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Appendix A.1: Protection from and coverage of natural maternal immunity 
The most common assumptions for implementation of natural maternal immunity (NMI) are that the entire birth cohort 
receives NMI,1-9 and infants with NMI receive full temporary immunity from infection with RSV.1-5,7-10 Less 
commonly, some models have assumed only partial coverage of the birth cohort with NMI,9-12 and that infants with 
NMI are only granted partial temporary protection.6,11,12 Although the dominant assumptions of full coverage and full 
temporary protection of NMI are not explicitly justified in the modelling literature, they are roughly consistent with 
RSV incidence data,13 see below. 

In the remainder of this section we demonstrate that the assumptions of (a) full coverage of the birth cohort with NMI, 
and (b) full temporary protection from RSV infection for infants with NMI, are consistent with RSV incidence data 
reported by Glezen and colleagues (see Supplemental Table A.1.1).13 We assume the following: 

1. Infants are born with NMI with probability 𝑚𝑚. 
2. The annualized probability that an RSV naïve infant (< 1-year-olds) or 1-year-olds without NMI becomes 

infected with RSV is 𝑝𝑝1. 
3. The annualized probability that an RSV naïve infant with NMI becomes infected with RSV is 𝑞𝑞. 
4. The average duration of NMI (𝜉𝜉−1) is less than one year, i.e., 𝜉𝜉−1 ∈ [0, 1]. 

 

Supplemental Table A.1.1: RSV incidence in children less than two years old.13 

Symbol Description Value 
𝑛𝑛0 Number of infants 125 
𝑘𝑘0 Number of infants infected with RSV in their first season 85 

 
𝑛𝑛1 Number of RSV naïve 1-year-olds 34 
𝑘𝑘1 Number of RSV naïve 1-year-olds infected with RSV in their second season 33 

 
𝑛𝑛2 Number of 1-year-olds previously infected with RSV 58 
𝑘𝑘2 Number of 1-year-olds re-infected with RSV in their second season 44 

 

From these assumptions we construct the decision tree for the first year of life, see Figure A.1.1. Specifically, infants 
are born with NMI with probability 𝑚𝑚 and are born without NMI with probability 1 −𝑚𝑚. Infants born without NMI 
are infected with RSV in their first year of life with probability 𝑝𝑝1. Infants born with NMI spend the first 𝜉𝜉−1 of their 
first year of life with NMI; during this period infants are infected with RSV with probability 1 − (1 − 𝑞𝑞)𝜉𝜉−1 . Infants 
born with NMI that are not infected with RSV during the first 𝜉𝜉−1 years of their life become RSV naïve for the 
remainder of their first year of life the probability that they are infected with RSV is 1 − (1 − 𝑝𝑝1)1−𝜉𝜉−1 . 

 

 

Supplemental Figure A.1.1: Decision tree for RSV infection of infants. (Black square) root node. (Blue circle) Infant 
born with NMI. (Black circles) Infants without NMI. (Red triangles) Infants infected with RSV in their first year of 
life. (Black triangles) Infants that remain RSV naïve after their first year of life. 

𝑚𝑚 

1 − (1 − 𝑞𝑞)1/𝜉𝜉 

1 − (1 − 𝑝𝑝1)1−1/𝜉𝜉 

𝑝𝑝1 
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It follows from the decision tree in Figure A.1.1 that the probability of becoming infected with RSV in the first year 
of life is 

𝑝𝑝0 = (1 −𝑚𝑚) ∗ 𝑝𝑝1 + 𝑚𝑚 ∗ �1 − (1 − 𝑞𝑞)𝜉𝜉−1� + 𝑚𝑚 ∗ (1 − 𝑞𝑞)𝜉𝜉−1 ∗ �1 − (1 − 𝑝𝑝1)1−𝜉𝜉−1� . 

In the second year of life RSV naïve toddlers are infected with probability 𝑝𝑝1 and toddlers with previous RSV infection 
are infected with probability 𝑝𝑝2. Given the data in Supplemental Table A.1.1, this allows us to form the log likelihood 
function 

𝑙𝑙𝑙𝑙(𝑚𝑚, 𝑞𝑞, 𝑝𝑝1 , 𝑝𝑝2) = 𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐 + �𝑘𝑘𝑖𝑖 ∗ log(𝑝𝑝𝑖𝑖) + (𝑛𝑛𝑖𝑖 − 𝑘𝑘𝑖𝑖) ∗ log (1 − 𝑝𝑝𝑖𝑖)
2

𝑖𝑖=0

 . 

Maximizing this log likelihood function results in estimates for 𝑚𝑚, 𝑞𝑞, 𝑝𝑝1, and 𝑝𝑝2 that are displayed in Figure A.1.2. 
These results are consistent with (a) full coverage of the birth cohort with NMI (𝑚𝑚 = 1) and (b) full temporary 
protection from RSV infection for infant with NMI (𝑞𝑞 = 0). 

 

 

Supplemental Figure A.1.2: Parameter estimates 𝒎𝒎, 𝒒𝒒, 𝒑𝒑𝟏𝟏, and 𝒑𝒑𝟐𝟐 as a function of duration of NMI (𝝃𝝃−𝟏𝟏). (Blue 
dots) Probability of being born NMI (𝑚𝑚). (Orange squares) Annualized probability of RSV naïve infants with NMI 
becoming infected with RSV (𝑞𝑞). (Grey triangles) Annualized probability of RSV naïve < 2-year-olds becoming 
infected with RSV (𝑝𝑝1). (Yellow dashed line) Probability of previously infected 1-year-old becoming reinfected with 
RSV in their second year of life (𝑝𝑝2). 
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Appendix A.2: Demographic model structure 
We summarize stratification of population by age in Supplemental Table A.2.1 for a summary. Supplemental Table 
A.2.1 also characterizes ageing rates as either (a) inverse of the width of the age strata of origin (i.e., Inverse), (b) 
other aging schemes (i.e., Other), or (c) not applicable (i.e., N/A; for models integrated over only one RSV season). 
Finally, one model does not stratify the population by age, but does stratify the population by geographic location 
(i.e., stratification by state for a model of the United States).14 

 

Supplemental Table A.2.1: Age stratification in RSV DTMs. 

Model Age strata Ageing rates 
Acedo, et al. (2010).15 and 
Acedo, Moraño, Díez-Domingo. 
(2010).16 

- < 1-year-olds 
- ≥ 1-year-olds 

Other 

Leecaster, et al. (2011).17 and  
Moore, et al. (2014).18 

- < 2-year-olds 
- ≥ 2-year-olds 

Inverse 

Kinyanjui, et al. (2015).1 - Monthly for < 2-year-olds 
- Yearly for 2 – 77-year-olds 
- ≥ 78-year-olds 

Inverse 

Pitzer, et al. (2015).7 - Monthly for < 1-year-olds 
- 1 – 4-year-olds 
- 5 – 9-year-olds 
- 10 – 19-year-olds 
- 20 – 39-year-olds 
- 40 – 59-year-olds 
- ≥ 60-year-olds 

Inverse 

Poletti, et al. (2015).5,a - Unreportedb Not applicable 
Hogan, et al. (2016). - < 1-year-old 

- 1-year-olds 
Inverse 

Yamin, et al. (2016). - < 6-month-olds 
- 6 – 11-month-olds 
- 1-year-olds 
- 2 – 4-year-olds 
- 5 – 24-year-olds 
- 25 – 49-year-olds 
- 50 – 64-year-olds 
- ≥ 65-year-olds 

Other 

Hogan, et al. (2017).6 - Monthly for < 5-year-olds 
- 5-yearly for ≥ 5-year-olds 

Inverse 

Pan-Ngum, et al. (2017).2 
(SAI model) 

- Monthly for < 2-year-olds 
- Yearly for 2 – 75-year-olds 
- ≥ 76-year-olds 

Inverse 

Pan-Ngum, et al. (2017).2 
(BWI model) 

- Monthly for < 1-year-olds 
- 2 – 5-year-olds 
- 6 – 10-year-olds 
- ≥ 11-year-olds 

Inverse 

Goldstein, et al. (2018).19 - < 3-year-olds 
- 3 – 4-year-olds 
- 5 – 6-year-olds 
- 7 – 12-year-olds 
- 13 – 19-year-olds 
- 20 – 39-year-olds 
- 40 – 59-year-olds 
- ≥ 60-year-olds 

Not applicable 

Kombe, et al. (2019).20,c - Unreportedb Not applicable 
Arguedas, Santana-Cibrian, Velasco-
Hernández. (2019) 

- < 5-year-olds 
- 5 – 19-year-olds 
- 20 – 59-year-olds 
- ≥ 60-year-olds 

Inverse 

Continued next page. 
a In addition to stratification by age, this model stratifies the population by household and primary school. 
b Agent-based models do not report boundaries for age strata. 
c In addition to stratification by age, these models stratify the population by household. 
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Supplemental Table A.2.1 (continued): Age stratification in RSV DTMs. 

Model Age strata Ageing rates 
Mahikul, et al. (2019).21,c - < 2-year-olds 

- 2 – 14-year-olds 
- 15 – 59-year-olds 
- ≥ 60-year-olds 

Other 

Brand, et al. (2020).3,c - For households, individuals are sorted into ages: 
- < 1-year-olds 
- ≥ 1-year-olds 

- For other model quantities (e.g., including community 
transmission and hospitalization), computations use age strata: 
- Monthly for < 1-year-olds 
- Yearly for 1 – 17-year-olds 
- ≥ 18-year-olds 

Inverse 

Campbell, Geard, Hogan. (2020).12,c - Exact.b Other 
Hodgson, et al. (2020).9 - Monthly for < 1-year-olds 

- Yearly for 1 – 4-year-olds 
- 5-yearly for 5 – 74-year-olds 
- ≥ 75-year-olds 

Inverse 

Kinyanjui, et al. (2020).4 - Unreported 
- See potentially  

- Kinyanjui, et al. (2015),1 or  
- Pan-Ngum, et al. (2017).2 (SAI model). 

Inverse 

van Boven, et al. (2020).22 - < 1-year-olds 
- 1 – 4-year-olds 
- 5 – 9-year-olds 
- 10 – 19-year-olds 
- 20 – 44-year-olds 
- 45 – 64-year-olds 
- ≥ 65-year-olds 

Inverse 

a In addition to stratification by age, this model stratifies the population by household and primary school. 
b Agent-based models either do not report boundaries for age strata (Unreported) or they use exact age for agents (Exact). 
c In addition to stratification by age, these models stratify the population by household. 

 

Appendix A.3: Interventions 
Representative results for interventions implemented in RSV DTMs are summarized in Supplemental Table A.3.1. 

 

Supplemental Table A.3.1: Interventions implemented in RSV DTMs. 

Model Timing Effective 
coveragea (%) 

Duration 
(days) 

Outcomes 

Maternal vaccination inducing partial temporary immunity for child only 
Pan-Ngum, et al. (2017).2 - Birth 35 91 - 7 – 15% reduction in hospitalizations in < 1-year-

olds 
Hogan, et al. (2017).6 - Birth 40 183 - 6 – 37% reduction in hospitalizations in < 3-month-

olds 
- 30 – 46% reduction in hospitalizations in 3 – 5-

month-olds 
91 - 25% reduction in hospitalizations in < 3-month-olds 

Maternal vaccination inducing full temporary immunity for child only 
van Boven, et al. (2020).22 - Birth 50 183 - 26% reduction in infections in < 1-year-olds 

- 13% increase in infections in 1 – 4-year-olds 
- 4% increase in infections in 5 – 9-year-olds 

Continued next page. 
N/A – Not applicable. 
a Effective coverage is the product of coverage and effectiveness. 
b Coverage varies by age: < 5-year-olds (80%), 5 – 24-year-olds (48%), 25 – 49-year-olds (33%), ≥ 50-year-olds (60%). 
c Coverage of 50% of the population with a vaccine that reduces susceptibility by 50%. 
d Awareness campaign reduces susceptibility of the entire population by 20%; equivalently, transmission (𝑏𝑏0) is reduced by 20%. 
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Supplemental Table A.3.1 (continued): Interventions implemented in RSV DTMs. 

Model Timing Effective 
coveragea (%) 

Duration 
(days) 

Outcomes 

Maternal vaccination inducing partial temporary immunity for child only 
Pan-Ngum, et al. (2017).2 - Birth 35 91 - 7 – 15% reduction in hospitalizations in < 1-year-

olds 
Hogan, et al. (2017).6 - Birth 40 183 - 6 – 37% reduction in hospitalizations in < 3-month-

olds 
- 30 – 46% reduction in hospitalizations in 3 – 5-

month-olds 
91 - 25% reduction in hospitalizations in < 3-month-olds 

Maternal vaccination inducing full temporary immunity for child only 
van Boven, et al. (2020).22 - Birth 50 183 - 26% reduction in infections in < 1-year-olds 

- 13% increase in infections in 1 – 4-year-olds 
- 4% increase in infections in 5 – 9-year-olds 

Continued next page. 
Maternal vaccination inducing full temporary immunity for both child and mother 
Poletti, et al. (2015).5 - Birth 60 183 - 17% reduction in infections in < 1-year-olds 

- 3% reduction in infections in the general population 
Brand, et al. (2020).3 - Beginning of 3rd 

trimester 
50 96 - 19% reduction in hospitalizations in < 5-year-olds 

Hodgson, et al. (2020).9 - Beginning of 3rd 
trimester (Aug. – 
Dec.) 

32 134 - 8.5% reduction in hospitalizations 

 
Maternal vaccination inducing partial temporary immunity for child and full temporary immunity for mother 
Cambell, Geard, Hogan. 
(2020).12 

- Beginning of 3rd 
trimester 

N/A 90 - With coverage of 70% (effective coverage not 
reported): 16.6% reduction in infections for < 3-
month-olds, 5.3% reduction in infections for 3 – 6-
month-olds 

     
Vaccination inducing partial temporary immunity 
Yamin, et al. (2016).8 - Annually with same 

timing as influenza 
vaccination 
(< 5-year-olds) 

48 203 - 56% reduction in infections for < 5-year-olds 
- 54% reduction in infections for ≥ 50-year-olds 

- Annually with same 
timing as influenza 
vaccination 
(entire population) 

20 – 48b 203 - 65% reduction in infections for < 5-year-olds 
- 75% reduction in infections for ≥ 50-year-olds 

Pan-Ngum, et al. (2017).2 - 2 and 4 months 90 365 - 58 – 89% reduction in hospitalizations for < 1-year-
olds 

Smith, Hogan, Mercer. 
(2017). 

- Annually at peak of 
RSV season 

25c 730 - 35% reduction in infections in the general 
population 

Kinyanjui, et al. (2020).4 - 2 and 4 months 90 365 - 51 – 88% reduction in hospitalizations in < 1-year-
olds 

     
Vaccination inducing full temporary immunity 
Acedo, et al. (2010).15 - Birth 85 365 - 75% reduction of infections in < 1-year-olds 
Acedo, Moraño, Díez-
Domingo. (2010).16 

- 2, 4, and 12 months 85 Unreported - 67% reduction in hospitalizations in < 1-year-olds 

Kinyanjui, et al. (2015).1 - < 10-months 80 183 - 51 – 88% reduction in hospitalizations in < 6-
month-olds 

Poletti, et al. (2015).5 - 3 months 80 
 

182 - 35% reduction in infections in < 1-year-olds 
- At primary school 

enrollment 
- 32% reduction in infections in < 1-year-olds 
- 36% reduction in infections in the general pop’n. 

Continued next page. 
N/A – Not applicable. 
a Effective coverage is the product of coverage and effectiveness. 
b Coverage varies by age: < 5-year-olds (80%), 5 – 24-year-olds (48%), 25 – 49-year-olds (33%), ≥ 50-year-olds (60%). 
c Coverage of 50% of the population with a vaccine that reduces susceptibility by 50%. 
d Awareness campaign reduces susceptibility of the entire population by 20%; equivalently, transmission (𝑏𝑏0) is reduced by 20%. 
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Supplemental Table A.3.1 (continued): Interventions implemented in RSV DTMs. 

Model Timing Effective 
coveragea (%) 

Duration 
(days) 

Outcomes 

Vaccination inducing full temporary immunity (continued) 
Jornet-Sanz, et al. 
(2017).23 

- Birth 80 183 - 81% reduction in hospitalizations of < 2-year-olds 

Nugraha, Nuraini. 
(2017).24 

- Birth 2 203 - 21% reduction in infections in the general 
population 

Goldstein, et al. (2018).19 - Annually prior to 
RSV season 

Unreported Unreported - Vaccination of 3 – 6-year-olds results in the greatest 
reduction in the initial effective reproduction 
number 

Hodgson, et al. (2020).9 - 2 months 75 359 - 6.8% reduction in hospitalizations 
- Annually (Oct. – 

Feb.) for 2 – 4-year 
olds 

37 - 3.6% reduction in hospitalizations 

- Annually (Oct. – 
Feb.) for 5 – 9-year-
olds 

50 - 2.1% reduction in hospitalizations 

- Annually (Aug. – 
Dec.) for 5 – 14-
year-olds 

50 - 4.8% reduction in hospitalizations 

- Anually (Nov. – 
Mar.) for ≥ 65-year-
olds 

58 - 28.0% reduction in hospitalizations 

- Anually (Nov. – 
Mar.) for ≥ 75-year-
olds 

58 - 21.9% reduction in hospitalizations 

van Boven, et al. (2020).22 - < 6-month-olds 50 1,642.5 - 30% reduction in infections in < 1-year-olds 
- 21% reduction in infections in 1 – 4-year-olds 
- 8% reduction in infections in 5 – 9-year-olds 

 
Monoclonal antibody immunoprophylaxis inducing full temporary immunity 
Hodgson, et al. (2020).9 - At birth (born in-

season; Oct. – Feb.) 
or beginning of 
season (born out-of-
season) for infants 
born at < 34 weeks 
gestational age with 
CHD or CLD and < 
9-months-old at 
beginning of season 

30 150 - 0.2% reduction in hospitalizations 

- At birth (born in-
season; Oct. – Feb.) 
or beginning of 
season (born out-of-
season) for infants 
born at < 34 weeks 
gestational age with 
CHD or CLD and < 
9-months-old at 
beginning of season 

63 250 - 0.3% reduction in hospitalizations 

- At birth (born in-
season; Oct. – Feb.) 
or beginning of 
season (born out-of-
season) all infants 

63 250 - 7.9% reduction in hospitalizations 

Continued next page. 
N/A – Not applicable. 
a Effective coverage is the product of coverage and effectiveness. 
b Coverage varies by age: < 5-year-olds (80%), 5 – 24-year-olds (48%), 25 – 49-year-olds (33%), ≥ 50-year-olds (60%). 
c Coverage of 50% of the population with a vaccine that reduces susceptibility by 50%. 
d Awareness campaign reduces susceptibility of the entire population by 20%; equivalently, transmission (𝑏𝑏0) is reduced by 20%. 
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Supplemental Table A.3.1 (continued): Interventions implemented in RSV DTMs. 

Model Timing Effective 
coveragea (%) 

Duration 
(days) 

Outcomes 

Maternal vaccination (inducing full temporary immunity for mother and child) and household vaccination inducing full temporary 
immunity 
Brand, et al. (2020).3 - Maternal 

vaccination at 
beginning of 3rd 
trimester 

- Household 
vaccination at birth 

75 96 
 
 
 

183 

- 50% reduction in hospitalizations for < 5-year-olds 

     
Awareness campaign reducing susceptibility 
Nugraha, Nuraini. 
(2017).24 

- Continuously 
through the year 

20d N/A - 38% reduction in infections in the general 
population 

     
Vaccination inducing full temporary immunity and awareness campaign reducing susceptibility 
Nugraha, Nuraini. 
(2017).24 

- Vaccine at birth 
from start of season 
to peak in RSV 
incidence 

- Awareness 
campaign 
continuously 
throughout the year 

2 
 
 
 

20d 

203 
 
 
 

N/A 

- 56% reduction in infections in the general 
population 

     
Treatment 
Rosa, Torres. (2018)a.25 - Continuously 

throughout the year 
N/A N/A - Model formulates and solves an optimal control 

problem for an SEIRS ODE model. 
Rosa, Torres. (2018)b.26 - Continuously 

throughout the year 
N/A N/A - Model formulates and solves and optimal control 

problem for an SEIRS FDE model. 
N/A – Not applicable. 
a Effective coverage is the product of coverage and effectiveness. 
b Coverage varies by age: < 5-year-olds (80%), 5 – 24-year-olds (48%), 25 – 49-year-olds (33%), ≥ 50-year-olds (60%). 
c Coverage of 50% of the population with a vaccine that reduces susceptibility by 50%. 
d Awareness campaign reduces susceptibility of the entire population by 20%; equivalently, transmission (𝑏𝑏0) is reduced by 20%. 
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Appendix A.4: Calibration data 
Supplemental Table A.4.1 summarizes RSV epidemic data sets used in model calibration for RSV DTMs. We remark that three types of data are differentiated: in-
patient data (i.e., hospitalizations), in-patient and outpatient data (i.e., detections), and Google searches for the term “RSV”. 

Supplemental Table A.4.1: RSV epidemic data used in calibration of RSV DTMs. 

Location Type 
(Age range) 

Time period 
(Frequency) 

Model References Notes 

Australia 
Perth 
 

Hospitalizations 
(< 2-year-olds) 

2000 – 2005 
(Weekly) 

- Moore, et al. (2014).18 
- Hogan, et al. (2016).27 

  

Hospitalizations 
(< 2-year-olds) 

2000 – 2013 
(Monthly) 

- Hogan, et al. (2017).6   

Other 
(< 1-year-olds) 

N/A - Campbell, Geard, Hogan. (2020).12 - Hall. (1981).28 
- Glezen, et al. (1986).13 
- Hogan, et al. (2016).29 
- Jacoby, Glass, Moore. (2016).30 

Transmission parameters are chosen 
from Hogan, et al. (2017).6 Other 
transmission parameters are chosen to 
reproduce annual or biennial peaks in 
RSV incidence, proportion of infant 
RSV infections caused by older 
siblings, and proportion of infants 
infected in their first year of life. 

 
Brazil 
Porto Alegre Detections 

(< 5-year-olds) 
1990 – 2003 
(Monthly) 

- White, et al. (2007).31 - Straliotto, Nestor, Siqueira. (2001).32  

Rio de Janeiro Detections  
(< 5-year-olds) 

1986 – 2006 
(Monthly) 

- White, et al. (2007).31 - Siqueira, Nascimento, Anderson. (1991).33 
- Nascimento, et al. (1991).34 

 

 
Colombia 
Bogotá Detections 

(< 5-year-olds) 
2005 – 2010 
(Weekly) 

- Aranda-Lozano, González-Para, Jódar. 
(2013).35 

 Data were collected by the 
surveillance system Sistema Integrado 
de Información para la Vigilancia de 
la Salud Pública (SIVIGLIA). All data 
were recorded in the Sistema de 
Información de Labotorio de Salud 
Pública (SILASP) public health 
laboratory database. 

Continued next page. 
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Supplemental Table A.4.1 (continued): RSV epidemic data used in calibration of RSV DTMs. 

Location Type 
(Age range) 

Time period 
(Frequency) 

Model References Notes 

Finland 
Turku Hospitalizations 

(< 10-year-olds) 
1980 – 2001 
(Weekly) 

- Weber, Weber, Milligan. (2001).10 
- White, et al. (2005).36 
- White, et al. (2007).31 
- Ponciano, Capistrán. (2011).37 

- Waris. (1991).38 Monthly proportion of RSV detections 
that are RSV group A are available. 

 
The Gambia 
The Gambia Detections 

(< 2-year-olds) 
1990 – 1994 
(Monthly) 

- Weber, Weber, Milligan. (2001).10 
- White, et al. (2007).31 
- Ponciano, Capistrán. (2011).37 

- Weber, et al. (1998).39 
- Cane, et al. (1999).40 

 

 
Kenya 
Kilifi Detections 

(< 3-year-olds) 
2002 – 2005 
(Weekly) 

- Mwambi, et al. (2011).41 
- Poletti, et al. (2015).5 

- Nokes, et al. (2004).42 
- Nokes, et al. (2008).43 
- Ohuma, et al. (2012).44 

 

Hospitalizations 
(< 5-year-olds) 

2004 – 2010 
(Monthly) 

- Kinyanjui, et al. (2015).1 
- Pan-Ngum, et al. (2017).2 

- Nokes, et al. (2009).45  

Detections 
(All ages) 

2009 – 2010 
(Biweekly) 

- Kombe, et al. (2019).20 - Munywoki. (2013).46 
- Munywoki, et al. (2014).47 
- Munywoki, et al. (2015)a.48 
- Munywoki, et al. (2015)b.49 

 

Hospitalizations 
(< 5-year-olds) 

2001 – 2016 
(Weekly) 

- Brand, et al. (2020).3 - Nokes, et al. (2009).45  

 
Mexico 
San Luis Potosi Detections  

(All ages) 
2000 – 2010 
(Weekly) 

- Arguedas, Sandana-Cibrian, Velasco-
Hernández. (2019).50 

 Data are reported by the State 
Department of Epidemiology and 
Health Services 

Various states Hospitalizations 
(All ages) 

2000 – 2014 
(Weekly) 

- Baker, et al. (2019).51  Data are reported in the Subsistema 
Automatizado de Egresos 
Hospitalarios by the Dirección 
General de Informacion en Sauld. 

 
The Netherlands 
The Netherlands Detections 

(All ages) 
2013 – 2017 
(Weekly) 

- van Boven, et al. (2020).22 - Vos, et al. (2019).52 Data are reported by the National 
Institute for Public Health and the 
Environment (RIVM)/Nivel sentinel 
surveillance of influenza-like illness 
(ILI) and acute respiratory illness 
(ARI). Data are age stratified. 

Hospitalizations 
(All ages) 

2013 – 2017 
(Weekly) 

 Data are reported by the Dutch 
Hospitalization Data (DHD) 
organization. Data are age stratified. 

Continued next page. 
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Supplemental Table A.4.1 (continued): RSV epidemic data used in calibration of RSV DTMs. 

Location Type 
(Age range) 

Time period 
(Frequency) 

Model References Notes 

The Netherlands (continued) 
The Netherlands General practice 

consultations 
(All ages) 

2013 – 2017 
(Weekly) 

- van Boven, et al. (2020).22  Data are reported by the Nivel 
Primary Care Database 

 
Philippines 
Bohol Detections 

(< 2-year-olds) 
2000 – 2004 
(Weekly) 

- Paynter, et al. (2014).53 
- Paynter. (2016).54 

- Lucero, et al. (2009).55 
- Simões, et al. (2013).56 

 

 
Singapore 
Singapore Detections 

(All ages) 
1990 – 1995 
(Monthly) 

- Weber, Weber, Milligan. (2001).10 
- White, et al. (2007).31 

- Chew, et al. (1998).57  

 
Spain 
Madrid Hospitalizations 

(< 2-year-olds) 
1990 – 2002 
(Monthly) 

- White, et al. (2007).31 - Garcia, et al. (2001).58  

Valencia Hospitalizations 
(< 4-year-olds) 

2001 – 2005 
(Monthly) 

- Arenas, González-Parra, Moraño. (2009).59 
- Arenas, González-Parra, Jódar. (2010).60 

 Data from CMBD (basic minimum 
database) of the Spanish region of 
Valencia. 

Hospitalizations 
(< 1-year-olds) 

2001 – 2004 
(Weekly) 

- Acedo, et al. (2010).15 
- Acedo, Moranõ, Díez-Domingo. (2010).16 
- Corberán-Vallet, Santonja. (2014).61 
- Jornet-Sanz, et al. (2017).23 

 Data from CMBD (basic minimum 
database) of the Spanish region of 
Valencia. 

Thailand 
Sa Kaeo and 
Nakhon Phanom 

Hospitalizations 
(All ages) 

2004 – 2011 
(Monthly) 

- Mahikul, et al. (2019).21 - Fry, et al. (2010).62 
- Naorat, et al. (2013).63 

 

 
United Kingdom 
Birmingham Detections 

(< 1-year-olds) 
1989 – 2001 
(Annual) 

- White, et al. (2005).36 - Cane, et al. (1994).64 Annual proportion of RSV detections 
that are group A. 

England & Wales Hospitalizations 
(Unreported) 

1991 – 2000 
(Weekly) 

- White, et al. (2005).36 
- White, et al. (2007).31 

 Data from Communicable Disease 
Surveillance Centre, UK. 

Hospitalizations 
(≤ 5-year-olds) 

2000 – 2013 
(Weekly) 

- Kinyanjui, et al. (2020).4  Data from Public Health England 
(PHE). 

England Detections 
(< 5-year-olds, 
5 – 14-year-olds, 
15 – 44-year-
olds, 
45 – 64-year-
olds, 
≥ 65-year-olds) 

2010-2017 
(Weekly) 

- Hodgson, et al. (2020).9 - Zhao, et al. (2014).65 Respiratory DataMart System from 
Public Health England and the 
National Health Service. 

Continued next page. 
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Supplemental Table A.4.1 (continued): RSV epidemic data used in calibration of RSV DTMs. 

Location Type 
(Age range) 

Time period 
(Frequency) 

Model References Notes 

United Kingdom (continued) 
West Midlands Unreported 

(Unreported) 
1991 – 1998 
(Weekly) 

- White, et al. (2007).31  Data from Health Protection Agency 
(West Midlands), Communicable 
Disease Surveillance Centre, UK. 

 
United States 
Florida Detections 

(Unreported) 
1981 – 1997 
(Monthly) 

- Weber, Weber, Milligan. (2001).10 
- White, et al. (2007).31 

- Halstead, Jenkins. (1998).66  

Detections 
(Unreported) 

2011 – 2014 
(Monthly) 

- Rosa, Torres. (2018)a.25 
- Rosa, Torres. (2018)b.26 

 Data from Florida Department of 
Health, Respiratory Syncytial Virus 
(RSV) in Florida. 

North Carolina Detections 
(Children) 

2003 – 2006 
(Monthly) 

- Nugraha, Nuraini. (2017).24 - Wilfret, et al. (2008).67  

Salt Lake City, Utah Detections 
(Children) 

2001 – 2008 
(Daily) 

- Leecaster, et al. (2011).17   

Various states Hospitalizations 
(All) 

1989 – 2009 
(Weekly) 

- Pitzer, et al. (2015).7  Data from the Healthcare Cost and 
Utilization Project, State Inpatient 
Database. 

Detections 
(All) 

2004 – 2014 
(Weekly) 

- Reis, Shaman. (2016).68 
- Reis, Shaman. (2018).69 

 US Data from Centers for Disease 
Control and Prevention, National 
Respiratory and Enteric Virus 
Surveillance System. Data are given 
by census division and Health and 
Human Services region. 

Detections 
(All) 

2010 – 2014 
(Weekly) 

- Yamin, et al. (2016).8  US Data from Centers for Disease 
Control and Prevention, National 
Respiratory and Enteric Virus 
Surveillance System. State data are 
used for California, Colorado, 
Pennsylvania, and Texas. 

Hospitalizations 
(All ages) 

2001 – 2012 
(Annual) 

- Goldstein, et al. (2018).19  Data from the Healthcare Cost and 
Utilization Project, State Inpatient 
Database. 

Google search 
(N/A) 

2013 – 2018 
(Weekly) 

- Seroussi, et al. (2020).14 - Oren, et al. (2018).70 Data are given for all states. 

Hospitalizations 
(All) 

1997 – 2011 
(Weekly) 

- Baker, et al. (2019).51  Data from the Healthcare Cost and 
Utilization Project, State Inpatient 
Database. 
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Appendix A.5: Common parameter values 
Common parameter values determined through literature search and model calibration are reported in Supplemental 
Table A.5.1-Supplemental Table A.5.7. We remark that Supplemental Table A.5.7 reports parameterization results 
for a set of parameters not discussed in the main text: the social mixing matrix (𝐶𝐶). The social mixing matrix measures 
the strength of interactions between different age strata with respect to the transmission of RSV. Because of the 
complexity of social mixing matrices, we do not report values for social mixing matrices. Instead, we report the models 
that use social mixing matrices and the references to literature used to construct social mixing matrices. 

Supplemental Table A.5.1: Parameterization of the natural maternal immunity waning rate (𝝃𝝃) in RSV DTMs. 

Model Rate (per year) Duration (days) Reference 
Literature values 
- Weber, Weber, Milligan. (2001).10 
- Arenas, González-Parra, Moraño. (2009).59 

13.00 28.1 - Ogilvie, et al. (1981).71 

- Pitzer, et al. (2015).7 3.25 112.3 - Ochola, et al. (2009).72 
- Poletti, et al. (2015).5 3.00 121.7 - Ochola, et al. (2009).72 
- Yamin, et al. (2016).8 3.44 106.1 - Ochola, et al. (2009).72 
- Campbell, Geard, Hogan. (2020).12 4.06 90.0 - Assumption 
- Hodgson, et al. (2020).9 2.73 133.5 - Glezen, et al. (1981).73 

- Ogilvie, et al. (1981).71 
- Ochola, et al. (2009). 

 
Calibrated values 
- Kinyanjui, et al. (2015).1 5.22 69.9 Calibrated value 
- Pan-Ngum, et al. (2017).2 (SAI model) 5.92 61.7 Calibrated value 
- Pan-Ngum, et al. (2017).2 (BWI model) 40.11 9.1 Calibrated value 
- Brand, et al. (2020).3 16.89 21.6 Calibrated value 
- Kinyanjui, et al. (2020).4 (SAI model) 12.00 30.4 Calibrated value 
- Kinyanjui, et al. (2020).4 (BWI model) 49.58 7.4 Calibrated value 
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Supplemental Table A.5.2: Parameterization of relative susceptibility to RSV infection (𝝉𝝉) in RSV DTMs. 

Model Symbol Description Value Reference 
Stratification by age 
- Moore, et al. (2014).18 𝜏𝜏<2 < 2-year-olds 1.000a - Henderson, et al. (1979).74 

- Hall. (1981).28 𝜏𝜏≥2 ≥ 2-year-olds 0.650 
 
- Hogan, et al. (2017).6 𝜏𝜏 > 3-month-olds 1.000a - Cox, et al. (1998).75 

𝜏𝜏<1 < 1-month-olds 0.080 
𝜏𝜏1−2 1 – 2-month-olds 0.450 

 
- Goldstein, et al. (2018).19,b 𝜏𝜏 Various  - Assumption 

 
- Hogan, et al. (2016).27 𝜏𝜏<1 < 1-year-old 1.000a - Calibrated value 

𝜏𝜏1 1-year-old 0.228 
 

- Yamin, et al. (2016).8 𝜏𝜏0 RSV naïve individuals 1.000a - Calibrated values 
𝜏𝜏<2 < 2-year-olds 3.074 – 3.940c 
𝜏𝜏2−4 2 – 4-year-olds 0.521 – 1.053c 
𝜏𝜏5−49 5 – 49-year-olds 0.050 – 0.088c 
𝜏𝜏≥50 ≥ 50-year-olds 0.120 – 0.250c 

 
- Arguedas, Santana-Cibrian, 

Velasco-Hernández. (2019).50 
𝜏𝜏0−4 0 – 4-year-olds 1.000a - Calibrated values 
𝜏𝜏5−19 5 – 19-year-olds 0.240 
𝜏𝜏20−59 20 – 59-year-olds 0.060 
𝜏𝜏≥60 ≥ 60-year-olds 0.240 

 
Stratification by infection history 
- Weber, Weber, Milligan. 

(2001).10 
𝜏𝜏1 RSV naïve 1.000a - Assumptions 
𝜏𝜏2 1 previous RSV infection 0.500 
𝜏𝜏3 2 previous RSV infections 0.350 
𝜏𝜏4 ≥ 3 previous RSV infections 0.250 

 
- Paynter, et al. (2014).53 𝜏𝜏1 RSV naïve 1.000a - Kapikian, et al. (1961).76 

- Kravetz, et al. (1961).77 
- Mills, et al. (1971).78 
- Henderson, et al. (1979).74 
- Glezen, et al. (1986).13 
- Watt, et al. (1990).79 
- DeVincenzo, et al. (2010).80 
- Ohuma, et al. (2012).44 

𝜏𝜏2 ≥ 1 previous RSV infections 0.770 

 
- Kinyanjui, et al. (2015).1 
- Pan-Ngum, et al. (2017).2 (SAI 

model) 
- Kinyanjui, et al. (2020).4 (SAI 

model) 

𝜏𝜏1 RSV naïve 1.000a - Henderson, et al. (1979).74 
𝜏𝜏2 1 previous RSV infection 0.750 
𝜏𝜏3 ≥ 2 previous RSV infections 0.650 

 
- Morris, et al. (2015).81 𝜏𝜏1 RSV naïve 1.000a - Henderson, et al. (1979).74 

𝜏𝜏2 ≥ 1 previous RSV infections 0.450 
 
- Pitzer, et al. (2015).7 𝜏𝜏1 RSV naïve 1.000a - Monto, et al.(1974).82 

- Hall, et al.(1976).83 
- Henderson, et al. (1979).74 
- Glezen, et al. (1986).13 

𝜏𝜏2 1 previous RSV infection 0.760 
𝜏𝜏3 2 previous RSV infections 0.600 
𝜏𝜏4 ≥ 3 previous RSV infections 0.400 

 
- Pan-Ngum, et al. (2017).2 (BWI 

model) 
- Mahikul, et al. (2019).21 

𝜏𝜏1 RSV naïve 1.000a - Henderson, et al. (1979).74 
𝜏𝜏2 ≥ 1 previous RSV infections 0.540 

Continued next page. 
a Reference value. 
b A full description of the non-standard method employed by Goldstein, et al. (2018).19 is beyond the scope of this manuscript. 
c Values vary by geographic area (i.e., by US state: California, Colorado, Pennsylvania, Texas). 
d Values for other models are reported; we report values from the “best” performing model. 
e Susceptibilities by age and infection history are multiplicative, e.g., susceptibility for age range 1 – 4-year-olds to homologous reinfection 
with RSV is 𝜏𝜏1−4 × 𝜏𝜏ℎ𝑜𝑜. 
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Supplemental Table A.5.2 (continued): Parameterization of relative susceptibility to RSV infection (𝝉𝝉) in RSV 
DTMs. 

Model Symbol Description Value Reference 
Stratification by infection history (continued) 
- Brand, et al. (2020).3 𝜏𝜏1 RSV naïve 1.000a - Henderson, et al. (1979).74 

𝜏𝜏2 ≥ 1 previous RSV infections 0.750 
 

- Hodgson, et al. (2020).9 𝜏𝜏1 RSV naïve 1.000a - Henderson, et al. (1979).74 
𝜏𝜏2 1 previous RSV infection 0.890 
𝜏𝜏3 2 previous RSV infections 0.721 
𝜏𝜏4 ≥ 3 previous RSV infections 0.238 

 
- Kinyanjui, et al. (2020).4 (BWI 

model) 
𝜏𝜏1 RSV naïve 1.000a - Henderson, et al. (1979).74 
𝜏𝜏2 ≥ 1 previous RSV infections 0.528 

 
- White, et al. (2005).36 𝜏𝜏1 RSV naïve 1.000a - Calibrated values 

𝜏𝜏ℎ𝑜𝑜 Susceptibility to homologous 
reinfection 

0.357 

𝜏𝜏ℎ𝑒𝑒 Susceptibility to 
heterologous reinfection 

0.843 

 
- White, et al. (2007).31,d 𝜏𝜏1 RSV naïve 1.000a - Calibrated value 

𝜏𝜏2 ≥ 1 previous RSV infections 0.680 
 

- Poletti, et al. (2015).5 𝜏𝜏1 RSV naïve 1.000a - Calibrated value 
𝜏𝜏2 ≥ 1 previous RSV infections 0.880 

 
Stratification by age and RSV infection history 
- Kombe, et al. (2019).20,e 𝜏𝜏<1 RSV naïve 1.000a - Calibrated values 

𝜏𝜏1−4 1 – 4-year-olds 0.930 
𝜏𝜏5−14 5 – 14-year-olds 0.480 
𝜏𝜏≥15 ≥ 15-year-olds 0.430 
𝜏𝜏ℎ𝑜𝑜 Susceptibility to homologous 

reinfection 
0.630 

𝜏𝜏ℎ𝑒𝑒 Susceptibility to 
heterologous reinfection 

0.680 

 
Stratification by maternal immunity type 
- Campbell, Geard, Hogan. 

(2020).12 
𝜏𝜏 No maternal immunity 1.000a - Assumption 
𝜏𝜏𝑉𝑉 Maternal immunity from 

vaccinated mothers 
0.400 

𝜏𝜏𝐼𝐼 Natural maternal immunity 0.400 
 
Stratification by nutritional status 
- Paynter. (2016).54 𝜏𝜏𝑊𝑊 Well-nourished 1.000a - Calibrated value depends on degree 

of mixing between well-nourished 
and malnourished children. 

𝜏𝜏𝑀𝑀 Malnourished 1.1 – 1.4 

a Reference value. 
b A full description of the non-standard method employed by Goldstein, et al. (2018).19 is beyond the scope of this manuscript. 
c Values vary by geographic area (i.e., by US state: California, Colorado, Pennsylvania, Texas). 
d Values for other models are reported; we report values from the “best” performing model. 
e Susceptibilities by age and infection history are multiplicative, e.g., susceptibility for age range 1 – 4-year-olds to homologous reinfection 
with RSV is 𝜏𝜏1−4 × 𝜏𝜏ℎ𝑜𝑜. 
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Supplemental Table A.5.3: Parameterization of relative infectiousness to RSV infection (𝜼𝜼) in RSV DTMs. 

Model Symbol Description Value Reference 
Stratification by age 
- Moore, et al. (2014).18 𝜂𝜂<2 < 2-year-olds 1.000a - Assumption 

𝜂𝜂≥2 ≥ 2-year-olds 0.650 
 
- Hogan, et al. (2016).27 𝜂𝜂<1 < 1-year-olds 1.000a - Assumption 

𝜂𝜂1 1-year-olds 1.000 
 

- Hogan, et al. (2017).6 𝜂𝜂<10 < 10-year-olds 1.000a - Assumption 
𝜂𝜂≥10 ≥ 10-year-olds 0.600 

 
- Arguedas, Santana-Cibrian, Velasco-

Hernández. (2019).50 
𝜂𝜂0−4 0 – 4-year-olds 1.000a - Assumption 
𝜂𝜂5−19 5 – 19-year-olds 1.000 
𝜂𝜂20−59 20 – 59-year-olds 1.000 
𝜂𝜂≥60 ≥ 60-year-olds 1.000 

 
- Campbell, Geard, Hogan. (2020).12 𝜂𝜂<10 < 10-year-olds 1.000a - Calibrated value 

𝜂𝜂≥10 ≥ 10-year-olds 0.200 
 
Stratification by infection history 
- Weber, Weber, Milligan. (2001).10 𝜂𝜂1 RSV naïve 1.000a - Assumption 

𝜂𝜂2 1 previous RSV infection 1.000 
𝜂𝜂3 2 previous RSV infections 1.000 
𝜂𝜂4 ≥ 3 previous RSV infections 1.000 

 
- Paynter, et al. (2014).53 𝜂𝜂1 RSV naïve 1.000a - Hall, Douglas, Geiman. 

(1976).84 
- Hall, et al. (1991).85 
- Hall, et al. (2001).86 

𝜂𝜂2 ≥ 1 previous RSV infections 0.700 

 
- Kinyanjui, et al. (2015).1 
- Pan-Ngum, et al. (2017).2 (SAI model). 
- Kinyanjui, et al. (2020).4 (SAI model). 

𝜂𝜂1 RSV naïve 1.000a - Assumption 
𝜂𝜂2 1 previous RSV infection 0.500 
𝜂𝜂3 ≥ 2 previous RSV infections 0.250 

 
- Morris, et al. (2015).81 𝜂𝜂1 RSV naïve 1.000a - Henderson, et al. (1979).74 

- Hall, et al. (1991).85 𝜂𝜂2 ≥ 1 previous RSV infections 0.250 
 

- Pitzer, et al. (2015).7 𝜂𝜂1 RSV naïve 1.000a - Henderson, et al. (1979).74 
- Glezen, et al. (1986).13 
- Nokes, et al. (2008).43 

𝜂𝜂2 1 previous RSV infection 0.750 
𝜂𝜂3 ≥ 2 previous RSV infections 0.510 

 
- Brand, et al. (2020).3 𝜂𝜂1 RSV naïve 1.000a - Kinyanjui, et al. (2015).1 

𝜂𝜂2 ≥ 1 previous RSV infections 0.500b 
 
- White, et al. (2005).36 𝜂𝜂1 RSV naïve 1.000a - Calibrated value 

𝜂𝜂2 ≥ 1 previous RSV infections 0.413 
 
- White, et al. (2007).31,c 𝜂𝜂1 RSV naïve 1.000a - Calibrated value 

𝜂𝜂2 ≥ 1 previous RSV infections 0.600 
Continued next page. 

URTI – Upper respiratory tract infection; LRTI – Lower respiratory tract infection; SLRTI – Severe lower respiratory tract infection. 
a Reference value. 
b Calibrated value. 
c Values for other models are reported; we report values from the “best” performing model. 
d A full description of the non-standard methods employed by Yamin, et al. (2016).8 and Kombe, et al. (2018).20 are beyond the scope 
of this manuscript. 
e Infectiousness values reported here are multiplicative, e.g., infectiousness for a symptomatic individual infected with RSV group A 
with low viral load in a large household is 𝜂𝜂𝐴𝐴 × 𝜂𝜂𝐻𝐻𝐻𝐻 × 𝜂𝜂𝐿𝐿𝐿𝐿. 
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Supplemental Table A.5.3 (continued): Parameterization of relative infectiousness to RSV infection (𝜼𝜼) in RSV 
DTMs. 

Model Symbol Description Value Reference 
Stratification by severity of RSV infection 
- Pan-Ngum, et al. (2017).2 (BWI model) 
- Mahikul, et al. (2019).21 

𝜂𝜂𝐴𝐴 Asymptotic 0.200 - Values are calibrated in 
Pan-Ngum, et al. (2017).2 

- Mahikul, et al. (2019).21 
references Pan-Ngum, et al. 
(2017).2 

𝜂𝜂𝑈𝑈 URTI 0.450 
𝜂𝜂𝐿𝐿 LRTI 0.720 
𝜂𝜂𝐿𝐿 SLRTI 1.000a 

 
- Kinyanjui, et al. (2020).4 (BWI model) 𝜂𝜂𝐴𝐴 Asymptotic 0.177 - Pan-Ngum, et al. (2017).2 

𝜂𝜂𝑈𝑈 URTI 0.467 
𝜂𝜂𝐿𝐿 LRTI 0.749 
𝜂𝜂𝐿𝐿 SLRTI 1.000a 

 
- Hodgson, et al. (2020).9 𝜂𝜂𝐿𝐿 Symptomatic 1.000a - Calibrated 

𝜂𝜂𝐴𝐴 Asymptomatic 0.634 
 
Stratification by multiple factors 
- Poletti, et al. (2015).5 𝜂𝜂𝐻𝐻 Household 1.000a - Assumption 

𝜂𝜂𝐿𝐿 School 1.000 
𝜂𝜂𝐶𝐶  Community 1.000 

 
- Yamin, et al. (2016).8,d 𝜂𝜂 Various  - Hall, Douglas, Geiman. 

(1976).84 
- DeVincenzo, et al. (2010).80 
- Fairchok, et al. (2010).87 

 
- Kombe, et al. (2018).20,d,e 𝜂𝜂1 Asymptomatic, low viral load, 

and small household 
1.000a - Calibrated values 

𝜂𝜂𝐿𝐿𝐿𝐿 Symptomatic, low viral load, 
and small household 

0.070 

𝜂𝜂𝐻𝐻𝐴𝐴 Asymptomatic, high viral 
load, and small household 

2.480 

𝜂𝜂𝐻𝐻𝐿𝐿 Symptomatic, high viral load, 
and small household 

6.700 

𝜂𝜂𝐻𝐻𝐻𝐻 Large household 0.424 
𝜂𝜂𝐴𝐴 RSV group A 0.019 
𝜂𝜂𝐵𝐵 RSV group B 0.015 

URTI – Upper respiratory tract infection; LRTI – Lower respiratory tract infection; SLRTI – Severe lower respiratory tract infection. 
a Reference value. 
b Calibrated value. 
c Values for other models are reported; we report values from the “best” performing model. 
d A full description of the non-standard methods employed by Yamin, et al. (2016).8 and Kombe, et al. (2018).20 are beyond the scope 
of this manuscript. 
e Infectiousness values reported here are multiplicative, e.g., infectiousness for a symptomatic individual infected with RSV group A 
with low viral load in a large household is 𝜂𝜂𝐴𝐴 × 𝜂𝜂𝐻𝐻𝐻𝐻 × 𝜂𝜂𝐿𝐿𝐿𝐿. 
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Supplemental Table A.5.4: Parameterization of rate for emergence of infectiousness (𝝈𝝈) in RSV DTMs. 

Model Rate (per year) Duration (days) Reference 
- Weber, Weber, Milligan. (2001).10 
- Arenas, González-Parra, Moraño. 
(2009).59 

- Rosa, Torres. (2018)a.25 
- Rosa, Torres. (2018)b.26 

91.00 4.01 - Kravetz, et al. (1961).77 
- Ditchburn, et al. (1971).88 

- Leecaster, et al. (2011).17 
- Paynter. (2016).54 

73.00 5.00 - Crowcroft, et al. (2008).89 
- Heymann. (2008).90 

- Moore, et al. (2014).18 
- Hogan, et al. (2016).27 
- Hogan, et al. (2017).6 
- Campbell, Geard, Hogan. (2020).12 

91.25 4.00 - Kravetz, et al. (1961).77 
- Ditchburn, et al. (1971).88 
- Lessler, et al. (2009).91 

- Paynter, et al. (2014).53 60.83 – 91.25 4.00 – 6.00 - Kravetz, et al. (1961).77 
- Hall, et al. (1976).83 
- Hawker, et al. (2005).92 
- Crowcroft, et al. (2008).89 
- DeVincenzo, et al. (2010).80 

- Arguedas, Santana-Cibrian, 
Velasco-Hernánzez. (2019).50 

52.14 7.00 - Assumption 

- Hodgson, et al. (2020).9 73.29 4.98 - DeVincenzo, et al. (2010).80 
 
Model Probability Duration (days) Reference 
- Kombe, et al. (2019).20 1/3 2.00 - Lee, et al. (2004).93 

1/3 3.00 
1/4 4.00 
1/6 5.00 
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Supplemental Table A.5.5: Parameterization of the recovery rate (𝝂𝝂) in RSV DTMs. 

Model Symbol Description Rate  
(per year) 

Duration 
(days) 

Reference 

Unstratified (recovery rate applied uniformly to entire population) 
- Weber, Weber, Milligan. (2001).10 
- Arenas, González-Parra, Moraño. (2009).59 
- Arenas, González-Parra, Jódar. (2010).60 
- Ponciano, Capistrán. (2011).37 
- Aranda-Lozano, González-Parra, Querales. (2013).35 
- Nugraha, Nuraini. (2017).24 
- Smith, Hogan, Mercer. (2017).11 
- Rosa, Torres. (2018)a.25 
- Rosa, Torres, (2018)b.26 

𝜈𝜈 Recovery rate 36.00 10.1 - Hall, Douglas, Geiman. (1976).84 

 
- White, et al. (2005).36 
- White, et al. (2007).31 
- Arenas, González, Jódar. (2008).94 
- Hogan, et al. (2016).27 
- Hogan, et al. (2017).6 
- Campbell, Geard, Hogan. (2020).12 

𝜈𝜈 Recovery rate 40.56 9.0 - Hall, Douglas, Geiman. (1976).84 
- Collins, et al. (1996).95 
- Hall. (2004).96 

 
- Acedo, et al. (2010).15 
- Acedo, Moraño, Díez-Domingo. (2010).16 
- Leecaster, et al. (2011).17 
- Moore, et al. (2014).18 
- Corberán-Vallet, Santonja. (2014).61 
- Jornet-Sanz, et al. (2017).23 

𝜈𝜈 Recovery rate 36.50 10.0 - Hall, Douglas, Geiman. (1976).84 
- Hall. (2004).96 

 
- Morris, et al. (2015).81 𝜈𝜈 Recovery rate 13.00 28.1 - Assumption 

 
- Poletti, et al. (2015).5 𝜈𝜈 Recovery rate 33.18 11.0 - Munywoki, et al. (2015)b.49 

 
- Baker, et al. (2019).51,a 𝜈𝜈 Recovery rate 26.07 14.0 - Assumption 

 
- Reis, Shaman. (2016).68 𝜈𝜈 Recovery rate 57.03 6.4 - Calibrated value 

 
- Goldstein, et al. (2018).19 𝜈𝜈 Recovery rate 46.80 7.8 - Crowcroft, et al. (2008).89 

 
- Reis, Shaman. (2018).69 𝜈𝜈 Recovery rate 70.19 5.2 - Calibrated value 

 
- Seroussi, Levy, Yom-Tov. (2020).14 𝜈𝜈 Recovery rate 1.04 351 - Calibrated value 

 
- van Boven, et al. (2020).22 𝜈𝜈 Recovery rate 20.86 17.5 - Calibrated value 
Continued on next page. 
URTI – Upper respiratory tract infection; LRTI – Lower respiratory tract infection; SLRTI – Severe lower respiratory tract infection. 
a The modelling approach taken assumes that the time from infection to recovery is approximately two weeks. Movement from infectious to recovered compartment is not explicitly 
modelled. 
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Supplemental Table A.5.5 (continued): Parameterization of the recovery rate (𝝂𝝂) in RSV DTMs. 

Model Symbol Description Rate  
(per year) 

Duration 
(days) 

Reference 

Stratification by infection history 
- Paynter, et al. (2014).53 𝜈𝜈1 RSV naïve  60.83 6.0 - Mills, et al. (1971).78 

- Frank, et al. (1981).97 
- Hall, et al. (1991).85 
- Hall. (2001).86 
- DeVincenzo, et al. (2010).80 
- Okiro, et al. (2010).98 
- Munywoki, et al. (2015)b.49 

𝜈𝜈2 ≥ 1 previous RSV infections 91.25 4.0 

 
- Kinyanjui, et al. (2015).1 
- Pan-Ngum, et al. (2017).2 (SAI model) 
- Brand, et al. (2020).3 
- Kinyanjui, et al. (2020).4 (SAI model) 

𝜈𝜈1 RSV naïve  40.60 9.0 - Hall, et al. (1976).83 
- Waris, et al. (1992).99 
- Okiro, et al. (2010).98 

𝜈𝜈2 ≥ 1 previous RSV infections 93.70 3.9 

 
- Pitzer, et al. (2015).7 𝜈𝜈1 RSV naïve  36.50 10.0 - Hall, Douglas, Geiman. (1976).84 

- Okiro, et al. (2010).98 𝜈𝜈2 1 previous RSV infection 52.14 7.0 
𝜈𝜈3 ≥ 2 previous RSV infections 73.00 5.0 

 
- Yamin, et al. (2016).8 𝜈𝜈1 RSV naïve  14.04 26.0 - Hall, Douglas, Geiman. (1976).84  

- DeVincenzo, et al. (2010).80 𝜈𝜈2 ≥ 1 previous RSV infections 28.08 13.0 
 

- Hodgson, et al. (2020).9 𝜈𝜈1 RSV naïve  59.25 6.16 - DeVincenzo, et al. (2010).80 
- Okiro, et al. (2020).98 𝜈𝜈2 1 previous RSV infection 68.10 5.36 

𝜈𝜈3 ≥ 2 previous RSV infections 82.29 4.23 
Continued next page 
URTI – Upper respiratory tract infection; LRTI – Lower respiratory tract infection; SLRTI – Severe lower respiratory tract infection. 
a The modelling approach taken assumes that the time from infection to recovery is approximately two weeks. Movement from infectious to recovered compartment is not explicitly 
modelled. 
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Supplemental Table A.5.5 (continued): Parameterization of the recovery rate (𝝂𝝂) in RSV DTMs. 

Model Symbol Description Rate  
(per year) 

Duration 
(days) 

Reference 

Stratification by age 
- Arguedas, Santana-Cibrian, Velasco-Hernández. 

(2019).50 
𝜈𝜈0−4 0 – 4-year-olds 56.68 6.44 - Calibrated values 
𝜈𝜈5−19 1 – 19-year-olds 91.48 3.99 
𝜈𝜈20−59 20 – 59-year-olds 81.47 4.48 
𝜈𝜈≥60 ≥ 60-year-olds 86.90 4.20 

 
Stratification by severity of RSV infection 
- Pan-Ngum, et al. (2017).2 (BWI model) 
- Mahikul, et al. (2019).21 
- Kinyanjui, et al. (2020). (BWI model).4 

𝜈𝜈𝐴𝐴 Asymptomatic 91.25 4.0 - Waris, et al. (1992).99 
- Hall, et al. (1976).83 
- Okiro, et al. (2010).98 

𝜈𝜈𝑈𝑈 URTI 91.25 4.0 
𝜈𝜈𝐿𝐿 LRTI 40.56 9.0 
𝜈𝜈𝐿𝐿 SLRTI 40.56 9.0 

 
Stratification by nutritional status 
- Paynter. (2016).54 𝜈𝜈𝑊𝑊 Well-nourished 73.00 5.0 - James. (1972).100 

- Tomkins. (1981).101 
- Black, Brown, Becker. (1984).102 
- Heymann. (2008).90 
- Okiro, et al. (2010).98 

𝜈𝜈𝑊𝑊 Malnourished 56.15 6.5 

URTI – Upper respiratory tract infection; LRTI – Lower respiratory tract infection; SLRTI – Severe lower respiratory tract infection. 
a The modelling approach taken assumes that the time from infection to recovery is approximately two weeks. Movement from infectious to recovered compartment is not explicitly 
modelled. 
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Supplemental Table A.5.6: Parameterization of the immunity waning rate (𝜸𝜸) in RSV DTMs. 

Model Symbol Description Rate  
(per year) 

Duration 
(days) 

Reference 

Unstratified (recovery rate applied uniformly to entire population) 
- Weber, Weber, Milligan. (2001).10 
- Arenas, González-Parra, Moraño. (2009).59 
- Arenas, González-Parra, Jódar. (2010).60 
- Ponciano, Capistrán. (2011).37 
- Aranda-Lozano, González-Parra, Querales. (2013).35 
- Yamin, et al. (2016).8 
- Nugraha, Nuraini. (2017).24 
- Smith, Hogan, Mercer. (2017).11 
- Rosa, Torres. (2018)a.25 
- Rosa, Torres, (2018)b.26 

𝛾𝛾 Immunity waning rate 1.80 202.8 - Hall, et al. (1991).85 

 
- Acedo, et al. (2010).15 
- Acedo, Moraño, Díez-Domingo. (2010).16 
- Corberán-Vallet, Santonja. (2014).61 
- Jornet-Sanz, et al. (2017).23 

𝛾𝛾 Immunity waning rate 1.83 199.5 - Hall. (2004).96 

 
- Paynter, et al. (2014).53 𝛾𝛾 Immunity waning rate 5.84 62.5 - Hall, et al. (1991).85 

 
- Kinyanjui, et al. (2015).1 
- Morris, et al. (2015).81 
- Pan-Ngum, et al. (2017).2 (SAI model) 
- Brand, et al. (2020).3 
- Kinyanjui, et al. (2020).4 (SAI model) 

𝛾𝛾 Immunity waning rate 2.00 182.5 - Scott, et al. (2006).103 
- Agoti, et al. (2012).104 
- Ohuma, et al. (2012).44 

 
- Hodgson, et al. (2020).9 𝛾𝛾 Immunity waning rate 1.02 358.9 - Hall, et al. (1991).85 

- Scott, et al. (2006).103 
 

- Moore, et al. (2014).18 
- Hogan, et al. (2017).6 

𝛾𝛾 Immunity waning rate 2.13 171.4 - Calibrated value 

 
- Poletti, et al. (2015).5 𝛾𝛾 Immunity waning rate 1.83 199.5 - Calibrated value 

 
- Hogan, et al. (2016).105 
- Campbell, Geard, Hogan. (2020).12 

𝛾𝛾 Immunity waning rate 1.59 229.6 - Calibrated valuea 

Continued next page. 
a Value is determined by calibration in Hogan, et al. (2016).105 and is subsequently reused in Campbell, Geard, Hogan. (2020).12 
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Supplemental Table A.5.6 (continued): Parameterization of the immunity waning rate (𝜸𝜸) in RSV DTMs. 

Model Symbol Description Rate  
(per year) 

Duration 
(days) 

Reference 

Stratified by age 
- Paynter. (2016).54 𝛾𝛾<2 < 2-year-olds 5.84 62.5 - Calibrated value 
 
- Arguedas, Santana-Cibrian, Velasco-Hernández. 

(2019).50 
𝛾𝛾0−4 0 – 4-year-olds 10.51 34.7 - Calibrated values 
𝛾𝛾5−19 5 – 19-year-olds 5.85 62.4 
𝛾𝛾20−59 20 – 59-year-olds 2.80 130.2 
𝛾𝛾≥60 ≥ 60-year-olds 2.88 126.9 

 
- van Boven, et al. (2020).22 𝛾𝛾<1 < 1-year-olds 2.31 158.0 - Calibrated values 

𝛾𝛾1−4 1 – 4-yearolds 0.46 739.5 
𝛾𝛾5−9 5 – 9-year-olds 0.19 1,921.1 
𝛾𝛾10−19 10 – 19-year-olds 0.19 1,921.1 
𝛾𝛾20−44 20 – 44-year-olds 0.16 2,281.3 
𝛾𝛾45−64 45 – 64-year-olds 0.22 1,659.1 
𝛾𝛾≥65 ≥ 65-year-olds 0.50 730.0 

a Value is determined by calibration in Hogan, et al. (2016).105 and is subsequently reused in Campbell, Geard, Hogan. (2020).12 
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Supplemental Table A.5.7: Parameterization of the social mixing matrix (𝑪𝑪). 

Model Reference 
Literature values 
- Kinyanjui, et al. (2015).1 
- Pan-Ngum, et al. (2017).2 

- Scott, et al. (2012).106 
- Kiti, et al. (2014).107 

- Pitzer, et al. (2015).7 
- Yamin, et al. (2016).8 
- Hogan, et al. (2017).6 
- Goldstein, et al. (2018).19 
- Arguedas, Santana-Cibrian, Velasco-Hernández. (2019).50 
- Campbell, Geard, Hogan. (2020).12 
- Kinyanjui, et al. (2020).4 

- Wallinga, et al. (2006).108 
- Mossong, et al. (2008).109 

- Mahikul, et al. (2019).21 - Meeyai, et al. (2015).110 
- Hodgson, et al. (2020).9 - Mossong, et al. (2008).109 

- van Hoeck, et al. (2013).111 
- van Boven, et al. (2020).22 - van de Kassteele, van Eijkeren, Wallinga. (2017).112 
 
Calibrated values 
- Kinyanjui, et al. (2015).1 - Calibrated values 
- Poletti, et al. (2015).5 - Calibrated values 
- Kombe, et al. (2019).20 - Calibrated values 
- Brand, et al. (2020).3 - Calibrated values 

 

Appendix A.6: Modelling results 
Finally, we provide an overview of the major results of RSV DTMs. 

Supplemental Table A.6.1: Summary of results of RSV DTMs. 

Model Summary of results 
Weber, Weber, Milligan. (2001).10 Two models are developed: a SIRS model and an M-SEIRS4 model. Both models are able to reproduce 

RSV hospitalization data in four locations: (a) Turku, Finland (which exhibits a biennial pattern), (b) 
Florida, USA, (c) The Gambia, and (d) Singapore. 

White, et al. (2005).36 A non-standard model is developed that models RSV groups A and B separately. The model reproduces 
RSV epidemic data overall, and RSV A and B separately, in two locations: (a) Turku, Finland, and (b) 
England & Wales, United Kingdom.  Following RSV infection, susceptibility of individuals to 
subsequent homologous or heterologous reinfections is reduced by a factor of 0.36 or 0.84, respectively. 

White, et al. (2007).31 A system of eight nested models is developed (incl. SIS, SIR, SIRS type models, among others). A model 
with lifelong partial immunity (i.e., previously infected individuals are less susceptible and less 
infectious, and are infectious for a shorter duration) was found to best fit RSV epidemic data from nine 
locations: (a) Porto Alegre, Brazil, (b) Rio de Janeiro, Brazil, (c) England & Wales, United Kingdom, (d) 
West Midlands, United Kingdom, (e) Finland, (f) Florida, United States, (g) The Gambia, (h) Madrid, (i) 
Spain, and (j) Singapore. 

Arenas, González, Jódar. (2008).94 An analysis of the nested models proposed in White, et al. (2007).31 is performed and conditions for the 
existence of periodic solutions are established. 

Arenas, González-Parra, Moraño. 
(2009).59 

Two SDE models analogous to the SIRS model of Weber, Weber, Milligan. (2001).10 are developed: one 
where the average transmission coefficient (𝑏𝑏0) is specified as a Wiener process, and one where or the 
birth rate (𝜇𝜇) is specified as a Wiener process. The model reproduces RSV hospitalization data in 
Valencia, Spain. Analysis of the SDE models finds that the SIRS model of Weber, Weber, Milligan. 
(2001).10 is more sensitive to stochastic perturbations of average transmission coefficient than it is to 
stochastic perturbations of birth rate.  

Acedo, et al. (2010).15 An age-stratified SIRS model with vaccination of newborns at birth is developed, accompanied by a cost 
effectiveness analysis that includes hospitalization, vaccination, and caregiver productivity loss costs. 
The model is calibrated to data from Valencia, Spain. Higher levels of productivity loss vaccination are 
associated with a reduction in total costs. 

Acedo, Moraño, Díez-Domingo. 
(2010).16 

An ABM is developed that is analogous to the SIRS model presented in Acedo, et al. (2010).15. 
Individuals are implemented as nodes on a complete graph. A cost effectiveness analysis that includes 
hospitalization, vaccination, and caregiver productivity loss costs is performed. As with Acedo, et al. 
(2010).15, it is found that for higher levels of productivity loss vaccination may result in a reduction in 
total costs. 

Continued next page. 
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Supplemental Table A.6.1 (continued): Summary of results of RSV DTMs. 

Model Summary of results 
Arenas, González-Parra, Jódar. 
(2010).60 

A sensitivity analysis is performed on the SIRS model of Weber, Weber, Milligan. (2001).10 calibrated to 
data from Valencia, Spain. Parameters that are varied include: intial conditions of infectious (𝐼𝐼) and 
recovered (𝑅𝑅) compartments, average transmission coefficient (𝑏𝑏0), and birth rate (𝜇𝜇). The model is most 
sensitive to uncertainties in average transmission. The model is least sensitive to uncertainties in initial 
conditions. 

Leecaster, et al. (2011).17 An SEIR model was developed for modeling a single season of RSV. The average transmission 
coefficient (𝑏𝑏0) was found to be correlated with the epidemic start time; together, these quantities are 
found to explain variation in seasonal epidemic size. 

Ponciano, Capistrán. (2011).37 An SIRS model is modified by changing the incidence rate function from the standard bilinear incidence 
rate (𝛽𝛽 𝐼𝐼𝐼𝐼/𝑁𝑁) to Liu-Hethcote-van den Driessche (LHD) incidence rate function (𝛽𝛽 𝐼𝐼2𝐼𝐼/ (𝐼𝐼 + 𝛼𝛼)/𝑁𝑁 ). 
The model is applied to RSV epidemics from Turku, Finland, and The Gambia using the 
parameterization and calibration data from Weber, Weber, Milligan. (2001).10 Inclusion of the LHD 
incidence rate function results in the disease-free equilibrium always being a local attractor. Comparison 
of standard and LHD SIRS models using Akaike and Bayesian information criteria are favorable to the 
LHD SIRS model. 

Mwambi, et al. (2011).41 A generalized linear modelling (GLM) approach was adapted to an SIS RSV DTM to estimate time-
varying disease parameters, e.g. the force of infection. For RSV epidemic data from Kilifi, Kenya, it is 
found that force of infection peaks in May and January-February. 

Aranda-Lozano, González-Parra, 
Querales. (2013).35 

The SIRS model of Weber, Weber, Milligan. (2001).10 reproduces RSV detection data from Bogota, 
Colombia. 

Corberán-Vallet, Santonja. 
(2014).61 

A SIRS stochastic difference equation model was developed where the number of new infected 
individuals is a binomial random variable with success probability that depends on (a) the number of 
infected individuals in the previous time step and (b) a time-varying stochastic transmission coefficient. 
A Bayesian analysis of the model allows for the estimation of the posterior distribution of model 
parameters and outputs by calibrating to Valencia, Spain. 

Moore, et al. (2014).18 An age stratified SEIRS model is developed that reproduces the biennial epidemic pattern observed in 
data from Western Australia. 

Paynter, et al. (2014).53 An SEIRS2 model is developed for Bohol, Phillipines. The peak in transmissibility of RSV is estimated 
to occur 49-67 days prior to the peak in RSV detections. Nutritional status and rainfall were identified as 
two potential seasonal drivers of RSV infection dynamics. Specifically, the peak in transmission (𝛽𝛽(𝑐𝑐)) 
achieves its maximum intensity approximately 7 weeks prior to peak RSV detections and its minimum 
intensity approximately 19 weeks following peak RSV detections. This is compared to mean birth 
weight (a proxy for nutrition), which achieves its minimum approximately 10 weeks prior to the peak in 
RSV detections, and the number of days per week with more than 5mm of precipitation (a proxy for 
rainfall), which achieves its minimum approximately 17-18 weeks following peak RSV detections. 

Kinyanjui, et al. (2015).1 An age-structured M-SIRS3 model incorporating vaccination is developed. The model is calibrated to 
data from Kilifi, Kenya. The model predicts that, with respect to reduction of disease burden in < 6-
month-olds, the optimal age for vaccination is between 5 and 10 months; vaccination of these age 
cohorts results in a significant reduction in disease in young infants through herd immunity. 

Morris, et al. (2015).81 The sensitivity of RSV epidemics to birth rates is not captured by the SIRS model. The authors 
implement an SIRS2 model and find that by including two levels of partial immunity (RSV naïve and at 
least one previous RSV infection) is sufficient capture sensitivity of RSV epidemics to birth rate.  

Pitzer, et al. (2015).7 An M-SIS4 model is calibrated to RSV epidemic data from multiple US states. Correlation was observed 
between estimated model parameters and climactic variables of temperature, vapor pressure, 
precipitation, and potential evapotranspiration (PET). Specifically, the amplitude of seasonal fluctuations 
in the transmission rate (𝑏𝑏1) and the phase shift of the transmission rate (𝜙𝜙) were found to be negatively 
correlated with mean precipitation and mean vapor pressure, and positively correlated with the amplitude 
and timing of PET. 

Poletti, et al. (2015).5 An agent-based transmission model is developed that differentiates interactions based on three types of 
interaction: household, school, and general. The model is calibrated to data from Kilifi, Kenya. It is 
found that, of the infant infections that occur due to household interactions (39%), a majority (55%) are 
caused by school-aged children. For the purposes of reducing infant RSV infections, it is found that 
vaccination of school-age children is nearly as effective as vaccination of infants. 

Hogan, et al. (2016).27 An age stratified SEIRS model is developed for Western Australia. Parameter and bifurcation analyses 
are provided. Parameter analysis finds that (a) biennial cycles result when 𝑏𝑏1 is large, (b) biennial cycles 
exhibit a delay for intermediate values of 𝜇𝜇, and (c) annual cycles predominate when the duration of 
immunity (1/𝛾𝛾) is short. Bifurcation analysis confirms the existence of period doubling and period 
halving bifurcations. 

Paynter. (2016).54 An SEIRS model for children is stratified by nutritional status (well-nourished versus malnourished). 
Effects of malnutrition on development of severe RSV disease were considered in three scenarios: 
increased likelihood of infected malnourished children developing severe RSV disease, increased 
susceptibility of malnourished children in becoming infected, and increased infectiousness of infected 
malnourished children. The population attributable fraction (PAF) calculated using the model is (a) equal 
to conventionally calculated PAF for scenarios that did not affect disease transmission and (b) greater 
than the conventionally calculated PAF for scenarios that did affect disease transmission. 

Continued next page. 
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Supplemental Table A.6.1 (continued): Summary of results of RSV DTMs. 

Model Summary of results 
Reis, Shaman. (2016).68 
Reis, Shaman. (2018).69 

An SIR model is developed to model a single season of RSV with the goal of forecasting RSV dynamics, 
e.g., the epidemic peak. All model parameters are calibrated by iteratively applying an ensemble 
adjustment Kalman filter (EAKF) to US RSV detection data. Forecasts produced from data up to four 
weeks prior to the peak in RSV detections produced forecasts that were within 25% of the actual peak 
magnitude approximately 70% of the time. 

Yamin, et al. (2016).8 A non-standard age stratified ODE model that includes asymptomatic individuals and vaccination is 
developed. The model is calibrated to data from four US states: California, Colorado, Pennsylvania, and 
Texas. Vaccination of < 5-year-olds is the most effective strategy to reduce RSV disease burden in all 
age strata. 

Hogan, et al. (2017).6 An age-stratified M-SEIRS model with maternal vaccination is developed. Maternal immunization may 
significantly reduce RSV hospitalizations in infants aged < 6 months. 

Jornet-Sanz, et al. (2017).23 An extension to Corberán-Vallet, Santonja. (2014).61 is developed that allows for vaccination of 
newborns at birth. 

Nugraha, Nuraini. (2017).24 The SIRS model of Weber, Weber, Milligan. (2001).10 is modified for intervention by vaccination and 
public awareness campaign. The model is calibrated to data from North Carolina, United States. A 
combination of vaccination and public awareness campaign result in the greatest reduction in disease 
burden. The relative contribution of vaccination to reduction in disease burden is greater than that of the 
public awareness campaign. 

Pan-Ngum, et al. (2017).2 Qualitatively similar results are reported for two model structures: M-SIRS3 (see Kinyanjui, et al. 
(2015).1) and ``BWI'' (non-standard model structure). The models are calibrated to data from Kilifi, 
Kenya. Multiple intervention strategies, i.e., both maternal and infant vaccination, are implemented. For 
both models (a) vaccination of pregnant women is less effective in reducing disease burden in < 5-year-
olds than vaccination of infants, and (b) the herd immunity effect is strongest for vaccines that reduce 
infectiousness and duration of infectiousness. 

Smith, Hogan, Mercer. (2017).11 The SIRS model of Weber, Weber, Milligan. (2001).10 is extended by adding maternal vaccination or 
vaccination at discrete time points.  Simulation demonstrates that the disease-free equilibrium of the 
model with vaccination at discrete time points can be destabilized under extreme conditions, e.g., 100% 
coverage with a vaccine that confers 10,000 times increased infectiousness. 

Goldstein, et al. (2018).19 The authors present United States RSV hospitalization data stratified by age and compute the relative 
risk (RR) for each age strata, i.e., the ratio of normalized before peak counts to normalized after peak 
counts for each age strata. The RR is found to be highest for children 3 – 4 and 5 – 6-year-olds in 5 out 
of 11 seasons, and is generally higher in 1 – 10-year-olds versus either < 1-year-olds or > 10-year-olds. 
An SIR mathematical model was developed to validate these results and to simulate the effect of 
vaccination of different age strata. Vaccination of age groups with higher RR values was most effective 
in reducing RSV infections. 

Rosa, Torres. (2018)a.25 SIRS and SEIRS models are extended to allow for treatment of infectious individuals. The models were 
calibrated to RSV epidemic data from Florida, United States. A system of equations is derived for the 
optimal control function 𝑇𝑇(𝑐𝑐) by using the Pontryagin maximum principle, where 𝑇𝑇(𝑐𝑐) is a function that 
determines the intensity of treatment program for infectious individuals. 

Rosa, Torres. (2018)b.26 An extension to Rosa, Torres. (2018)a.25 in which systems of fractional differential equations are 
developed that are analogous to SIRS and SEIRS compartmental models. Fractional order of 
differentiation is estimated by fitting to RSV hospitalization data from Florida, United States. A system 
of equations is derived for the optimal control function 𝑇𝑇(𝑐𝑐) by using the Pontryagin maximum 
principle. 

Arguedas, Santana-Cibrian, 
Velasco-Hernández. (2019).50 

An age stratified SEIRS model is developed with four age strata: 0 – 4-year-olds, 5 – 19-year-olds, 20 – 
59-year-olds, and ≥ 60-year-olds. The model is calibrated to age stratified data from Luis Potosí, 
Mexico, and the roles played by different age strata in the epidemic dynamics are inferred from 
parameter estimates. Children (< 5-year-olds) are (a) more likely to get sick, (b) remain infectious 
longer, and (c) lose temporary immunity to reinfection faster than other age strata. It is concluded that 
young children are the primary contributors to the spread of RSV. 

Baker, et al. (2019).51 A time series implementation of an SIR model is developed, resulting in estimates for the transmission 
parameter as a function of time for much of the United States and Mexico. An inverse relationship 
between humidity and log transmission and a linear relationship between rainfall and transmission are 
observed. Effects of climate change on RSV infection dynamics are considered through simulation. 

Kombe, et al. (2019).20 An agent-based transmission model was developed for household dynamics of RSV A and RSV B 
epidemics. The model is calibrated to data from Kilifi, Kenya. Following RSV infection, susceptibility 
of individuals to subsequent homologous or heterologous reinfection is reduced by 47% or 39%, 
respectively. The rate of pairwise transmission is lower in larger households (> 7 members), but overall 
household transmission rate is higher in larger households. Between 32-53% of RSV transmissions are 
attributed to within household interactions. 

Mahikul, et al. (2019).21 An extension of the BWI model first proposed in Pan-Ngum, et al. (2017).2 was developed to incorporate 
population and household structure. The model is calibrated to data from Thailand. Extended families 
(i.e., three generations living together) are majority contributors to the force of infection, and their 
contribution is expected to increase in the near future. 

Continued next page. 
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Supplemental Table A.6.1 (continued): Summary of results of RSV DTMs. 

Model Summary of results 
Brand, et al. (2020).3 A non-standard SIRS model implementing household structure was developed to investigate the effects 

of maternal vaccination (conferring protection to both mother and child) and vaccination of the entire 
household at time of birth. The model is calibrated to data from Kilifi, Kenya. A significant reduction in 
hospitalizations can be achieved by vaccination a relatively small subset of the population, i.e., 
vaccination coverage of 75% for maternal and household vaccinations at time of birth results in a 50% 
reduction in RSV hospitalizations (assuming maternal vaccination increases duration of natural maternal 
immunity by 75 days). 

Campbell, Geard, Hogan. (2020).12 An M-SEIRS ABM implementing household structure was developed to investigate the effects of 
maternal vaccination (conferring protection to both mother and child). The model is calibrated to data 
from Western Australia (Perth, Australia). At 70% coverage the reduction in infections for < 3- and 3 – 
6-month-olds was 16.6% and 5.3%, respectively; there was some evidence of infections being delayed 
from the first to second year of life. 

Hodgson, et al. (2020).9 An age stratified M-SEIRS3 ODE model is adapted to include asymptomatic individuals, i.e., Exposed 
individuals become infectious and symptomatic (I) or infectious and asymptomatic (A). The effects of 
palivizumab immunoprophylaxis, long-acting monoclonal antibody immunoprophylaxis, maternal 
vaccination, and vaccination are investigated. The model is calibrated to data from England, UK. A cost-
effectiveness analysis is performed. The maximum cost-effective purchase price for long-acting 
monoclonal antibody immunoprophylaxis administered to all infants is £90 when compared against 
current palivizumab immunoprophylaxis. For maternal vaccination the maximum cost-effective purchase 
price £85. For vaccinating 2-month-old infants the maximum cost-effective purchase price is £95. 
Vaccination of pre-school and school-age children were not cost-effective relative to vaccination of older 
adults. Vaccination of older adults (≥ 75-year-olds) is £21. 

Kinyanjui, et al. (2020).4 Models presented previously in Pan-Ngum, et al. (2017).2 were calibrated to data from the United 
Kingdom. Vaccination of infants is implemented for multiple vaccines with properties varying by dosing 
schedule and reduction in risk of primary infection, duration of infectiousness, infectiousness, and risk of 
upper, lower, and severe lower respiratory tract infections. The greatest reductions in disease burden for 
< 5-year-olds result from vaccines that reduce infectiousness and duration of infectiousness. 

Seroussi, Levy, Yom-Tov. 
(2020).14 

A multi-compartment SIR model was calibrated to United States Internet data, i.e., Google searches for 
the term ``RSV'' stratified by US state. Inter-state infection rates are correlated (𝜌𝜌 = 0.30) with human 
mobility data harvested from Twitter. Model paramters are found to be relatively constant year-to-year. 
The model is able to predict infection rates and timing of infection peaks in each state for the current 
season using (a) the first seven weeks of RSV data and (b) the previous year's parameter values. 

van Boven, et al. (2020).22 An age stratified SIR model is adapted to model RSV epidemics by coupling it to a discrete mapping 
function that maps the system at the end of one epidemic to the initial conditions of the subsequent 
epidemic. Maternal and infant (< 6-month-olds) vaccination are investigated. Maternal vaccination 
decreased attack rate in < 1-year-olds by 26%, but increased the attack rate in 1 – 4-year-olds and 5 – 9-
year-olds by 12.5% and 3.5%, respectively. Infant vaccination decreases the attack rate in < 1-year-olds, 
1 – 4-year-olds and 5 – 9-year-olds by 29.8%, 20.8% and 8.2%, respectively. 
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