 electrostatic

and Van der Waals interaction energies with SerB9 and HisB10 as functions of NPW1 and

NPW4 for both WT insulin (Figure S15A) and the B13 Glu → Gln mutant (Figure S15B).

The interaction energy decrease along PW1a (green) is approximately 20 kJ/mol, while the

interaction energy decrease along PW4a (black) is 10 kJ/mol.
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Figure S16: Solvation dependence on reaction progress. The (left) average committor, (middle) radial
distribution functions for water around the specified species, and (right) mean square displacement (MSD)
over 1 ns of waters in the central cavity of the hexamer for (A) WT insulin, (B) A10 Ile→Val insulin, and
(C) B13 Glu→Gln insulin. Results are shown for 10 evenly sized bins for committor values between 0 and 1,
with color given by the scale in the leftmost panel. We compute the radial distribution function, g(r), from
15,000 structures in each committor value bin; we define r as the distance between the center of mass of the
specified species/residue (including main chain atoms) and the center of mass of each water molecule. MSD
values are for displacements over 1 ns from 5000 starting structures for each committor value bin.
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Figure S17: Solvation dependence on channel opening. The (left) average RMSDP, (middle) radial distri-
bution functions for water around the specified species, and (right) mean square displacement (MSD) over 1
ns of waters in the central cavity of the hexamer for (A) WT insulin, (B) A10 Ile→Val insulin, and (C) B13
Glu→Gln insulin. Results are shown for 5 evenly sized bins for RMSDP values between 0 and 0.5 Å, with
color given by the scale in the leftmost panel. We compute the radial distribution function, g(r), from 5,000
structures in each RMSDP value bin; we define r as the distance between the center of mass of the specified
species/residue (including main chain atoms) and the center of mass of each water molecule. MSD values
are for displacements over 1 ns from 3000 starting structures for each RMSDP value bin.
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Kinetics in Atomic Detail Revealed by Molecular Dynamics Simulations and Markov

Modelling. Nat. Chem. 2017, 9, 1005–1011.

(14) Vijaykumar, A.; Bolhuis, P. G.; ten Wolde, P. R. The Intrinsic Rate Constants in

Diffusion-Influenced Reactions. Faraday Discuss. 2016, 195, 421–441.

(15) Bloom, C. R.; Choi, W. E.; Brzovic, P. S.; Ha Sheng-Tung Huang, J. J.;

Kaarsholm, N. C.; Dunn, M. F. Ligand Binding to Wild-type and E-B13Q Mutant

Insulins: A Three-state Allosteric Model System Showing Half-site Reactivity. J. Mol.

Biol. 1995, 245, 324–330.

(16) Mark, P.; Nilsson, L. Structure and Dynamics of the TIP3P, SPC, and SPC/E Water

Models at 298 K. J. Phys. Chem. A 2001, 105, 9954–9960.

S25


