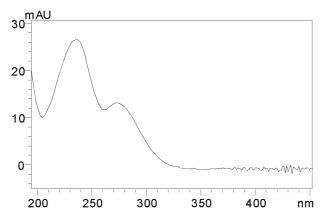
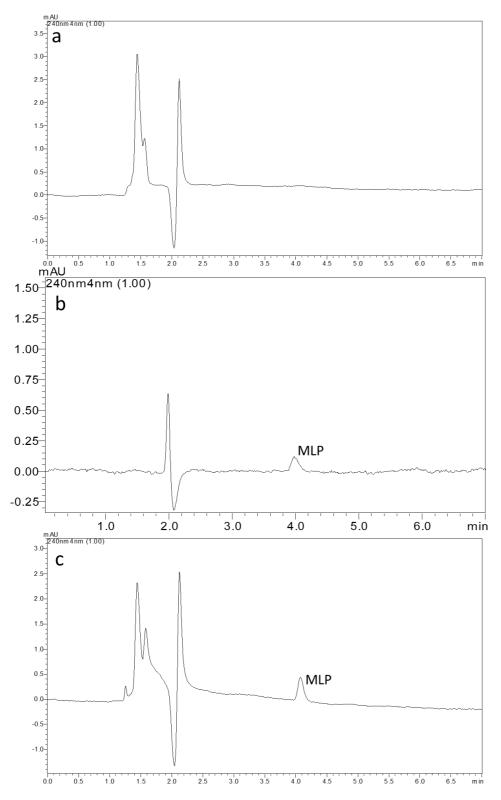
Electronic Supplementary Material


A Stability Indicating RP-HPLC Method for Determination of the COVID-19 Drug Molnupiravir Applied Using Nanoformulations in Permeability Studies

Tuba Reçber^{1a}, Selin Seda Timur^{2a}, Sevilay Erdoğan¹, Fatma Yalçın³, Tutku Ceren Karabulut^{3,4}, R. Neslihan Gürsoy², Hakan Eroğlu², Sedef Kır¹, Emirhan Nemutlu^{1*}


¹Hacettepe University, Faculty of Pharmacy, Department of Analytical Chemistry, 06100, Sihhiye, Ankara, Turkey
²Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 06100, Sihhiye, Ankara, Turkey
³Tobio Novelfarma Drug Industry and Trade Limited Company, 34768, Ümraniye, İstanbul, Turkey, Turkey
⁴Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06100, Tandoğan, Ankara, Turkey

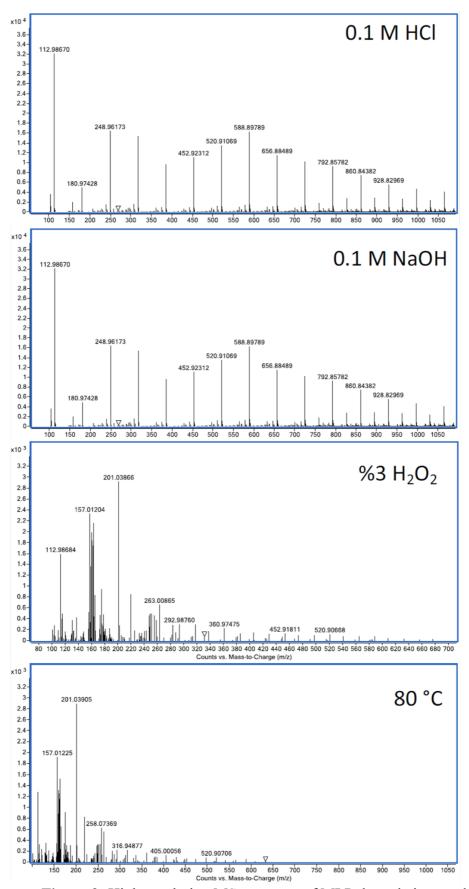
*Author to whom correspondence should be addressed; E-Mail: enemutlu@hacettepe.edu.tr

^aThese authors have equally contributed to this manuscript.

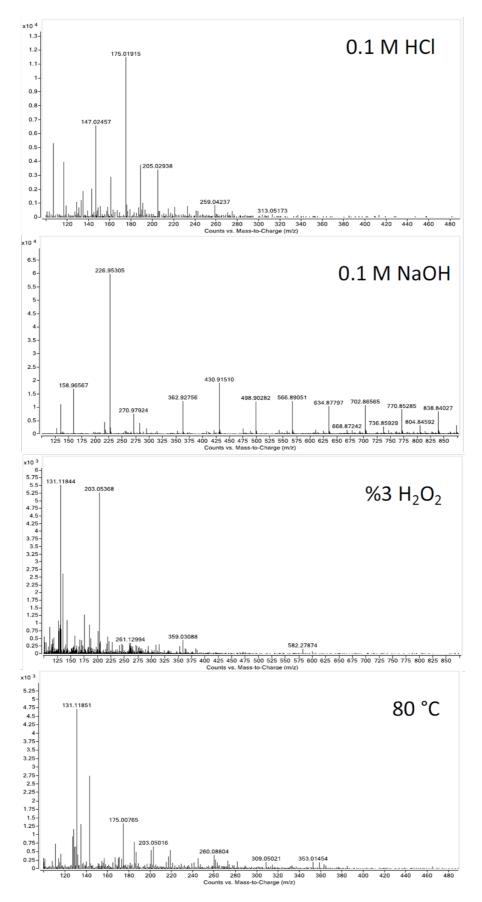
Supplementary Figure 1: UV spectrum of MLP.

Supplementary Figure 2: Chromatograms obtained under optimum chromatographic conditions; a) blank for MLP b) MLP standard spiked matrix at LOD (0.05 μ g/mL) concentration c) MLP standard spiked matrix at LOQ (0.10 μ g/mL) concentration.

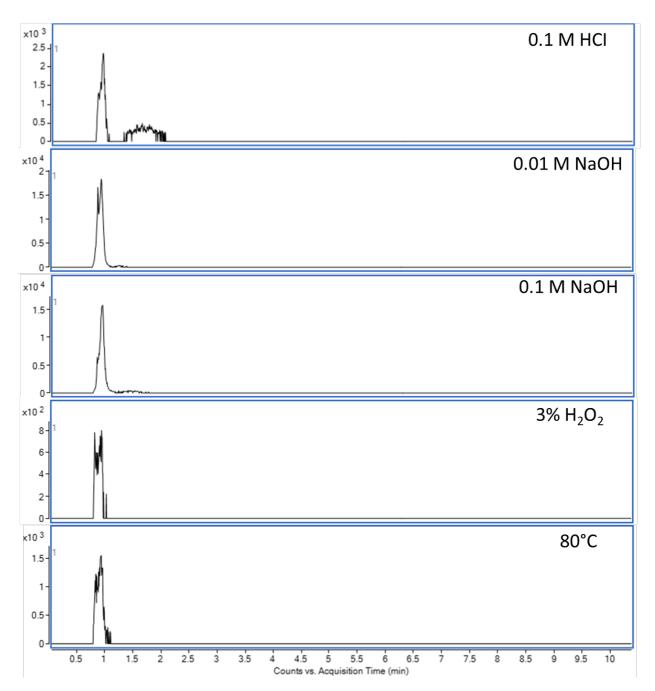
Identification of degradation products of MLP was performed using a high-resolution mass spectrometry analysis with liquid chromatography method. Degradation conditions were applied as described in section 2.7 and solutions were analyzed on a C18 column (2.1 x 50 mm, 1.8 μ m) and LC-qTOF-MS system (Agilent 6530). The mobile phase included solvent A (0.1% formic acid in water) and solvent B (0.1% formic acid in acetonitrile) with gradient elution (Supplementary Table 1). The flow rate was adjusted to 0.3 mL/min. The injection volume was 10 μ L. MS analysis was done using negative and positive ionization modes. The LC-qTOF-MS instrument parameters were given in Supplementary Table 2.


Time (min)	% Mobile Phase B*	
0	10	
1	10	
10	90	
11	90	
15	10	
25	10	

Supplementary Table 1. Gradient elution program


*% 0.1 FA in acetonitrile

Supplementary Table 2. LC-qTOF-MS instrument parameters


	Positive ionization	Negative ionization
Mass range	100-1700 amu	100-1700 amu
Scan Speed (spectrum/sn)	2	2
Spray voltage (kV)	3500	3500
Skimmer voltage (V)	65	65
Gas temperature (°C)	325	325
Gas flow rate (L/dak)	10	10
Nebulizer (psi)	45	45

Supplementary Figure 3: High-resolution MS spectrum of MLP degradation products at different forced degradation conditions. Ionization mode: Negative

Supplementary Figure 5: High-resolution MS spectrum of MLP degradation products at different forced degradation conditions. Ionization mode: Positive

Supplementary Figure 5: Extracted ion chromatograms of MLP at 258 m/z for β-d-N4hydroxycytidine presences at different forced degradation conditions. Ionization mode: Negative