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Supplementary Methods

1. Analysis details of Laue diffraction peaks

In this study, the {220}-family diffraction peaks of the single-crystal Al were analyzed

in order to obtain the longitudinal and transverse elastic strains during laser-induced dynamic

compression. As indicated in Supplementary Figure 3a, the six {220} diffraction peaks are

organized into two groups, i.e., the longitudinal strain peak pairs (LSPPs) and the transverse

strain peak pair (TSPP), based on the strain information they carry. The LSPPs include two

sets of peaks labelled as {220}1 and {220}2, whereas the TSPP includes the two peaks labelled

as {220}3. Scattering vectors kl and kt are defined in Supplementary Figure 3a. k is the

amplitude of scattering vector, and subscripts l and t correspond to longitudinal and transverse

strains, respectively. OA is the projection of kl onto the kx direction, and its length is denoted

as L. 2θ and γ denote diffraction angle and azimuthal angle, respectively.

For the analysis of the diffraction peaks, we first subtracted the diffraction patterns, both

ambient and dynamic, by the preshot background pattern (with both pump and probe switched

off). Second, we removed the scattering background signal, arising from the inelastic and mul-

tiple elastic scattering1, in the region that contains the Laue peaks of interest. As an example,

we show the step-by-step processed results for the diffraction pattern of the (110) single-crystal

Al. We first projected the pattern image in the kx−ky plane onto the k−γ or “radius” – azimuth

angle plane (Supplementary Figure 4a), from which we selected six angular regions (non-Laue

peak regions) within a designated radial range as the background signal, as shown in Supple-

mentary Figure 4b. At each radius, we took the local average of the selected background signal

around the azimuthal area of each peak as the fitted background signal and converted them back

to the kx − ky plane (Supplementary Figure 4c). These fitted background signals, indicated
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by the annuli in Supplementary Figure 4c, were then removed from the original diffraction

patterns, as shown by Supplementary Figure 4d, before performing the Laue peak analysis.

After the background subtraction, we located the approximate peak positions of the six

peaks by fitting the signal in the designated box around each peak with two Gaussian func-

tions (Supplementary Figure 4d). Given these peak locations, we took the intensity lineouts

(15-pixel-wide) through the three sets of centrosymmetry peaks. We fitted these lineouts with

two Gaussian functions to determine the peak spacings (2kt and 2kl), as well as to extract peak

widths and amplitudes. We performed this fitting routine for both ambient and dynamic pat-

terns. The calculation of the longitudinal elastic strain based on Method II (Section 2) will

require the knowledge of L and kl. The intensity lineouts of LSPP for finding L are shown in

Supplementary Figure 5a, and the intensity lineouts of the TSPP for finding kt are shown in

Supplementary Figure 5b.

Supplementary Figure 6 (a) – (c) show the temporal evolution of the radial peak shifts

(∆kl and ∆kt) of the LSPPs and the TSPP for the (110)-oriented single-crystal Al irradiated at

three laser pump fluences. For the LSPPs data, the average results for the two sets of centrosym-

metric peaks are shown. Here the positive peak shifts in the reciprocal space are indicative of the

decrease in the d-spacing of corresponding lattice planes in the real space, implying the laser-

induced compression of the lattice. Likewise, the negative peak shifts imply the expansion of

the lattice, which normally occurs when the compression wave is released.

Supplementary Figure 7 shows the temporal evolution of the normalized peak intensities

and widths of the same Laue peaks as those shown in Supplementary Figure 6. At 1.2 J cm−2,

the intensity of TSPP starts to decay at ∼5 ps and reaches ∼70% at approximately 10 ps, and

then stays constant within the displayed time window (≤70 ps). The LSPP intensity shows no
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clear decay before 30 ps; it starts to decay afterwards and reaches ∼80% at ∼40 ps, and then

stays constant for about 20 ps. At 67 ps, the intensity decay of the LSPP and TSPP peaks are

observed to be the same. There is no clear change in the peak width of the Laue peaks under

this fluence condition.

At 2.2 J cm−2, the intensity decay of TSPP also starts at 5 ps and reaches a plateau of

∼50% at ∼30 ps. This plateau ends at 50 ps and the intensity declines again. Note that this

ending time of the intensity plateau is consistent with the time when the LSPP peak shift returns

to zero (Supplementary Figure 6b), implying that this second intensity decay is likely caused

by the significant expansion of the sample during the release stage. The LSPP intensity shows

a different temporal behavior: after 5 ps, the intensity starts to rise and reaches the peak at ∼20

ps; after then, it starts to decay and merges with the TSPP intensity at ∼50 ps. We attribute

the early-time enhancement of the LSPP intensity to the re-alignment of the mis-oriented grains

caused by the initial compression. There is no clear change in the peak widths till the very late

time, i.e. ∼40 ps, when the peaks start to experience a slight broadening.

At 4.3 J cm−2, the intensities of both LSPP and TSPP follow similar trends to those

observed in the case of 2.2 J cm−2 except the noted inflection points are advanced in time due

to a stronger stress wave driving the sample. The peak widths are observed to broaden at 27 ps,

and then progressively increase to a two-fold width at ∼70 ps.

2. Strain calculation from measured Laue peak shifts

This section describes our method to calculate the longitudinal and transverse elastic

strains based on the UED measurements of the Laue peak positions as detailed in Section 1.

It is important to note that the transmission-geometry diffraction patterns taken in the strobo-
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scopic manner contain the instantaneous structural information of the dynamically compressed

sample, averaged over the electron pulse duration. The extracted peak center obtained from a

single Gaussian fitting to the diffraction peak therefore contains the average strain information

of the laser-irradiated sample. It is also important to note that: similar to X-ray diffraction mea-

surements, the electron diffraction measurements are only sensitive to elastic strains because

the plastic strains do not alter the spacing of lattice planes2.

Transverse elastic strain. Our pump-probe geometry directly measures the crystal compres-

sion normal to the loading direction via TSPP [(22̄0) and (2̄20)]. Under our experimental con-

dition with the loading along the sample normal direction, i.e. [110], the {111} slip planes

pertinent to plastic deformation are normal to the diffraction planes of TSPP. The resulted crys-

tal rotation occurs in these diffraction planes and will not affect the peak shift of the TSPP3.

Therefore, the peak shift of TSPP depends only on the transverse elastic strain, εet , which can

be computed using the following equation:

εet =
kdt
kat
− 1 =

∆kt
kat

, (1)

where kdt and kat are the amplitudes of scattered vectors of the transverse strain diffraction peaks

of the dynamic and ambient sample (defined in Supplementary Figure 3a).

Longitudinal elastic strain. We use two independent methods to compute the longitudinal

elastic strain εel based on the longitudinal and transverse strain diffraction peak positions ob-

tained from the UED measurements. The first method (Method I) uses the forward simulation

method to directly compare the peak position changes with the experimental input, and the

second one (Method II) is based on the analytical equations derived based on the experimental

geometry of our diffraction measurements. The results from these two independent methods are

in excellent agreement, as shown in Supplementary Figure 8, hence confirming the accuracy of
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the inferred longitudinal elastic strains.

We first present the details of Method I, i.e., using the forward simulation of the Laue

transmission diffraction patterns4 to extract the longitudinal elastic strain. In the simulations,

we constructed a (110)-oriented Al single crystal with ±2.5◦ misorientation to account for the

real sample misorientation. The electron source wavelength and the diffraction geometry in the

simulation are the same as the UED experiments. Misorientation above ±2.5◦ will not affect

the final results of the longitudinal elastic strains, except inducing broadening of the Laue peak

widths. This is due to the fact that the strains achieved under our experimental condition are

relatively small so that a mis-orientation of ±2.5◦ is sufficient to capture the compressed lattice

planes, as discussed later in Method II.

Supplementary Figure 3 compares the simulated diffraction pattern with the experimental

one obtained at the ambient or uncompressed condition. The overall agreement with the ex-

periment on the shapes of Laue peaks justifies the prescribed misorientation of the simulated

crystal. Based on this crystal, we applied strains (both εet and εel ) to the system and simulated

the diffraction patterns to match with the measured peak positions of the {220} family at any

given time delay from the UED experiments. Here εet is a known parameter based on Equation

(1), and the best match will therefore yield the solution to the longitudinal elastic strain.

To do this, we varied εel within the range from −0.2 to 0.2 at an interval of 0.001. The

primary simulation output is the (2θ, γ) positions of the four {220} peaks belong to LSPPs.

Since the four peaks are centrosymmetric, we select the one residing in the upper-right quadrant

of the pattern (Supplementary Figure 3b), with γ = 30◦ at ambient condition, to compare with

the UED measurement. For experiments, the 2θ coordinate is obtained based on kl, as indicated

in Supplementary Figure 3a, which is the average value for the two sets of LSPPs. The γ
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coordinate is obtained based on kl and L of LSPPs (Supplementary Figure 3a). Similar to kl,

the average of the two L for the two sets of LSPPs is used. The details of finding kl and L from

diffraction patterns have been described in Section 1. During this matching process, the εel value

that gives the minimum difference in (2θ, γ) between simulation and experiment is defined as

the best solution. We performed this matching process for all the measurement instants at each

pump fluence, and the results are shown in Supplementary Figure 8.

To validate the εel results obtained based on Method I, we applied the analytical method

(Method II) to calculate εel that is derived based on the diffraction geometry. Thanks to the

narrow energy spread and the low divergence angle of the relativistic electron bunches, UED

is only sensitive to lattice planes that are nearly parallel to the electron propagation axis. The

inherent misorientation in our single-crystal samples allows the electron beam to capture both

the uncompressed and compressed lattice planes in the longitudinal direction. Note that these

two lattice planes are not necessary the same planes and only the one parallel to the electron

propagation axis will be captured. This rational can be justified by the observation on the peak

shifts for the LSPPs of the compressed samples. This is not otherwise expected for a perfect

single crystal because the compressed lattice planes would no longer be parallel to the electron

propagation axis, and hence the electrons would not be diffracted by the compressed structure

(note that grain size broadening can be ignored for the 200-nm thickness Al).

Based on the above argument, the equations are derived for calculating the longitudinal

elastic strain. Supplementary Figure 9b presents the Cartesian coordinate system that describes

the geometry of the uncompressed and compressed lattice planes. Here we assume that the

compressed plane is the diffraction plane, i.e., parallel to the electron beam, and the uncom-

pressed plane is at an angle α with the electron beam. The loading direction and the sample
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surface plane are displayed. The loading axis is at an angle ϕ with the diffraction (compressed)

planes. Here ϕ = 30◦ is known from our loading direction ([110]) and the probed lattice planes,

i.e., the {220} lattice planes belonging to LSPPs. Point O is defined as the center of the system.

Points A′ to D′ are the intercepts of the uncompressed planes with the sample surface and the

loading axis; points A to D are the intercepts of the compressed planes with the sample surface

and the loading axis. d0 and d are the respective interplanar spacings for the uncompressed and

compressed lattice planes, which are known from the experimental diffraction patterns.

The objective of the following derivations is to solve for ratio m of OB′ over OB (or OC′

over OC), from which the longitudinal elastic strain can be obtained.

The coordinates for points A–D can be readily obtained using their trigonometric relations

with distance d and angle ϕ. Likewise, the coordinates for A′ (z1, x1), B′ (z2, x2), C′ (z3, x3),

and D′ (z4, x4) are as follows

z1 =
d

2
× tanϕ× n, x1 =

d

2
× n;

z2 = − d

2× tanϕ
×m,x2 =

d

2
×m;

z3 =
d

2× tanϕ
×m,x3 = −d

2
×m;

z4 = −d
2
× tanϕ× n, x4 = −d

2
× n.

Here n is the ratio of OA’ over OA, which is known from the measured εet based on the following

relation:

n =
1

1− εet
. (2)

Given the ratio n, the coordinates for points A′ and D′ can be obtained accordingly. The

coordinates for points B′ and C′ are still unknown because ratio m is not available yet.
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Based on the coordinates of points A′, C′ and D′, the spacing between the two parallel

lines A′B′ and C′D′, namely d0, is given by:

|s× z1 − x1 − s× z4 + x4|√
s2 + 1

= d0, (3)

where s is the slope of the two parallel lines,

s =
x4 − x3
z4 − z3

=
n−m

n tanϕ+m/ tanϕ
. (4)

Substituting the coordinates of x1, z1, x4 and z4 into Equation (3), and moving the com-

mon factor d to the right-hand side, we have

n× (s× tanϕ− 1)√
s2 + 1

=
d0
d

=
kdl
kal

=
∆kl
kal

+ 1. (5)

Equations (4) and (5) will allow us to solve for ratio m. Once ratio m is known, the

longitudinal elastic strain (εel ) can be obtained using the following equation:

εel = 1− 1

m
. (6)

The results of εel obtained based on Method II are shown in Supplementary Figure 8. They

are in excellent agreement with those from the forward simulation method (Method I), therefore

confirming the accuracy of the inferred longitudinal elastic strains based on the measured Laue

peak positions.

Furthermore, based on Method II, we can estimate the misorientation angle, i.e. the angle

between line AB and A′B′, which is required for UED to capture the compressed lattice planes.

At the highest strain condition of our experiments, this angle is calculated to be approximately

±2◦, which is slightly less than the misorientation of our single-crystal samples. Higher strain

will require a higher mis-orientation angle in order to be captured by UED.
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Supplementary Notes

3. Effect of stacking faults on diffraction peaks.

Our MD simulations show that there are some fraction of stacking faults formed during

the plastic deformation process. In this section, we will evaluate the effect of stacking faults on

diffraction peaks.

We first performed x-ray diffraction (XRD) simulations of the compressed sample ob-

tained by MD simulation to check if there will be additional peaks in the diffractograms due to

the stacking faults. Supplementary Figure 11a shows the XRD results for the two delays of 0 ps

and 42 ps at the highest fluence of 4.3 J cm−2. Note that stacking faults peak near 42 ps and the

volume fraction at 42 ps is∼8.9%. No additional peak is observed in the XRD pattern of 42 ps,

implying that stacking faults will not lead to additional peaks in our electron diffractograms.

Previous studies show that stacking faults can contribute to peak shift of certain orders of

diffraction spots in uniaxial compression5–7. For FCC metals containing stacking faults on (111)

planes, some (hkl) peaks from a given {hkl} family are shifted by the stacking faults (affected

components) while others are not shifted (unaffected components). The affected components

are characterized by |L0| = |h+ k + l| = 3J ± 1 (J is an integer) whereas the unaffected ones

follow |L0| = 3J (J is an integer)5, 6. In our case, the {220}-family peaks follow |L0| = 0,

implying that their peak shifts are not affected by the stacking faults.

To confirm this, we performed diffraction simulations of the MD atomic trajectories, from

which the effect of stacking faults on the peak shifts can be studied7. Electron diffraction sim-

ulations were carried out using the code GAPD (GPU-accelerated Atom-based Polychromatic
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Diffraction)8. Supplementary Figure 11b shows the intensity lineout of the simulated {220}

spots from the MD atomic trajectory obtained at the delay of 42 ps for 4.3 J cm−2. Follow-

ing the same XRD analysis by Mishra et al.7, we generated diffraction intensity results for full

structure (orange line), FCC atoms only (green line), and the stacking faults atoms (black line).

Despite of the presence of 8.9% stacking faults at 42 ps, there is hardly any peak shift that can

be identified by comparing the full structure result with FCC-only result. This confirms that the

effect from the stacking faults on the peak shifts of {220} peaks in our experiment is negligible.

4. Hydrodynamic modelling of laser ablation.

In this section, we provide additional details on hydrodynamics simulations of laser abla-

tion and discuss the influence of the expansion of ablated surface on the calculated strain results.

Supplementary Figure 12 (a) - (c) shows the MULTI-1D simulated mass density as a function

of time and space for a 200 nm thick Al irradiated by 20 ps (FWHM), 800 nm laser pulses at

three pump fluences of 1.2 J cm−2, 2.2 J cm−2 and 4.3 J cm−2, respectively. The simulation

results show a clear dependence of the ablation process on the incident pump fluence; the onset

time of the front surface expansion starts at ∼20 ps for 1.2 J cm−2 and is advanced to ∼10 ps

for 4.3 J cm−2, which leads to the differences in the shock wave propagation and the breakout

at the rear surface.

To quantify the effect from the expansion at the front surface, we track the change of mass

contained in the region of interest (ROI) with x ≥ -20 nm. The selection of 20-nm depth is for

the consistency with the piston region thickness in MD simulations. We divided the mass of

the ROI obtained at each delay time by the total mass, yielding the time evolution of the mass

fraction of ROI, as shown by blue lines in Supplementary Figure 12 (d) to (f). Similar trend is

observed for the three fluences: the mass fraction is maintained the same before the onset of
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hydrodynamic expansion and then gradually increases with an increment of ∼7% by the end

of 70 ps. Increasing the incident fluence will advance the onset time for expansion as well as

accelerating the increase rate of the mass fraction. The additional 7% of the mass loss due to

plasma expansion will not affect significantly the simulated elastic strain results that are shown

in Figure 3 of the main text. For instance, MD simulations using a 35-nm front layer (∼17%

thickness) as the piston region leads to εel of 0.081 at 35 ps, as comparing to the counterpart of

0.076 for the case with 20 nm thickness. Furthermore, the mass density of the ablated plasma is

orders of magnitude lower than the solid density, as shown in Supplementary Figure 12 (a) - (c).

This indicates that the ablated mass will form a plasma gas cloud in front of the compressed

sample and the electron scattering signal from the plasma gas will lead to an increase of the

overall background signal.

5. Effect of laser-induced melting and heating on dynamic compression.

In this section, we will discuss the effect of laser-induced melting and heating on the dy-

namic compression process. In our experiment, the Al sample is irradiated directly by the laser

beam, instead of via an intermediate ablation layer. Before the generation of the compression

wave, a certain amount of mass near the front surface of the sample will be molten and re-

moved during the laser ablation process. Given the laser intensities of our experiment (< 1012

W cm−2), the mass ablation rate of our sample is expected to be less than 105 g cm−2 s−1(ref.9),

which corresponds to a material loss of approximately 20 nm in a time scale of 50 ps. This is

consistent with the thickness of the piston region (excluded from strain calculation) that was

set up for our MD simulations. There is no clear evidence of significant melting during the full

compression process, supported by the absence of liquid ring10 with the diffraction data (See

Figure 2 in the main text). This is consistent with what was found in a recent x-ray free-electron
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laser (XFEL) experiment (See ref. 35 in the main text) using the technique of small-angle x-ray

scattering (SAXS).

Using a thermal diffusivity of 0.9 cm2 s−1 for Al, the time required for heat conduction

through the full thickness of the sample is estimated to be ∼270 ps11, much longer than the

transit time (∼35 ps) for the longitudinal sound wave traversing the sample. Therefore, the

temperature rise of the overall sample before the compression is expected to be small during the

time scale of the experiment. Nonetheless, to understand the temperature effect on the elastic

strain results, we performed additional MD simulations with two initial sample temperatures

of 600 K and 900 K that are below the melting temperature of Al. The preheated samples

were applied with the same loading profile as the room temperature (RT) case. The temporal

evolution of elastic strains for these two preheated temperatures are shown in Supplementary

Figure 13, along with the results of RT condition and UED measurement. The results show

that as the temperature increases, the transverse strain increases while the longitudinal strain

decreases. However, the overall trends of longitudinal and transverse strains including the onset

of plasticity remain similar to those of RT condition. On the other hand, MD simulation results

with RT condition show the closet agreement with UED data, implying a minor effect from the

thermal heating of the sample in the time scale of experiment.

6. Elastic and plastic strains under uniaxial compression.

The discussion in this paragraph is based on Taylor’s theory work on the dislocation

dynamics12. Under the condition of uniaxial compression, the total longitudinal strain εl is

responsible for the volumetric change of the sample and is given by εl = εel + εpl = −∆V/V0,

where εel and εpl are the longitudinal elastic and longitudinal plastic strains, respectively. Super-

script e (p) stands for elastic (plastic) strain. In this special case of uniaxial compression, the
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total transverse strain equals to zero, namely εt = εet + εpt = 0. Therefore, εpt = −εet . Since

plastic strain can not lead to a net volume change, i.e., εpl + 2εpt = 0, the longitudinal plastic

strain can be determined through εpl = 2εet . With this, the sample volumetric change can be

recast as the mere sum of elastic strains, namely εl = εel + 2εet = −∆V/V0.

Furthermore, εet = −εpt = 0 for purely elastic compression, and εel = εet(= −ε
p
t ) for

compression in the hydrostatic limit. It is worth noting that electron diffraction measurements

are only sensitive to elastic strains because plastic strains do not alter the spacing of lattice

planes2.
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Supplementary Figures
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Supplementary Figure 1: Spatial profile of the optical pump pulse for dynamic compression.
The image of the focal spot (inset) and its radially averaged intensity lineout (blue solid line).
The red solid line is the half Gaussian function fitting to the intensity data. The yellow circle
overlaid on the focal spot image indicates the UED probe area that has been projected onto the
focal plane of the laser pulse.
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Supplementary Figure 2: Time zero calibration. The red dots are the measured intensity de-
cay of the (533) Laue diffraction peak for the 20-nm-thick polycrystalline gold film (textured)
pumped by the 800 nm, 20 ps, laser pulses at a low fluence, as a result of the Debye-Waller
factor effect. The blue line is the exponential fitting to the data. Here we define the time zero as
the onset time of the decay, which corresponds to the overlap of the leading edges of the optical
pump and the electron probe.
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Supplementary Figure 3: Comparison of the measured and simulated diffraction patterns of
the (110) single crystal Al at the ambient conditions. (a) UED measurement obtained with an
accumulation of 360 shots. (b) Forward simulation with a misorientation of ±2.5◦. The details
for the forward simulations of diffraction patterns are described in Section 2. As shown in
(a), the six {220} peaks are grouped into three pairs, denoted with subscripts 1, 2 and 3. The
{220}1 and {220}2 peak pairs are referred to as the longitudinal strain peak pairs (LSPPs), and
the {220}3 peak pair, the transverse strain peak pair (TSPP). k is the amplitude of scattering
vector, and subscripts l and t correspond to longitudinal and transverse strains, respectively. OA
is the projection of kl onto the kx direction, and its length is denoted as L. 2θ and γ denote
diffraction angle and azimuthal angle, respectively.
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Supplementary Figure 4: Laue peak shift analysis of single-crystal Al under laser-driven com-
pression. (a) – (d) show how the background is removed from the area where the six {220}
peaks reside on the single-shot diffraction pattern. See the text for more details. In (d), the
approximate centroids for the six Laue peaks are marked out by red crosses, based on which
the intensity lineouts (15-pixel wide) of the diffraction peaks are obtained and shown in Sup-
plementary Figure 5.
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Supplementary Figure 5: Intensity lineouts of Laue diffraction peaks {220}. (a) The intensity
lineouts (black lines) of the {220}1 peak pair under shocked and ambient (static) conditions,
obtained from the pumped diffraction pattern shown in Supplementary Figure 4D and its refer-
ence patterns. (b) Same as (a) but for the {220}3 peak pair. In (a) or (b), the top row is for the
diffraction patterns from the pumped target, while the bottom two rows are for the two reference
(uncompressed or static) patterns of the same target. The intensity lineouts are fit with Gaussian
functions (red lines) to extract the peak information such as peak amplitude, position and width.
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Supplementary Figure 6: Radial Laue peak shifts ∆kl (LSPP) and ∆kt (TSPP) of the {220}-
family peaks for the (110)-oriented Al under laser-driven compression at incident fluences of
(a) 1.2 J cm−2, (b) 2.2 J cm−2 and (c) 4.3 J cm−2. Here ∆kl = kdl − kal , and ∆kt = kdt − kat ;
superscripts d and a refer to dynamic and ambient conditions, respectively. Blue dots are the
average results for the two sets of the LSPPs, and red dots, for the TSPP. At each instant, the
average value of five pump-probe shots is used.
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Supplementary Figure 7: Temporal evolution of the normalized intensities (a–c) and widths
(d–f) of the {220} Laue peak pairs, for incident laser fluences of 1.2 J cm−2, 2.2 J cm−2 and
4.3 J cm−2. The peak intensities and widths of each laser shot are normalized to the reference
data of the same target at the ambient conditions. Each displayed data point is the average
over five pump–probe shots. The error bars represent 1 standard deviation uncertainties. LSPP:
longitudinal strain peak pair; TSPP: transverse strain peak pair.
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Supplementary Figure 8: Comparison of the longitudinal elastic strains obtained from Method
I and Method II for laser-driven compression along [110] at a pump fluence of (a) 1.2 J cm−2,
(b) 2.2 J cm−2, and (c) 4.3 J cm−2.
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Supplementary Figure 9: (a) Schematic setup for the laser pump–MeV electron probe (diffrac-
tion) experiments. (b) Loading-diffraction geometry for an arbitrary lattice plane belonging to
LSPPs before and after dynamic compression. Here the dynamic-compressed lattice plane (AB
and CD) is parallel to the electron beam direction. After compression, A′B′C′D′ → ABCD.
Red arrow: compression direction.
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Supplementary Figure 10: The two-step simulation method to simulate laser-driven dynamic
compression of aluminum. (a) Step 1: hydrodynamics simulation of the pump laser interaction
with the aluminum sample. (b) Step 2: MD simulation of the dynamic compression. The
first 20 nm segment on the left of the MD configuration acts as a moving piston to drive the
compression wave into the sample. The velocity history of the moving piston is obtained by
fitting to the results obtained from the hydrodynamics simulation.
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Supplementary Figure 11: (a) XRD simulations of Al-[110] for pump fluence of 4.3 J cm−2 at 0
ps and 42 ps. (b) Intensity lineout of the simulated (220) diffraction spot for full microstructure
(orange line), FCC only atoms (green line), and HCP atoms of the stacking faults (black line)
of the shocked Al at delay time of 42 ps for the pump fluence of 4.3 J cm−2.
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Supplementary Figure 12: MULTI-1D simulation results of the temporal evolution of the mass
density distribution for a 200-nm thick Al irradiated by 20-ps (FWHM), 800 nm laser pulses at
incident fluences of 1.2 J cm−2 (a, d), 2.2 J cm−2 (b, e) and 4.3 J cm−2 (c, f). The laser impinges
on the target at x = 0 nm. The same color axis is applied to all the three false-color images with
the representative color bar shown in (c). The vertical dashed lines (x = -20 nm) mark the depth
of 20 nm from the target surface. (d) to (f) plot the temporal evolution of the fraction of the
mass contained in the ROI with x ≥ -20 nm for the three respective pump fluences.
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Supplementary Figure 13: MD simulated strain evolution in laser-driven compressed (110)
single-crystal Al at different initial bulk temperatures, i.e., 300 K, 600 K and 900 K. The load-
ing condition is the same for the three temperatures and is derived from hydrodynamics simu-
lations with a pump fluence of 4.3 J cm−2. For comparison, UED data (denoted by N(T) expt)
obtained at the same fluence are also presented. The error bars represent 1 standard deviation
uncertainties. N denotes normal or longitudinal strain and T denotes transverse strain.
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Supplementary Figure 14: MD simulation results of the pressure (a-c) and velocity (d-f) profiles
at selective time delays for a 200-nm thick Al irradiated at incident fluences of 1.2 J cm−2 (a,
d), 2.2 J cm−2 (b, e) and 4.3 J cm−2 (c, f).
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