Supplementary Figure 1

Supplementary Figure 1. Impact of PD-L1 blockade on endogenous CD8+ T cells in KPC PDA.

A) Proportion of endogenous CD8+ T cells in blood following TCR_{Msin} cell therapy and \pm PD-L1 blockade. Data are mean \pm SEM and reflect n=3-6 mice per group.

B) Total number of endogenous CD8+ T cells normalized to spleen or tumor gram at day 8. Data are mean \pm SEM and reflect n=3-6 mice per group.

C) Total number of endogenous CD8+ T cells normalized to spleen or tumor gram at day 28. Data are mean ± SEM and reflect n=3-6 mice per group.

Supplementary Figure 2. Impact of PD-1-deficiency on engineered T cells in pancreatic tumors.

A) Representative flow cytometric staining of Pdcd1^{+/+} and Pdcd1^{-/-} TCR_{MsIn} T cells prior to transfer.

B) Proportion of $Pdcd1^{+/+}$ and $Pdcd1^{-/-}$ TCR_{Msin} T cells at 8 days following infusion into *KPC* mice. **C**) Proportion of $Pdcd1^{+/+}$ and $Pdcd1^{-/-}$ TCR_{Msin} T cells producing cytokines at day 8 post infusion. Data are mean \pm SEM and reflect n=3 mice per group.

D) Proportion of Pdcd1^{+/+} and Pdcd1^{-/-} TCR_{Msin} T cells that express Tbet and Ki67 in spleen and tumor at day 8 post infusion. Data are mean \pm SEM and reflect n=3 mice per group.

E) Proportion and number of TCR_{Msin} engineered *Pdcd1^{+/+}* and *Pdcd1^{-/-}* CD8+ T cells at day 28 post infusion. Data are mean ± SEM and reflect n=3 mice per group. *, p<0.05, unpaired student's T test.

Supplementary Figure 3. Gene expression of engineered T cells isolated from spleen and tumors of *KPC* mice and comparison to endogenously primed tumor-specific T cells.

A) PCA plot of the indicated groups.

B) Fold change in gene expression in TCR_{MsIn} cells isolated from tumors vs. spleens. Box indicates highly upregulated genes in TCR_{MsIn} isolated from tumors that are pancreas specific.

C) GSEA comparison of DEGs overexpressed in intratumoral TCR_{MsIn} cells at day 28 to DEGs overexpressed in tumor-specific T cells that endogenously encountered a liver tumor antigen at day 30 (GSE60501). Normalized enrichment score, NES= -1.87.

Supplementary Figure 4. Impact of PD-L1 blockade on gene expression in TCR_{Msin} cells. PCA plots of TCR_{Msin} cells isolated from control or anti-PD-L1 treated mice.

Supplementary Figure 5

Supplementary Figure 5. Impact of multiple coinhibitory receptor blockade with TCR engineered T cell therapy on tumor cell apoptosis. *KPC* mice with 3-6 mm tumor mass received engineered T cell therapy + α PD-1, α Tim-3 and α Lag3, or isotype, according to Figure 6A. On day 8 or 28 following T cell transfer, single cell suspensions from tumors were stained for CD45, Thy1.1 and intracellular cleaved caspase 3 (CC3). **A**) Representative gating strategy to assess apoptosis in tumor epithelial cells. Note that Thy1.2 is expressed on CD45- cancer-associated fibroblasts and thus by gating on CD45-Thy1.2- cells, we are enriching for tumor epithelial cells. **B**) Data are quantified at day 8 and day 28 post T cell therapy and are mean ± S.E.M. n=3-6 mice per group/per timepoint.