Supporting information for “SMIM: a unified framework of
survival sensitivity analysis using multiple imputation and

martingale” by Yang, Zhang, Liu, and Guan.

Web Appendix S1 provides the preliminary for the proofs. Web Appendix S2 establishes the
asymptotic linearization of SO,mi (t). Web Appendix S3 describes the o—fields. Web Appendices
S4 and S5 provide the proofs of Theorem 1 and Theorem 2. Web Appendix S6 presents a

comprehensive simulation study.

Web Appendix S1 Preliminary

We adopt the counting process theory of Andersen and Gill (1982) in our theoretical framework.
We state the existing results which will be used in our proof throughout.

To simplify the exposition, we introduce additional notation. We use 2 and 3 to represent
“converge in probability as n — o0” and “converge in distribution as n — o0”, respectively.
Also, let ny/n — p1 € (0,1) and ng/n — po € (0,1), as n — co. We do not state this condition
formally as an assumption because it holds trivially for most of clinical trials where the two
treatment groups are relatively balanced in their sample sizes.

Let X?l denote 1 for I =0, X; for l =1, and X; X" for [ = 2. Define

1 n
UL (Bart) = — 1A = ) XFH XY (1), uld) (B t) = E{ XXy (1)},
¢ =1

where ugl) (Ba,t) is the expectation of Uél) (Ba,t), for [ =0,1,2. Moreover, define

Us" (Ba, ) us (Ba, 1)
Ea(ﬁaat) = ma ea(ﬁavt) = m-

The maximum partial likelihood estimator Ba solves

1 T U(l)(ﬁ u)}
Sun(B)=— 1(A;=a X, — L R AN; (u) = 0.
() = 3o >/O{ T )



We state the standard asymptotic results for Ba and j\a() requiring certain regularity con-
ditions. To avoid too many technical distractions, we omit the exact conditions in Assumption

S1 for the consistency and uniform convergency of the estimators of Cox models.

Assumption S1 i) (Positivity) There exists a constant ¢ such that with probability one, Sq(t |
Xi)>c¢>0 fort in[0,7] and a = 0,1. 1) Conditions A-D in Andersen and Gill (1982) hold

for treatment group a =0, 1.

Following Andersen and Gill (1982), we have

. 1<
ne2(Ba — Ba) = rQWZuA,:a)Haﬁop(l), (S1)
a i=1

where Iy = E{-08,,(8.)/055} is the Fisher information matrix of 8,, H,; = fOL{Xi —
ea(Basw)}1(A; = a)d M, ;(u), and

AM, (1) = dN; (1) — € XY (u) Ag 0 (u)du. (S2)

Moreover, n*/2{S,(t | X;;0) — Sa(t | Xi)} converges uniformly to a Gaussian process in [0, L] for

all X;.

Web Appendix S2 Asymptotic linearization of gom(t)

To obtain the asymptotic linearization of S mi(t), we have

/2 { Somilt) — S50}
n1/2 m n

= - A=Y} (U 2 0) — Soft | Hift):6) (53)

mng

=1 i=1
nl/z
+ . D (1= A [Yi(t) + {1 = Yi(t)}(1 — 1) So{t | Hi(t);0} — S5 ()] (54)
=1
nl/2
+ o Z(l — Ai)¢o,i(t) + 0p(1), (S5)
i=1

where the exact expression of ¢g;(t) is given in Section Web Appendix S4, reflecting the esti-

mation of {A\o(+), Bo}. In our context, the imputation for the control group uses the information



only from the control group. By the imputation and estimation procedures, (S3)—(S5) have

(conditional) mean zero.

Web Appendix S3 o-fields for the martingales

We consider the o-fields as follows

o (01,...,0), fork=1 (1<i<ny),
0(01, Om,T() ,T;‘@), for k =mny + (i — 1)m +j
(1<i<m,1<j<m)
Fnk = U(Ol, Om,Tl(),...,T;;l(m), for k= (1+m)ny +1
Opitis .- Ok) (m+1<i<n),
0(01,.. O, e ), for k= (1+m)ny +no+ (i — )m +j
Onitse s On Ti o TT9) L (41 <i<n1<j <m),

Web Appendix S4 Proof of Theorem 1

We first derive the martingale representation of the MI estimator under d-adjusted Cox models
and control-based Cox models, separately. Then, we apply the martingale CLT to derive the

asymptotic distribution of the MI estimator.

S4.1 Delta-adjusted Cox models

A key step is to separate the imputation step and the estimation step. We start with treatment

group a = 1. For the imputations, it is important to recognize that Ti*(j ) follows a time-

dependent Cox model with the conditional survival function S1{¢ | H;(t); 8} for t > U;, where

exp {— fél Al(u)eﬁlTXidu} , ifA=1,R; =1,

Si{t | Hi(t); 0}
exp {_5 I /\o(u)eﬁgXidu} , ifA;=1,R =2

5adj( )

We express the MI estimator of S as

nl/2 {Sl,mi(t) — gladi (t)}



= o AT 2 ) - ST ()

7j=1 =1
= Z;ijzn:Ai[l(Ti*(” > ) — Sy {t | Hi(t); 0}] +1—/2§n:A 151t | Hi(t); 0} — $5(1)]
j=1i=1
- ::Lln/j izn:Ai{l - Yi(t)}[l(ﬂ*(j) >t) — Si{t| Hz(t)7é}] (S6)
j=1i=1
nl/2 & . .
*: > [A Yi(t) + A{1 = Yi()}(1 — L) S1{t | Hi(t); 0} — Sf‘adj(t)} + 0,(1), (S7)
i=1

where (S6) follows because 1(7; *0) > > 1) — Si{t | Hy(t); 0} = 0 for subject i with {4; = 1,Y;(t) =
1}, and (S7) follows because A{1 — Y;(t)}I;S1{t | H(t); 0} = 0.
By the counting process theory, we can express the term nf1/2 Yo A{1-Y () FA-1) S {¢t |
H;(t); 0} in (S7) further as
1« X
e ZAi{l = Yi()H(1 = L)Su{t | Hi(t); 0}
= 1/22/1{1— ()1 -1 )exp{ /)\1 yot(Hi=2) 1Y du}

= W ZAi{l = Yi(t)}(1 = L)Su{t | Hi(1); 0}

++/2 Zn:Ai{l—Yi(t I)S:{t | H;(t { / SL(Ri=2) BT X; {,\ }du] (S8)
" ZA {1- —1)S1{t| Hi(t);e}{—/ 1 (w5 (Ri=2) AL X Xdu}} (S9)
xnl/? (/31 - 51) . (S10)

For (S8), we further express the key term as

t
/ §1(Ri=2) B X {Al(u) - Al(u)} du
U;
_ / sL(R=2) AT X; {nllzg 1 AjdN; (u) nl_l > i1 Adej(U)}
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1 (/617 )
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! 51(Ri:2)661TX1- ”1_1 Z?:l Adel,j(U)
v Ul (81, u)

. T
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+ 0p(1)

—1
/ =i L AN g, (s11)
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where dM j(u) is defined in (S2). Denote
gaolt) = E[LA; = a){l = Yi())}(1 = 1) Sa{t | Hi(t);0}5* DX ]

() = E|1(4 = a) {1 — Yi()}(1 — [)Su{t | Hi(t): 0} {/U 51(Ri=2)e/33Xin)\a(u)du}} :

Gaot) = E _1(Ai =a){1 -Y:()}(1 — L,)S.{t | H;(t);0} {/U 51<Ri—2>eﬁfxiea(5a,u)Aa(u)duH ,

for a =0, 1.

Plugging (S11) in (S8) becomes
1 & A
7 0 Al = Vi) = )Si{t | Hi(t):0}
1 =1

= p AL - YN - DS | Hif#):0)
ny =1

Foralt) — 10yl (B - 8 —n;WZ /U DO Ay (0) + 0,(1)

= DA - YO} - 1St | Hi(1); 0}
Ny 4=1

1 < T e " gio(u
+WZ[{gl,z<t>—gl,1<t>} A [ smf Z)AidMl,xu) +op(1), (S12)
1 i=1 i !

where the second equality follows by (S1).
Combining (S6) and (S12) leads to

n'/? {S1 mi(t) — S22 (t)}

/2 m m

= D (A AT 2 ) - it | 0s01))]
7j=11i=1
ﬂ;? iAi [¢>n,z’(t> FYi(t) + {1 = Yi(t)}(1 — L)Sy{t | Hi(t); 0} — S7*Y()| (S13)
=1



+o,(1).
where

o) = (a0 = 02 @) T - [ L0 an, o), (s14)

Similarly, for treatment group a = 0, define

604(t) = {ma(®) ~ ana (0 Ty oy — [ M ), (515)

We have

nl/2 {So mi(t) — SO (t)}

1/2 m.on - A
= e Y AN YT 2 0~ Soft | Hi(:0)
+1(/)2 Zn:(l —Ay) {¢0,i(t)+yi(t)+{1 — Yi(t)}(1 — L) So{t | Hi(t); 0} _Sg_adj(t)} (516)
+op(1).7

The martingale series approximation of Aﬂmi follows by plugging (S13) and (S16) into

nl/2 (AT,mi _ Ai—adj) - pl/2 [\I’T{SH mi(®), Somi(t)} — Ai—adj}

1 (1+m)n

_ Z/OTwa(t){S’a7mi(t)—Sa(t)}dt+op Z Enk + 0p(1)

a=0
where the &, ;; terms are given in (13) with ¢104(¢t) = 0 and ¢11,(t) and ¢o(t) given in (S14)

and (S15), respectively.

S4.2 Control-based Cox models

We focus on the treatment group a = 1. Under the control-based imputation model, the MI
estimator 5’17mi(t) depends on not only the parameter estimator in the treatment group but also
the parameter estimator in the control group. Following the same steps for (S7), we express the

MI estimator as

nl/2 {ngl( ) — 55 cb( )}



= TSN A {1 - Vi T > 1) - Si{t | Hit); 0)] (S17)
mm j=1 i=1
+nTZ2 iAi [Y;(t) +{1 = Yi()}(1 = L) Sy {t | Hi(t); 0} — Sf‘Cb(t)} , (S18)

where under the imputation based on the control-based Cox model,

Si{t | Hi(t); 0} = {

for t > U;.

By the counting process theory, we can further express n'/?

I;)S1{t | H;(t);0} in (S18) as

/2 n
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Denote

g10(t)
g1.1(t)
g12(t)
go.o(t)
go.1(t)

go,2(t)

= E[4{1 - YiO}(1 — L)LR = D)Si{t | Hi(1); 03T

B[ AL YO} = L)1(R = DSt | Hi(): }{ / (u)eT XTdu}] ,
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- Ui
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= E -Az{l - Y;(t)}(l - Iz)]-(Rz == 2)5’1{75 ’ Hl(t),e} {5/[; )\o(u)eﬁgxieg(ﬁo,u)Tdu}] .

Then, we can express (S19) further as
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o> p{-s [, e
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+{G0a(t) — Goa(t)} 02 (ﬂo—ﬂo —Z/U M1 4;)dMo (0 + 0p(1)
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nl/2

+—ZA [{gm ()Y T H, — / t deﬂ-(u)}

u; So(B1,u)
nl/2 o tos
L ;(1 - 4Ai) [{90,2(75) — Goa ()} Ty Ho; — /U %dMo,i(u)} +0p(1).  (S20)
Combining (S17) and (S20) leads to
nl/? {5*1 milt) — sf-cb(t)}
pl/2 1 , nl/z o
= %ZZA {1- [ (T; U > 1) - S {t | Hy(t); 9}] + "y - Z(l — Ai)104(t)
j=11=1 =1
nl/2
+Tl >4 [¢’11 i(t) +Yi(t) +{1 = Yi(t) (1 — L) Suft | Hi(t); 0} — Sis_Cb(t)] + 0p(1),
=1
where
P11,i(t) = [{§1,2(t) — G1a(t)} T Hyy — /U mdMl,i(u)] (S21)
broall) — [{§0,2(t) ~ a0} T o~ | | %dMo,i(u)] | (522)

Because the imputation mechanism for the censored control subjects is the same, the martin-
gale representation for SO,mi(t) remains the same as in (516). Finally, we can decompose Aﬂmi

by the martingale representation

(1+m)n
nl/Q(Aﬂmi — Af’bc = Z Enk +op(1

where the &, j, terms are given in (13) with ¢114(t), ¢10,i(t), and ¢gi(t) given in (S21), (S22)
and (S15), respectively.
For both the d-adjusted and control-based Cox models, it follows by the martingale CLT,

nl/ 2(Asmi — A%M) converges to a Normal distribution with mean zero and a finite variance

(I+m)n 1
Vi = N R | Fak-1) =Y (02, +02,), (S23)
k=1 a=0



where sen denotes either é-adj or d-cb, and
it = B (| [ = 4060+ 60s0) + it
£ YOI - LSt | H(0):6)] - S (0))a)?)
Ay = SE { ( [ nadon +viey
YA} — L)Sult | Hi(1):6) — sze%)]dt) } |

e = | [T = - MU 2 0 - S,te | o6}
DPa™m 0
for a =0, 1.

Web Appendix S5 Remarks

Remark 1 There are many choices for generating ug, such as the the standard normal distribu-
tion, Mammen’s two point distribution, a simpler distribution with probability 0.5 of being 1 and
probability 0.5 of being —1, or the nonparametric bootstrap weights. The wild bootstrap procedure
is not sensitive to the choice of the sampling distribution of pr. We adopt the standard normal

distribution in the simulation study.

Remark 2 [t is worth discussing the connection between the martingale representation (10) and
existing results in the survival literature. Under CCAR, Zhao et al. (2016) derived an asymp-
totic linearization for the RMST estimator and proposed the perturbation-resampling variance
estimation by adding independent noises to the linearized terms. In this simpler case, by setting
the sensitivity parameter § to be 1 and omitting the imputation step, our martingale represen-
tation with the first nq terms reduces to their linearization. The slight difference lies in the
distribution for gemerating the resampling weights. In the wild bootstrap, the resampling weight
distribution has mean 1; while in the perturbation, the resampling weight distribution has mean
0. The difference would only affect the center of the bootstrap replicates of AT,mi but not the
variability and thus variance estimation. Our framework allows for CAR and sensitivity analy-
sis using 0-adjustment/control-based models, taking into account variability from both parameter

estimation and imputation.
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Web Appendix S6 Proof of Theorem 2

We provide the proof of Theorem 2, which draws on the martingale central limit theory (Hall
and Heyde, 1980) and the asymptotic property of weighted sampling of martingale difference

arrays (Pauly, 2011).
First, by the law of large numbers, we have

k=1
= n% ( OT P1(t)Ai [p11i(t) +Yi(t) +{1 = Yi(@)}(1 — L)Su{t | Hi(t); 0} — 7 (2)] dt)
» 1 = T 2
= E{( P1(t)Ai [f11,4(t) + Yi(t) +{1 = Yi(t) }( )Su{t | Hi(t); 0} — S7°(t)] t) }
D1 0
= 0-%17
and
(1+m)ny
Do G
k=ni1+1

- % DY [ 040 - Vo = - sie] e o)

? o < U Ui A1 =Yl <T5(”2t>—81{t|sz(t);é}}dtmm])

_ 2
- 01,23

m)ni+no 2

as n — oo. Similarly, by the law of large numbers, we have Z(1+1+m)m+1 ok

2 00 1, and

(1+m)n

F=(1-4m)n1+no+1 £n & 2 UO 5. Therefore, we have

(1+m)n
Z gn k _> V:irrlln (824)
as n — oo.
Second, we show
P
k| — 0, S25
1§kgl(?i(m)n|§ k' ( )

as n — oo. Toward this end, for any € > 0,

P <1g}€ax &kl > 6> < mP |kl > €) = mP (&) > €')

11



(/ V(DA [ it | Hi(0:6) — (0] dt)4 o0,

where the second inequality follows from the Markov inequality, and the convergence follows
because the expectation term is bounded due to the natural range of the survival functions.
Similarly, we have

T . 4
P < max &n | > e> < SLZJE {/ gbl(t)Ai[l(Ti*(J) >t) — Si{t] Hi(t);é}]dt} — 0,
nim-e 0

n1+1<k<(1+m)ny

asn — oo. Therefore, P( max  |§, x| > €) = 0,asn — oo. Similarly, P( max |Ente| >
1<k<(1+m)ny (1+m)n1+1<k<(14+m)n
€) — 0, as n — oo. Then (S25) holds.

Third, we show

E 2 ) < oo. S26
Sgp <1§kr§n(fli~)k(m)n£n’k> > (826)

For any n, by Assumption S1,

E< max &%k) < E(nlfg,k)

1<k<ng

n

= e ([ [oasi o - seo]a) <o,

ni

and

E< max fi’k> < E(nm@%,k)

n1+1<k<(1+m)ny

= (/ it 79 > 1) — Sl{t\Hi(t);é}]dt>2<oo.

Therefore, E(max;<j<(i4m)n, fik) < E(maxi<k<n, 572”@) + E(max,, 11<k<(14m)n fik) < 0.
Similarly, E(max,,, (14m)+1<k<n(1+m) fik) < 00. Then (526) follows.
Given the results in (524) and (525), the martingale CLT implies that
(1+m)n

ST b SN, VER),

k=1
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as n — oo. Given the results in (524), (S25), and (S26), Theorem 2.1 in Pauly (2011) yields

(1+m)n

sup |P < {(1 +m)n}/? Z

k=1

bk <7\ Ot p — @ ()] B0, (S27)

{n( 1+m)}1/2 o

as n — 0o, where ®(-) denotes the cumulative distribution function of the standard normal
distribution.

Let W, =n~1/2 Z(Hm " &, kug. By Theorem 1 and (S27), we have
sup ’IP’ (n1/2WL <r| Olm) —P {n1/2 <A7,mi — Aien> < r}‘ LN 0, (S28)

as n — oo.

Lastly, to prove Theorem 2, it remains to show that
P {nl/Q(WL W) | olm} 2, (S29)

as n — oco. To unify the notation for both treatment group, define ®1;(t) = ¢11,i(t), Po(t) =
¢10,i<t) + ¢07i(t), ‘i’lﬂ'(t) = (iu’z‘(t), and (i)()’i (t) = élo,i(t) =+ é(li(t)' The difference between Wiy,

and W7} can be decomposed to six parts,

n(1m) e
n1/2(WL_W£): Z n_1/2uk(n1/2én,k 1/ gnk :ZZRal,na
k=1 a=0 [=1
where
R zn:”m 14 =a) [ v (t){S (t) ssen(t)}dt
al,n = Us i = Q a a,mi — g )
: =1 Na 0
R S w1 = ) [ ) {Bust) - vust)b e
a2n = Us i = a a a,i — Dt s
i i=1 Na 0
no1/2
Ragm = Znn uil(Ai:a)
=1 @
x| a1 = Yl H(0 — 1) [Saft | Hilt): 0} = Saft | Hil0); 03]
for a =0, 1.
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Given that the bootstrap weights satisfy E(u? | O1.,) = 1, we have

n T N 2

E (Rgl n‘Olzn) = 72naE(U12) |:/ ¢a(t) {Sa,mi(t) - Szen(t)} dt:|
' Ny 0
. 2

n o _ @sen D,
- [ /0 Ya(t) {Sa,ml(t) S8 (t)} dt] 20,
as n — oo, for a = 0,1. Also, we have

E (R[212,n’01:n) = % zn: 1(A; =a) [/OT at) {‘i)a7i(t) — (ba,i(t)} dt] 2 » N
@ =1

as n — oo, for a = 0,1, where the convergence follows by Assumption S1 and the results in

Section Web Appendix S1. Similarly, we have

E (R23,n|01:n)
n o T A 2 p
=2 1i=a) | | da{1 =Y} - 1) {Sa(t 1 0is00) = Su{t | Hi(t); 03} at|” B o,
@ i=1
as n — oo, for a = 0, 1. Therefore, for any € > 0,

P{|Ra1n| > €| O1n} B0, P{|Raon| >€|O1n} 20, P{|Razn| >e|O1n} 20,

as n — oo, for a = 0,1. Then we obtain (529). The conclusion of Theorem 2 follows.

Web Appendix S7 Simulation study

We conduct simulation studies to evaluate the finite sample performance of the proposed SMIM
framework. For illustration, we focus on the §-adjusted and control-based models for sensitivity
analysis and the RMST as the treatment effect estimand. We start with a simple setup with
one covariate in Section S7.1 and then consider a setting motivated by the ACTG175 trial data

in Section S7.2.

S7.1 Simulation one: a simple setup

For both the treatment and control groups, each with sample size n € {500,1000}, the con-

founder is generated by X; ~ N(0,1). In the treatment group, T follows the Cox model with
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the hazard rate A\i(t | X;) = A1 (t) exp(B1X;), where A\i(t) = 0.35 and 51 = 0.75. We consider
censoring due to the end of the study and premature dropout. We generate the censoring time
to dropout, C;, according to a Cox model with the hazard rate Ao (t | X;) = Ac(t) exp(BcXi),
where Ac(t) = 0.15 and ¢ = 0.75. The maximum follow up time is L = 3.25. The observed
time is U; = T; A C; A L. If U; = T;, the event indicator is I; = 1; if U; = L, then I, = 0 and the
censoring type is R; = 1; if U; = Cj, then I; = 0 and the censoring type is R; = 2. Under the data
generating mechanism, the average percentages of I; = 1, R; = 1, and R; = 2 are 53%, 25%, and
22%, respectively. In the control group, T; follows the hazard rate A\o(t | X) = Ao(t) exp(5oX;),
where A\o(t) = 0.40 and By = 0.75. The censoring time C; follows the same model as in the
treatment group. For the dropout subjects with R; = 2 in treatment group, the hazard rate
for events after censoring are d\;(t)exp(f1X;) for delta-adjusted model and A\y(t) exp(BoX;)
for control-based models. For the dropout subjects with R; = 2 in control group, the hazard
rate for event after censoring remains the same, which correspondsto the case when the control
treatment is a placebo or the standard of care. The true RMST estimand under the §-adjusted

AP — M<15 id‘] — po,r with 7 = 3. We assess the proposed method to implement the

model is
sensitivity analysis for the treatment group when the true parameter § is 1.5, while the analysis
parameter 0 varies in a pre-specified set {0.5,1,1.5,2,2.5}. The true RMST estimand under the
control-based model are AR with - — 3,

We use MI for imputing the censored event times following Steps MI-1-1, MI-1-2 and MI-1-3
in Section 3 with imputation size m € {10, 20, 50}. We compare the standard MI inference and
the proposed wild bootstrap inference. For the standard MI inference, the 100(1—«)% confidence
intervals are calculated as (Aﬂmi — zl,a/Qle/ ,AT mi + Zl,a/Qanﬁm), where z)_,/9 is the (1 —
a/2)th quantile of the standard normal distribution. For the proposed wild bootstrap procedure,
we sample the weights up from the standard normal distribution, and calculate the variance
estimate Viyp based on 100 replications. The corresponding 100(1 — )% confidence intervals
are calculated as (AT,mi — 2_u /QV\}V@, AT,mi +21_q /vilv/g ). We assess the performance in terms
of the relative bias of the variance estimator and the coverage rate of confidence intervals. The
relative bias of the variance estimators are calculated as {E(V. 1/2) V(A A2 D/ V(AL 1/2 mi) X 100%

Tml

and {E(V\}V/é) V(A A2 I/ V(A 1/21) x 100%. The coverage rate of the 100(1 — )% confidence

Tml
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intervals is estimated by the percentage of the Monte Carlo samples for which the confidence
intervals contain the true value.

Table S1 presents the simulation results for the sensitivity analysis of J-adjusted estimand
Ai'adj based on 1000 Monte Carlo samples. When the imputation model is correctly specified
with § = 1.5, the MI point estimator AT,mi is unbiased of the true estimand Ai'adj. When
the analysis sensitivity parameter is lower (higher) than the true parameter 6 = 1.5, the MI
point estimator produces higher (lower) RMST for the treatment group, and therefore AT,mi is
biased upward (downward). When the true sensitivity parameter is correctly specified, Rubin’s
combining rule overestimates the true standard deviation with the relative bias ranging from
7.0% to 12.2%; consequently, the coverage rates are larger than the nominal level 95%. In
contrast, our proposed wild bootstrap procedure is unbiased; as a result, the coverage rates
of the confidence intervals are close to the nominal level. Moreover, the proposed method is
not sensitive to the number of imputations m. We observed similar behavior for the sensitivity

analysis of control-based models for sensitivity analysis and summarized in Table S2.

S7.2 Simulation two: ACTG175

We consider a simulation setup that is similar to ACTG175 data. The confounder is generated
by X1; ~ N(0,1) and Xo; ~ Bernoulli(0.15). In the treatment group, T follows the Cox model
with the hazard rate A\ (¢t | X1;X2;) = M\ (¢) exp(B1X1; + 52X2i), where A\ = 0.03, 51 = 0.24
and B2 = 0.04. We consider censoring due to the end of the study and premature dropout.
We generate the censoring time to dropout, C;, according to a Cox model with the hazard rate
Ac(t | X1:X9;) = Ac(t) exp(Bo1X1i + Bo2Xai), where Ao(t) = 0.01, fo1 = 0.24, Bz = 0.20. The
maximum follow up time is L = 40. The observed time is U; = T; AC; A L. If U; = T;, the event
indicator is I; = 1; if U; = L, then I; = 0 and the censoring type is R; = 1; if U; = Cj,then I; = 0
and the censoring type is R; = 2. Under the data generating mechanism, the average percentages
of ; =1, R; = 1, and R; = 2 are 60%, 20% and 20%, respectively.In the control group, T; follows
the hazard rate \o(t | X14, Xoi) = Ao(t) exp(Bo1 X1; + Bo2Xo;), where \g(t) = 0.03, Bo1 = —0.55
and Bp2 = 0.65. The censoring time C; follows the same model as in the treatment group. For the

dropout subjects with R; = 2 in treatment group, the hazard rate for events after censoring are
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OA1(t) exp(S1X1i + P2X2;) for delta-adjusted model and Ag(t) exp(Bo1X1; + Bo2X2;) for control-
based models. For the dropout subjects with R; = 2 in control group, the hazard rate for event
after censoring remains the same, which correspondsto the case when the control treatment is
a placebo or the standard of care. The true RMST estimand under the d-adjusted model is
AP — uf:idj — p10, with 7 = 24. We assess the proposed method to implement the sensitivity
analysis for the treatment group when the true parameter ¢ is 2, while the analysis parameter
d varies in a pre-specified set {1,2,3,4,5}. The true RMST estimand under the control-based
model are AZ™rad) with 7 = 24, The estimation procedure are the same as the first simulation

study. The simulation results is summarized in Table S3 and Table S4 with similar observation

in the first simulation study.
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Table S1: Simulation results for the true estimand Aﬁ'adj = 0.054 with the true sensitivity
parameter § = 1.5: point estimate, true standard deviation, relative bias of the standard error
estimator, coverage of interval estimate using Rubin’s method and the proposed wild bootstrap
method

Standard error Relative Bias ~ Coverage (%)

Point est True sd (x10?) (%) for 95% CI
n m  Model (x102)  (x102) Rubin® WB Rubin® WB Rubin® WB
500 10 6§ =0.50 15.8 6.93 7.43 6.78 7.24 -2.18 71.0 66.2
6 =1.00 9.3 6.91 7.41 6.74 7.31 -2.43 94.3 90.8
6 =1.50 5.0 6.89 7.38 6.74 7.11 -2.15 97.0 95.1
6 =2.00 2.0 6.87 7.35 6.75 6.94 -1.74 94.5 92.0
6 =2.50 -0.3 6.85 7.32 6.77 6.84 -1.30 89.3 85.7
20 9 =0.50 15.8 6.92 7.41 6.76 7.12 -2.28 71.3 65.5
6 =1.00 9.3 6.90 7.39 6.73 7.14 -2.53 93.9 90.3
6 =1.50 5.1 6.88 7.36 6.73 6.99 -2.22 96.6 94.9
6 =2.00 2.0 6.86 7.33 6.74 6.89 -1.76 94.4 91.9
6 =2.50 -0.3 6.84 7.31 6.75 6.84 -1.28 89.4 86.0
50 9 =0.50 15.8 6.90 7.41 6.75 737 -2.07 71.3 65.6
4 =1.00 9.3 6.88 7.38 6.72 7.38 -2.32 94.1 91.0
4 =1.50 5.0 6.86 7.35 6.72 7.22 -2.01 96.6 95.0
4 =2.00 2.0 6.84 7.32 6.73 7.09 -1.56 94.7 91.7
6 =2.50 -0.3 6.82 7.30 6.75 7.01 -1.10 89.3 85.9
N/A Tian et.al. 2014 9.4 7.10 - 7.56 - 6.40 - 92.9
1000 10 4 =0.50 16.3 4.72 5.25 4.80 11.19 1.58 454 37.5
6 =1.00 9.8 4.68 5.24 4.77 11.87 1.98 87.9 84.2
6 =1.50 5.6 4.66 5.21 4.78 11.98 2.57 97.7 95.2
6 =2.00 2.5 4.64 5.19 4.79 12.04 3.22 94.4 91.3
6 =2.50 0.2 4.62 5.18 4.80 12.14 3.85 85.2 80.9
20 9 =0.50 16.3 4.71 5.25 4.79 11.39 1.76 45.0 37.8
4 =1.00 9.8 4.67 5.23 4.77 12.02 2.08 87.9 84.6
6 =1.50 5.6 4.64 5.21 4.77 12.14 2.68 97.7 95.0
4 =2.00 2.5 4.62 5.19 4.78 12.20 3.35 94.1 91.5
6 =2.50 0.2 4.61 5.17 4.79 12.28 3.97 85.7 81.8
50  § =0.50 16.3 4.70 5.24 4.79 11.39 1.78 45.3 37.5
6 =1.00 9.8 4.66 5.22 4.76 12.06 2.13 88.0 84.6
6 =1.50 5.5 4.64 5.20 4.76 12.19 2.74 97.5 95.2
6 =2.00 2.5 4.61 5.18 4.77 12.27 3.41 94.1 91.4
6 =2.50 0.2 4.60 5.17 4.78 12.34 4.03 85.4 81.7
N/A Tian et.al. 2014 9.9 4.90 - 5.35 - 9.28 - 88.2
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Table S2: Simulation results for the true estimand Aiontml'adj = 1.783 based on control-based
method: point estimate, true standard deviation, relative bias of the standard error estimator,
coverage of interval estimate using Rubin’s method and the proposed wild bootstrap method
Standard error  Relative Bias  Coverage (%)
Point est True sd (x10?) (%) for 95% CI
n  Model m (x10%)  (x10?) Rubin® WB Rubin® WB Rubin® WB
500 Control-based 10 179.0 4.58 5.24 4.76 14.34 3.87 97.2 95.1
20 179.0 4.58 5.22 4.75 13.95 3.62 97.4 95.2
50 179.0 4.57 5.22 4.74 14.16 3.76 97.3 95.3

Tian et.al. 2014 N/A 184.6 4.81 - 5.34 - 10.93 - 80.2

1000 Control-based 10 179.1 3.30 3.70 3.37 11.94 1.97 96.6 94.4
20 179.1 3.30 3.69 3.36 12.10 2.03 96.5 94.2

50 179.1 3.29 3.69 3.36 12.21 2.14 96.4 94.5

Tian et.al. 2014 N/A 184.8 3.53 - 3.78 - 7.08 - 61.1
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Table S3: Simulation results for the true estimand AS™ 34 — 513 based on control-based
method: point estimate, true standard deviation, relative bias of the standard error estimator,

coverage of interval estimate using Rubin’s method and the proposed wild bootstrap method
Standard error Relative Bias  Coverage (%)

Point est  True sd (x10?) (%) for 95% CI
n m  Model (x10%)  (x10?) Rubin® WB Rubin® WB Rubin® WB
500 10 =1 84.9 55.9 60.8 58.3 8.74 4.25 93.8 92.1
0 =2 50.3 56.5 60.4 58.0 6.91 2.69 96.2 95.1
0=3 26.1 56.8 59.6 57.9 4.93 2.03 94.2 93.2
0 =4 8.2 56.8 59.0 58.3 3.79 2.53 90.0 88.8
0=bH -5.0 57.0 58.6 58.5 2.82 2.65 84.6 84.4
20 o0=1 86.7 54.2 60.6 55.3 11.83  2.09 93.4 90.7
0 =2 52.2 54.5 60.0 55.2 10.15 1.37 97.5 95.4
0 =3 279 54.8 59.3 55.4 8.17 1.07 95.1 93.2
0 =4 10.1 54.9 58.9 55.5 7.15 1.03 89.6 86.5
0=5H -2.9 55.0 58.5 55.6 6.28 1.16 85.0 82.3
50 =1 85.4 54.4 60.4 53.3 11.02  -1.96 94.3 89.4
0 =2 51.0 55.0 60.0 53.4 9.08 -2.79 97.2 94.9
0=3 26.8 55.2 59.3 53.5 7.40 -3.11 94.3 91.7
0=4 9.2 55.3 58.7 53.6 6.16 -3.04 90.9 86.6
0=5H -4.2 55.3 58.3 53.8 5.59 -2.59 86.2 80.5
N/A Tian et.al. 2014 92.8 55.4 - 55.5 - 0.29 - 88.5
1000 10 6=1 87.0 38.6 43.0 41.1 11.25  6.46 90.7 88.1
0 =2 52.4 38.8 42.7 41.0 10.10 5.73 97.2 96.6
0 =3 28.1 38.7 42.0 41.2 8.47 6.48 93.3 92.5
0 =4 10.6 38.7 41.7 41.3 7.59 6.56 84.9 84.2
0 =5 -3.0 38.8 414 41.3 6.80 6.58 76.4 76.0
20 o0=1 85.4 39.5 42.8 39.1 8.46 -0.93 90.2 86.5
0 =2 50.8 39.8 42.6 38.9 7.09 -2.20 96.5 95.2
0=3 26.2 40.1 42.0 39.1 4.82 -2.34 914 88.7
0 =4 8.5 40.1 41.6 39.3 3.7 -2.03 82.4 78.5
0 =5 -4.9 40.1 41.3 39.3 2.96 -2.05 72.4 69.4
50 o0=1 86.8 39.1 42.7 37.8 9.19 -3.22 88.1 83.2
0 =2 52.3 39.5 424 37.6 7.30 -4.67 96.3 93.9
0=3 28.0 39.7 41.8 37.9 5.38 -4.60 92.7 89.3
0 =4 10.4 39.8 414 379 4.22 -4.71 83.6 78.3
0 =5 -2.9 39.8 41.2 38.1 3.37 -4.44 74.8 69.8
N/A Tian et.al. 2014 93.0 39.6 - 39.3 - -0.87 - 81.3
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Table S4: Simulation results for the true estimand Aiontml'adj = 0.843 based on control-based
method: point estimate, true standard deviation, relative bias of the standard error estimator,

coverage of interval estimate using Rubin’s method and the proposed wild bootstrap method
Standard error  Relative Bias ~ Coverage (%)

Point est True sd (x10?) (%) for 95% CI
n Model m (x102)  (x10?) Rubin® WB Rubin® WB Rubin® WB
500  Control-based 10 85.2 55.1 60.6 58.1 9.90 5.36 96.8 95.7
20 84.4 53.8 60.3 55.2 12.03 2.53 97.3 95.3
50 87.1 53.2 60.2 53.5 13.08  0.55 97.0 94.7
Tian et.al. 2014 N/A 93.9 54.4 - 55.5 - 1.95 - 95.2
1000 Control-based 10 86.1 38.9 42.8 41.1 10.16  5.81 96.8 96.3
20 83.5 38.7 42.7 39.1 10.53 1.13 96.3 95.3
50 86.6 38.1 42.5 37.9 11.56  -0.70 96.2 94.6
Tian et.al. 2014 N/A 93.1 39.3 - 39.3 - -0.10 - 94.2
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