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Web Appendix S1 provides the preliminary for the proofs. Web Appendix S2 establishes the

asymptotic linearization of Ŝ0,mi(t). Web Appendix S3 describes the σ−fields. Web Appendices

S4 and S5 provide the proofs of Theorem 1 and Theorem 2. Web Appendix S6 presents a

comprehensive simulation study.

Web Appendix S1 Preliminary

We adopt the counting process theory of Andersen and Gill (1982) in our theoretical framework.

We state the existing results which will be used in our proof throughout.

To simplify the exposition, we introduce additional notation. We use
p→ and

d→ to represent

“converge in probability as n → ∞” and “converge in distribution as n → ∞”, respectively.

Also, let n1/n→ p1 ∈ (0, 1) and n0/n→ p0 ∈ (0, 1), as n→∞. We do not state this condition

formally as an assumption because it holds trivially for most of clinical trials where the two

treatment groups are relatively balanced in their sample sizes.

Let X⊗li denote 1 for l = 0, Xi for l = 1, and XiX
T
i for l = 2. Define

U (l)
a (βa, t) =

1

na

n∑
i=1

1(Ai = a)X⊗li eβ
T
aXiYi(t), u

(l)
a (βa, t) = E

{
X⊗leβ

T
aXY (t)

}
,

where u
(l)
a (βa, t) is the expectation of U

(l)
a (βa, t), for l = 0, 1, 2. Moreover, define

Ea(βa, t) =
U

(1)
a (βa, t)

U
(0)
a (βa, t)

, ea(βa, t) =
u
(1)
a (βa, t)

u
(0)
a (βa, t)

.

The maximum partial likelihood estimator β̂a solves

Sa,n(βa) =
1

na

n∑
i=1

1(Ai = a)

ˆ τ

0

{
Xi −

U
(1)
1 (βa, u)

U
(0)
1 (βa, u)

}
dNi(u) = 0.
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We state the standard asymptotic results for β̂a and λ̂a(·) requiring certain regularity con-

ditions. To avoid too many technical distractions, we omit the exact conditions in Assumption

S1 for the consistency and uniform convergency of the estimators of Cox models.

Assumption S1 i) (Positivity) There exists a constant c such that with probability one, Sa(t |

Xi) ≥ c > 0 for t in [0, τ ] and a = 0, 1. ii) Conditions A–D in Andersen and Gill (1982) hold

for treatment group a = 0, 1.

Following Andersen and Gill (1982), we have

n1/2a (β̂a − βa) = Γ−1a
1

n
1/2
a

n∑
i=1

1(Ai = a)Ha,i + op(1), (S1)

where Γa = E{−∂Sa,n(βa)/∂β
T
a } is the Fisher information matrix of βa, Ha,i =

´ L
0 {Xi −

ea(βa, u)}1(Ai = a)dMa,i(u), and

dMa,i(t) = dNi(u)− eβT
aXiYi(u)λa,0(u)du. (S2)

Moreover, n1/2{Sa(t | Xi; θ̂)−Sa(t | Xi)} converges uniformly to a Gaussian process in [0, L] for

all Xi.

Web Appendix S2 Asymptotic linearization of Ŝ0,mi(t)

To obtain the asymptotic linearization of Ŝ0,mi(t), we have

n1/2
{
Ŝ0,mi(t)− Ssen

0 (t)
}

=
n1/2

mn0

m∑
j=1

n∑
i=1

(1−Ai){1− Yi(t)}
[
1(T

∗(j)
i ≥ t)− S0{t | Hi(t); θ̂}

]
(S3)

+
n1/2

n0

n∑
i=1

(1−Ai) [Yi(t) + {1− Yi(t)}(1− Ii)S0{t | Hi(t); θ} − Ssen
0 (t)] (S4)

+
n1/2

n0

n∑
i=1

(1−Ai)φ0,i(t) + op(1), (S5)

where the exact expression of φ0,i(t) is given in Section Web Appendix S4, reflecting the esti-

mation of {λ0(·), β0}. In our context, the imputation for the control group uses the information
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only from the control group. By the imputation and estimation procedures, (S3)–(S5) have

(conditional) mean zero.

Web Appendix S3 σ-fields for the martingales

We consider the σ-fields as follows

Fn,k =



σ (O1, . . . , Ok) , for k = i (1 ≤ i ≤ n1),

σ
(
O1, . . . , On1 , T

∗(1)
1 , . . . , T

∗(j)
i

)
, for k = n1 + (i− 1)m+ j

(1 ≤ i ≤ n1, 1 ≤ j ≤ m),

σ
(
O1, . . . , On1 , T

∗(1)
1 , . . . , T

∗(m)
n1 , for k = (1 +m)n1 + i

On1+1, . . . , Ok

)
, (n1 + 1 ≤ i ≤ n),

σ
(
O1, . . . , On1 , T

∗(1)
1 , . . . , T

∗(m)
n1 , for k = (1 +m)n1 + n0 + (i− 1)m+ j

On1+1, . . . , On, T
∗(1)
n1+1, . . . , T

∗(j)
i

)
, (n1 + 1 ≤ i ≤ n, 1 ≤ j ≤ m).

Web Appendix S4 Proof of Theorem 1

We first derive the martingale representation of the MI estimator under δ-adjusted Cox models

and control-based Cox models, separately. Then, we apply the martingale CLT to derive the

asymptotic distribution of the MI estimator.

S4.1 Delta-adjusted Cox models

A key step is to separate the imputation step and the estimation step. We start with treatment

group a = 1. For the imputations, it is important to recognize that T
∗(j)
i follows a time-

dependent Cox model with the conditional survival function S1{t | Hi(t); θ̂} for t > Ui, where

S1{t | Hi(t); θ} =

exp
{
−
´ t
Ui
λ1(u)eβ

T
1 Xidu

}
, if Ai = 1, Ri = 1,

exp
{
−δ
´ t
Ui
λ0(u)eβ

T
0 Xidu

}
, if Ai = 1, Ri = 2.

We express the MI estimator of Sδ-adj1 (t) as

n1/2
{
Ŝ1,mi(t)− Sδ-adj1 (t)

}
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=
n1/2

mn1

m∑
j=1

n∑
i=1

Ai{1(T
∗(j)
i ≥ t)− Sδ-adj1 (t)}

=
n1/2

mn1

m∑
j=1

n∑
i=1

Ai[1(T
∗(j)
i ≥ t)− S1{t | Hi(t); θ̂}] +

n1/2

n1

n∑
i=1

Ai[S1{t | Hi(t); θ̂} − Sδ-adj1 (t)]

=
n1/2

mn1

m∑
j=1

n∑
i=1

Ai{1− Yi(t)}[1(T
∗(j)
i ≥ t)− S1{t | Hi(t); θ̂}] (S6)

+
n1/2

n1

n∑
i=1

[
AiYi(t) +Ai{1− Yi(t)}(1− Ii)S1{t | Hi(t); θ̂} − Sδ-adj1 (t)

]
+ op(1), (S7)

where (S6) follows because 1(T
∗(j)
i ≥ t)− S1{t | Hi(t); θ̂} = 0 for subject i with {Ai = 1,Yi(t) =

1}, and (S7) follows because Ai{1− Yi(t)}IiS1{t | Hi(t); θ̂} = 0.

By the counting process theory, we can express the term n
−1/2
1

∑n
i=1Ai{1−Yi(t)}(1−Ii)S1{t |

Hi(t); θ̂} in (S7) further as

1

n
1/2
1

n∑
i=1

Ai{1− Yi(t)}(1− Ii)S1{t | Hi(t); θ̂}

=
1

n
1/2
1

n∑
i=1

Ai{1− Yi(t)}(1− Ii) exp
{
−
ˆ t

Ui

λ̂1(u)δ
1(Ri=2)eβ̂

T
1 Xidu

}

=
1

n
1/2
1

n∑
i=1

Ai{1− Yi(t)}(1− Ii)S1{t | Hi(t); θ}

+
1

n
1/2
1

n∑
i=1

Ai{1− Yi(t)}(1− Ii)S1{t | Hi(t); θ}
[
−
ˆ t

Ui

δ1(Ri=2)eβ
T
1 Xi

{
λ̂1(u)− λ1(u)

}
du

]
(S8)

+

[
1

n1

n∑
i=1

Ai{1− Yi(t)}(1− Ii)S1{t | Hi(t); θ}
{
−
ˆ t

Ui

λ1(u)δ
1(Ri=2)eβ

T
1 XiXidu

}]
(S9)

×n1/2
1

(
β̂1 − β1

)
. (S10)

For (S8), we further express the key term as

ˆ t

Ui

δ1(Ri=2)eβ
T
1 Xi

{
λ̂1(u)− λ1(u)

}
du

=

ˆ t

Ui

δ1(Ri=2)eβ
T
1 Xi

{
n−11

∑n
j=1AjdNj(u)

U
(0)
1 (β̂1, u)

−
n−11

∑n
j=1AjdNj(u)

U
(0)
1 (β1, u)

}

+

ˆ t

Ui

δ1(Ri=2)eβ
T
1 Xi

{
n−11

∑n
j=1AjdNj(u)

U
(0)
1 (β1, u)

− λ1(u)du

}

= −

ˆ t

Ci

δ1(Ri=2)eβ
T
1 Xi

U
(1)
1 (β1, u){

U
(0)
1 (β1, u)

}2

n−11

n∑
j=1

dNj(u)




T (
β̂1 − β1

)
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+

ˆ t

Ui

δ1(Ri=2)eβ
T
1 Xi

n−11

∑n
j=1AjdM1,j(u)

U
(0)
1 (β1, u)

+ op(1)

= −
{ˆ t

Ui

δ1(Ri=2)eβ
T
1 Xie1(β1, u)λ1(u)du

}T (
β̂1 − β1

)
+

ˆ t

Ui

δ1(Ri=2)eβ
T
1 Xi

n−11

∑n
j=1AjdM1,j(u)

U
(0)
1 (β1, u)

+ op(1), (S11)

where dM1,j(u) is defined in (S2). Denote

ga,0(t) = E
[
1(Ai = a){1− Yi(t)}(1− Ii)Sa{t | Hi(t); θ}δ1(Ri=2)eβ

T
aXi

]
,

ga,1(t) = E
[
1(Ai = a){1− Yi(t)}(1− Ii)Sa{t | Hi(t); θ}

{ˆ t

Ui

δ1(Ri=2)eβ
T
aXiXiλa(u)du

}]
,

ga,2(t) = E
[
1(Ai = a){1− Yi(t)}(1− Ii)Sa{t | Hi(t); θ}

{ˆ t

Ui

δ1(Ri=2)eβ
T
aXiea(βa, u)λa(u)du

}]
,

for a = 0, 1.

Plugging (S11) in (S8) becomes

1

n
1/2
1

n1∑
i=1

Ai{1− Yi(t)}(1− Ii)S1{t | Hi(t); θ̂}

=
1

n
1/2
1

n1∑
i=1

Ai{1− Yi(t)}(1− Ii)S1{t | Hi(t); θ}

+ {g1,2(t)− g1,1(t)}T n1/21

(
β̂1 − β1

)
− n−1/21

n∑
j=1

ˆ t

Uj

g1,0(u)

s0(β1, u)
AjdM1,j(u) + op(1)

=
1

n
1/2
1

n1∑
i=1

Ai{1− Yi(t)}(1− Ii)S1{t | Hi(t); θ}

+
1

n
1/2
1

n1∑
i=1

[
{g1,2(t)− g1,1(t)}T Γ−11 AiH1,i −

ˆ t

Ui

g1,0(u)

s0(β1, u)
AidM1,i(u)

]
+ op(1), (S12)

where the second equality follows by (S1).

Combining (S6) and (S12) leads to

n1/2
{
Ŝ1,mi(t)− Sδ-adj1 (t)

}
=

n1/2

mn1

m∑
j=1

n1∑
i=1

[
Ai{1− Yi(t)}{1(T

∗(j)
i ≥ t)− S1(t | Oi; θ̂1)}

]
+
n1/2

n1

n1∑
i=1

Ai

[
φ11,i(t) + Yi(t) + {1− Yi(t)}(1− Ii)S1{t | Hi(t); θ} − Sδ-adj1 (t)

]
(S13)
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+op(1).

where

φ11,i(t) = {g1,2(t)− g1,1(t)}T Γ−11 H1,i −
ˆ t

Ui

g1,0(u)

u0(β1, u)
dM1,i(u). (S14)

Similarly, for treatment group a = 0, define

φ0,i(t) = {g0,2(t)− g0,1(t)}T Γ−10 H0,i −
ˆ t

Ui

g0,0(u)

u0(β0, u)
dM0,i(u), (S15)

We have

n1/2
{
Ŝ0,mi(t)− Sδ-adj0 (t)

}
=

n1/2

mn0

m∑
j=1

n∑
i=1

(1−Ai){1− Yi(t)}[1(T
∗(j)
i ≥ t)− S0{t | Hi(t); θ̂}]

+
n1/2

n0

n∑
i=1

(1−Ai)
{
φ0,i(t) + Yi(t) + {1− Yi(t)}(1− Ii)S0{t | Hi(t); θ} − Sδ-adj0 (t)

}
(S16)

+op(1).

The martingale series approximation of ∆̂τ,mi follows by plugging (S13) and (S16) into

n1/2
(

∆̂τ,mi −∆δ-adj
τ

)
= n1/2

[
Ψτ{Ŝ1,mi(t), Ŝ0,mi(t)} −∆δ-adj

τ

]
=

1∑
a=0

ˆ τ

0
ψa(t)

{
Ŝa,mi(t)− Sa(t)

}
dt+ op(1) =

(1+m)n∑
k=1

ξn,k + op(1),

where the ξn,k terms are given in (13) with φ10,i(t) = 0 and φ11,i(t) and φ0,i(t) given in (S14)

and (S15), respectively.

S4.2 Control-based Cox models

We focus on the treatment group a = 1. Under the control-based imputation model, the MI

estimator Ŝ1,mi(t) depends on not only the parameter estimator in the treatment group but also

the parameter estimator in the control group. Following the same steps for (S7), we express the

MI estimator as

n1/2
{
Ŝ1,mi(t)− Sδ-cb1 (t)

}
6



=
n1/2

mn1

m∑
j=1

n∑
i=1

Ai{1− Yi(t)}[1(T
∗(j)
i ≥ t)− S1{t | Hi(t); θ̂}] (S17)

+
n1/2

n1

n∑
i=1

Ai

[
Yi(t) + {1− Yi(t)}(1− Ii)S1{t | Hi(t); θ̂} − Sδ-cb1 (t)

]
, (S18)

where under the imputation based on the control-based Cox model,

S1{t | Hi(t); θ} =

exp
{
−
´ t
Ui
λ1(u)eβ

T
1 Xidu

}
, if Ai = 1, Ri = 1,

exp
{
−δ
´ t
Ui
λ0(u)eβ

T
0 Xidu

}
, if Ai = 1, Ri = 2,

for t ≥ Ui.

By the counting process theory, we can further express n1/2n−11

∑n
i=1Ai{1 − Yi(t)}(1 −

Ii)S1{t | Hi(t); θ̂} in (S18) as

n1/2

n1

n∑
i=1

Ai{1− Yi(t)}(1− Ii)S1{t | Hi(t); θ̂}

=
n1/2

n1

n∑
i=1

Ai{1− Yi(t)}(1− Ii)1(Ri = 1) exp

{
−
ˆ t

Ui

λ̂1(u)eβ̂
T
1 Xidu

}

+
n1/2

n1

n∑
i=1

Ai{1− Yi(t)}(1− Ii)1(Ri = 2) exp

{
−δ
ˆ t

Ui

λ̂0(u)eβ̂
T
0 Xidu

}

=
n1/2

n1

n∑
i=1

Ai{1− Yi(t)}(1− Ii)1(Ri = 1) exp

{
−
ˆ t

Ui

λ1(u)eβ
T
1 Xidu

}

+
n1/2

n1

n∑
i=1

Ai{1− Yi(t)}(1− Ii)1(Ri = 2) exp

{
−δ
ˆ t

Ui

λ0(u)eβ
T
0 Xidu

}

+
n1/2

n1

n∑
i=1

Ai{1− Yi(t)}(1− Ii)1(Ri = 1)S1{t | Hi(t); θ}
[
−
ˆ t

Ui

eβ
T
1 Xi

{
λ̂1(u)− λ1(u)

}
du

]

+

[
1

n1

n∑
i=1

Ai{1− Yi(t)}(1− Ii)1(Ri = 1)S1{t | Hi(t); θ}
{
−
ˆ t

Ui

λ1(u)eβ
T
1 XiXidu

}]
×n1/2

(
β̂1 − β1

)
+
n1/2

n1

n∑
i=1

Ai{1− Yi(t)}(1− Ii)1(Ri = 2)S1{t | Hi(t); θ}
[
−δ
ˆ t

Ui

eβ
T
0 Xi

{
λ̂0(u)− λ0(u)

}
du

]

+

[
1

n1

n∑
i=1

Ai{1− Yi(t)}(1− Ii)1(Ri = 2)S1{t | Hi(t); θ}
{
−δ
ˆ t

Ui

λ0(u)eβ
T
0 XiXidu

}]
×n1/2

(
β̂0 − β0

)
. (S19)
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Denote

g̃1,0(t) = E
[
Ai{1− Yi(t)}(1− Ii)1(Ri = 1)S1{t | Hi(t); θ}eβ

T
1 Xi
]
,

g̃1,1(t) = E
[
Ai{1− Yi(t)}(1− Ii)1(Ri = 1)S1{t | Hi(t); θ}

{ˆ t

Ui

λ1(u)eβ
T
1 XiXT

i du

}]
,

g̃1,2(t) = E
[
Ai{1− Yi(t)}(1− Ii)1(Ri = 1)S1{t | Hi(t); θ}

{ˆ t

Ui

λ1(u)eβ
T
1 Xie1(β1, u)Tdu

}]
,

g̃0,0(t) = E
[
Ai{1− Yi(t)}(1− Ii)1(Ri = 2)S1{t | Hi(t); θ}δeβ

T
0 Xi
]
,

g̃0,1(t) = E
[
Ai{1− Yi(t)}(1− Ii)1(Ri = 2)S1{t | Hi(t); θ}

{
δ

ˆ t

Ui

λ0(u)eδβ
T
0 XiXT

i du

}]
,

g̃0,2(t) = E
[
Ai{1− Yi(t)}(1− Ii)1(Ri = 2)S1{t | Hi(t); θ}

{
δ

ˆ t

Ui

λ0(u)eβ
T
0 Xie0(β0, u)Tdu

}]
.

Then, we can express (S19) further as

=
n1/2

n1

n1∑
i=1

Ai{1− Yi(t)}(1− Ii)1(Ri = 1) exp

{
−
ˆ t

Ui

λ1(u)eβ
T
1 Xidu

}

+
n1/2

n1

n1∑
i=1

Ai{1− Yi(t)}(1− Ii)1(Ri = 2) exp

{
−δ
ˆ t

Ui

λ0(u)eβ
T
0 Xidu

}

+ {g̃1,2(t)− g̃1,1(t)}T n1/2
(
β̂1 − β1

)
− n1/2

n1

n∑
j=1

ˆ t

Ui

g̃1,0(u)

s0(β1, u)
AjdM1,j(u)

+ {g̃0,2(t)− g̃0,1(t)}T n1/2
(
β̂0 − β0

)
− n1/2

n1

n∑
j=1

ˆ t

Ui

g̃0,0(u)

s0(β0, u)
(1−Aj)dM0,j(u) + op(1)

=
n1/2

n1

n1∑
i=1

Ai{1− Yi(t)}(1− Ii)1(Ri = 1) exp

{
−
ˆ t

Ui

λ1(u)eβ
T
1 Xidu

}

+
n1/2

n1

n1∑
i=1

Ai{1− Yi(t)}(1− Ii)1(Ri = 2) exp

{
−δ
ˆ t

Ui

λ0(u)eβ
T
0 Xidu

}

+
n1/2

n1

n∑
i=1

[
{g̃1,2(t)− g̃1,1(t)}T Γ−11 AiH1,i −

ˆ t

Ui

g̃1,0(u)

s0(β1, u)
AidM1,i(u)

]

+
n1/2

n0

n∑
i=1

[
{g̃0,2(t)− g̃0,1(t)}T Γ−10 (1−Ai)H0,i −

ˆ t

Ui

g̃0,0(u)

s0(β0, u)
(1−Ai)dM0,i(u)

]
+ op(1)

=
n1/2

n1

n1∑
i=1

Ai{1− Yi(t)}(1− Ii)1(Ri = 1) exp

{
−
ˆ t

Ui

λ1(u)eβ
T
1 Xidu

}

+
n1/2

n1

n1∑
i=1

Ai{1− Yi(t)}(1− Ii)1(Ri = 2) exp

{
−δ
ˆ t

Ui

λ0(u)eβ
T
0 Xidu

}
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+
n1/2

n1

n∑
i=1

Ai

[
{g̃1,2(t)− g̃1,1(t)}T Γ−11 H1,i −

ˆ t

Ui

g̃1,0(u)

s0(β1, u)
dM1,i(u)

]

+
n1/2

n0

n∑
i=1

(1−Ai)
[
{g̃0,2(t)− g̃0,1(t)}T Γ−10 H0,i −

ˆ t

Ui

g̃0,0(u)

s0(β0, u)
dM0,i(u)

]
+ op(1). (S20)

Combining (S17) and (S20) leads to

n1/2
{
Ŝ1,mi(t)− Sδ-cb1 (t)

}
=

n1/2

mn1

m∑
j=1

n∑
i=1

Ai{1− Yi(t)}
[
1(T

∗(j)
i ≥ t)− S1{t | Hi(t); θ̂}

]
+
n1/2

n1

n∑
i=1

(1−Ai)φ10,i(t)

+
n1/2

n1

n∑
i=1

Ai

[
φ11,i(t) + Yi(t) + {1− Yi(t)}(1− Ii)S1{t | Hi(t); θ} − Sδ-cb1 (t)

]
+ op(1),

where

φ11,i(t) =

[
{g̃1,2(t)− g̃1,1(t)}T Γ−11 H1,i −

ˆ t

Ui

g̃1,0(u)

s0(β1, u)
dM1,i(u)

]
(S21)

φ10,i(t) =

[
{g̃0,2(t)− g̃0,1(t)}T Γ−10 H0,i −

ˆ t

Ui

g̃0,0(u)

s0(β0, u)
dM0,i(u)

]
. (S22)

Because the imputation mechanism for the censored control subjects is the same, the martin-

gale representation for Ŝ0,mi(t) remains the same as in (S16). Finally, we can decompose ∆̂τ,mi

by the martingale representation

n1/2(∆̂τ,mi −∆δ-bc
τ ) =

(1+m)n∑
k=1

ξn,k + op(1),

where the ξn,k terms are given in (13) with φ11,i(t), φ10,i(t), and φ0,i(t) given in (S21), (S22)

and (S15), respectively.

For both the δ-adjusted and control-based Cox models, it follows by the martingale CLT,

n1/2(∆̂τ,mi −∆sen
τ ) converges to a Normal distribution with mean zero and a finite variance

V sen
τ,mi =

(1+m)n∑
k=1

E(ξ2n,k | Fn,k−1) =
1∑

a=0

(
σ2a,1 + σ2a,2

)
, (S23)
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where sen denotes either δ-adj or δ-cb, and

σ20,1 =
1

p0
E
([ˆ τ

0
ψ0(t){(1−Ai)[φ10,i(t) + φ0,i(t) + Yi(t)

+ {1− Yi(t)}(1− Ii)Sa{t | Hi(t); θ}]− Ssen
a (t)}dt]2

)
σ21,1 =

1

p1
E
{(ˆ τ

0
ψ1(t)Ai[φ11,i(t) + Yi(t)

+ {1− Yi(t)}(1− Ii)Sa{t | Hi(t); θ} − Ssen
a (t)]dt

)}
,

σ2a,2 =
1

pam
V
[ˆ τ

0
ψa(t)1(Ai = a){1− Yi(t)}{1(T

∗(j)
i ≥ t)− Sa{t | Hi(t); θ}}dt

]
,

for a = 0, 1.

Web Appendix S5 Remarks

Remark 1 There are many choices for generating µk, such as the the standard normal distribu-

tion, Mammen’s two point distribution, a simpler distribution with probability 0.5 of being 1 and

probability 0.5 of being −1, or the nonparametric bootstrap weights. The wild bootstrap procedure

is not sensitive to the choice of the sampling distribution of µk. We adopt the standard normal

distribution in the simulation study.

Remark 2 It is worth discussing the connection between the martingale representation (10) and

existing results in the survival literature. Under CCAR, Zhao et al. (2016) derived an asymp-

totic linearization for the RMST estimator and proposed the perturbation-resampling variance

estimation by adding independent noises to the linearized terms. In this simpler case, by setting

the sensitivity parameter δ to be 1 and omitting the imputation step, our martingale represen-

tation with the first n1 terms reduces to their linearization. The slight difference lies in the

distribution for generating the resampling weights. In the wild bootstrap, the resampling weight

distribution has mean 1; while in the perturbation, the resampling weight distribution has mean

0. The difference would only affect the center of the bootstrap replicates of ∆̂τ,mi but not the

variability and thus variance estimation. Our framework allows for CAR and sensitivity analy-

sis using δ-adjustment/control-based models, taking into account variability from both parameter

estimation and imputation.

10



Web Appendix S6 Proof of Theorem 2

We provide the proof of Theorem 2, which draws on the martingale central limit theory (Hall

and Heyde, 1980) and the asymptotic property of weighted sampling of martingale difference

arrays (Pauly, 2011).

First, by the law of large numbers, we have

n1∑
k=1

ξ2n,k

=
n

n21

n1∑
i=1

(ˆ τ

0

ψ1(t)Ai [φ11,i(t) + Yi(t) + {1− Yi(t)}(1− Ii)S1{t | Hi(t); θ} − Ssen
1 (t)] dt

)2

p→ 1

p1
E

{(ˆ τ

0

ψ1(t)Ai [φ11,i(t) + Yi(t) + {1− Yi(t)}(1− Ii)S1{t | Hi(t); θ} − Ssen
1 (t)] dt

)2
}

= σ2
1,1,

and

(1+m)n1∑
k=n1+1

ξ2n,k

=
n

n21

n1∑
i=1

1

m2

m∑
j=1

[ˆ τ

0

ψ1(t)Ai{1− Yi(t)}[1(T
∗(j)
i ≥ t)− S1{t | Hi(t); θ̂}]dt

]2
p→ 1

p1m
E
(

var

[ˆ τ

0

ψ1(t)Ai{1− Yi(t)}[1(T
∗(j)
i ≥ t)− S1{t | Hi(t); θ̂}]dt | O1:n

])
= σ2

1,2,

as n → ∞. Similarly, by the law of large numbers, we have
∑(1+m)n1+n0

k=(1+m)n1+1 ξ
2
n,k

p→ σ20,1, and∑(1+m)n
k=(1+m)n1+n0+1 ξ

2
n,k

p→ σ20,2. Therefore, we have

(1+m)n∑
k=1

ξ2n,k
p→ V sen

τ,mi, (S24)

as n→∞.

Second, we show

max
1≤k≤(1+m)n

|ξn,k|
p→ 0, (S25)

as n→∞. Toward this end, for any ε > 0,

P
(

max
1≤k≤n1

|ξn,k| > ε

)
≤ n1P (|ξn,k| > ε) = n1P

(
ξ4n,k > ε4

)
11



≤ n2

n31ε
4
E
(ˆ τ

0
ψ1(t)Ai

[
S1{t | Hi(t); θ̂} − Ssen

1 (t)
]

dt

)4

→ 0,

where the second inequality follows from the Markov inequality, and the convergence follows

because the expectation term is bounded due to the natural range of the survival functions.

Similarly, we have

P
(

max
n1+1≤k≤(1+m)n1

|ξn,k| > ε

)
≤ n2

n31m
3ε4

E
{ˆ τ

0
ψ1(t)Ai[1(T

∗(j)
i ≥ t)− S1{t | Hi(t); θ̂}]dt

}4

→ 0,

as n→∞. Therefore, P( max
1≤k≤(1+m)n1

|ξn,k| > ε)→ 0, as n→∞. Similarly, P( max
(1+m)n1+1≤k≤(1+m)n

|ξn,k| >

ε)→ 0, as n→∞. Then (S25) holds.

Third, we show

sup
n
E
(

max
1≤k≤(1+m)n

ξ2n,k

)
<∞. (S26)

For any n, by Assumption S1,

E
(

max
1≤k≤n1

ξ2n,k

)
≤ E

(
n1ξ

2
n,k

)
=

n

n1
E
(ˆ τ

0

[
ψ1(t)AiS1{t | Hi(t); θ̂} − Ssen

1 (t)
]

dt

)2

<∞,

and

E
(

max
n1+1≤k≤(1+m)n1

ξ2n,k

)
≤ E

(
nmξ2n,k

)
=

n

mn1
E
(ˆ τ

0
ψ1(t)Ai[1(T

∗(j)
i ≥ t)− S1{t | Hi(t); θ̂}]dt

)2

<∞.

Therefore, E(max1≤k≤(1+m)n1
ξ2n,k) ≤ E(max1≤k≤n1 ξ

2
n,k) + E(maxn1+1≤k≤(1+m)n1

ξ2n,k) < ∞.

Similarly, E(maxn1(1+m)+1≤k≤n(1+m) ξ
2
n,k) <∞. Then (S26) follows.

Given the results in (S24) and (S25), the martingale CLT implies that

(1+m)n∑
k=1

ξn,k
d→ N (0, V sen

τ,mi),

12



as n→∞. Given the results in (S24), (S25), and (S26), Theorem 2.1 in Pauly (2011) yields

sup
r

∣∣∣∣∣∣P
{(1 +m)n}1/2

(1+m)n∑
k=1

uk
{n(1 +m)}1/2

ξn,k ≤ r

∣∣∣∣∣∣O1:n

− Φ
( r
σ

)∣∣∣∣∣∣ p→ 0, (S27)

as n → ∞, where Φ(·) denotes the cumulative distribution function of the standard normal

distribution.

Let WL = n−1/2
∑(1+m)n

k=1 ξn,kuk. By Theorem 1 and (S27), we have

sup
r

∣∣∣P(n1/2WL ≤ r | O1:n

)
− P

{
n1/2

(
∆̂τ,mi −∆sen

τ

)
≤ r
}∣∣∣ p→ 0, (S28)

as n→∞.

Lastly, to prove Theorem 2, it remains to show that

P
{
n1/2(WL −W ∗L) | O1:n

}
p→ 0, (S29)

as n → ∞. To unify the notation for both treatment group, define Φ1,i(t) = φ11,i(t), Φ0,i(t) =

φ10,i(t) + φ0,i(t), Φ̂1,i(t) = φ̂11,i(t), and Φ̂0,i(t) = φ̂10,i(t) + φ̂0,i(t). The difference between WL

and W ∗L can be decomposed to six parts,

n1/2(WL −W ∗L) =

n(1+m)∑
k=1

n−1/2uk(n
1/2ξ̂n,k − n1/2ξn,k) =

1∑
a=0

3∑
l=1

Ral,n,

where

Ra1,n =
n∑
i=1

n1/2

na
ui1(Ai = a)

ˆ τ

0
ψa(t)

{
Ŝa,mi(t)− Ssen

a (t)
}

dt,

Ra2,n =
n∑
i=1

n1/2

na
ui1(Ai = a)

ˆ τ

0
ψa(t)

{
Φ̂a,i(t)− Φa,i(t)

}
dt,

Ra3,n =

n∑
i=1

n1/2

na
ui1(Ai = a)

×
ˆ τ

0
ψa(t){1− Yi(t)}(1− Ii)

[
Sa{t | Hi(t); θ̂} − Sa{t | Hi(t); θ}

]
dt,

for a = 0, 1.

13



Given that the bootstrap weights satisfy E(u2k | O1:n) = 1, we have

E
(
R2
a1,n|O1:n

)
=

n

n2a
naE(u2i )

[ˆ τ

0
ψa(t)

{
Ŝa,mi(t)− Ssen

a (t)
}

dt

]2
=

n

na

[ˆ τ

0
ψa(t)

{
Ŝa,mi(t)− Ssen

a (t)
}

dt

]2
p→ 0,

as n→∞, for a = 0, 1. Also, we have

E
(
R2
a2,n|O1:n

)
=

n

n2a

n∑
i=1

1(Ai = a)

[ˆ τ

0
ψa(t)

{
Φ̂a,i(t)− Φa,i(t)

}
dt

]2
p→ 0,

as n → ∞, for a = 0, 1, where the convergence follows by Assumption S1 and the results in

Section Web Appendix S1. Similarly, we have

E
(
R2
a3,n|O1:n

)
=

n

n2a

na∑
i=1

1(Ai = a)

[ˆ τ

0
ψa(t){1− Yi(t)}(1− Ii)

{
Sa(t | Oi; θ̂a)− Sa{t | Hi(t); θ}

}
dt
]2 p→ 0,

as n→∞, for a = 0, 1. Therefore, for any ε > 0,

P{|Ra1,n| > ε | O1:n}
p→ 0, P{|Ra2,n| > ε | O1:n}

p→ 0, P{|Ra3,n| > ε | O1:n}
p→ 0,

as n→∞, for a = 0, 1. Then we obtain (S29). The conclusion of Theorem 2 follows.

Web Appendix S7 Simulation study

We conduct simulation studies to evaluate the finite sample performance of the proposed SMIM

framework. For illustration, we focus on the δ-adjusted and control-based models for sensitivity

analysis and the RMST as the treatment effect estimand. We start with a simple setup with

one covariate in Section S7.1 and then consider a setting motivated by the ACTG175 trial data

in Section S7.2.

S7.1 Simulation one: a simple setup

For both the treatment and control groups, each with sample size n ∈ {500, 1000}, the con-

founder is generated by Xi ∼ N (0, 1). In the treatment group, T follows the Cox model with

14



the hazard rate λ1(t | Xi) = λ1(t) exp(β1Xi), where λ1(t) = 0.35 and β1 = 0.75. We consider

censoring due to the end of the study and premature dropout. We generate the censoring time

to dropout, Ci, according to a Cox model with the hazard rate λC(t | Xi) = λC(t) exp(βCXi),

where λC(t) = 0.15 and βC = 0.75. The maximum follow up time is L = 3.25. The observed

time is Ui = Ti ∧Ci ∧L. If Ui = Ti, the event indicator is Ii = 1; if Ui = L, then Ii = 0 and the

censoring type is Ri = 1; if Ui = Ci, then Ii = 0 and the censoring type is Ri = 2. Under the data

generating mechanism, the average percentages of Ii = 1, Ri = 1, and Ri = 2 are 53%, 25%, and

22%, respectively. In the control group, Ti follows the hazard rate λ0(t | X) = λ0(t) exp(β0Xi),

where λ0(t) = 0.40 and β0 = 0.75. The censoring time Ci follows the same model as in the

treatment group. For the dropout subjects with Ri = 2 in treatment group, the hazard rate

for events after censoring are δλ1(t) exp(β1Xi) for delta-adjusted model and λ0(t) exp(β0Xi)

for control-based models. For the dropout subjects with Ri = 2 in control group, the hazard

rate for event after censoring remains the same, which correspondsto the case when the control

treatment is a placebo or the standard of care. The true RMST estimand under the δ-adjusted

model is ∆δ-adj
τ = µδ-adj1,τ − µ0,τ with τ = 3. We assess the proposed method to implement the

sensitivity analysis for the treatment group when the true parameter δ is 1.5, while the analysis

parameter δ varies in a pre-specified set {0.5, 1, 1.5, 2, 2.5}. The true RMST estimand under the

control-based model are ∆control-adj
τ with τ = 3.

We use MI for imputing the censored event times following Steps MI-1-1, MI-1-2 and MI-1-3

in Section 3 with imputation size m ∈ {10, 20, 50}. We compare the standard MI inference and

the proposed wild bootstrap inference. For the standard MI inference, the 100(1−α)% confidence

intervals are calculated as (∆̂τ,mi − z1−α/2V̂
1/2
mi , ∆̂τ,mi + z1−α/2V̂

1/2
mi ), where z1−α/2 is the (1 −

α/2)th quantile of the standard normal distribution. For the proposed wild bootstrap procedure,

we sample the weights µk from the standard normal distribution, and calculate the variance

estimate V̂WB based on 100 replications. The corresponding 100(1 − α)% confidence intervals

are calculated as (∆̂τ,mi− z1−α/2V̂
1/2
WB , ∆̂τ,mi + z1−α/2V̂

1/2
WB). We assess the performance in terms

of the relative bias of the variance estimator and the coverage rate of confidence intervals. The

relative bias of the variance estimators are calculated as {E(V̂
1/2
mi )−V(∆̂

1/2
τ,mi)}/V(∆̂

1/2
τ,mi)×100%

and {E(V̂
1/2
WB)− V(∆̂

1/2
τ,mi)}/V(∆̂

1/2
τ,mi)× 100%. The coverage rate of the 100(1− α)% confidence

15



intervals is estimated by the percentage of the Monte Carlo samples for which the confidence

intervals contain the true value.

Table S1 presents the simulation results for the sensitivity analysis of δ-adjusted estimand

∆δ-adj
τ based on 1000 Monte Carlo samples. When the imputation model is correctly specified

with δ = 1.5, the MI point estimator ∆̂τ,mi is unbiased of the true estimand ∆δ-adj
τ . When

the analysis sensitivity parameter is lower (higher) than the true parameter δ = 1.5, the MI

point estimator produces higher (lower) RMST for the treatment group, and therefore ∆̂τ,mi is

biased upward (downward). When the true sensitivity parameter is correctly specified, Rubin’s

combining rule overestimates the true standard deviation with the relative bias ranging from

7.0% to 12.2%; consequently, the coverage rates are larger than the nominal level 95%. In

contrast, our proposed wild bootstrap procedure is unbiased; as a result, the coverage rates

of the confidence intervals are close to the nominal level. Moreover, the proposed method is

not sensitive to the number of imputations m. We observed similar behavior for the sensitivity

analysis of control-based models for sensitivity analysis and summarized in Table S2.

S7.2 Simulation two: ACTG175

We consider a simulation setup that is similar to ACTG175 data. The confounder is generated

by X1i ∼ N (0, 1) and X2i ∼ Bernoulli(0.15). In the treatment group, T follows the Cox model

with the hazard rate λ1(t | X1iX2i) = λ1(t) exp(β1X1i + β2X2i), where λ1 = 0.03, β1 = 0.24

and β2 = 0.04. We consider censoring due to the end of the study and premature dropout.

We generate the censoring time to dropout, Ci, according to a Cox model with the hazard rate

λC(t | X1iX2i) = λC(t) exp(βC1X1i+βC2X2i), where λC(t) = 0.01, βC1 = 0.24, βC2 = 0.20. The

maximum follow up time is L = 40. The observed time is Ui = Ti ∧Ci ∧L. If Ui = Ti, the event

indicator is Ii = 1; if Ui = L, then Ii = 0 and the censoring type is Ri = 1; if Ui = Ci,then Ii = 0

and the censoring type is Ri = 2. Under the data generating mechanism, the average percentages

of Ii = 1, Ri = 1, and Ri = 2 are 60%, 20% and 20%, respectively.In the control group, Ti follows

the hazard rate λ0(t | X1i, X2i) = λ0(t) exp(β01X1i + β02X2i), where λ0(t) = 0.03, β01 = −0.55

and β02 = 0.65. The censoring time Ci follows the same model as in the treatment group. For the

dropout subjects with Ri = 2 in treatment group, the hazard rate for events after censoring are
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δλ1(t) exp(β1X1i + β2X2i) for delta-adjusted model and λ0(t) exp(β01X1i + β02X2i) for control-

based models. For the dropout subjects with Ri = 2 in control group, the hazard rate for event

after censoring remains the same, which correspondsto the case when the control treatment is

a placebo or the standard of care. The true RMST estimand under the δ-adjusted model is

∆δ-adj
τ = µδ-adj1,τ − µ0,τ with τ = 24. We assess the proposed method to implement the sensitivity

analysis for the treatment group when the true parameter δ is 2, while the analysis parameter

δ varies in a pre-specified set {1, 2, 3, 4, 5}. The true RMST estimand under the control-based

model are ∆control-adj
τ with τ = 24. The estimation procedure are the same as the first simulation

study. The simulation results is summarized in Table S3 and Table S4 with similar observation

in the first simulation study.
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Table S1: Simulation results for the true estimand ∆δ-adj
τ = 0.054 with the true sensitivity

parameter δ = 1.5: point estimate, true standard deviation, relative bias of the standard error
estimator, coverage of interval estimate using Rubin’s method and the proposed wild bootstrap
method

Standard error Relative Bias Coverage (%)
Point est True sd (×102) (%) for 95% CI

n m Model (×102) (×102) Rubina WB Rubina WB Rubina WB
500 10 δ =0.50 15.8 6.93 7.43 6.78 7.24 -2.18 71.0 66.2

δ =1.00 9.3 6.91 7.41 6.74 7.31 -2.43 94.3 90.8
δ =1.50 5.0 6.89 7.38 6.74 7.11 -2.15 97.0 95.1
δ =2.00 2.0 6.87 7.35 6.75 6.94 -1.74 94.5 92.0
δ =2.50 -0.3 6.85 7.32 6.77 6.84 -1.30 89.3 85.7

20 δ =0.50 15.8 6.92 7.41 6.76 7.12 -2.28 71.3 65.5
δ =1.00 9.3 6.90 7.39 6.73 7.14 -2.53 93.9 90.3
δ =1.50 5.1 6.88 7.36 6.73 6.99 -2.22 96.6 94.9
δ =2.00 2.0 6.86 7.33 6.74 6.89 -1.76 94.4 91.9
δ =2.50 -0.3 6.84 7.31 6.75 6.84 -1.28 89.4 86.0

50 δ =0.50 15.8 6.90 7.41 6.75 7.37 -2.07 71.3 65.6
δ =1.00 9.3 6.88 7.38 6.72 7.38 -2.32 94.1 91.0
δ =1.50 5.0 6.86 7.35 6.72 7.22 -2.01 96.6 95.0
δ =2.00 2.0 6.84 7.32 6.73 7.09 -1.56 94.7 91.7
δ =2.50 -0.3 6.82 7.30 6.75 7.01 -1.10 89.3 85.9

N/A Tian et.al. 2014 9.4 7.10 - 7.56 - 6.40 - 92.9

1000 10 δ =0.50 16.3 4.72 5.25 4.80 11.19 1.58 45.4 37.5
δ =1.00 9.8 4.68 5.24 4.77 11.87 1.98 87.9 84.2
δ =1.50 5.6 4.66 5.21 4.78 11.98 2.57 97.7 95.2
δ =2.00 2.5 4.64 5.19 4.79 12.04 3.22 94.4 91.3
δ =2.50 0.2 4.62 5.18 4.80 12.14 3.85 85.2 80.9

20 δ =0.50 16.3 4.71 5.25 4.79 11.39 1.76 45.0 37.8
δ =1.00 9.8 4.67 5.23 4.77 12.02 2.08 87.9 84.6
δ =1.50 5.6 4.64 5.21 4.77 12.14 2.68 97.7 95.0
δ =2.00 2.5 4.62 5.19 4.78 12.20 3.35 94.1 91.5
δ =2.50 0.2 4.61 5.17 4.79 12.28 3.97 85.7 81.8

50 δ =0.50 16.3 4.70 5.24 4.79 11.39 1.78 45.3 37.5
δ =1.00 9.8 4.66 5.22 4.76 12.06 2.13 88.0 84.6
δ =1.50 5.5 4.64 5.20 4.76 12.19 2.74 97.5 95.2
δ =2.00 2.5 4.61 5.18 4.77 12.27 3.41 94.1 91.4
δ =2.50 0.2 4.60 5.17 4.78 12.34 4.03 85.4 81.7

N/A Tian et.al. 2014 9.9 4.90 - 5.35 - 9.28 - 88.2
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Table S2: Simulation results for the true estimand ∆control-adj
τ = 1.783 based on control-based

method: point estimate, true standard deviation, relative bias of the standard error estimator,
coverage of interval estimate using Rubin’s method and the proposed wild bootstrap method

Standard error Relative Bias Coverage (%)
Point est True sd (×102) (%) for 95% CI

n Model m (×102) (×102) Rubina WB Rubina WB Rubina WB

500 Control-based 10 179.0 4.58 5.24 4.76 14.34 3.87 97.2 95.1
20 179.0 4.58 5.22 4.75 13.95 3.62 97.4 95.2
50 179.0 4.57 5.22 4.74 14.16 3.76 97.3 95.3

Tian et.al. 2014 N/A 184.6 4.81 - 5.34 - 10.93 - 80.2

1000 Control-based 10 179.1 3.30 3.70 3.37 11.94 1.97 96.6 94.4
20 179.1 3.30 3.69 3.36 12.10 2.03 96.5 94.2
50 179.1 3.29 3.69 3.36 12.21 2.14 96.4 94.5

Tian et.al. 2014 N/A 184.8 3.53 - 3.78 - 7.08 - 61.1
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Table S3: Simulation results for the true estimand ∆control-adj
τ = 0.513 based on control-based

method: point estimate, true standard deviation, relative bias of the standard error estimator,
coverage of interval estimate using Rubin’s method and the proposed wild bootstrap method

Standard error Relative Bias Coverage (%)
Point est True sd (×102) (%) for 95% CI

n m Model (×102) (×102) Rubina WB Rubina WB Rubina WB
500 10 δ =1 84.9 55.9 60.8 58.3 8.74 4.25 93.8 92.1

δ =2 50.3 56.5 60.4 58.0 6.91 2.69 96.2 95.1
δ =3 26.1 56.8 59.6 57.9 4.93 2.03 94.2 93.2
δ =4 8.2 56.8 59.0 58.3 3.79 2.53 90.0 88.8
δ =5 -5.0 57.0 58.6 58.5 2.82 2.65 84.6 84.4

20 δ =1 86.7 54.2 60.6 55.3 11.83 2.09 93.4 90.7
δ =2 52.2 54.5 60.0 55.2 10.15 1.37 97.5 95.4
δ =3 27.9 54.8 59.3 55.4 8.17 1.07 95.1 93.2
δ =4 10.1 54.9 58.9 55.5 7.15 1.03 89.6 86.5
δ =5 -2.9 55.0 58.5 55.6 6.28 1.16 85.0 82.3

50 δ =1 85.4 54.4 60.4 53.3 11.02 -1.96 94.3 89.4
δ =2 51.0 55.0 60.0 53.4 9.08 -2.79 97.2 94.9
δ =3 26.8 55.2 59.3 53.5 7.40 -3.11 94.3 91.7
δ =4 9.2 55.3 58.7 53.6 6.16 -3.04 90.9 86.6
δ =5 -4.2 55.3 58.3 53.8 5.55 -2.59 86.2 80.5

N/A Tian et.al. 2014 92.8 55.4 - 55.5 - 0.29 - 88.5

1000 10 δ =1 87.0 38.6 43.0 41.1 11.25 6.46 90.7 88.1
δ =2 52.4 38.8 42.7 41.0 10.10 5.73 97.2 96.6
δ =3 28.1 38.7 42.0 41.2 8.47 6.48 93.3 92.5
δ =4 10.6 38.7 41.7 41.3 7.59 6.56 84.9 84.2
δ =5 -3.0 38.8 41.4 41.3 6.80 6.58 76.4 76.0

20 δ =1 85.4 39.5 42.8 39.1 8.46 -0.93 90.2 86.5
δ =2 50.8 39.8 42.6 38.9 7.09 -2.20 96.5 95.2
δ =3 26.2 40.1 42.0 39.1 4.82 -2.34 91.4 88.7
δ =4 8.5 40.1 41.6 39.3 3.71 -2.03 82.4 78.5
δ =5 -4.9 40.1 41.3 39.3 2.96 -2.05 72.4 69.4

50 δ =1 86.8 39.1 42.7 37.8 9.19 -3.22 88.1 83.2
δ =2 52.3 39.5 42.4 37.6 7.30 -4.67 96.3 93.9
δ =3 28.0 39.7 41.8 37.9 5.38 -4.60 92.7 89.3
δ =4 10.4 39.8 41.4 37.9 4.22 -4.71 83.6 78.3
δ =5 -2.9 39.8 41.2 38.1 3.37 -4.44 74.8 69.8

N/A Tian et.al. 2014 93.0 39.6 - 39.3 - -0.87 - 81.3
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Table S4: Simulation results for the true estimand ∆control-adj
τ = 0.843 based on control-based

method: point estimate, true standard deviation, relative bias of the standard error estimator,
coverage of interval estimate using Rubin’s method and the proposed wild bootstrap method

Standard error Relative Bias Coverage (%)
Point est True sd (×102) (%) for 95% CI

n Model m (×102) (×102) Rubina WB Rubina WB Rubina WB

500 Control-based 10 85.2 55.1 60.6 58.1 9.90 5.36 96.8 95.7
20 84.4 53.8 60.3 55.2 12.03 2.53 97.3 95.3
50 87.1 53.2 60.2 53.5 13.08 0.55 97.0 94.7

Tian et.al. 2014 N/A 93.9 54.4 - 55.5 - 1.95 - 95.2

1000 Control-based 10 86.1 38.9 42.8 41.1 10.16 5.81 96.8 96.3
20 83.5 38.7 42.7 39.1 10.53 1.13 96.3 95.3
50 86.6 38.1 42.5 37.9 11.56 -0.70 96.2 94.6

Tian et.al. 2014 N/A 93.1 39.3 - 39.3 - -0.10 - 94.2
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