Supporting Information for:

Importance of binding site hydration and flexibility revealed when optimizing a macrocyclic inhibitor of the Keap1-Nrf2 protein-protein interaction

Fabio Begnini,¹ Stefan Geschwindner,² Patrik Johansson,² Lisa Wissler,² Richard J. Lewis,³ Emma Danelius,¹ Andreas Luttens,⁴ Pierre Matricon,⁴ Jens Carlsson,⁴ Stijn Lenders,¹ Beate König,¹ Anna Friedel,¹ Peter Sjö,⁵ Stefan Schiesser^{3,*} and Jan Kihlberg^{1,*}

¹ Department of Chemistry - BMC, Uppsala University, Box 576, 75123 Uppsala, Sweden

²Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, 43183 Mölndal, Sweden

³ Department of Medicinal Chemistry, Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, 43183 Mölndal, Sweden

⁴ Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University 75124 Uppsala, Sweden

⁵ Drugs for Neglected Diseases initiative (DNDi), 15 Chemin Camille-Vidart, 1202 Geneva, Switzerland

* Corresponding authors

stefan.schiesser@astrazeneca.com, ORCID 0000-0002-8668-2844 jan.kihlberg@kemi.uu.se, ORCID 0000-0002-4205-6040

Table of Contents

SUPPORTING TABLES	.3
SUPPORTING FIGURES	14
SUPPORTING SCHEMES	20
SUPPORTING PROCEDURES	23
SUPPORTING PROCEDURE S1 – MOLECULAR DYNAMICS (MD) SIMULATIONS AND FREE	
ENERGY CALCULATIONS	23
SUPPORTING PROCEDURE S2 – SYNTHESIS OF COMPOUNDS S1-S24	24
Supporting Procedure S3 – Gram scale synthesis of compound 107 and scale-up	
SYNTHESIS OF COMPOUND 1	39
Supporting Procedure S4 – Gram scale synthesis of compound 10	41
Supporting Procedure S5 – Gram scale synthesis of compound 12	43
SUPPORTING PROCEDURE S6 – SYNTHESIS OF COMPOUND 109	46
NMR SPECTRA FOR COMPOUNDS 2–78	50
PURITY REPORTS FOR COMPOUNDS 2–78	27
NMR SPECTRA FOR COMPOUNDS S1–S241	64
PURITY REPORTS FOR COMPOUNDS S1-S24	88
SUPPLEMENTARY REFERENCES	99

Supporting Tables

Table S1. Amide proton temperature dependent chemical shifts and temperature coefficientsfor compounds 1, 6 and 7.

		Comp	Compound 1		ound 6	Compound 7	
T [°C]	T [K]	NH-A	NH-B	NH-A	NH-B	NH-A	NH-B
25	289	8.113	8.941	7.731	8.463	7.846	8.895
35	299	8.068	8.877	7.701	8.429	7.809	8.833
45	309	8.021	8.811	7.668	8.394	7.770	8.778
55	319	7.974	8.746	7.637	8.358	7.735	8.712
65	329	7.927	8.679	7.605	8.326	7.698	8.654
75	339	7.880	8.614	7.577	8.289	7.653	8.596
85	349	7.834	8.546	7.521	8.251	7.615	8.535
	R ²	0.99	0.99	0.99	0.99	0.99	0.99
	$\Delta\delta_{\rm NH}/\Delta T$	1 66	6 5 8	3 50	3 53	3.80	6.00
	[ppb/K]	т .00	0.38	5.50	5.55	5.80	0.00

Table S2. ¹H NMR assignment (δ , ppm) of compound **1** in DMSO- d_6 + 20% H₂O (v/v). The structure of compound **1** with the corresponding enumeration used for assignment of the ¹H NMR signals is shown.

Proton No.	δ
8	9.01
4	8.17
28	7.87
26	7.53
25	7.43
27	7.39
3	4.91 - 4.86
19′′	4.87
29′′	4.66
7	4.45 - 4.41
19′	4.31
10	4.31 - 4.28
29′	3.72
15′′,15′	3.51 - 3.47
31''	2.95 - 2.92
31′	2.90 - 2.87
33-Me, 34-Me	2.84, 2.75
17′′	2.07 - 2.01
16''	2.00 - 1.95
13-Me	1.92
17′, 16′	1.86 – 1.79

	Distances									
Dist. No	Proton a	Proton b	Exp. (Å)	Calc. (Å)						
1	25	29′	2.20	2.50						
2	29′	4	4.50	3.93						
3	29′′	8	2.70	2.65						
4	29′′	4	2.40	2.56						
5	25	29′′	3.40	3.12						
6	29′′	7	3.80	4.56						
7	4	8	2.50	2.48						
8	7	8	2.60	2.91						
9	4	7	3.10	2.98						
10	4	33-Me	3.80	3.55						
11	7	13-Me	4.60	4.36						
12	7	33-Me	4.40	4.39						
13	13-Me	33-Me	5.40	5.55						
14	13-Me	34-Me	4.20	4.60						
15	29′′	31′	3.30	2.99						
16	29′′	31''	3.20	3.25						
17	29′	31′	2.70	2.79						
18	29′′	31''	2.70	3.03						

 Table S3. Experimentally determined and back-calculated distances (NAMFIS output)

 interproton distances (Å).

RMSD Distances = 0.31

Coupling constants										
³ J No.	Proton a	Proton b	Exp. (Hz)	Calc. (Hz)						
1	7	8	6.7	7.2						
2	4	3	9.8	9.1						

RMSD Coupling constants = 0.62

	Conf. 1	Conf. 2	Conf. 3	Conf. 4	Conf. 5	Conf. 6	X-ray
Conf. 1	0.00	0.69	0.78	0.71	0.78	0.81	0.62
Conf. 2		0.00	0.45	0.22	0.72	0.92	0.37
Conf. 3			0.00	0.42	0.85	1.02	0.55
Conf. 4				0.00	0.67	0.91	0.43
Conf. 5					0.00	0.69	0.70
Conf. 6						0.00	0.92
X-ray							0.00

Table S4. RMSD (macrocycle heavy atoms) matrix for the solution conformations of compound 1.

 Table S5. RMSD (all heavy atoms) matrix for the solution conformations of compound 1.

	Conf 1	Conf 2	Conf 3	Conf 4	Conf 5	Conf 6	X-ray
Conf 1	0	2.74	3.00	2.76	2.92	3.47	2.74
Conf 2		0	1.09	2.53	2.48	2.89	2.57
Conf 3			0	3.16	3.13	3.25	3.18
Conf 4				0	1.27	2.51	1.23
Conf 5					0	2.09	1.11
Conf 6						0	2.22
X-ray							0

				64	77	78
Acetylcholinesterase	human	inhibition	IC ₅₀	>100	>100	>100
			(µM)			
Adenosine A ₁	human	binding to	IC ₅₀	>100	>100	>100
receptor		antagonist site	(µM)			
Adenosine A _{2A}	human	agonist activity	EC ₅₀	>100	>100	>100
receptor		0	(µM)			
Adenosine	guinea	binding	IC ₅₀	>100	>100	>100
transporter	pig	C	(µM)			
Adrenergic α_{1A}	human	binding to	IC ₅₀	>100	>100	>100
receptor		antagonist site	(µM)			
Adrenergic α_{1B}	human	antagonist	IC ₅₀	>100	>100	>100
receptor		activity	(µM)			
Adrenergic a _{2A}	human	agonist activity	EC ₅₀	>30	>30	>30
receptor		·	(µM)			
Adrenergic a _{2A}	human	antagonist	IC ₅₀	>30	>30	>30
receptor		activity	(µM)			
Adrenergic α_{2C}	human	binding to	IC ₅₀	>100	>100	>100
receptor		antagonist site	(µM)			
Adrenergic b ₁	human	agonist activity	EC ₅₀	>100	>100	>100
receptor			(µM)			
Adrenergic b ₂	human	binding to	IC ₅₀	>100	>100	>100
receptor		agonist site	(µM)			
ALK4	human	inhibition	IC ₅₀	>100	>100	77
			(µM)			
Androgen receptor	human	binding to	IC ₅₀	>100	>100	>100
		agonist site	(µM)			
Angiotensin II	human	binding to	IC ₅₀	>100	>100	>100
receptor AT1		antagonist site	(µM)			
Aurora A kinase	human	inhibition	IC ₅₀	>100	>100	>100
			(µM)			
Bradykinin receptor	human	binding to	IC ₅₀	>100	>100	>100
2		agonist site	(µM)			
Cannabinoid	human	agonist activity	EC_{50}	>100	>100	>100
receptor 1			(µM)			
Cannabinoid	human	antagonist	IC ₅₀	>100	>100	>100
receptor 1		activity	(µM)			
Cholecystokinin A	human	binding to	IC ₅₀	>100	>100	>100
receptor		agonist site	(µM)	1.0.0	100	100
c-kit kinase	human	inhibition	IC_{50}	>100	>100	>100
COVI	1	• 1 • 1 • . •	(µM)	> 100	> 100	> 100
CUXI	human	inhibition	$1C_{50}$	>100	>100	>100
COV2	1		(µM)	> 100	> 100	> 100
COX2	human	inhibition	IC ₅₀	>100	>100	>100
Cathanain C	1	: 1 .:1.:4:	(µM)	> 100	> 100	> 100
Cathepsin S	human	inhibition	$1C_{50}$	>100	>100	>100
			(µM)			

Table S6: IC₅₀ data for compounds 64, 77, and 78 in Eurofins CEREP secondary pharmacology panel.

Dopamine	human	binding	IC_{50}	>100	>100	>100
Demomine recentor	human	hinding	(µM)	>100	>100	>100
D_{1}	numan	binding	(μM)	>100	>100	>100
Dopamine receptor	human	binsing	IC ₅₀	>100	>100	>100
D_{2L}		-	(µM)			
Dopamine receptor	human	agonist activity	EC ₅₀	>100	>100	>100
D ₃			(µM)			
Dopamine receptor	human	antagonist	IC ₅₀	>100	>100	>100
D ₃		activity	(µM)			
Endothelin receptor	human	binding to	IC ₅₀	>100	>100	>100
A		agonist site	(µM)			
Epidermal growth	human	inhibition	IC ₅₀	>100	>100	>100
factor receptor			(µM)			
Fibroblast growth	human	inhibition	IC_{50}	>100	>100	>100
factor receptor			(µM)	100	100	100
GABA _A receptor	rat	binding to	IC_{50}	>100	>100	>100
~1 11		agonist site	(µM)	100	100	
Ghrelin receptor	human	binding to	IC_{50}	>100	>100	>100
	1	agonist site	(µM)	. 100	. 100	. 100
Glucocorticoid	human	binding to	IC_{50}	>100	>100	>100
receptor		agonist site	(µM)	> 100	> 100	> 100
Glycin receptor	rat	binding to	$1C_{50}$	>100	>100	>100
Classes and south and	1	agonist site	(µM)	>100	> 100	> 100
kinase 3b	numan	innibition	(μM)	>100	>100	>100
hERG	human	inhibition	IC ₅₀	>40	>40	>40
			(µM)			
Histamine receptor	human	binding to	IC ₅₀	>100	>100	>100
H ₁		antagonist site	(µM)			
Histamine receptor	human	agonist activity	IC50	>100	>100	63
H ₂			(µM)			
Histamine receptor	human	antagonist	EC50	>100	>100	>100
H ₂		activity	(µM)			
5-HT _{1A}	human	binding to	IC_{50}	>100	>100	>100
		agonist site	(µM)			
5-HT _{1B}	human	binding to	IC ₅₀	>100	>100	>100
		antagonist site	(µM)	100	100	100
5-HT _{1D}	rat	binding to	IC_{50}	>100	>100	>100
6 UT	1	agonist site	(µM)	> 100	> 100	> 100
5-H 1 _{2B}	human	agonist activity	$1C_{50}$	>100	>100	>100
5 UT	1		(µM)	> 100	> 100	> 100
3-H1 _{2C}	numan	agonist activity	EC_{50}	>100	>100	>100
5 UT	human	hinding	(μM)	>100	>100	>100
3-П1 3А	IIuIIIaII	omanig	$1C_{50}$	>100	~100	>100
5 UT.	humon	binding to	(μM)	>100	>100	>100
5-1114	numan	antagonist site	(1050)	~ 100	~100	~ 100
5_HT ₇	human	anagonist activity	IC_{co}	>100	>100	36
J-111 /	iiuiiiaii	agoinst activity	(10.50)	~ 100	- 100	50
6 UT	1		$(\mu \nu i)$			
D-H17	human	antagonist	ICso	>100	>100	>100
5-H17	human	antagonist activity	IC_{50}	>100	>100	>100

Insulin receptor	human	inhibition	IC ₅₀	>100	>100	>100
kinase			(µM)	100	100	100
Kinase insert	human	inhibition	IC_{50}	>100	>100	>100
domain receptor			(µM)			
Kinase		1.1.1.1	IC	> 100	> 100	> 100
L-type calcium	rat	binding to	$1C_{50}$	>100	>100	>100
channel (Cav-L)		diltiazem site	(µM)	> 100	> 100	> 100
L-type calcium	rat	binding to	$1C_{50}$	>100	>100	>100
channel (Cav-L)	1	verapamil site	(µM)	. 100	. 100	. 100
Lymphocyte-	human	inhibition	IC ₅₀	>100	>100	>100
specific protein			(µM)			
tyrosine kinase	1	. 1 .1 .7.	IC	> 100	> 100	> 100
Matrix	numan	innibition	IC_{50}	>100	>100	>100
metalloproteinase 2	1	1 . 1.	(µM)	> 100	> 100	> 100
Melatonin receptor	human	binding	IC_{50}	>100	>100	>100
2	1	• • •	(µM)	. 100	. 100	. 100
Mitogen activated	human	inhibition	IC_{50}	>100	>100	>100
protein kinase			(µM)			
kinase kinase /	1	• 1 • 1 • . •	IC	> 100	> 100	> 100
Monoamine oxidase	human	inhibition	$1C_{50}$	>100	>100	>100
A			(µM)	100	100	100
Muscarinic	human	binding to	IC_{50}	>100	>100	>100
acetylcholine		antagonist site	(µM)			
receptor I	1	1 1 1 /	IC	> 100	> 100	> 100
Muscarinic	human	binding to	IC ₅₀	>100	>100	>100
acetylcholine		antagonist site	(µM)			
receptor 2	1	1 • 1•	IC	. 100	. 100	. 100
Muscarinic	human	binding to	IC_{50}	>100	>100	>100
acetylcholine		antagonist site	(µM)			
receptor \mathcal{I}		:1.:1.:4:	IC	> 100	> 100	> 100
Na /K AlPase	porcin	innibition	IC_{50}	>100	>100	>100
	1	1 ' 1' /	(µM)	> 100	> 100	> 100
Neurokinin receptor	human	binding to	$1C_{50}$	>100	>100	>100
	1		(µM)	> 100	> 100	75
Neurotrophic	human	inhibition	$1C_{50}$	>100	>100	/5
receptor kinase I	1	1 • 1•	(µM)	. 100	. 100	. 100
Nicotinic	human	binding	IC ₅₀	>100	>100	>100
acetylcholine			(µM)			
receptor a ₁	1	1 • 1•	IC	. 100	. 100	. 100
Nicotinic	human	binding	IC_{50}	>100	>100	>100
acetylcholine			(µM)			
Niestinie	1	hin din a	IC	> 100	> 100	> 100
Nicotinic	numan	binding	IC_{50}	>100	>100	>100
			(µM)			
NMDA manufacture		hin din a ta	IC	> 100	> 100	> 100
INIVIDA receptor	rat	binding to	IC_{50}	>100	>100	>100
NI- man in a mini	1		(μM)	> 100	> 100	> 100
Norepinephrine	human	binding	IC_{50}	>100	>100	>100
transporter (NET)	1	1 • 1•	(µM)	. 100	. 100	. 100
d ₂ Op101d receptor	human	binding to	IC ₅₀	>100	>100	>100
		agonist site	(µM)			
μ-Opioid receptor	human	binding to	IC ₅₀	>100	>100	>100
		agonist site	(µM)			

Opioid receptor k1	human	binding to	IC ₅₀	>100	>100	>100
		agonist site	(µM)			
Phosphodiesterase	human	inhibition	IC_{50}	>100	>100	>100
3A			(µM)			
Phosphodiesterase	human	inhibition	IC_{50}	>100	>100	>100
4D2			(µM)			
Phophodiesterase 6	bovine	inhibition	IC_{50}	>100	>100	>100
			(µM)			
Phosphodiesterase	human	inhibition	IC50	>100	>100	>100
10A2			(µM)			
PPARg	human	binding to	IC ₅₀	>100	>100	>100
		agonist site	(µM)			
Pyruvate	human	inhibition	IC ₅₀	>100	>100	70
dehydrogenase			(µM)			
kinase 1			· · ·			
Retinoic receptor a	human	binding to	IC ₅₀	>100	>100	>100
		agonist site	(µM)			
Rho associated,	human	inhibition	IC ₅₀	>100	>100	>100
coiled coil			(µM)			
containing protein			· · ·			
kinase 1						
Rho associated,	human	inhibition	IC50	>100	>100	>100
coiled coil			(µM)			
containing protein						
kinase 2						
Serotonin	human	binding	IC_{50}	>100	>100	>100
transporter			(µM)			
Sigma 1	human	binding to	IC_{50}	>100	>100	>100
		agonist site	(µM)			
Somatostatin	human	binding to	IC_{50}	>100	>100	>100
receptor 4		agonist site	(µM)			
TSPO	human	binding to	IC50	>100	>100	>100
		antagonist site	(µM)			
TXA2 synthase	human	inhibition	IC ₅₀	>100	38	20
			(µM)			
Vasopressin	human	binding to	IC ₅₀	>100	>100	>100
receptor 1A		agonist site	(µM)			
v-src sarcoma	human	inhibition	IC ₅₀	>100	>100	>100
kinase			(µM)			

Compound	$K_{\rm D}$ (M)	$SD^{a} K_{D}(M)$	ΔG (kcal/mol)	$\Delta H (kcal/mol)$	$-T\Delta S$ (kcal/mol)
1	3.70×10^{-06}	8.00×10^{-08}	-7.55	-14.05	6.50
2	1.01 10 ⁻⁰⁶	1.91× 10 ⁻⁰⁸	-8.19	-11.45	3.27
7	4.13× 10 ⁻⁰⁶	$4.38\times10^{\text{-}07}$	-7.35	-14.80	7.45
12	1.56×10^{-06}	n.d. ^b	-7.93	-12.05	4.14
38	9.13×10^{-07}	2.00×10^{-07}	-8.25	-15.90	7.66
39	1.44×10^{-06}	1.91×10^{-07}	-7.98	-16.05	8.10
41	1.04×10^{-06}	2.12×10^{-08}	-8.17	-14.85	6.69
42	2.16×10^{-06}	$9.19 imes 10^{-08}$	-7.74	-13.65	5.91
43	2.57×10^{-06}	$2.40 imes 10^{-07}$	-7.62	-13.80	6.18
44	3.44×10^{-06}	$3.89 imes 10^{-07}$	-7.28	-12.95	5.68
46	4.97×10^{-06}	4.24×10^{-08}	-7.24	-14.20	6.98
47	7.75×10^{-07}	$8.98 imes 10^{-08}$	-8.34	-14.80	6.47
60	$8.86 imes 10^{-07}$	1.34×10^{-07}	-8.27	-9.06	0.80
63	$8.87 imes 10^{-07}$	5.23×10^{-08}	-8.26	-7.54	-0.72
64	6.77×10^{-08}	1.75×10^{-08}	-9.80	-11.10	1.30
67	4.61×10^{-08}	1.10×10^{-08}	-10.01	-12.20	2.18
68	3.83×10^{-07}	1.92×10^{-07}	-8.80	-8.30	-0.51
72	4.31×10^{-08}	2.90×10^{-09}	-10.05	-11.65	1.57
73	3.64×10^{-08}	1.73×10^{-08}	-10.19	-9.13	-1.06
74	$3.29 imes 10^{-08}$	7.21 × 10 ⁻⁰⁹	-10.20	-11.30	1.08
75	$2.88 imes 10^{-08}$	9.90 × 10 ⁻⁰⁹	-10.35	-12.25	1.90
76	3.69×10^{-08}	1.59×10^{-08}	-10.20	-9.93	-0.23
77	$2.92 imes 10^{-08}$	1.49×10^{-08}	-10.33	-9.10	-1.23
78	$2.88 imes 10^{-08}$	1.04×10^{-08}	-10.31	-11.50	1.19

Table S7. Dissociation constants and thermodynamics data determined by ITC for selected compounds. The data was obtained from at least three measurements.

^{*a*}SD = Standard deviation; ^{*b*}n.d. = not determined

Compound	2	39	60	63	64
Data collection					
Space group	P212121	P212121	P212121	P212121	P212121
Cell dimensions(Å)	75.4 75.5 202.2	75.7 75.9 204.8	75.4 75.6 202.1	75.4 75.4 202.7	75.9 75.8 204.3
Resolution (Å)	2.31-70.8 (2.31-2.54)	2.55-102.4 (2.91-3.06)	2.13-101.1 (2.13-2.37)	2.28-70.7 (2.28-2.53)	2.40-102.2 (2.40-2.65)
$R_{ m merge}$	0.08 (1.23)	0.09 (1.09)	0.07 (1.24)	0.06 (1.29)	0.08 (1.33)
<i σi=""></i>	13.0 (1.4)	12.5 (1.5)	14.0 (1.4)	17.8 (1.6)	14.6 (1.5)
Completeness (%)	74.2 (15.2) / 94.5 (55.2)	78.5 (18.3) / 99.9 (99.7)	65.8 (12.4) / 87.4 (62.0)	71.9 (13.8) / 93.8 (65.2)	72.3 (14.3) / 94.0 (61.9)
Redundancy	6.3 (7.0)	6.5 (6.9)	6.7 (7.1)	6.0 (7.4)	6.6 (7.1)
CC(1/2)	1.00 (0.54)	1.00 (0.65)	1.00 (0.55)	1.00 (0.52)	1.00 (0.50)
Refinement					
Resolution (Å)	2.31-70.8	2.55-102.4	2.14-101.1	2.28-70.7	2.42-102.2
Number of reflections	39248	30712	42464	38468	34145
$R_{ m work}$ / $R_{ m free}$	0.191 / 0.226	0.180 / 0.210	0.212 / 0.232	0.205 / 0.229	0.196 / 0.217
No. atoms					
Protein	4372	4372	4372	4372	4372
Waters	271	153	186	198	91
Ligand	36	43	44	44	44
Average <i>B</i> -factors					
Protein (Å ²)	63.0	65.6	66.1	68.2	77.5
Waters (Å ²)	62.9	60.7	65.5	64.7	68.6
Ligand (Å ²)	61.8	87.8	82.8	79.4	88.3

Table S8. Data collection and refinement statistics for the complex between Keap1 and compounds **2**, **39**, **60**, **63** and **64**. Values within parenthesis refer to the highest resolution shell. Data completeness reported using a spherical / ellipsoidal resolution cutoff.

R.m.s deviations						
Bond lengths (Å)	0.010	0.010	0.008	0.008	0.008	
Bond angles (°)	1.16	1.17	1.00	1.01	0.98	

Supporting Figures

Figure S1. (A) Conformation of the Keap1 bound conformation of compound 1 with ring atoms colored in orange and plots of the distribution of RMSD values for corresponding ring atoms in compounds 1, 6, 7, 16 and 21 in MD snapshots with respect to this conformation. (B) *Left panel:* Distribution of absolute torsional angle values from MD simulations of compounds 1, 6, 7, 16 and 21 in water, for the torsional angle indicated by the heavy atoms colored in orange. *Right panel:* Distribution for the distance highlighted with a dashed line for compounds 1, 6, 7, 16 and 21 in water.

Figure S2. Overlay of docked poses for compounds 41–54 and the target-bound crystal structure of compound 1 (magenta) from PDB ID:6Z6A. Keap1 is shown as a white surface with oxygen atoms in red and nitrogen atoms in blue in the inserted figures; selected residues in Keap1 are shown as white sticks with oxygen atoms in red and nitrogen atoms in blue; a chloride ion is shown in green; polar contacts are shown as yellow dashed lines. *Compound 43 was docked as a thiophene, but synthesized as phenyl derivative due to commercial availability of the starting material.

Figure S3. Overlay of docked poses for compounds **55–58** and **60–63** (green) and the targetbound crystal structure of compound **1** (magenta) from PDB ID:6Z6A. Keap1 is shown as a white surface with oxygen atoms in red and nitrogen atoms in blue in the inserted figures; selected residues in Keap1 are shown as white sticks; a chloride ion is shown in green; polar contacts (as detected by PyMol) are shown as yellow dashed lines.

Figure S4. Alternative close-up view showing the orientations of residues R415, R483 and S508 of Keap1 in the complexes with compounds **63** and **64**. The ligands have been removed for clarity, but the side chains of the three residues are colored as for each ligand, i.e. in green (**63**) and magenta (**64**). Keap1 (from PDB ID: 6Z6A) is showed as a grey cartoon.

Figure S5. 2Fo-Fc electron density of compound 2 contoured at 1.0σ in the crystalline complex with Keap1.

Figure S6. 2Fo-Fc electron density of compound 39 contoured at 1.0σ in the crystalline complex with Keap1.

Figure S7. 2Fo-Fc electron density of compound 60 contoured at 1.0σ in the crystalline complex with Keap1.

Figure S8. 2Fo-Fc electron density of compound 63 contoured at 1.0σ in the crystalline complex with Keap1.

Figure S9. 2Fo-Fc electron density of compound 64 contoured at 1.0σ in the crystalline complex with Keap1.

Supporting Schemes

^{*a*}Reagents and conditions: (a) 4 M HCl in 1,4–dioxane, rt, 1 h. (b) R–OH, HATU or EDC·HCl, DIPEA, DMSO, rt, 2 h. (c) anthranilic acid, HATU, DIPEA, DMSO, rt, 2 h, *then* Ac–Cl, triethylamine, DCM, rt, 2h. ^{*b*}Dissociation constants (K_D) obtained from surface plasmon resonance (SPR) using an inhibition in solution assay (ISA) format are reported as mean values ± standard deviation, derived from a minimum of 3 independent experiments.

Scheme S2. Gram scale synthesis of compound 107 and scale-up synthesis of compound 1^a

^{*a*}Reagents and conditions: (a) 4 M HCl in 1,4–dioxane, rt, 1 h. (b) Boc-D-Ser-OH, EDC·HCl, MeCN, rt, 2 h. (c) LiOH, MeOH:H₂O 1:1.5, 40 °C, 16 h. (d) PEtPh₂, DBAD, toluene, 0 °C to rt, 2 h. (e) Ac-L-Pro-OH, EDC·HCl, DIPEA, MeCN, rt, 2 h.

Scheme S3. Gram scale synthesis of compound 10^a

^{*a*}Reagents and conditions: (a) Boc-D-Cys-OH, Et₃N, THF:DMF 3:1, rt, 16 h. (b) Me₂N·HCl, EDC·HCl, HOBt·xH₂O, DIPEA, THF:DMF 3:1, rt, 2 h. (c) 4 M HCl in 1,4–dioxane, rt, 1 h. (d) Boc-D-Ser-OH, EDC·HCl, MeCN, rt, 2 h. (e) LiOH, MeOH:H₂O 1:1.5, 40 °C, 16 h. (f) PPh₃, DBAD, THF, rt, 4 h. (g) Ac-L-Pro-OH, EDC·HCl, DIPEA, MeCN, rt, 2 h.

Scheme S4. Gram scale synthesis of compound 12^a

^{*a*}Reagents and conditions: (a) Boc-D-Cys-OH, Et₃N, THF:DMF 3:1, rt, 16 h. (b) Me₂N·HCl, EDC·HCl, HOBt·xH₂O, DIPEA, THF:DMF 3:1, rt, 2 h. (c) 4 M HCl in 1,4–dioxane, rt, 1 h. (d) Boc-D-Ser-OH, EDC·HCl, MeCN, rt, 2 h. (e) LiOH, MeOH:H₂O 1:1.5, 40 °C, 16 h. (f) PPh₃, DBAD, THF, rt, 4 h. (g) Ac-L-Pro-OH, EDC·HCl, DIPEA, MeCN, rt, 2 h.

Scheme S5. Synthesis of compound 109

Reagents and conditions: (a) Boc-D-Cys-OH, Et₃N, THF:DMF 4:1, rt, 16 h. (b) Me₂N·HCl, HATU, DIPEA, THF:DMF 4:1, rt, 2 h. (c) 4 M HCl in 1,4–dioxane, rt, 1 h (d) Boc-D-Ser-OH, EDC·HCl, MeCN, rt, 2 h. (e) LiOH, MeOH:H₂O 1:1.5, 40 °C, 16 h. (f) PEtPh₂, DBAD, toluene, 0 °C to rt, 2 h. (g) Ac-L-Pro-OH, HATU, DIPEA, MeCN, rt, 2 h.

Supporting Procedures

Supporting Procedure S1 – Molecular dynamics (MD) simulations and free energy calculations.

MD simulations were based on a crystal structure of the Kelch-like ECH-associated protein 1 (Keap1) homodimer bound to compound 1 with the presence of a chloride ion in the ligand binding site (PDB ID: 6Z6A) in both the receptor and aqueous solution. The monomer which was not involved in binding to compound 1 was removed. Other compounds were modelled based on the binding mode of compound 1. The simulations were carried out with the MD engine Q¹. The OPLSAA 2005 force field² was used to parametrize the compounds and force field parameters were obtained from the program hetgrp ffgen (Schrödinger, LLC, New York, NY, 2017). Water molecules were represented with the TIP3P model.³ The simulations were performed under spherical boundary conditions with a sphere radius of 21 Å centered on the compounds. In these conditions, atoms outside the sphere were excluded from non-bonded interactions. Ionizable residues close to the sphere edge were set to their neutral form and atoms within 3 Å of the sphere edge were restrained to their initial coordinates. The surfaceconstrained all atom solvent (SCAAS)⁴ model was used, with radial and polarization restraints applied for solvent molecules at the sphere edge. Solvent bonds and angles were constrained with the SHAKE algorithm⁵. A cutoff of 10 Å was used for non-bonded interactions except for ligand atoms, and electrostatic interactions beyond this cutoff were treated with the local reaction field (LRF) approximation.⁶ non-bonded pair lists were updated every 25 steps with a time step of 1 fs for all simulations. Ionizable residues in the binding site were set to their most probable protonation state in aqueous solution at pH 7. His432, His436 and His575 were protonated on the δ position whereas His437 and His552 were protonated on the ϵ position. Alchemical transformations of a compound into another were divided into four major steps: (i) Partial charges were changed, (ii-iii) for all transformation except the one from 1 to 7, a softcore potential was introduced for atoms to annihilate, followed by removal of Lennard-Jones terms for these atoms,⁷ and (iv) remaining Lennard-Jones and bonded terms were changed. These transformation steps were further divided into 11, 11, 21 and 41 steps by mapping the potential (U), based on a linear combination of potential energy functions describing the initial (A) and final (B) states of the transformation steps:

$$U = (1 - \lambda)U_A + \lambda U_B \tag{1}$$

where λ is varied from zero to one. Free energy differences were obtained using the Zwanzig equation.⁸ At each λ window, receptor-ligand complexes were equilibrated for 750 ps, where the system was heated towards 300 K and harmonic positional restraints on solute atoms were gradually released. Equilibrations were followed by 500 ps of production simulations with energies collected every 50 fs. In addition, simulations of the compounds in aqueous solution were also carried out at the same temperature using a water droplet of the same size. In these simulations, a weak harmonic restraint was applied to a central ligand atom to prevent it from approaching the sphere edge. These systems were equilibrated for 350 ps followed by 100 ps productions. All calculations involved three independent replicates and relative binding free energy differences were calculated using a bootstrapping strategy where one of the three replicates was randomly selected at each transformation step (1000 times). Free energy results are represented as mean \pm SD resulting from the 1000 rounds of bootstrapping. Structural analyses of MD simulation data were based on three extended production runs of 5 ns for each system.

Supporting Procedure S2 – Synthesis of compounds S1-S24.

(4S,7R)-7-((S)-1-(3-Hydroxypropanoyl)pyrrolidine-2-carboxamido)-N,N-dimethyl-6,10dioxo-1,3,4,5,6,7,8,10-octahydrobenzo[j][1]oxa[8]thia[5]azacyclododecine-4-carboxamide (S1).

Compound **108** (25 mg, 46 µmol, 1.0 eq) was dissolved in 4 M HCl in 1,4-dioxane (2 mL) and the mixture was stirred for 1 hour at rt. After evaporation of the volatiles under reduced pressure, the resulting salt was dissolved in DMSO (1 mL). 3-Hydroxypropionic acid (30% wt in water, 25 µL, 92 µmol, 2.0 eq), EDC·HCl (18 mg, 92 µmol, 2.0 eq) and DIPEA (31 µL, 0.18 mmol, 4.0 eq) were added and the mixture was stirred for 16 hours at rt. EtOAc (75 mL) was added and the mixture was washed with 1 M aqueous HCl solution (25 mL), saturated aqueous NaHCO₃ solution (25 mL), and brine (25 mL). The organic phase was dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude product was purified using reverse phase HPLC with a gradient 20 – 70% MeCN/water to give to give **S1** (6 mg, 11 µmol, 24% yield over 2 steps) as a colorless powder. HRMS (ESI) m/z calcd for C₂₅H₃₃N₄O₈S [M+H]⁺ 549.2019, found 549.1998. ¹H NMR (500 MHz, CDCl₃) δ 7.90 (dd, J = 7.8, 1.4 Hz,

1H), 7.86 (d, J = 9.2 Hz, 1H), 7.65 (d, J = 9.1 Hz, 1H), 7.47 (td, J = 7.5, 1.5 Hz, 1H), 7.40 (dd, J = 7.5, 1.5 Hz, 1H), 7.35 (td, J = 7.8, 1.4 Hz, 1H), 5.23 – 5.14 (m, 2H), 4.94 (dt, J = 9.1, 2.2 Hz, 1H), 4.41 (dd, J = 10.9, 2.2 Hz, 1H), 4.34 (dd, J = 7.1, 3.9 Hz, 1H), 4.12 (d, J = 9.7 Hz, 1H), 3.99 (d, J = 9.7 Hz, 1H), 3.94 - 3.86 (m, 1H), 3.77 - 3.66 (m, 2H), 3.52 - 3.43 (m, 1H), 3.20 - 3.12 (m, 1H), 3.14 (s, 3H), 3.06 (dd, J = 14.6, 4.7 Hz, 1H), 2.93 (s, 3H), 2.72 - 2.63 (m, 1H), 2.49 – 2.39 (m, 1H), 2.35 - 2.27 (m, 1H), 2.24 - 2.16 (m, 1H), 2.01 - 1.94 (m, 2H). *The CH₂O<u>H</u> proton was not detectable in this spectrum*. ¹³C NMR (126 MHz, CDCl₃) δ 172.9, 171.5, 169.8, 169.3, 167.8, 136.7, 132.5, 132.4, 131.7, 130.1, 127.7, 66.8, 60.6, 57.5, 53.0, 49.3, 47.7, 37.2, 37.1, 37.1, 36.1, 35.7, 28.1, 25.2.

(4*S*,7*R*)-7-((*S*)-1-(4-Hydroxybutanoyl)pyrrolidine-2-carboxamido)-N,N-dimethyl-6,10-dioxo-1,3,4,5,6,7,8,10-octahydrobenzo[j][1]oxa[8]thia[5]azacyclododecine-4-carboxamide (**S2**).

Compound **S2** was synthesized following the procedure described for the synthesis of compound **S1** using compound **108** (30 mg, 55 µmol, 1.0 eq), 4-hydroxybutanoic acid (20 µL, 0.22 mmol, 4.0 eq), EDC·HCl (21 mg, 0.11 mmol, 2.0 eq), and DIPEA (50 µL, 0.28 mmol, 5.0 eq). The crude product was purified using reverse phase HPLC with a gradient 15 - 65% MeCN/water to give **S2** (9 mg, 17 µmol, 31% over 2 steps) as a colorless powder. HRMS (ESI) m/z calcd for C₂₅H₃₅N₄O₇S [M+H]⁺ 535.2226, found 535.2216. ¹H NMR (500 MHz, CDCl₃) δ 7.95 (d, J = 7.8 Hz, 1H), 7.90 (d, J = 8.8 Hz, 1H), 7.78 (d, J = 9.1 Hz, 1H), 7.49 (t, J = 7.5 Hz, 1H), 7.41 (d, J = 7.5 Hz, 1H), 7.37 (t, J = 7.8 Hz, 1H), 5.29 - 5.12 (m, 2H), 4.93 (dt, J = 9.1, 2.3 Hz, 1H), 4.48 - 4.42 (m, 2H), 4.27 (d, J = 9.8 Hz, 1H), 4.00 (d, J = 9.8 Hz, 1H), 3.77 - 3.69 (m, 1H), 3.68 - 3.62 (m, 1H), 3.55 - 3.47 (m, 2H), 3.14 (s, 3H), 3.13 - 3.04 (m, 2H), 2.95 (s, 3H), 2.66 - 2.56 (m, 1H), 2.41 - 2.33 (m, 2H), 2.25 - 2.15 (m, 1H), 2.02 - 1.91 (m, 3H), 1.79 - 1.73 (m, 1H). *The CH₂O<u>H</u> proton was not detectable in this spectrum*. ¹³C NMR (126 MHz, CDCl₃) δ 174.3, 171.7, 169.8, 169.2, 167.7, 137.0, 132.5, 132.2, 131.8, 130.0, 127.7, 66.8, 61.8, 60.5, 53.2, 49.7, 47.7, 37.8, 37.3, 36.1, 35.8, 30.9, 27.7, 27.1, 25.2.

Methyl-4-((S)-2-(((4S,7R)-4-(dimethylcarbamoyl)-6,10-dioxo-1,3,4,5,6,7,8,10octahydrobenzo[j][1]oxa[8]thia[5]azacyclododecin-7-yl)carbamoyl)pyrrolidin-1-yl)-4oxobutanoate (**S3**).

Compound **S3** was synthesized following the procedure described for the synthesis of compound **S1** using compound **108** (30 mg, 55 μ mol, 1.0 eq), monomethyl succinate (14 mg, 0.11 mmol, 2.0 eq), HATU (42 mg, 0.11 mmol, 2.0 eq), and DIPEA (38 μ L, 0.22 mmol, 4.0 eq).

The crude product was purified using reverse phase HPLC with a gradient 15 - 75% MeCN/water to give **S3** (8 mg, 14 µmol, 26% over 2 steps) as a colorless powder. HRMS (ESI) m/z calcd for C₂₆H₃₅N₄O₈S [M+H]⁺ 563.2176, found 563.2184. ¹H NMR (500 MHz, CDCl₃) δ 7.94 (dd, J = 7.8, 1.5 Hz, 1H), 7.88 (d, J = 8.8 Hz, 1H), 7.61 (d, J = 9.0 Hz, 1H), 7.46 (td, J = 7.5, 1.5 Hz, 1H), 7.37 (dd, J = 7.5, 1.5 Hz, 1H), 7.34 (td, J = 7.8, 1.5 Hz, 1H), 5.17 - 5.11 (m, 2H), 4.81 (td, J = 8.8, 2.4 Hz, 1H), 4.46 (dd, J = 7.9, 3.2 Hz, 1H), 4.43 (dd, J = 11.2, 2.4 Hz, 1H), 4.36 (d, J = 10.0 Hz, 1H), 3.93 (d, J = 10.0 Hz, 1H), 3.74 - 3.68 (m, 1H), 3.66 (s, 3H), 3.55 - 3.49 (m, 1H), 3.08 (s, 3H), 3.06 - 3.03 (m, 2H), 2.90 (s, 3H), 2.80 - 2.68 (m, 3H), 2.51 - 2.43 (m, 1H), 2.38 - 2.32 (m, 1H), 2.26 - 2.18 (m, 1H), 2.03 - 1.89 (m, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 174.0, 173.0, 171.6, 169.6, 168.9, 167.8, 137.4, 132.7, 132.3, 132.1, 129.9, 127.8, 66.7, 60.4, 53.4, 51.9, 49.7, 47.6, 38.1, 37.2, 36.0, 35.9, 29.6, 28.6, 27.7, 25.4.

(4*S*,7*R*)-7-((*S*)-1-(4-*Amino*-4-oxobutanoyl)pyrrolidine-2-carboxamido)-*N*,*N*-dimethyl-6,10dioxo-1,3,4,5,6,7,8,10-octahydrobenzo[j][1]oxa[8]thia[5]azacyclododecine-4-carboxamide (**S4**).

Compound S4 was synthesized following the procedure described for the synthesis of compound S1 using compound 108 (40 mg, 73 µmol, 1.0 eq), 4-amino-4-oxobutanoic (17 mg, 0.15 mmol, 2.0 eq), EDC HCl (29 mg, 0.15 mmol, 2.0 eq), and DIPEA (50 µL, 0.29 mmol, 4.0 eq). The crude product was purified using reverse phase HPLC with a gradient 25 - 75%MeCN/water to give S4 (11 mg, 20 µmol, 28% over 2 steps) as a colorless powder. HRMS (ESI) m/z calcd for C₂₅H₃₄N₅O₇S [M+H]⁺ 548.2179, found 548.2170. ¹H NMR (500 MHz, CDCl₃) δ 8.15 (d, J = 9.6 Hz, 1H), 7.88 (dd, J = 7.8, 1.4 Hz, 1H), 7.53 (br s, 1H), 7.48 (td, J = 7.6, 1.5 Hz, 1H), 7.40 (dd, J = 7.6, 1.5 Hz, 1H), 7.35 (td, J = 7.8, 1.4 Hz, 1H), 7.25 – 7.20 (m, 1H), 5.57 (s br, 1H), 5.22 (dd, J = 10.8, 2.2 Hz, 1H), 5.14 (ddd, J = 10.5, 9.6, 4.8 Hz, 1H), 4.99 - 4.92 (m, 1H), 4.37 (dd, J = 10.8, 1.8 Hz, 1H), 4.21 - 4.15 (m, 1H), 3.99 (d, J = 9.5 Hz, 1H), 3.94 (d, J = 9.5 Hz, 1H), 3.62 – 3.51 (m, 2H), 3.21 (dd, J = 14.7, 10.5 Hz, 1H), 3.13 (s, 3H), 3.09 (dd, J = 14.7, 4.8 Hz, 1H), 2.95 (s, 3H), 2.87 - 2.79 (m, 1H), 2.58 - 2.51 (m, 1H), 2.48 - 2.51 (m, 2000)2.41 (m, 1H), 2.34 – 2.28 (m, 1H), 2.24 – 2.13 (m, 2H), 2.10 – 2.04 (m, 1H), 1.97 – 1.89 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 176.0, 172.3, 171.7, 169.8, 169.7, 167.7, 136.6, 132.6, 132.5, 131.6, 130.2, 127.7, 66.6, 61.1, 52.9, 50.0, 47.4, 37.4, 37.2, 36.2, 35.9, 29.9, 29.4, 28.7, 25.3.

(4*S*,7*R*)-7-((*S*)-1-(4-(*Dimethylamino*)-4-oxobutanoyl)pyrrolidine-2-carboxamido)-N,Ndimethyl-6,10-dioxo-1,3,4,5,6,7,8,10-octahydrobenzo[j][1]oxa[8]thia[5]azacyclododecine-4carboxamide (**S5**).

Compound **S5** was synthesized following the procedure described for the synthesis of compound **S1** using compound **108** (30 mg, 55 µmol, 1.0 eq), 4-(dimethylamino)-4-oxobutanoic acid (17 mg, 0.11 mmol, 2.0 eq), HATU (42 mg, 0.11 mmol, 2.0 eq), and DIPEA (38 µL, 0.22 mmol, 4.0 eq). The crude product was purified using reverse phase HPLC with a gradient 25 – 75% MeCN/water to give **S5** (7 mg, 12 µmol, 22% over 2 steps) as a colorless powder. HRMS (ESI) m/z calcd for C₂₇H₃₈N₅O₇S [M+H]⁺ 576.2492, found 576.2490. ¹H NMR (500 MHz, CDCl₃) δ 7.92 (dd, J = 7.9, 1.5 Hz, 1H), 7.80 (d, J = 9.2 Hz, 1H), 7.72 (d, J = 8.6 Hz, 1H), 7.45 (td, J = 7.7, 1.5 Hz, 1H), 7.37 (dd, J = 7.7, 1.5 Hz, 1H), 7.34 (td, J = 7.9, 1.5 Hz, 1H), 5.18 – 5.13 (m, 1H), 5.14 – 5.09 (m, 1H), 4.83 (dt, J = 8.6, 2.3 Hz, 1H), 4.44 (dd, J = 11.0, 2.3 Hz, 1H), 4.40 (dd, J = 7.7, 4.1 Hz, 1H), 4.29 (d, J = 9.9 Hz, 1H), 3.89 (d, J = 9.9 Hz, 1H), 3.74 – 3.68 (m, 1H), 3.64 – 3.59 (m, 1H), 3.09 – 3.04 (m, 2H), 3.07 (s, 3H), 3.03 (s, 3H), 2.92 (s, 3H), 2.90 (s, 3H), 2.87 – 2.74 (m, 2H), 2.58 – 2.45 (m, 2H), 2.32 – 2.26 (m, 1H), 2.28 – 2.14 (m, 1H), 2.05 – 1.94 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 173.3, 172.2, 172.1, 169.4, 169.0, 167.7, 137.1, 132.5, 132.1, 131.9, 130.0, 127.7, 66.6, 60.5, 53.3, 49.6, 47.5, 38.0, 37.1, 35.9, 35.7, 35.5, 29.5, 27.9, 27.8, 25.2, 22.8.

(4S,7R)-N,N-dimethyl-6,10-dioxo-7-((S)-1-(2-oxo-1,2-dihydropyridine-3-carbonyl)pyrrolidine-2-carboxamido)-1,3,4,5,6,7,8,10-

octahydrobenzo[j][1]oxa[8]thia[5]azacyclododecine-4-carboxamide (86).

Compound **S6** was synthesized following the procedure described for the synthesis of compound **S1** using compound **108** (25 mg, 46 μ mol, 1.0 eq), 2-oxo-1,2-dihydropyridine-3-carboxylic acid (13 mg, 92 μ mol, 2.0 eq), HATU (35 mg, 92 μ mol, 2.0 eq), and DIPEA (31 μ L, 0.18 mmol, 4.0 eq). The crude product was purified using reverse phase HPLC with a gradient 25 – 75% MeCN/water to give **S6** (6 mg, 11 μ mol, 23% over 2 steps) as a colorless powder. HRMS (ESI) m/z calcd for C₂₇H₃₂N₅O₇S [M+H]⁺ 570.2017, found 570.2002. ¹H NMR (600 MHz, DMSO-*d*₆) δ 11.97 (s, 1H), 8.96 (d, J = 6.8 Hz, 1H), 8.06 (d, J = 9.7 Hz, 1H), 7.92 (dd, J = 7.6, 1.4 Hz, 1H), 7.70 (dd, J = 6.6, 2.2 Hz, 1H), 7.56 (td, J = 7.5, 1.5 Hz, 1H), 7.54 – 7.50 (m, 1H), 7.48 (dd, J = 7.5, 1.5 Hz, 1H), 7.42 (td, J = 7.6, 1.4 Hz, 1H), 6.27 (t, J = 6.6 Hz, 1H), 4.97 (ddd, J = 10.8, 9.7, 4.1 Hz, 1H), 4.88 (dd, J = 11.0, 2.7 Hz, 1H), 4.73 (d, J = 9.5 Hz, 1H), 4.51 – 4.46 (m, 2H), 4.37 (dd, J = 11.0, 2.4 Hz, 1H), 3.79 (d, J = 9.5 Hz, 1H), 3.60 – 3.55 (m, 1H),

3.34 – 3.29 (m, 1H), 2.97 (s, 3H), 2.95 (dd, J = 14.8, 4.1 Hz, 1H), 2.89 (dd, J = 14.8, 10.7 Hz, 1H), 2.79 (s, 3H), 2.11 – 2.04 (m, 1H), 2.04 – 1.98 (m, 1H), 1.95 – 1.90 (m, 1H), 1.83 – 1.77 (m, 1H). ¹³C NMR (151 MHz, DMSO- d_6) δ 173.1, 169.5, 169.0, 167.2, 166.6, 159.3, 142.0, 138.3, 138.0, 133.2, 133.1, 132.1, 129.9, 128.6, 128.0, 105.2, 66.6, 60.0, 53.6, 51.2, 47.8, 38.3, 36.9, 35.9, 35.4, 29.3, 25.2.

(4S,7R)-N,N-dimethyl-7-((S)-1-(1-methyl-2-oxo-1,2-dihydropyridine-3-carbonyl)pyrrolidine-2-carboxamido)-6,10-dioxo-1,3,4,5,6,7,8,10,

octahydrobenzo[j][1]oxa[8]thia[5]azacyclododecine-4-carboxamide (S7).

Compound S7 was synthesized following the procedure described for the synthesis of compound S1 using compound 108 (30 mg, 55 µmol, 1.0 eq), 1-methyl-2-oxo-1,2dihydropyridine-3-carboxylic acid (17 mg, 0.11 mmol, 2.0 eq), HATU (42 mg, 0.11 mmol, 2.0 eq), and DIPEA (38 µL, 0.22 mmol, 4.0 eq). The crude product was purified using reverse phase HPLC with a gradient 25 - 75% MeCN/water to give S7 (8 mg, 14 µmol, 25% over 2 steps) as a colorless powder. HRMS (ESI) m/z calcd for C₂₈H₃₄N₅O₇S [M+H]⁺ 584.2179, found 584.2171. ¹H NMR (500 MHz, CDCl₃) δ 8.56 (d, J = 7.3 Hz, 1H), 7.92 (d, J = 7.8 Hz, 1H), 7.64 -7.56 (m, 2H), 7.41 (t, J = 7.8 Hz, 1H), 7.37 (d, J = 7.8 Hz, 1H), 7.30 (dd, J = 6.8, 2.0 Hz, 1H), 7.26 - 7.20 (m, 1H), 6.25 (t, J = 6.8 Hz, 1H), 5.21 (td, J = 9.2, 4.2 Hz, 1H), 5.03 (dd, J = 11.3, 2.9 Hz, 1H), 4.86 (ddd, J = 7.3, 2.9, 2.1 Hz, 1H), 4.81 (dd, J = 8.5, 3.6 Hz, 1H), 4.59 (d, J = 10.6 Hz, 1H), 4.52 (dd, J = 11.3, 2.1 Hz, 1H), 3.86 (d, J = 10.6 Hz, 1H), 3.64 – 3.57 (m, 1H), 3.43 – 3.38 (m, 1H), 3.17 (s, 3H), 3.08 (s, 3H), 3.04 (dd, J = 14.6, 4.2 Hz, 1H), 2.92 (s, 3H), 2.87 (dd, J = 14.6, 9.2 Hz, 1H), 2.40 – 2.33 (m, 1H), 2.30 – 2.18 (m, 1H), 2.14 – 1.92 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 172.5, 169.9, 169.0, 167.4, 166.9, 159.8, 140.0, 139.1, 137.7, 132.1, 132.0, 131.9, 130.3, 128.1, 127.3, 106.2, 66.6, 60.2, 53.9, 49.8, 47.8, 37.9, 37.9, 37.3, 35.9, 35.3, 29.1, 24.7.

(4S,7R)-N,N-Dimethyl-7-((S)-1-(2-(methylsulfonamido)benzoyl)pyrrolidine-2-carboxamido)-6,10-dioxo-1,3,4,5,6,7,8,10-octahydrobenzo[j][1]oxa[8]thia[5]azacyclododecine-4carboxamide (**S8**).

Compound **S8** was synthesized following the procedure described for the synthesis of compound **S1** using **108** (20 mg, 36 μ mol, 1.0 eq), 2-(methylsulfonamido)benzoic acid (15 mg, 72 μ mol, 2.0 eq), HATU (27 mg, 72 μ mol, 2.0 eq), and DIPEA (24 μ L, 0.14 mmol, 4.0 eq). The crude product was purified using reverse phase HPLC with a gradient 15 – 75%

MeCN/water to give **S8** (7 mg, 11 µmol, 31%) as a colorless powder. HRMS (ESI) m/z calcd for C₂₉H₃₅N₅NaO₈S [M+Na]⁺ 668.1825, found 668.1819. ¹H NMR (500 MHz, CDCl₃) δ 9.15 (s, 1H), 8.22 (d, J = 9.2 Hz, 1H), 7.90 (d, J = 7.5 Hz, 1H), 7.63 (d, J = 8.2 Hz, 1H), 7.57 – 7.41 (m, 4H), 7.38 (t, J = 7.5 Hz, 1H), 7.28 (d, J = 8.7 Hz, 1H), 7.14 (t, J = 7.5 Hz, 1H), 5.23 (dd, J = 11.0, 2.6 Hz, 1H), 5.14 (td, J = 9.2, 5.1 Hz, 1H), 4.96 (ddd, J = 8.7, 2.6, 2.1 Hz, 1H), 4.50 (dd, J = 11.0, 2.1 Hz, 1H), 4.44 – 4.39 (m, 1H), 4.15 (d, J = 9.8 Hz, 1H), 3.94 (d, J = 9.8 Hz, 1H), 3.81 – 3.72 (m, 1H), 3.70 – 3.60 (m, 1H), 3.26 (s, 3H), 3.17 – 3.04 (m, 2H), 3.02 (s, 3H), 2.61 (s, 3H), 2.37 – 2.27 (m, 1H), 2.25 – 2.13 (m, 2H), 1.92 – 1.84 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 171.9, 169.1, 169.1, 168.9, 168.1, 137.3, 136.9, 133.9, 132.9, 132.6, 132.1, 131.6, 129.8, 128.4, 127.8, 123.1, 121.0, 66.6, 62.1, 53.3, 51.2, 49.7, 40.0, 37.6, 37.1, 35.8, 35.7, 29.2, 26.0.

2-((S)-2-(((4S,7R)-4-(Dimethylcarbamoyl)-6,10-dioxo-1,3,4,5,6,7,8,10octahydrobenzo[j][1]oxa[8]thia[5]azacyclododecin-7-yl)carbamoyl)pyrrolidine-1carbonyl)phenyl methanesulfonate (**S9**).

Compound **S9** was synthesized following the procedure described for the synthesis of compound **S1** using **108** (20 mg, 36 µmol, 1.0 eq), 2-(methanesulfonyloxy)benzoic acid (15 mg, 72 µmol, 2.0 eq), HATU (27 mg, 72 µmol, 2.0 eq), and DIPEA (25 µL, 0.14 mmol, 4.0 eq). The crude product was purified using reverse phase HPLC with a gradient 15 - 80% MeCN/water to give **S9** (5 mg, 8 µmol, 20% over 2 steps) as a colorless powder. HRMS (ESI) m/z calcd for C₂₉H₃₄N₄NaO₉S₂ [M+H]⁺ 669.1665, found 669.1670. ¹H NMR (500 MHz, CDCl₃) δ 7.89 (dd, J = 7.8, 1.5 Hz, 1H), 7.77 – 7.71 (m, 2H), 7.64 – 7.57 (m, 1H), 7.51 – 7.43 (m, 3H), 7.38 – 7.29 (m, 3H), 5.18 (dd, J = 11.1, 2.7 Hz, 1H), 5.13 (td, J = 8.2, 4.8 Hz, 1H), 4.92 (dt, J = 8.2, 2.7 Hz, 1H), 4.61 – 4.52 (m, 2H), 4.16 (d, J = 10.1 Hz, 1H), 3.93 (d, J = 10.1 Hz, 1H), 3.63 – 3.58 (m, 1H), 3.38 – 3.31 (m, 1H), 3.16 (s, 3H), 3.06 (s, 3H), 3.06 – 2.99 (m, 2H), 2.81 (s, 3H), 2.41 – 2.34 (m, 1H), 2.25 – 2.17 (m, 1H), 2.15 – 2.07 (m, 1H), 1.93 – 1.86 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 171.6, 169.0, 168.8, 168.2, 167.6, 145.0, 137.2, 132.5, 132.0, 131.7, 131.2, 130.0, 130.0, 129.1, 127.6, 127.4, 123.2, 66.6, 61.1, 53.7, 49.6, 49.5, 38.1, 37.4, 37.0, 35.8, 35.5, 28.4, 25.2.

(4S,7R)-7-((S)-1-(4-bromoisothiazole-3-carbonyl)pyrrolidine-2-carboxamido)-N,N-dimethyl-6,10-dioxo-1,3,4,5,6,7,8,10-octahydrobenzo[j][1]oxa[8]thia[5]azacyclododecine-4carboxamide (**S10**). Compound **S9** was synthesized following the procedure described for the synthesis of compound **S1** using **108** (25 mg, 46 µmol, 1.0 eq), 4-bromo-1,2-thiazole-3-carboxylic acid (19 mg, 92 µmol, 2.0 eq), HATU (35 mg, 92 µmol, 2.0 eq) and DIPEA (31 µL, 0.18 mmol, 4.0 eq). The crude product was purified by reverse phase HPLC using a gradient from 20% to 75% MeCN in water to give to give **S10** (9 mg, 14 µmol, 31%) as a colorless powder. HRMS (ESI) m/z calcd for C₂₅H₂₉BrN₅O₆S [M+H]⁺ 638.0737, found 638.0730. ¹H NMR (500 MHz, CDCl₃) δ 8.59 (s, 1H), 7.87 (dd, J = 7.8, 1.4 Hz, 1H), 7.67 (d, J = 8.2 Hz, 1H), 7.60 (d, J = 9.1 Hz, 1H), 7.45 (td, J = 7.5, 1.5 Hz, 1H), 7.36 (dd, J = 7.5, 1.5 Hz, 1H), 7.31 (td, J = 7.8, 1.4 Hz, 1H), 4.67 (dd, J = 11.2, 2.6 Hz, 1H), 5.09 (td, J = 9.1, 5.0 Hz, 1H), 4.91 (ddt, J = 8.2, 2.6, 2.2 Hz, 1H), 4.67 (dd, J = 7.3, 4.8 Hz, 1H), 4.47 (dd, J = 11.2, 2.2 Hz, 1H), 4.26 (d, J = 10.0 Hz, 1H), 3.91 (d, J = 10.0 Hz, 1H), 3.89 – 3.81 (m, 1H), 3.62 – 3.54 (m, 1H), 3.13 – 3.05 (m, 2H), 3.02 (s, 3H), 2.77 (s, 3H), 2.49 – 2.40 (m, 1H), 2.20 – 2.10 (m, 2H), 1.98 – 1.89 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 171.3, 169.0, 168.7, 167.9, 162.8, 160.4, 147.8, 137.1, 132.5, 132.1, 131.8, 130.0, 127.6, 108.5, 66.5, 61.2, 53.7, 49.9, 49.5, 38.1, 37.0, 35.8, 35.7, 28.0, 25.3.

(4*S*,7*R*)-7-((*S*)-1-(*N*-acetyl-*N*-phenylglycyl)pyrrolidine-2-carboxamido)-*N*,*N*-dimethyl-6,10dioxo-1,3,4,5,6,7,8,10-octahydrobenzo[j][1]oxa[8]thia[5]azacyclododecine-4-carboxamide (**S11**).

Compound **S11** was prepared following the procedure described for the synthesis of compound **S1** using compound **108** (25 mg, 46 µmol, 1.0 eq), 2-(N-phenylacetamido)acetic acid (18 mg, 92 µmol, 2.0 eq), HATU (35 mg, 92 µmol, 2.0 eq) and DIPEA (31 µL, 0.18 mmol, 4.0 eq). The crude product was purified by reverse phase HPLC using a gradient from 15% to 75% MeCN in water to give **S11** (10 mg, 16 µmol, 35%) as a colorless powder. HRMS (ESI) m/z calcd for C₃₁H₃₈N₅O₇S [M+H]⁺ 624.2486, found 624.2470. ¹H NMR (600 MHz, CDCl₃) δ 7.98 (d, J = 8.4 Hz, 1H), 7.86 (dd, J = 7.8, 1.5 Hz, 1H), 7.45 (td, J = 7.5, 1.5 Hz, 1H), 7.42 – 7.27 (m, 8H), 5.08 (td, J = 8.4, 4.7 Hz, 1H), 5.02 (dd, J = 11.2, 3.2 Hz, 1H), 4.85 (dt, J = 8.2, 2.5 Hz, 1H), 4.61 – 4.54 (m, 1H), 4.58 (d, J = 15.5 Hz, 1H) 4.44 (dd, J = 11.2, 2.0 Hz, 1H), 4.39 (d, J = 15.5 Hz, 1H), 4.32 (d, J = 10.3 Hz, 1H), 3.85 – 3.78 (m, 1H), 3.77 (d, J = 10.3 Hz, 1H), 3.71 – 3.63 (m, 1H), 3.03 (s, 3H), 2.93 (dd, J = 14.8, 4.7 Hz, 1H), 2.08 – 1.93 (m, 2H), 1.88 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 171.6, 171.2, 169.6, 169.5, 168.8, 168.1, 143.9, 137.5, 132.6, 132.2, 132.1, 130.2, 129.6, 129.6, 128.1, 128.1, 128.0, 127.7, 66.9, 60.7, 53.7, 52.0, 49.8, 47.3, 37.8, 37.1, 35.9, 35.2, 27.9, 25.3, 22.2.

(4S,7R)-7-((S)-1-(1H-benzo[d]imidazole-4-carbonyl)pyrrolidine-2-carboxamido)-N,Ndimethyl-6,10-dioxo-1,3,4,5,6,7,8,10-octahydrobenzo[j][1]oxa[8]thia[5]azacyclododecine-4carboxamide (**S12**).

Compound S12 was prepared following the procedure described for the synthesis of compound S1 using compound 108 (25 mg, 46 µmol, 1.0 eq), 1H-benzo[d]imidazole-4-carboxylic acid (15 mg, 92 µmol, 2.0 eq), HATU (35 mg, 92 µmol, 2.0 eq) and DIPEA (31 µL, 0.18 mmol, 4.0 eq). The crude product was purified by reverse phase HPLC using a gradient from 15% to 75% MeCN in water to give S12 (15 mg, 25 µmol, 55%) as a colorless powder. HRMS (ESI) m/z calcd for C₂₉H₃₃N₆O₆S [M+H]⁺ 593.2177, found 593.2164. ¹H NMR (600 MHz, CDCl₃) δ 12.00 (s, 1H), 8.23 (d, J = 9.3 Hz, 1H), 8.16 (s, 1H), 7.92 (d, J = 8.0 Hz, 1H), 7.83 (dd, J = 7.9, 1.5 Hz, 1H), 7.57 (d, J = 8.0 Hz, 1H), 7.46 (td, J = 7.5, 1.4 Hz, 1H), 7.40 (dd, J = 7.5, 1.4 Hz, 1H), 7.34 (dd, J = 7.9, 1.5 Hz, 1H), 7.23 (t, J = 8.0 Hz, 1H), 7.15 (d, J = 9.0 Hz, 1H), 5.30 -5.26 (m, 1H), 5.25 (dd, J = 10.8, 2.4 Hz, 1H), 5.01 (ddd, J = 9.0, 2.4, 2.1 Hz, 1H), 4.45 (dd, J = 10.8, 2.1 Hz, 1H), 4.36 (dd, J = 8.0, 4.3 Hz, 1H), 4.05 (d, J = 9.4 Hz, 1H), 3.99 - 3.90 (m, 2H), 3.75 (d, J = 9.4 Hz, 1H), 3.25 (s, 3H), 3.18 (dd, J = 14.6, 11.1 Hz, 1H), 3.12 (dd, J = 14.6, 4.8 Hz, 1H), 2.98 (s, 3H), 2.37 – 2.30 (m, 1H), 2.25 – 2.15 (m, 2H), 2.00 – 1.94 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 172.3, 170.4, 170.2, 168.0, 168.0, 144.5, 143.2, 136.0, 133.0, 132.5, 132.4, 131.3, 130.6, 127.8, 123.4, 122.6, 120.4, 117.7, 66.9, 62.3, 52.9, 51.3, 48.9, 37.4, 36.2, 35.5, 35.1, 29.3, 25.9.

(4S,7R)-7-((S)-1-(2-(benzo[b]thiophen-2-yl)acetyl)pyrrolidine-2-carboxamido)-N,N-dimethyl-6,10-dioxo-1,3,4,5,6,7,8,10-octahydrobenzo[j][1]oxa[8]thia[5]azacyclododecine-4carboxamide (**S13**).

Compound **S13** was prepared following the procedure described for the synthesis of compound **S1** using compound **108** (25 mg, 46 µmol, 1.0 eq), 2-(1-benzothiophen-2-yl)acetic acid (19 mg, 92 µmol, 2.0 eq), HATU (35 mg, 92 µmol, 2.0 eq) and DIPEA (31 µL, 0.18 mmol, 4.0 eq). The crude product was purified by reverse phase HPLC using a gradient from 15% to 75% MeCN in water to give **S13** (16 mg, 26 µmol, 56%) as a colorless powder. HRMS (ESI) m/z calcd for $C_{31}H_{35}N_4O_6S_2$ [M+H]⁺ 623.1993, found 623.1997. ¹H NMR (600 MHz, CDCl₃) δ 8.12 (d, J = 8.9 Hz, 1H), 7.92 (dd, J = 7.8, 1.5 Hz, 1H), 7.76 (dd, J = 7.8, 1.2 Hz, 1H), 7.69 (dd, J = 7.5, 1.6 Hz, 1H), 7.44 (d, J = 9.1 Hz, 1H), 7.38 – 7.25 (m, 4H), 7.15 (d, J = 1.1 Hz, 1H), 7.03 (dd, J = 7.7, 1.3 Hz, 1H), 5.13 (dd, J = 11.1, 2.5 Hz, 1H), 5.13 – 5.10 (m, 1H), 4.83 (ddd, J = 8.9, 2.5, 1.5 Hz, 2.5)

2.1 Hz, 1H), 4.58 (dd, J = 8.0, 2.7 Hz, 1H), 4.42 (d, J = 10.0 Hz, 1H), 4.39 (dd, J = 11.1, 2.2 Hz, 1H), 4.23 (dd, J = 16.4, 1.1 Hz, 1H), 4.01 (dd, J = 16.4, 1.1 Hz, 1H), 3.92 – 3.86 (m, 1H), 3.59 – 3.53 (m, 1H), 3.50 (d, J = 10.0 Hz, 1H), 3.05 (s, 3H), 2.97 (dd, J = 14.7, 4.5 Hz, 1H), 2.93 (s, 3H), 2.82 (dd, J = 14.7, 9.5 Hz, 1H), 2.45 – 2.40 (m, 1H), 2.30 – 2.20 (m, 1H), 2.05 – 1.95 (m, 1H), 1.94 – 1.89 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 170.9, 170.9, 169.6, 168.5, 167.7, 140.1, 139.5, 137.3, 137.0, 132.6, 132.3, 132.2, 129.5, 127.5, 124.2, 124.0, 123.4, 123.1, 122.1, 66.7, 60.4, 53.3, 49.8, 47.9, 38.6, 37.1, 36.7, 35.8, 35.7, 27.2, 25.3.

(4S,7R)-N,N-dimethyl-6,10-dioxo-7-((S)-1-(3-(quinolin-2-yl)propanoyl)pyrrolidine-2carboxamido)-1,3,4,5,6,7,8,10-octahydrobenzo[j][1]oxa[8]thia[5]azacyclododecine-4carboxamide (**S14**).

Compound **S14** was prepared following the procedure described for the synthesis of compound **S1** using compound **108** (25 mg, 46 µmol, 1.0 eq), 3-(-(quinolin-2-yl)propanoic acid (enamine code EN300-12576, 19 mg, 92 µmol, 2.0 eq), HATU (35 mg, 92 µmol, 2.0 eq) and DIPEA (31 µL, 0.18 mmol, 4.0 eq). The crude product was purified by reverse phase HPLC using a gradient from 15% to 75% MeCN in water to give **S14** (12 mg, 19 µmol, 41%) as a colorless powder. HRMS (ESI) m/z calcd for C₃₃H₃₈N₅O₆S [M+H]⁺ 632.2537, found 632.2521. ¹H NMR (600 MHz, CDCl₃) δ 8.03 (d, J = 8.4 Hz, 1H), 7.98 – 7.92 (m, 3H), 7.77 (dd, J = 8.0, 1.5 Hz, 1H), 7.74 (d, J = 9.1 Hz, 1H), 7.66 (ddd, J = 8.5, 6.8, 1.5 Hz, 1H), 7.48 (ddd, J = 8.5, 6.8, 1.2 Hz, 1H), 7.42 (td, J = 7.5, 1.5 Hz, 1H), 7.38 – 7.29 (m, 3H), 5.18 – 5.12 (m, 2H), 4.85 (dt, J = 8.7, 2.4 Hz, 1H), 4.44 – 4.40 (m, 2H), 4.35 (d, J = 9.9 Hz, 1H), 3.94 (d, J = 9.9 Hz, 1H), 3.78 – 3.69 (m, 1H), 3.62 – 3.56 (m, 1H), 3.33 – 3.24 (m, 1H), 3.23 – 3.15 (m, 1H), 3.15 – 3.08 (m, 2H), 3.07 (s, 3H), 3.05 – 3.00 (m, 1H), 2.95 – 2.91 (m, 1H), 2.90 (s, 3H), 2.38 – 2.31 (m, 1H), 2.24 – 2.14 (m, 1H), 2.01 – 1.88 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 173.7, 171.7, 169.4, 168.9, 167.7, 161.6, 147.9, 137.3, 136.0, 132.5, 132.2, 132.0, 129.9, 129.2, 128.7, 127.6, 127.6, 126.9, 125.7, 122.1, 66.6, 60.3, 53.3, 49.7, 47.6, 38.2, 37.1, 36.0, 35.9, 33.3, 33.0, 27.5, 25.3.

(4S,7R)-N,N-dimethyl-6,10-dioxo-7-((S)-1-(2-(1-oxoisoquinolin-2(1H)-yl)acetyl)pyrrolidine-2-carboxamido)-1,3,4,5,6,7,8,10-octahydrobenzo[j][1]oxa[8]thia[5]azacyclododecine-4carboxamide (**S15**).

Compound **S15** was prepared following the procedure described for the synthesis of compound **S1** using compound **108** (25 mg, 46 µmol, 1.0 eq), 2-(1-oxo-1,2-dihydroisoquinolin-2-yl)acetic acid (enamine code EN300-188561, 19 mg, 92 µmol, 2.0 eq), HATU (35 mg, 92 µmol, 2.0 eq)

and DIPEA (31 µL, 0.18 mmol, 4.0 eq). The crude product was purified by reverse phase HPLC using a gradient from 15% to 75% MeCN in water to give **S15** (20 mg, 32 µmol, 69%) as a colorless powder. HRMS (ESI) m/z calcd for $C_{32}H_{36}N_5O_7S$ [M+H]⁺ 634.2330, found 634.2314. ¹H NMR (600 MHz, CDCl₃) δ 8.38 – 8.34 (m, 1H), 7.96 (d, J = 8.8 Hz, 1H), 7.87 (dd, J = 7.8, 1.4 Hz, 1H), 7.66 – 7.63 (m, 1H), 7.54 – 7.50 (m, 2H), 7.48 – 7.44 (m, 1H), 7.39 (d, J = 7.3 Hz, 1H), 7.36 (td, J = 7.6, 1.3 Hz, 1H), 7.24 (td, J = 7.8, 1.4 Hz, 1H), 7.10 (dd, J = 7.6, 1.3 Hz, 1H), 6.34 (d, J = 7.3 Hz, 1H), 5.22 (d, J = 15.2 Hz, 1H), 5.16 (td, J = 8.6, 4.5 Hz, 1H), 5.10 (dd, J = 11.2, 2.6 Hz, 1H), 4.79 (ddd, J = 8.8, 2.6, 2.3 Hz, 1H), 4.61 (d, J = 15.2 Hz, 1H), 4.58 (dd, J = 8.0, 2.9 Hz, 1H), 4.40 (d, J = 10.2 Hz, 1H), 4.39 (dd, J = 11.2, 2.3 Hz, 1H), 3.94 – 3.87 (m, 1H), 3.83 – 3.77 (m, 1H), 3.61 (d, J = 10.2 Hz, 1H), 3.12 (s, 3H), 3.05 (dd, J = 14.6, 4.5 Hz, 1H), 3.00 – 2.95 (m, 1H), 2.97 (s, 3H), 2.44 – 2.39 (m, 1H), 2.33 – 2.27 (m, 1H), 2.14 – 2.08 (m, 1H), 2.01 – 1.94 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 170.8, 169.8, 169.1, 168.5, 167.6, 162.5, 137.5, 137.2, 133.7, 132.4, 132.3, 132.2, 131.8, 129.6, 127.8, 127.6, 126.7, 125.9, 125.7, 105.5, 66.5, 60.4, 53.5, 50.4, 49.8, 47.2, 38.4, 37.2, 35.9, 35.4, 27.0, 25.5.

(4S,7R)-N,N-dimethyl-6,10-dioxo-7-((S)-1-(2-(pyridin-3-yl)acetyl)pyrrolidine-2carboxamido)-1,3,4,5,6,7,8,10-octahydrobenzo[j][1]oxa[8]thia[5]azacyclododecine-4carboxamide (**S16**).

Compound **S16** was prepared following the procedure described for the synthesis of compound **S1** using compound **108** (25 mg, 46 µmol, 1.0 eq), 2-(pyridin-3-yl)acetic acid (enamine code EN300-53587, 13 mg, 92 µmol, 2.0 eq), HATU (35 mg, 92 µmol, 2.0 eq) and DIPEA (31 µL, 0.18 mmol, 4.0 eq). The crude product was purified by reverse phase HPLC using a gradient from 15% to 75% MeCN in water to give **S16** (12 mg, 20 µmol, 45%) as a colorless powder. HRMS (ESI) m/z calcd for C₂₈H₃₄N₅O₆S [M+H]⁺ 568.2224, found 568.2217. ¹H NMR (600 MHz, CDCl₃) δ 8.50 (dd, J = 4.8, 2.0 Hz, 1H), 8.47 – 8.44 (m, 1H), 8.15 – 8.08 (m, 1H), 7.92 (dd, J = 7.8, 1.4 Hz, 1H), 7.62 (dt, J = 7.9, 2.0 Hz, 1H), 7.50 (d, J = 9.0 Hz, 1H), 7.44 (td, J = 7.9, 4.8, 2.0 Hz, 1H), 5.10 (dd, J = 11.2, 2.7 Hz, 1H), 4.84 (ddd, J = 9.0, 2.7, 2.2 Hz, 1H), 4.55 (dd, J = 8.0, 2.7 Hz, 1H), 4.41 (dd, J = 11.2, 2.2 Hz, 1H), 4.33 (d, J = 10.0 Hz, 1H), 3.94 (d, J = 16.2 Hz, 1H), 3.89 – 3.83 (m, 1H), 3.70 (d, J = 16.2 Hz, 1H), 3.58 – 3.53 (m, 1H), 3.52 (d, J = 10.0 Hz, 1H), 3.07 (s, 3H), 2.98 (dd, J = 14.7, 4.5 Hz, 1H), 2.94 (s, 3H), 2.65 (dd, J = 14.7, 9.3 Hz, 1H), 2.43 – 2.37 (m, 1H), 2.33 – 2.22 (m, 1H), 2.06 – 2.00 (m, 1H), 1.98 – 1.89 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 171.4, 171.0, 169.6, 168.6, 167.8,

150.8, 148.2, 137.8, 137.2, 132.6, 132.2, 132.1, 130.3, 129.7, 127.6, 123.2, 66.7, 60.4, 53.3, 49.7, 47.8, 38.3, 38.2, 37.1, 35.8, 35.6, 27.4, 25.3.

(4S,7R)-N,N-dimethyl-7-((S)-1-(2-(2-methyl-4-oxo-5-(thiophen-2-yl)thieno[2,3-d]pyrimidin-3(4H)-yl)acetyl)pyrrolidine-2-carboxamido)-6,10-dioxo-1,3,4,5,6,7,8,10octahydrobenzo[j][1]oxa[8]thia[5]azacyclododecine-4-carboxamide (**S17**).

Compound S17 was prepared following the procedure described for the synthesis of compound S1 using compound 108 (30 mg, 55 µmol, 1.0 eq), 2-[2-methyl-4-oxo-5-(thiophen-2-yl)-3H,4H-thieno[2,3-d]pyrimidin-3-yl]acetic acid (enamine code EN300-10475, 34 mg, 0.11 mmol, 2.0 eq), HATU (42 mg, 0.11 mmol, 2.0 eq) and DIPEA (38 µL, 0.22 mmol, 4.0 eq). The crude product was purified by reverse phase HPLC using a gradient from 25% to 85% MeCN in water to give S17 (19 mg, 25 µmol, 45%) as a colorless powder. HRMS (ESI) m/z calcd for $C_{34}H_{37}N_6O_7S_3$ [M+H]⁺ 737.1886, found 737.1870. ¹H NMR (500 MHz, CDCl₃) δ 8.15 (d, J = 7.9 Hz, 1H), 7.85 (dd, J = 7.6, 1.3 Hz, 1H), 7.53 (dd, J = 3.7, 1.1 Hz, 1H), 7.51 (d, J = 7.7 Hz, 1H), 7.48 (td, J = 7.8, 1.5 Hz, 1H), 7.33 (td, J = 7.6, 1.3 Hz, 1H), 7.27 (dd, J = 5.2, 1.1 Hz, 1H), 7.20 (dd, J = 7.8, 1.5 Hz, 1H), 7.17 (s, 1H), 7.05 (dd, J = 5.2, 3.7 Hz, 1H), 5.12 (d, J = 16.1 Hz, 1H), 5.06 (dd, J = 11.4, 2.8 Hz, 1H), 5.06 - 5.00 (m, 1H), 4.84 (d, J = 16.1 Hz, 1H), 4.73 (ddd, J = 7.9, 2.4, 2.1 Hz, 1H), 4.62 (dd, J = 8.0, 2.3 Hz, 1H), 4.44 (dd, J = 11.4, 2.1 Hz, 1H), 4.09 (d, J = 10.4 Hz, 1H), 3.91 (d, J = 10.4 Hz, 1H), 3.87 – 3.76 (m, 2H), 3.07 (dd, J = 14.3, 4.7 Hz, 1H), 3.03 (s, 3H), 2.92 (dd, J = 14.3, 6.5 Hz, 1H), 2.88 (s, 3H), 2.47 - 2.41 (m, 1H), 2.29 (s, 3H), 2.22 – 2.15 (m, 1H), 2.12 – 2.05 (m, 1H), 1.99 – 1.91 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) *δ* 171.1, 169.2, 168.4, 168.3, 167.7, 165.2, 158.2, 156.1, 137.3, 136.6, 132.5, 131.8, 131.6, 131.5, 129.9, 128.1, 127.8, 127.3, 125.5, 119.7, 118.0, 66.0, 60.4, 54.1, 49.3, 47.1, 45.7, 37.5, 36.9, 35.8, 35.1, 26.9, 25.2, 23.4

(4*S*,7*R*)-*N*,*N*-dimethyl-7-((*S*)-1-(2-methyl-1-oxo-1,2-dihydroisoquinoline-4carbonyl)pyrrolidine-2-carboxamido)-6,10-dioxo-1,3,4,5,6,7,8,10octahydrobenzo[j][1]oxa[8]thia[5]azacyclododecine-4-carboxamide (**S18**).

Compound **S18** was prepared following the procedure described for the synthesis of compound **S1** using compound **108** (20 mg, 36 μ mol, 1.0 eq), 2-methyl-1-oxo-1,2-dihydroisoquinoline-4-carboxylic acid (enamine code EN300-180165, 15 mg, 72 μ mol, 2.0 eq), HATU (27 mg, 72 μ mol, 2.0 eq) and DIPEA (25 μ L, 0.14 mmol, 4.0 eq). The crude product was purified by reverse phase HPLC using a gradient from 25% to 85% MeCN in water to give **S18** (13 mg, 20

μmol, 56%) as a colorless powder. HRMS (ESI) m/z calcd for C₃₂H₃₆N₅O₇S [M+H]⁺ 634.2335, found 634.2329. ¹H NMR (500 MHz, CDCl₃) δ 8.46 (d J = 7.8 Hz, 1H), 8.00 (d, J = 7.9 Hz, 1H), 7.89 (s, 1H), 7.83 (d, J = 7.6, 1H), 7.71 (d, J = 8.5 Hz, 1H), 7.65 (t, J = 8.0 Hz, 1H), 7.59 (d, J = 8.0 Hz, 1H), 7.51 (t, J = 7.8 Hz, 1H), 7.32 (t, J = 7.7, 1H), 7.26 – 7.21 (m, 1H), 7.10 (t, J = 7.6 Hz, 1H), 5.21 – 5.13 (m, 2H), 4.82 (dt, J = 7.9, 2.3 Hz, 1H), 4.80 – 4.75 (m, 1H), 4.53 (dd, J = 11.2, 2.3 Hz, 1H), 4.22 (d, J = 10.4 Hz, 1H), 3.95 (d, J = 10.4 Hz, 1H), 3.64 – 3.59 (m, 1H), 3.59 (s, 3H), 3.46 – 3.39 (m, 1H), 3.08 (s, 3H), 3.07 – 2.95 (m, 2H), 2.84 (s, 3H), 2.50 – 2.41 (m, 1H), 2.19 – 2.07 (m, 2H), 1.89 – 1.81 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 171.7, 169.5, 168.6, 168.5, 167.9, 162.2, 137.4, 135.0, 133.5, 132.6, 132.4, 131.8, 131.6, 129.5, 128.2, 127.4, 127.2, 125.5, 123.8, 113.0, 66.2, 60.4, 53.9, 49.9, 49.5, 37.1, 37.1, 37.0, 35.9, 35.5, 27.6, 25.3.

(4S,7R)-N,N-dimethyl-7-((S)-1-(2-methyl-5-(N-methylsulfamoyl)benzoyl)pyrrolidine-2carboxamido)-6,10-dioxo-1,3,4,5,6,7,8,10-

octahydrobenzo[j][1]oxa[8]thia[5]azacyclododecine-4-carboxamide (S19).

Compound **S19** was prepared following the procedure described for the synthesis of compound **S1** using compound **108** (30 mg, 55 µmol, 1.0 eq), 2-methyl-5-(methylsulfamoyl)benzoic acid (enamine code EN300-16252, 25 mg, 0.11 mmol, 2.0 eq), HATU (42 mg, 0.11 mmol, 2.0 eq) and DIPEA (38 µL, 0.22 mmol, 4.0 eq). The crude product was purified by reverse phase HPLC using a gradient from 25% to 85% MeCN in water to give **S19** (22 mg, 34 µmol, 62%) as a colorless powder. HRMS (ESI) m/z calcd for $C_{30}H_{38}N_5O_8S$ [M+H]⁺ 660.2162, found 660.2150. ¹H NMR (500 MHz, CDCl₃) δ 7.97 – 7.92 (m, 2H), 7.90 – 7.81 (m, 2H), 7.47 – 7.42 (m, 2H), 7.38 – 7.31 (m, 3H), 6.60 (d, J = 5.2 Hz, 1H), 5.25 – 5.18 (m, 2H), 4.96 (ddd, J = 8.8, 2.4, 2.1 Hz, 1H), 4.66 (dd, J = 8.1, 4.1 Hz, 1H), 4.51 (dd, J = 11.1, 2.1 Hz, 1H), 4.33 (d, J = 9.7 Hz, 1H), 3.89 (d, J = 9.7 Hz, 1H), 3.41 (m, 1H), 3.22 (s, 3H), 3.20 (m, 1H), 3.03 (s, 3H), 3.02 – 2.93 (m, 2H), 2.55 (d, J = 5.2 Hz, 3H), 2.53 – 2.47 (m, 1H), 2.35 (s, 3H), 2.28 – 2.19 (m, 1H), 2.15 – 2.05 (m, 1H), 1.95 – 1.87 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 170.9, 170.5, 170.2, 168.9, 167.8, 138.1, 137.4, 137.3, 136.8, 132.6, 132.4, 132.0, 130.5, 129.8, 128.5, 127.7, 125.5, 66.9, 60.1, 53.5, 50.0, 49.4, 37.7, 37.4, 36.7, 35.2, 29.5, 27.8, 25.4, 19.1.

(4S,7R)-7-((S)-1-(2-(2,2-dioxido-3-phenylbenzo[c][1,2,5]thiadiazol-1(3H)yl)acetyl)pyrrolidine-2-carboxamido)-N,N-dimethyl-6,10-dioxo-1,3,4,5,6,7,8,10octahydrobenzo[j][1]oxa[8]thia[5]azacyclododecine-4-carboxamide (**S20**). Compound S20 was prepared following the procedure described for the synthesis of compound S1 using compound 108 (20 mg, 36 µmol, 1.0 eq), 2-(2,2-dioxo-3-phenyl-1,3-dihydro-2,1,3benzothiadiazol-1-yl)acetic acid (enamine code EN300-206532, 20 mg, 72 µmol, 2.0 eq), HATU (27 mg, 72 µmol, 2.0 eq) and DIPEA (25 µL, 0.14 mmol, 4.0 eq). The crude product was purified by reverse phase HPLC using a gradient from 25% to 85% MeCN in water to give S20 (14 mg, 18 μ mol, 50%) as a colorless powder. HRMS (ESI) m/z calcd for C₃₅H₃₉N₆O₈S₂ $[M+H]^+$ 735.2271, found 735.2272. ¹H NMR (500 MHz, CDCl₃) δ 8.00 (d, J = 8.7 Hz, 1H), 7.94 (dd, J = 7.8, 1H), 7.56 – 7.49 (m, 6H), 7.42 (td, J = 7.6 Hz, 1H), 7.34 – 7.27 (m, 2H), 7.10 -7.05 (m, 1H), 6.94 - 6.88 (m, 2H), 6.64 - 6.60 (m, 1H), 5.20 - 5.16 (m, 1H), 5.15 (dd, J = 11.3, 2.5 Hz, 1H), 4.91 (d, J = 16.6 Hz, 1H), 4.84 (ddd, J = 8.7, 2.5, 2.0 Hz, 1H), 4.66 - 4.62 (m, 1H), 4.61 (d, J = 16.6 Hz, 1H), 4.50 (d, J = 10.2 Hz, 1H), 4.44 (dd, J = 11.3, 2.0 Hz, 1H), 3.89 – 3.82 (m, 2H), 3.81 – 3.74 (m, 1H), 3.07 (s, 3H), 3.05 – 2.97 (m, 2H), 2.95 (s, 3H), 2.46 -2.37 (m, 1H), 2.37 - 2.29 (m, 1H), 2.14 - 2.06 (m, 1H), 2.03 - 1.92 (m, 1H). ¹³C NMR (126) MHz, CDCl₃) δ 170.6, 169.6, 168.3, 168.0, 167.7, 137.4, 132.6, 132.4, 132.2, 132.2, 130.5, 130.2, 130.2, 129.9, 129.7, 129.5, 128.1, 128.1, 127.6, 122.3, 122.3, 110.4, 109.2, 66.7, 60.7, 53.6, 49.9, 47.5, 45.6, 38.6, 37.1, 35.9, 35.3, 27.2, 25.5.

(4S,7R)-7-((S)-1-(2-(1H-tetrazol-1-yl)benzoyl)pyrrolidine-2-carboxamido)-N,N-dimethyl-6,10-dioxo-1,3,4,5,6,7,8,10-octahydrobenzo[j][1]oxa[8]thia[5]azacyclododecine-4carboxamide (**S21**).

Compound **S21** was prepared following the procedure described for the synthesis of compound **S1** using compound **108** (20 mg, 36 µmol, 1.0 eq), 2-(1H-1,2,3,4-tetrazol-1-yl)benzoic acid (enamine code EN300-09325, 14 mg, 72 µmol, 2.0 eq), HATU (27 mg, 72 µmol, 2.0 eq) and DIPEA (25 µL, 0.14 mmol, 4.0 eq). The crude product was purified by reverse phase HPLC using a gradient from 25% to 85% MeCN in water to give **S21** (6 mg, 10 µmol, 27%) as a colorless powder. HRMS (ESI) m/z calcd for $C_{29}H_{33}N_8O_6S$ [M+H]⁺ 621.2244, found 621.2228. ¹H NMR (500 MHz, CDCl₃) δ 9.44 (s, 1H), 8.04 (d, J = 9.3 Hz, 1H), 7.89 – 7.85 (m, 1H), 7.73 (d, J = 8.0 Hz, 1H), 7.69 – 7.58 (m, 2H), 7.56 (d, J = 8.0 Hz, 1H), 7.46 (t, J = 7.6 Hz, 1H), 7.39 (d, J = 7.6 Hz, 1H), 7.37 – 7.30 (m, 2H), 5.15 (dd, J = 11.1, 2.5 Hz, 1H), 5.05 (ddd, J = 9.9, 9.3, 4.5 Hz, 1H), 4.84 (ddd, J = 8.3, 2.5, 2.1 Hz, 1H), 4.45 (dd, J = 11.1, 2.1 Hz, 1H), 4.26 (m, 1H), 4.20 (d, J = 9.6 Hz, 1H), 3.01 – 2.96 (m, 1H), 2.96 (s, 3H), 2.52 (s, 3H), 2.21 – 2.11 (m, 2H), 2.09 – 2.05 (m, 1H), 1.85 – 1.75 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 171.6, 169.2,
168.8, 167.9, 166.2, 145.1, 137.0, 133.0, 132.6, 131.9, 131.5, 131.4, 131.4, 130.6, 129.3, 128.5, 127.8, 126.7, 61.5, 60.6, 53.4, 50.1, 50.0, 38.4, 37.1, 35.9, 35.6, 28.9, 25.6.

3-((S)-2-(((4S,7R)-4-(dimethylcarbamoyl)-6,10-dioxo-1,3,4,5,6,7,8,10octahydrobenzo[j][1]oxa[8]thia[5]azacyclododecin-7-yl)carbamoyl)pyrrolidine-1carbonyl)benzoic acid (**S22**).

Compound 108 (32 mg, 54 µmol, 1.0 eq) was dissolved in 4 M HCl in dioxane (3 mL) and stirred for 1 hour at rt. After evaporation of the volatiles under reduced pressure, the resulting salt was dissolved in DMSO (1 mL). Isophthalic acid (18 mg, 0.11 mmol, 2.0 eq), HATU (42 mg, 0.11 mmol, 2.0 eq) and DIPEA (38 µL, 0.22 mmol, 4.0 eq) were added and the reaction was stirred for 2 additional hours at rt. EtOAc (75 mL) was then added and the mixture was washed with 1 M aqueous HCl (25 mL) and brine (25 mL). The organic phase was dried over MgSO₄, filtered and then concentrated under reduced pressure. The crude product was purified by reverse phase HPLC using a gradient from 15% to 75% MeCN (containing 0.1% TFA) in water to give S22 (8 mg, 13 µmol, 25%) as a colorless powder. HRMS (ESI) m/z calcd for $C_{29}H_{32}NaN_4O_8S$ [M+Na]⁺ 619.1839, found 619.1850. ¹H NMR (500 MHz, CDCl₃) δ 8.45 – 8.41 (m, 1H), 8.16 (d, J = 7.8 Hz, 1H), 7.97 (d, J = 9.0 Hz, 1H), 7.91 (d, J = 7.8 Hz, 1H), 7.88 (d, J = 7.8 Hz, 1H), 7.76 (d, J = 8.3 Hz, 1H), 7.52 (t, J = 7.7 Hz, 1H), 7.43 (d, J = 7.8 Hz, 1H), 7.36 - 7.28 (m, 2H), 5.23 - 5.14 (m, 2H), 4.93 (ddd, J = 8.3, 2.4, 2.1 Hz, 1H), 4.63 (dd, J = 7.7, 5.3 Hz, 1H), 4.56 (dd, J = 11.2, 2.1 Hz, 1H), 4.25 (d, J = 9.8 Hz, 1H), 3.90 (d, J = 9.8 Hz, 1H), 3.84 – 3.77 (m, 1H), 3.64 – 3.57 (m, 1H), 3.10 (s, 3H), 3.10 – 3.06 (m, 2H), 2.83 (s, 3H), 2.40 -2.32 (m, 1H), 2.29-2.16 (m, 2H), 1.97-1.84 (m, 1H). The COOH proton was not detectable in this spectrum. ¹³C NMR (126 MHz, CDCl₃) δ 172.1, 169.9, 169.5, 168.9, 168.3, 168.0, 137.0, 135.5, 132.6, 132.5, 132.3, 132.3, 131.8, 130.0, 129.8, 129.2, 128.6, 127.6, 66.6, 61.4, 53.7, 50.6, 49.9, 37.6, 37.3, 36.1, 35.5, 28.4, 25.8.

(4S,7R)-N,N-dimethyl-7-((S)-1-(2-(N-methylmethylsulfonamido)benzoyl)pyrrolidine-2carboxamido)-6,10-dioxo-1,3,4,5,6,7,8,10-

octahydrobenzo[j][1]oxa[8]thia[5]azacyclododecine-4-carboxamide (S23).

Compound **S23** was prepared following the procedure described for the synthesis of compound **S1** using **108** (20 mg, 36 μ mol, 1.0 eq), 2-(N-methylmethanesulfonamido)benzoic acid (enamine code EN300-26724, 17 mg, 72 μ mol, 2.0 eq), HATU (27 mg, 72 μ mol, 2.0 eq) and DIPEA (25 μ L, 0.14 mmol, 4.0 eq). The crude product was purified by reverse phase HPLC

using a gradient from 15% to 75% MeCN in water to give **S23** (6 mg, 9 μmol, 25%) as a colorless powder. HRMS (ESI) m/z calcd for C₃₀H₃₇N₄NaO₈S₂ [M+Na]⁺ 681.1981, found 682.1992. ¹H NMR (500 MHz, CDCl₃) δ 7.96 – 7.87 (m, 2H), 7.71 (d, J = 8.2 Hz, 1H), 7.57 (d, J = 7.5 Hz, 1H), 7.50 – 7.42 (m, 2H), 7.40 – 7.29 (m, 4H), 5.21 (dd, J = 11.1, 2.6 Hz, 1H), 5.11 (td, J = 8.7, 4.7 Hz, 1H), 4.92 (ddd, J = 8.2, 2.6, 2.2 Hz, 1H), 4.56 (t, J = 7.4 Hz, 1H), 4.52 (dd, J = 11.1, 2.2 Hz, 1H), 4.32 (d, J = 10.0 Hz, 1H), 3.83 (d, J = 10.0 Hz, 1H), 3.62 – 3.48 (m, 2H), 3.30 (s, 3H), 3.06 (dd, J = 14.7, 4.7 Hz, 1H), 3.01 (s, 3H), 2.98 (dd, J = 14.7, 8.7 Hz, 1H), 2.94 (s, 3H), 2.69 (s, 3H), 2.38 – 2.30 (m, 1H), 2.25 – 2.18 (m, 1H), 2.08 – 2.00 (m, 1H), 1.94 – 1.84 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 172.0, 169.1, 169.0, 168.9, 167.8, 138.5, 137.3, 137.2, 132.5, 132.1, 131.9, 130.7, 129.9, 128.5, 128.4, 128.2, 127.6, 66.5, 61.1, 53.5, 50.1, 50.0, 39.4, 38.2, 37.6, 37.0, 35.8, 35.7, 28.6, 25.4.

(4S,7R)-7-((S)-1-(2-acetamidobenzoyl)pyrrolidine-2-carboxamido)-N,N-dimethyl-6,10-dioxo-1,3,4,5,6,7,8,10-octahydrobenzo[j][1]oxa[8]thia[5]azacyclododecine-4-carboxamide (**S24**).

Compound 108 (25 mg, 46 µmol, 1.0 eq) was dissolved in 4 M HCl in dioxane (2 mL) and the mixture was stirred for 1 hour at rt. After evaporation of the volatiles under reduced pressure, the resulting salt was dissolved in DMSO (1 mL). Anthranilic acid (13 mg, 92 µmol, 2.0 eq), HATU (35 mg, 92 µmol, 2.0 eq) and DIPEA (31 µL, 0.18 mmol, 4.0 eq) were added and the mixture was stirred for 2 hours at rt. EtOAc (50 mL) was then added and the mixture was washed with 1 M aqueous HCl solution (25 mL) and brine (25 mL). The organic phase was dried over MgSO₄, filtered and then concentrated under reduced pressure. The resulting oil was then dissolved in DCM (2 mL). Acetyl chloride (17 µL, 0.23 mmol, 5.0 eq) and triethylamine (65 µL, 0.46 mmol, 10 eq) were added and the reaction stirred for 2 additional hours at rt. EtOAc (50 mL) was then added and the mixture washed with 1 M aqueous HCl (50 mL) and brine (50 mL). The organic phase was dried over MgSO₄, filtered and then concentrated under reduced pressure. The crude product was purified by reverse phase HPLC using a gradient from 15% to 75% MeCN in water to give S24 (7 mg, 11 µmol, 24% yield) as a colorless powder. HRMS (ESI) m/z calcd for C₃₀H₃₆N₅O₇S [M+H]⁺ 610.2335, found 610.2341. ¹H NMR (500 MHz, CDCl₃) δ 9.35 (s, 1H), 8.13 (d, J = 8.8 Hz, 1H), 8.03 (d, J = 8.2 Hz, 1H), 7.88 (dd, J = 7.8, 1.5 Hz, 1H), 7.52 – 7.28 (m, 6H), 7.15 (td, J = 7.6, 1.2 Hz, 1H), 5.19 (dd, J = 11.1, 2.6 Hz, 1H), 5.18 – 5.12 (m, 1H), 4.91 (ddd, J = 8.5, 2.6, 2.2 Hz, 1H), 4.56 (dd, J = 11.1, 2.2 Hz, 1H), 4.47 - 4.43 (m, 1H), 4.10 (d, J = 9.8 Hz, 1H), 3.97 (d, J = 9.8 Hz, 1H), 3.67 - 3.59 (m, 1H), 3.46 – 3.39 (m, 1H), 3.09 – 2.98 (m, 2H), 3.0 (s, 3H), 2.71 (s, 3H), 2.31 – 2.19 (m, 2H), 2.18

(s, 3H), 2.16 - 2.09 (m, 1H), 1.90 - 1.77 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 172.0, 169.9, 169.4, 169.4, 169.0, 168.3, 136.8, 136.1, 132.5, 132.2, 131.5, 130.9, 130.2, 127.7, 127.4, 127.0, 125.0, 124.1, 66.6, 61.3, 53.7, 50.4, 49.6, 37.0, 36.8, 35.7, 35.3, 29.1, 25.6, 24.2.

Supporting Procedure S3 – Gram scale synthesis of compound 107 and scaleup synthesis of compound 1

Methyl-2-((4S,7R)-4-(dimethylcarbamoyl)-7-(hydroxymethyl)-11,11-dimethyl-6,9-dioxo-10-oxa-2-thia-5,8-diazadodecyl)benzoate (110).

Compound 80 (3.74 g, 9.46 mmol, 1.0 eq) was dissolved in MeOH (10 mL) and 4 M HCl in dioxane (20 mL) and stirred for 1 hour at rt. After evaporation of the solvent under reduced pressure, the resulting salt was suspended in water (40 mL). K₂CO₃ (2.61 g, 18.9 mmol, 2.0 eq) was then added and the aqueous phase was extracted with DCM (3×100 mL). The combined organic phase was dried over MgSO₄, filtered and then concentrated under reduced pressure and the resulting oil was dissolved in MeCN (40 mL). Boc-D-Ser-OH (2.91 g, 14.2 mmol, 1.5 eq) and EDC·HCl (2.71 g, 14.2 mmol, 1.5 eq) were added and the reaction mixture was stirred for 2 additional hours at rt. EtOAc (250 mL) was then added and the mixture was washed with 1 M aqueous HCl solution (100 mL), saturated aqueous NaHCO3 solution (100 mL) and brine (100 mL). The organic phase was dried over MgSO₄, filtered, and then concentrated under reduced pressure. The crude product was purified by flash chromatography on a silica gel column using 1-10% MeOH in DCM as eluent to give 110 (3.20 g, 6.62 mmol, 70%) as colourless powder. HRMS (ESI) m/z calcd for C₂₂H₃₄N₃O₇S [M+H]⁺ 484.2112, found 484.2091. ¹H NMR (500 MHz, CDCl₃) δ 7.93 (d, J = 7.7 Hz, 1H), 7.48 (m, 1H), 7.40 (m, 1H), 7.35 (m, 1H), 7.15 (d, J = 8.2 Hz, 1H), 5.53 (d, J = 7.9 Hz, 1H), 5.05 (ddd, J = 8.2, 7.5, 5.4 Hz, 1H), 4.26 (m, 1H), 4.22 (d, J = 13.1 Hz, 1H), 4.14 (d, J = 13.0 Hz, 1H), 4.09 (m, 1H), 3.94 (s, 3H), 3.66 (m, 1H), 3.27 (br s, 1H), 3.05 (s, 3H), 2.97 (s, 3H), 2.86 (dd, *J* = 14.2, 5.4 Hz, 1H), 2.70 (dd, J = 14.2, 7.5 Hz, 1H), 1.47 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 171.0, 170.3, 167.8, 155.7, 139.8, 132.1, 131.2, 131.2, 129.5, 127.4, 80.4, 63.4, 55.5, 52.3, 48.8, 37.3, 36.1, 34.9, 33.9, 28.3.

2-((4S,7R)-4-(Dimethylcarbamoyl)-7-(hydroxymethyl)-11,11-dimethyl-6,9-dioxo-10-oxa-2thia-5,8-diazadodecyl)benzoic acid (**111**).

Compound **110** (4.02 g, 8.32 mmol, 1.0 eq) was dissolved in MeOH (15 mL) and 0.25 M aqueous LiOH (25 mL) and the reaction mixture was stirred at 40 °C for 16 hours. After being allowed to cool to rt, the reaction mixture was acidified with 1 M aqueous HCl solution (20 mL) and extracted with DCM (3×125 mL). The organic phase was dried over MgSO₄, filtered and

then concentrated under reduced pressure. The obtained colorless solid (2.22 g, 4.74 mmol, 57%) was used in the next step without further purification. HRMS (ESI) m/z calcd for $C_{21}H_{32}N_3O_7S$ [M+H]⁺ 470.1955, found 470.1945. ¹H NMR (500 MHz, DMSO-*d*₆, mixture of 2 rotamers in ratio 6:4) δ 13.20 (br s, 1H), 8.21 (d, J = 8.4 Hz, 0.4H), 8.12 (d, J = 8.4 Hz, 0.6H), 7.82 – 7.74 (m, 2H), 7.29 (t, J = 7.9 Hz, 1H), 6.67 (d, J = 8.3 Hz, 0.4H), 6.64 (d, J = 8.2 Hz, 0.6H), 4.89 (m, 1H), 4.33 (m, 1H), 4.25 (d, J = 12.7 Hz, 1H), 4.00 (m, 1H), 3.60 – 3.48 (m, 2H), 3.01 (s, 1.2H), 2.99 (s, 1.8H), 2.91 (dd, J = 13.1, 7.8 Hz, 1H), 2.84 (s, 1.2H), 2.83 (s, 1.8H), 2.68 (dd, J = 13.6, 6.1 Hz, 1H), 1.39 (s, 5.4H), 1.38 (s, 3.6H). The CH₂O<u>H</u>-proton was not detectable in this spectrum. ¹³C NMR (126 MHz, DMSO-*d*₆, mixture of 2 rotamers) δ 170.4 (1C), 170.0 and 169.9 (1C), 168.9 (1C), 155.64 and 155.60 (1C), 140.65 and 140.61 (1C), 132.0 (1C), 131.5 (1C), 131.3 (1C), 130.7 (1C), 127.6 (1C), 78.7 and 78.6 (1C), 62.3 (1C), 57.5 and 57.2 (1C), 48.9 and 48.8 (1C), 37.1 (1C), 35.8 (1C), 34.4 (1C), 33.5 and 33.4 (1C), 28.6 (3C).

Tert-butyl-((4S,7R)-4-(dimethylcarbamoyl)-6,10-dioxo-1,3,4,5,6,7,8,10-octahydrobenzo[j][1]oxa[8]thia[5]azacyclododecin-7-yl)carbamate (**107**).

Compound **111** (2.14 g, 4.56 mmol, 1.0 eq) was dissolved in toluene (115 mL) and cooled down to 0 °C. Ethyldiphenylphosphine (1.88 mL, 9.12 mmol, 2.0 eq) and di-tertbutylazodicarboxylate (2.10 g, 9.12 mmol, 2.0 eq) were added and the mixture was allowed to warm up to rt and stirred for 2 hours. After evaporation of the solvent under reduced pressure, the crude product was purified by flash chromatography on a silica gel column using 25-100% EtOAc in hexane as eluent to give **107** (1.01 g, 2.23 mmol, 49%) as colorless solid. The ¹H spectrum was in accordance with our previously published procedure.¹⁰

(4S,7R)-7-((S)-1-Acetylpyrrolidine-2-carboxamido)-N,N-dimethyl-6,10-dioxo-

1,3,4,5,6,7,8,10-octahydrobenzo[j][1]oxa[8]thia[5]azacyclododecine-4-carboxamide (1).

Compound **107** (220 mg, 0.48 mmol, 1.0 eq) was dissolved in 4M HCl in dioxane (5 mL) and stirred for 1 hour at rt. After evaporation of the solvent under reduced pressure, the resulting salt was suspended in MeCN (10 mL). HATU (273 mg, 0.72 mmol, 1.5 eq), Ac-L-Pro-OH (150 mg, 0.96 mmol, 2.0 eq) and DIPEA (250 μ L, 1.44 mmol, 3.0 eq) were added and the reaction mixture was stirred for 2 additional hours at rt. EtOAc (100 mL) was then added and the mixture was washed with 1 M aqueous HCl solution (25 mL), saturated aqueous NaHCO3 solution (25 mL) and brine (25 mL). The organic phase was dried over MgSO₄, filtered, and then concentrated under reduced pressure were added and reaction mixture stirred at rt for 2 hours. The crude reaction mixture was purified by flash chromatography on a silica gel column

using 1 - 10 % MeOH in DCM as eluent to give 1 (190 mg, 0.39 mmol, 81% yield) as a colorless powder. *The* ¹*H* spectrum was in accordance with our previously published procedure.¹⁰

Supporting Procedure S4 – Gram scale synthesis of compound 10

Methyl-(S)-5-bromo-2-(((2-((tert-butoxycarbonyl)amino)-3-(dimethylamino)-3-oxopropyl)thio)methyl)benzoate (113).

Boc-D-Cys-OH (8.04 g, 36.4 mmol, 2.0 eq) was dissolved in DMF (25 mL) and THF (75 mL). Triethylamine (10.3 mL, 72.8 mmol, 4.0 eq) and methyl-5-bromo-2-(bromomethyl)benzoate 112 (5.61 g, 18.2 mmol, 1.0 eq), were added and the mixture was stirred for 16 hours at rt. After evaporation of THF under reduced pressure, the mixture was diluted with EtOAc (300 mL), washed with 1 M aqueous HCl solution $(2 \times 150 \text{ mL})$ and brine (100 mL). The organic phase was dried over MgSO4, filtered, and then concentrated under reduced pressure. The obtained oil was then dissolved in DMF (25 mL) and THF (75 mL). Dimethylamine hydrochloride (2.97 g, 36.4 mmol, 2.0 eq), EDC·HCl (6.95 g, 36.4 mmol, 2.0 eq), HOBt·xH₂O (3.69 g, 27.3 mmol, 1.5 eq), and DIPEA (6.34 mL, 36.4 mmol, 2.0 eq) were added and the mixture was stirred for 2 additional hours at rt. After evaporation of THF under reduced pressure, the mixture was then diluted with EtOAc (300 mL) and washed with 1 M aqueous HCl solution (150 mL), saturated aqueous NaHCO₃ solution (150 mL) and brine (100 mL). The organic phase was dried over MgSO4, filtered, and then concentrated under reduced pressure. The crude product was purified by flash chromatography on a silica column using 25 - 50%EtOAc in hexane as eluent to give 113 (5.62 g, 11.8 mmol, 65%) as a yellow oil. HRMS (ESI) m/z calcd for C₁₉H₂₈BrN₂O₅S [M+H]⁺ 475.0897, found 475.0887. ¹H NMR (500 MHz, CDCl₃) δ 8.07 (d, J = 2.2 Hz, 1H), 7.57 (dd, J = 8.2, 2.2 Hz, 1H), 7.31 (d, J = 8.2 Hz, 1H), 5.38 (d, J = 8.8 Hz, 1H), 4.81 (ddd, J = 8.8, 7.5, 5.7 Hz, 1H), 4.13 – 4.09 (m, 2H), 3.93 (s, 3H), 3.11 (s, 3H), 2.99 (s, 3H), 2.78 (dd, J = 13.8, 7.5 Hz, 1H), 2.64 (dd, J = 13.8, 5.7 Hz, 1H), 1.46 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 170.9, 166.3, 155.1, 139.4, 134.8, 134.1, 132.8, 131.0, 120.9, 79.9, 52.5, 49.6, 37.5, 35.9, 34.6, 34.3, 28.3.

Methyl 5-bromo-2-((4S,7R)-4-(dimethylcarbamoyl)-7-(hydroxymethyl)-11,11-dimethyl-6,9dioxo-10-oxa-2-thia-5,8-diazadodecyl)benzoate (**114**).

Compound **113** (4.02 g, 8.48 mmol, 1.0 eq) was dissolved in 4 M HCl in dioxane (15 mL) and stirred for 1 hour at rt. After evaporation of the volatiles under reduced pressure After evaporation of the volatiles under reduced pressure, water (50 mL) and K_2CO_3 (2.32 g,

16.8 mmol, 2.0 eq) were added and the aqueous phase was extracted with DCM (3×150 mL). The organic phase was dried over MgSO₄, filtered and then concentrated under reduced pressure. The resulting oil was then dissolved in MeCN (45 mL) and Boc-D-Ser-OH (2.60 g, 12.7 mmol, 1.5 eq) and EDC·HCl (2.43 g, 12.7 mmol, 1.5 eq) were added and the mixture was stirred for 2 additional hours at rt. EtOAc (250 mL) was then added and the mixture washed with 1 M aqueous HCl solution (100 mL), saturated aqueous NaHCO₃ solution (100 mL) and brine (100 mL). The organic phase was dried over MgSO₄, filtered and then concentrated under reduced pressure. The crude product was purified by flash chromatography on a silica gel column using 1-5% MeOH in DCM as eluent to give 114 (2.81 g, 5.00 mmol, 59%) as a yellow oil. HRMS (ESI) m/z calcd for C₂₂H₃₃BrN₃O₇S [M+H]⁺ 562.1217, found 562.1209. ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, J = 2.2 Hz, 1H), 7.56 (dd, J = 8.2, 2.2 Hz, 1H), 7.30 – 7.23 (m, 2H), 5.54 (d, J = 7.8 Hz, 1H), 5.03 (m, 1H), 4.23 (m, 1H), 4.11 (d, J = 13.1 Hz, 1H), 4.05 (d, J = 13.1 Hz, 1H), 4.03 (m, 1H), 3.90 (s, 3H), 3.64 (m, 1H), 3.35 (br s, 1H), 3.04 (s, 3H), 2.94 (s, 3H), 2.80 (dd, J = 13.9, 6.3 Hz, 1H), 2.65 (dd, J = 13.9, 7.1 Hz, 1H), 1.43 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 170.9, 170.2, 166.4, 155.7, 139.0, 135.0, 134.0, 132.8, 131.0, 121.0, 80.4, 63.3, 55.6, 52.5, 48.7, 37.3, 36.0, 34.3, 34.0, 28.3.

5-Bromo-2-((4S,7R)-4-(dimethylcarbamoyl)-7-(hydroxymethyl)-11,11-dimethyl-6,9-dioxo-10oxa-2-thia-5,8-diazadodecyl)benzoic acid (115).

Compound **114** (2.80 g, 4.99 mmol, 1.0 eq) was dissolved in MeOH (25mL) and 0.25 M aqueous LiOH (35 mL). Subsequently, the mixture was warmed up to 40° C and stirred for 16 hours. After evaporation of MeOH under reduced pressure, the aqueous phase was acidified with 1 M aqueous HCl solution (20 mL) and extracted with DCM (3 x 100 mL). The combined organic layers were dried over MgSO₄, filtered and concentrated under reduced pressure. The obtained colorless solid (2.02 g, 3.67 mmol, 74%) was used in the next step without further purification. HRMS (ESI) m/z calcd for C₂₁H₃₁BrN₃O₇S [M+H]⁺ 548.1061, found 548.1061. ¹H NMR (500 MHz, DMSO-*d*₆, *mixture of 2 rotamers in ratio 3:1*) δ 13.21 (br s, 1H), 8.21 (d, *J* = 8.6 Hz, 0.25H), 8.16 (d, *J* = 8.6 Hz, 0.75H), 7.94 (d, *J* = 2.2 Hz, 1H), 7.69 – 7.65 (m, 1H), 7.38 (d, *J* = 8.5, 0.75H), 7.36 (d, *J* = 8.5, 0.25H), 6.70 – 6.63 (m, 1H), 4.83 (ddd, *J* = 8.6, 8.0, 5.7 Hz, 1H), 4.11 (d, *J* = 13.1 Hz, 0.75H), 4.09 (d, *J* = 13.1 Hz, 0.25H), 4.05 – 3.95 (m, 2H), 3.59 – 3.48 (m, 2H), 2.95 (s, 0.75H), 2.94 (s, 2.25H), 2.84 (s, 0.75H), 2.82 (s, 2.25H). *The CH₂OH proton was not detectable in this spectrum.* ¹³C NMR (126 MHz, DMSO-*d*₆, *mixture*

of 2 rotamers) δ 170.4 (1C), 169.9 (1C), 167.5 (1C), 155.6 (1C), 140.0 (1C), 134.6 (1C), 133.6 (1C), 133.6 (1C), 132.9 (1C), 120.2 (1C), 78.7 (1C), 62.3 (1C), 57.5 and 57.4 (1C), 48.9 and 48.8 (1C), 37.1 and 37.0 (1C), 35.8 and 35.7 (1C), 33.6 and 33.5 (1C), 33.3 and 33.2 (1C), 28.7 and 28.6 (3C).

(4*S*,7*R*)-7-((*S*)-1-acetylpyrrolidine-2-carboxamido)-12-bromo-N,N-dimethyl-6,10-dioxo-1,3,4,5,6,7,8,10-octahydrobenzo[j][1]oxa[8]thia[5]azacyclododecine-4-carboxamide (**10**).

Compound 115 (2.01 g, 3.67 mmol, 1.0 eq) was dissolved in THF (90 mL). Triphenylphosphine (1.92 g, 7.34 mmol, 2.0 eq) and di-tert-butylazodicarboxylate (1.69 g, 7.34 mmol, 2.0 eq) were then added and the mixture was stirred for 4 hours at rt. After evaporation of the solvent under reduced pressure, the crude mixture was purified to remove the di-tert-butylazodicarboxylate side products by flash chromatography on a silica gel column using 80% EtOAc in hexane as eluent. The obtained mixture of crude product and triphenylphosphine oxide was then dissolved in 4 M HCl in dioxane (15 mL) and stirred for 1 hour at rt. After removal of the volatiles under reduced pressure the obtained crude mixture was filtered on a short silica plug using 500 mL of 5% MeOH in EtOAc as eluent to remove to remove the triphenylphosphine oxide side products. Subsequently, the silica was flushed with 500 mL of 25% MeOH/DCM to elute the free amine. After evaporation of the solvent under reduced pressure, the obtained white solid was suspended in MeCN (40 mL). Ac-L-Pro-OH (1.15 g, 7.34 mmol, 2.0 eq referred to 115), EDC·HCl (1.40 g, 7.34 mmol, 2.0 eq referred to 115) and DIPEA (0.96 mL, 5.51 mmol, 1.5 eq referred to 115) were added and the reaction was stirred for 2 hours at rt. The mixture was then diluted with EtOAc (150 mL), and washed with 1 M aqueous HCl solution (100 mL), saturated aqueous NaHCO₃ (100 mL) and brine (100 mL). The organic phase was dried over MgSO₄, filtered and then concentrated under reduced pressure. The crude reaction mixture was purified by flash chromatography on a silica gel column using 2-5% MeOH in DCM as eluent to give 10 (982 mg, 1.72 mmol, 47% yield over 3 steps) as colorless solid.

Supporting Procedure S5 – Gram scale synthesis of compound 12

Methyl-(S)-3-bromo-2-(((2-((tert-butoxycarbonyl)amino)-3-(dimethylamino)-3-

oxopropyl)thio)methyl)benzoate (117).

Boc-D-Cys-OH (6.40 g, 29.0 mmol, 2.0 eq) was dissolved in DMF (20 mL) and THF (60 mL). Triethylamine (4.42 mL, 31.9 mmol, 2.2 eq) and methyl 3-bromo-2-(bromomethyl)benzoate

116 (4.47 g, 14.5 mmol, 1.0 eq) were added and the mixture was stirred for 16 hours at rt. After evaporation of THF under reduced pressure, the mixture was diluted with EtOAc (200 mL), washed with 1 M aqueous HCl solution ($2 \times 100 \text{ mL}$) and brine (100 mL). The organic phase was dried over MgSO4, filtered, and then concentrated under reduced pressure. The obtained oil was dissolved in DMF (20 mL) and THF (60 mL). Dimethylamine hydrochloride (1.77 g, 21.8 mmol, 1.5 eq), EDC·HCl (4.16 g, 21.8 mmol, 1.5 eq), HOBt·xH₂O (2.94 g, 21.8 mmol, 1.5 eq), and DIPEA (3.80 mL, 21.8 mmol, 1.5 eq) were then added and the reaction mixture stirred for 2 additional hours at rt. After evaporation of THF under reduced pressure, the resulting mixture was diluted with EtOAc (250 mL) and then washed with 1 M aqueous HCl solution (50 mL), saturated NaHCO₃ solution (50 mL) and brine (50 mL). The organic phase was dried over MgSO₄, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography on a silica column using 10 - 100% EtOAc in hexane as eluent to give 11 (5.54 g, 11.7 mmol, 81%) as a yellow oil. HRMS (ESI) m/z calcd for $C_{14}H_{20}BrN_2O_3S [M-Boc + H^+]^+ 375.0373$ found 375.0370. ¹H NMR (400 MHz, CDCl₃) δ 7.79 (dd, J = 7.9, 1.4 Hz, 1H), 7.70 (dd, J = 7.9, 1.4 Hz, 1H), 7.15 (t, J = 7.9 Hz, 1H), 5.34 (d, J = 9.1 Hz, 1H), 4.85 – 4.76 (m, 1H), 4.39 – 4.35 (m, 2H), 3.90 (s, 3H), 3.12 (s, 3H), 2.96 (s, 3H), 2.95 - 2.90 (m, 1H), 2.82 (dd, J = 13.5, 6.5 Hz, 1H), 1.43 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 171.0, 167.2, 155.1, 139.6, 136.5, 132.1, 130.1, 128.1, 126.5, 79.7, 52.6, 49.8, 37.4, 35.9, 35.7, 34.1, 28.3.

Methyl-3-bromo-2-((4S,7R)-4-(dimethylcarbamoyl)-7-(hydroxymethyl)-11,11-dimethyl-6,9dioxo-10-oxa-2-thia-5,8-diazadodecyl)benzoate (**118**).

Compound **117** (5.03 g, 10.6 mmol, 1.0 eq) was dissolved in 4 M HCl in dioxane (25 mL) and the mixture was stirred for 1 hour at rt. After evaporation of the solvent under reduced pressure, the resulting salt was suspended in water (30 mL). K_2CO_3 (2.93 g, 21.2 mmol, 2.0 eq) was then added and the aqueous phase was extracted with DCM (3 × 150 mL). The combined organic phase was dried over MgSO₄, filtered and then concentrated under reduced pressure and the resulting oil was dissolved in MeCN (50 mL). Boc-D-Ser-OH (3.26 g, 15.9 mmol, 1.5 eq) and EDC·HCl (3.04 g, 15.9 mmol, 1.5 eq) were added and the reaction mixture was stirred for 2 additional hours at rt. EtOAc (300 mL) was then added and the mixture was washed with 1 M aqueous HCl solution (100 mL), saturated aqueous NaHCO₃ solution (100 mL) and brine (100 mL). The organic phase was dried over MgSO₄, filtered, and then concentrated under reduced pressure.

column using 1-10% MeOH in DCM as eluent to give **118** (3.63 g, 6.47 mmol, 61%) as a yellow oil. HRMS (ESI) m/z calcd for C₂₂H₃₃BrN₃O₇S [M+H]⁺ 562.1217, found 562.1203. ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, J = 7.9 Hz, 1H), 7.72 (d, J = 7.9 Hz, 1H), 7.17 (t, J = 7.9 Hz, 1H), 7.09 (m, 1H), 5.51 (m, 1H), 5.05 (m, 1H), 4.40 (d, J = 12.9 Hz, 1H), 4.31 (d, J = 12.9 Hz, 1H), 4.24 (m, 1H), 4.09 (m, 1H), 3.92 (s, 3H), 3.62 (m, 1H), 3.33 (br s, 1H), 3.09 (s, 3H), 3.00 (dd, J = 13.7, 5.3 Hz, 1H), 2.94 (s, 3H), 2.81 (dd, J = 13.9, 8.0 Hz, 1H), 1.45 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 171.0, 170.2, 167.4, 155.7, 139.2, 136.7, 132.0, 130.2, 128.3, 126.7, 80.3, 63.4, 55.6, 52.8, 49.0, 37.3, 36.1, 34.8, 34.1, 28.3.

3-Bromo-2-((4S,7R)-4-(dimethylcarbamoyl)-7-(hydroxymethyl)-11,11-dimethyl-6,9-dioxo-10-oxa-2-thia-5,8-diazadodecyl)benzoic acid (**105b**).

Compound **118** (3.10 g, 5.51 mmol, 1.0 eq) was dissolved in MeOH (30 mL) and 0.25 M aqueous LiOH (40 mL). Subsequently, the mixture was warmed up to 40 °C and stirred for 16 hours in a pre-heated oil bath. After evaporation of MeOH under reduced pressure, the mixture was extracted with Et_2O (2 x 50 mL). The aqueous phase was then acidified with 1 M aqueous HCl solution (50 mL) and extracted with DCM (3 x 100 mL). The combined organic layers were dried over MgSO₄, filtered and concentrated under reduced pressure. The obtained colorless solid (2.26 g, 4.12 mmol, 75%) was used in the next step without further purification. HRMS (ESI) m/z calcd for $C_{21}H_{31}BrN_3O_7S$ [M+H]⁺ 548.1061, found 548.1043. *The characterization of this compound is described in the methods section of the manuscript*.

(4S,7R)-7-((S)-1-acetylpyrrolidine-2-carboxamido)-14-bromo-N,N-dimethyl-6,10-dioxo-

 $1,3,4,5,6,7,8,10-octahydrobenzo[j][1] oxa[8] thia [5] azacyclododecine-4-carboxamide ({\bf 12}) \ .$

Compound **105b** (2.21 g, 4.03 mmol, 1.0 eq) was dissolved in THF (100 mL). Triphenylphosphine (2.11 g, 8.06 mmol, 2.0 eq) and di-*tert*-butylazodicarboxylate (1.83 g, 8.06 mmol, 2.0 eq) were then added and the mixture was stirred for 4 hours at rt. After evaporation of the solvent under reduced pressure, the crude mixture was purified to remove the di-*tert*-butylazodicarboxylate side products by flash chromatography on a silica gel column using 25 - 100% EtOAc in hexane as eluent. The obtained mixture of crude product and triphenylphosphine oxide and was then dissolved in 4 M HCl in dioxane (15 mL) and stirred for 2 hours at rt. After removal of the volatiles under reduced pressure, water (50 mL) was added and the aqueous phase was extracted with EtOAc (3 × 125 mL) to remove the triphenylphosphine oxide side products. Subsequently, the aqueous phase was neutralized with

K₂CO₃ (1.10 g, 8.06 mmol, 2.0 eq) and then extracted with DCM (3×100 mL). The organic phase was dried over MgSO₄, filtered and then concentrated under reduced pressure and the obtained solid was dissolved in MeCN (25 mL). Ac-L-Pro-OH (695 mg, 4.43 mmol, 1.1 eq *referred to* **105b**) and EDC·HCl (846 mg, 4.43 mmol, 1.1 eq *referred to* **105b**) were added and the resulting mixture was stirred for 2 additional hours at rt. MeCN was then removed under reduced pressure and the crude reaction mixture was purified by flash chromatography on a silica gel column using 1 – 10% MeOH/DCM as eluent to give **12** (900 mg, 1.58 mmol, 39% yield over 3 steps) as colorless solid. *The characterization of this compound is described in the methods section of the manuscript*.

Supporting Procedure S6 – Synthesis of compound 109

Methyl (*S*)-2-(((2-((tert-butoxycarbonyl)amino)-3-(dimethylamino)-3-oxopropyl)thio)methyl)-3-iodobenzoate (**120**).

Boc-D-Cys-OH (5.96 g, 27.0 mmol, 2.0 eq) was dissolved in DMF (20 mL) and THF (80 mL). Triethylamine (7.65 mL, 54.0 mmol, 4.0 eq) and methyl 2-(bromomethyl)-3-iodobenzoate 119 (4.80 g, 13.5 mmol, 1.0 eq) were added and the mixture was stirred for 16 hours at rt. After evaporation of THF under reduced pressure, the mixture was diluted with EtOAc (250 mL), washed with 1 M aqueous HCl solution $(2 \times 100 \text{ mL})$ and brine (100 mL). The organic phase was dried over MgSO4, filtered, and then concentrated under reduced pressure. The obtained oil was then dissolved in DMF (20 mL) and THF (80 mL). Dimethylamine hydrochloride (2.20 g, 27.0 mmol, 2.0 eq), HATU (7.71 g, 20.3 mmol, 1.5 eq) and DIPEA (8.23 mL, 47.3 mmol, 3.5 eq) were added and the mixture was stirred for 2 additional hours at rt. After evaporation of THF under reduced pressure, the mixture was then diluted with EtOAc (250 mL) and washed with 1 M aqueous HCl solution (150 mL), saturated aqueous NaHCO₃ solution (150 mL) and brine (100 mL). The organic phase was dried over MgSO4, filtered, and then concentrated under reduced pressure. The crude product was purified by flash chromatography on a silica column using 20 - 80% EtOAc in hexane as eluent to give **120** (4.75 g, 9.09 mmol, 67%) as a colourless oil. HRMS (ESI) m/z calcd for $C_{19}H_{28}IN_2O_5S$ [M+H]⁺ 523.0764, found 523.0770. ¹H NMR (400 MHz, CDCl₃) δ 7.98 (dd, J = 7.9, 1.4 Hz, 1H), 7.79 (dd, J = 7.9, 1.4 Hz, 1H), 6.98 (t, J = 7.9 Hz, 1H), 5.45 - 5.40 (m, 1H), 4.83 - 4.79 (m, 1H), 4.38 - 4.35 (m, 1H), 4.38 - 4.35 (m, 1H), 4.83 - 4.85 (m, 1H), 4.85 (m, 1H), 4.85 - 4.85 (m, 1H), 4.85 (m, 2H), 3.89 (s, 3H), 3.14 (s, 3H), 2.99 - 2.91 (m, 1H), 2.97 (s, 3H), 2.84 (dd, J = 13.5, 6.5 Hz, 1H) 1.43 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 171.2, 167.2, 155.1, 143.4, 142.0, 131.6, 130.8, 128.5, 103.5, 79.8, 52.6, 49.9, 39.5, 37.6, 36.0, 35.6, 28.3.

Methyl 2-((4S,7R)-4-(dimethylcarbamoyl)-7-(hydroxymethyl)-11,11-dimethyl-6,9-dioxo-10oxa-2-thia-5,8-diazadodecyl)-3-iodobenzoate (**121**).

Compound 120 (4.70 g, 9.00 mmol, 1.0 eq) was dissolved in MeOH (5 mL) 4 M HCl in dioxane (15 mL) and stirred for 1 hour at rt. After evaporation of the volatiles under reduced pressure After evaporation of the volatiles under reduced pressure, water (40 mL) and K₂CO₃ (2.48 g, 18.0 mmol, 2.0 eq) were added and the aqueous phase was extracted with DCM (3×150 mL). The organic phase was dried over MgSO₄, filtered and then concentrated under reduced pressure. The resulting oil was then dissolved in MeCN (50 mL) and Boc-D-Ser-OH (2.78 g, 13.5 mmol, 1.5 eq) and EDC·HCl (2.58 g, 13.5 mmol, 1.5 eq) were added and the mixture was stirred for 2 additional hours at rt. EtOAc (300 mL) was then added and the mixture washed with 1 M aqueous HCl solution (150 mL), saturated aqueous NaHCO₃ solution (150 mL) and brine (100 mL). The organic phase was dried over MgSO₄, filtered and then concentrated under reduced pressure. The crude product was purified by flash chromatography on a silica gel column using 1-10% MeOH in DCM as eluent to give 121 (4.08 g, 6.70 mmol, 74%) as yellow oil. HRMS (ESI) m/z calcd for C₂₂H₃₃IN₃O₇S [M+H]⁺ 610.1084, found 610.1072. ¹H NMR $(500 \text{ MHz}, \text{CDCl}_3) \delta 8.03 \text{ (dd}, J = 7.9, 1.3 \text{ Hz}, 1\text{H}), 7.85 \text{ (dd}, J = 7.9, 1.3 \text{ Hz}, 1\text{H}), 7.11 \text{ (d}, J = 7.9, 1.3 \text{ Hz}, 1\text{H})$ 8.5 Hz, 1H), 7.03 (t, J = 7.9 Hz, 1H), 5.55 (d, J = 7.9 Hz, 1H), 5.08 (td, J = 8.5, 8.0, 5.2 Hz, 1H), 4.45 (d, J = 12.8 Hz, 1H), 4.32 (d, J = 12.8 Hz, 1H), 4.30 – 4.24 (m, 1H), 4.17 – 4.11 (m, 1H), 3.95 (s, 3H), 3.66 (dd, J = 11.4, 5.4 Hz, 1H), 3.13 (s, 3H), 3.06 (dd, J = 13.9, 5.2 Hz, 1H), 2.98 (s, 3H), 2.86 (dd, *J* = 13.9, 8.0 Hz, 1H), 1.48 (s, 9H). The CH₂OH proton was not detectable in this spectrum. ¹³C NMR (126 MHz, CDCl₃) δ 171.0, 170.2, 167.4, 155.7, 143.6, 141.7, 131.4, 130.9, 128.7, 103.7, 80.4, 63.4, 55.6, 52.8, 49.1, 39.5, 37.3, 36.1, 34.8, 28.3.

2-((4S,7R)-4-(Dimethylcarbamoyl)-7-(hydroxymethyl)-11,11-dimethyl-6,9-dioxo-10-oxa-2thia-5,8-diazadodecyl)-3-iodobenzoic acid (**122**).

Compound **121** (4.01 g, 6.57 mmol, 1.0 eq) was dissolved in MeOH (30 mL) and 0.25 M aqueous LiOH (30 mL). Subsequently, the mixture was warmed up to 40 °C and stirred for 16 hours. After evaporation of MeOH under reduced pressure, the aqueous phase was acidified with 1 M aqueous HCl solution (20 mL) and extracted with DCM (3 x 125 mL). The combined organic layers were dried over MgSO₄, filtered and concentrated under reduced pressure. The obtained colorless solid (2.60 g, 4.37 mmol, 67%)) was used in the next step without further purification. HRMS (ESI) m/z calcd for C₂₁H₃₁IN₃O₇S [M+H]⁺ 596.0927, found 596.0922. ¹H

NMR (400 MHz, DMSO-*d*₆ *mixture of 2 rotamers in ratio 3:1*) δ 8.17 (d, *J* = 8.5 Hz, 0.25H), 8.09 (d, *J* = 8.5 Hz, 0.75H), 8.01 (dd, *J* = 7.8, 1.3 Hz, 1H), 7.73 (dd, *J* = 7.8, 1.3 Hz, 1H), 7.06 (t, *J* = 7.8 Hz, 1H), 6.62 (d, *J* = 8.5 Hz, 0.25H), 6.59 (d, *J* = 8.5 Hz, 0.75H), 4.87 (ddd, *J* = 8.5, 7.6, 6.2 Hz, 1H), 4.32 (d, *J* = 12.4 Hz, 1H), 4.21 (dd, *J* = 12.4 Hz, 1H), 3.99 – 3.91 (m, 1H), 3.55 – 3.44 (m, 2H), 2.99 (s, 0.75H), 2.98 (s, 2.25H), 2.90 (dd, *J* = 13.4, 7.6 Hz, 1H), 2.82 (s, 0.75H), 2.81 (s, 2.25H), 2.66 (dd, *J* = 13.4, 6.2 Hz, 1H), 1.36 (s, 9H). *The COO<u>H</u> proton and the CH₂O<u>H</u> proton were not detectable in this spectrum. ¹³C NMR (101 MHz, DMSO-<i>d*₆ *mixture of 2 rotamers*) δ 170.3 and 170.2 (1C), 170.0 (1C), 168.7 (1C), 155.6 and 155.5 (1C), 143.1 (1C), 141.4 and 141.3 (1C), 133.4 (1C), 130.7 (1C), 129.3 (1C), 104.4 and 104.3 (1C), 78.7 and 78.6 (1C), 62.4 (1C), 57.5 (1C), 49.0 and 48.9 (1C), 39.0 (1C), 37.2 (1C), 35.8 (1C), 34.9 (1C), 28.6 (3C).

Tert-butyl-((4S,7R)-4-(dimethylcarbamoyl)-14-iodo-6,10-dioxo-1,3,4,5,6,7,8,10-octahydrobenzo[j][1]oxa[8]thia[5]azacyclododecin-7-yl)carbamate (**123**).

Compound 122 (2.05 g, 3.44 mmol, 1.0 eq) was dissolved in toluene (85 mL) and cooled down 0 °C. Ethyldiphenylphosphine (1.42 mL, 6.88 mmol, 2.0 eq) to and di-tertbutylazodicarboxylate (1.58 g, 6.88 mmol, 2.0 eq) were added and the mixture was allowed to warm up to rt and stirred for 2 hours. After evaporation of the solvent under reduced pressure, the crude product was purified by flash chromatography on a silica gel column using 25-100% EtOAc in hexane as eluent to give 123 (1.04 g, 1.80 mmol, 52%) as colorless solid. HRMS (ESI) m/z calcd for C₂₃H₃₀IN₄O₆S [M+H]⁺ 617.0931, found 617.0921. ¹H NMR (500 MHz, CDCl₃) δ 7.99 (dd, J = 7.7 Hz, 1H), 7.74 (d, J = 7.7 Hz, 1H), 7.37 (d, J = 8.5 Hz, 1H), 7.01 (t, J = 7.7 Hz, 1H), 5.58 (d, J = 7.0 Hz, 1H), 5.24 (dd, J = 11.3, 2.7 Hz, 1H), 5.20 - 5.14 (m, 1H), 4.65 (d, J = 8.3 Hz, 1H), 4.37 (dd, J = 11.3, 2.3 Hz, 1H), 4.27 – 4.17 (m, 2H), 3.14 – 3.10 (m, 2H), 3.10 (s, 3H), 2.95 (s, 3H), 1.46 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 169.2, 169.2, 167.5, 155.1, 143.9, 139.0, 132.1, 131.4, 128.9, 103.3, 81.3, 67.1, 55.1, 48.8, 42.5, 37.1, 36.0, 35.8, 28.2.

(4S,7R)-7-((S)-1-Acetylpyrrolidine-2-carboxamido)-14-iodo-N,N-dimethyl-6,10-dioxo-1,3,4,5,6,7,8,10-octahydrobenzo[j][1]oxa[8]thia[5]azacyclododecine-4-carboxamide (**109**). Compound **123** (1.02 g, 1.76 mmol, 1.0 eq) was dissolved in 4 M HCl in dioxane (10 mL) and stirred for 1 hour at rt. After evaporation of the solvent under reduced pressure, the resulting salt was suspended in MeCN (20 mL). Ac-L-Pro-OH (552 mg, 3.52 mmol, 2.0 eq), HATU (1.34 g, 3.52 mmol, 2.0 eq) and DIPEA (0.62 mL, 3.52 mmol, 2.0 eq) were added and the reaction mixture was stirred for 2 additional hours at rt. EtOAc (150 mL) was then added and the mixture was washed with 1 M aqueous HCl solution (75 mL), saturated aqueous NaHCO3 solution (75 mL) and brine (100 mL). The organic phase was dried over MgSO₄, filtered, and then concentrated under reduced pressure. The crude product was purified by flash chromatography on a silica gel column using 1-10% MeOH in DCM as eluent to give 109 (739 mg, 1.20 mmol, 68% over two steps) as colourless powder. HRMS (ESI) m/z calcd for C₂₂H₃₃IN₃O₇S [M+H]⁺ 610.1084, found 610.1072. ¹H NMR (500 MHz, CDCl₃) δ 8.07 (d, J = 8.7 Hz, 1H), 8.03 (dd, J= 7.9, 1.4 Hz, 1H), 7.86 (dd, *J* = 7.9, 1.4 Hz, 1H), 7.62 (d, *J* = 8.9 Hz, 1H), 7.04 (t, *J* = 7.9 Hz, 1H), 5.30 (dd, J = 11.2, 2.6 Hz, 1H), 5.15 (td, J = 8.9, 4.6 Hz, 1H), 4.90 (ddd, J = 8.7, 2.6, 2.2 Hz, 1H), 4.53 – 4.47 (m, 2H), 4.40 (dd, *J* = 11.2, 2.2 Hz, 1H), 4.15 (d, *J* = 10.6 Hz, 1H), 3.81 - 3.75 (m, 1H), 3.53 - 3.45 (m, 1H), 3.12 (dd, J = 14.6, 4.7 Hz, 1H), 3.09 (s, 3H), 3.05(dd, J = 14.6, 8.9 Hz, 1H), 2.95 (s, 3H), 2.41 - 2.35 (m, 1H), 2.27 - 2.18 (m, 1H), 2.16 (s, 3H),2.05 - 1.93 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 172.0, 171.6, 169.3, 168.7, 167.3, 144.0, 138.8, 131.9, 131.9, 128.9, 103.8, 66.9, 60.1, 53.4, 49.6, 48.3, 42.9, 37.1, 35.9, 35.9, 27.6, 25.2, 22.5.

NMR spectra for compounds 2–78

⁹¹³C NMR (126 MHz, CDCl₃)

7.7.7.7.88
7.7.7.7.88
7.7.7.7.88
7.7.7.7.88
7.7.7.7.89
7.7.7.7.89
7.7.7.7.89
7.7.7.7.89
7.7.7.7.80
7.7.7.7.81
7.7.7.7.81
7.7.7.7.81
7.7.7.7.81
7.7.7.7.81
7.7.7.7.81
7.7.7.7.81
7.7.7.7.81
7.7.7.7.81
7.7.7.7.81
7.7.7.7.81
7.7.7.7.81
7.7.7.7.81
7.7.7.7.81
7.7.7.7.81
7.7.7.7.81
7.7.7.7.81
7.7.7.7.81
7.7.7.7.81
7.7.7.7.81
7.7.7.7.7.81
7.7.7.7.7.81
7.7.7.7.7.81
7.7.7.7.7.81
7.7.7.7.7.81
7.7.7.7.7.81
7.7.7.7.7.81
7.7.7.7.7.81
7.7.7.7.7.81
7.7.7.7.7.81
7.7.7.7.7.81
7.7.7.7.7.81
7.7.7.7.7.81
7.7.7.7.7.81
7.7.7.7.7.81
7.7.7.7.7.81
7.7.7.7.7.81
7.7.7.7.7.81
7.7.7.7.7.81
7.7.7.7.7.81
7.7.7.7.7.81
7.7.7.7.7.81
7.7.7.7.7.81
7.7.7.7.7.81
7.7.7.7.7.81
7.7.7.7.7.7.81
7.7.7.7.7.81
7.7.7.7.7.81
7.7.7.7.7.81
7.7.7.7.7.81
7.7.7.7.7.7.81
7.7.7.7.7.7.81
7.7.7.7.7.7.81
7.7.7.7.7.7.81
7.7.7.7.7.7.81
7.7.7.7.7.7.81
7.7.7.7.7.7.81
7.7.7.7.7.7.81
7.7.7.7.7.7.81
7.7.7.7.7.7.81
7.7.7.7.7.7.81
7.7.7.7.7.81
7.7.7.7.7.81
7.7.7.7.7.81
7.7.7.7.7.81
7.7.7.7.7.81
7.7.7.7.7.81
7.7.7.7.7.81
7.7.7.7.7.81
7.7.7.7.7.81
7.7.7.7.7.81
7.7.7.7.7.81
7.7.7.7.7.81
7.7.7.7.81
7.7.7.7.81
7.7.7.7.81
7.7.7.7.81
7.7.7.7.81
7.7.7.7.81
7.7.7.7.81
7.7.7.7.81
7.7.7.7.81
7.7.7.7.81
7.7.7.7.7.81
7.7.7.7.7.81
7.7.7.7.7.81
7.7.7.7.7.81
7.7.7.7.7.81
7.7.7.7.7.7.81
7.7.7.7.7.7.81
7.7.7.7.7.7.81
7.7.7.7.7.7.81
7.7.7.7.7.7.81
7.7.7.7.7.7.81
7.7.7.7.7.7.81
7.7

7.7.7.7.55
7.88
7.7.7.7.55
5.6.93
5.6.93
5.6.94
5.6.94
5.6.94
5.6.94
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95
5.6.95<

Restance of the second seco

24 ¹H NMR (400 MHz, DMSO-*d*₆)

8.83 9.10 1

Reference of the second sec

³² ¹³C NMR (126 MHz, CDCl₃)

8 8 07 9 8 90 9 90 9 90

³⁴¹³C NMR (101 MHz, CDCl₃)

³⁵¹³C NMR (101 MHz, CDCl₃)

55:55 5

7.200

48 ¹H NMR (500 MHz, CDCl₃, mixture of 2 diastereoisomers in 1:1 ratio)

48 ¹³C NMR (126 MHz, CDCl₃, mixture of 2 diastereoisomers)

49 ¹H NMR (500 MHz, CDCl₃, mixture of 2 rotamers in 1:1 ratio)

56 ¹H NMR (500 MHz, DMSO-*d*₆)

57^{1} H NMR (500 MHz, CDCl₃)

8.851 8.851 8.851 8.851 8.851 8.851 8.851 8.851 8.851 8.851 8.851 7.737 7.737 7.737 8.851 7.737 7.737 7.737 7.737 8.851 7.737 7.727 7.777 7.727 7.777 7.727 7.777 7.727 7.

88.88 89.03 89

88,00 88,00 88,00 88,00 77,75 77,75 88,00 77,75 77

28.28 8.825

88,88,11 27,291 88,81 27,291 27,291 27,292 25,51 25

78¹³C NMR (126 MHz, CDCl₃)

Purity reports for compounds 2–78

Compound 2

1500.0

1000.0

Compound 20

500.0

2.188 Range: 2.188

3: UV Detector: TIC

Compound 32

Compound 38

4

100₇

%

Compound 58

Peak ID Time Mass Found 3 1.09 3:(Time: 1.09) Combine (115:126-(108:113+137:142)) 1:MS ES+ 4.2e+006 652.3 100₇ 653.3 50 % 669.3749.4 ____ m/z 1200.0 0-800.0 400.0 200.0 600.0 1000.0

Sample Report (continued):

S157

Sample Report (continued):

S159

%

500.0

1500.0

1000.0

NMR spectra for compounds S1-S24

S1 ¹H NMR (500 MHz, CDCl₃)

S2 ¹H NMR (500 MHz, CDCl₃)

S3 ¹H NMR (500 MHz, CDCl₃)

S4¹H NMR (500 MHz, CDCl₃)

S5 ¹H NMR (500 MHz, CDCl₃)

S6 ¹H NMR (600 MHz, DMSO-*d*₆)

S7¹H NMR (600 MHz, CDCl₃)

88.87 88.77 85.72 85

S8¹H NMR (500 MHz, CDCl₃)

S9 ¹H NMR (500 MHz, CDCl₃)

77.200 77.200

S10 ¹H NMR (500 MHz, CDCl₃)

S11 ¹H NMR (600 MHz, CDCl₃)

12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 fl (ppm)

S12 ¹³C NMR (151 MHz, CDCl₃)

S13 ¹H NMR (600 MHz, CDCl₃)

S14 ¹H NMR (600 MHz, CDCl₃)

S15 ¹H NMR (600 MHz, CDCl₃)

S16 ¹H NMR (600 MHz, CDCl₃)

S17¹H NMR (500 MHz, CDCl₃)

S18 ¹H NMR (500 MHz, CDCl₃)

S19 ¹H NMR (500 MHz, CDCl₃)

S20 ¹H NMR (500 MHz, CDCl₃)

S21 ¹H NMR (500 MHz, CDCl₃)

S22 ¹H NMR (500 MHz, CDCl₃)

S23 ¹H NMR (500 MHz, CDCl₃)

S23¹³C NMR (126 MHz, CDCl₃)

S24 ¹H NMR (500 MHz, CDCl₃)

Purity reports for compounds S1-S24

Compound S1

Compound S14

Found

3: UV Detector: 210 2.296 Range: 2.296 (10) 988 1.5 631.2(88%) AU 1.72 1.0 5.0e-1 0.0 Time 3.00 0.50 1.00 1.50 2.00 2.50 Height 2e+003 Peak Number Compound Time AreaAbs Area %Total Width Mass Found 631.25 631.25 Tentative 1.18 3e+001 0 0.24 2 3 3e+003 0.24 0 1.21 3e+001 Found 45 8e+001 1.24 8e+000 0.06 0 631.25 Found 1.47 1e+002 0.82 0 8e+003 6 7 8 9 10 12 4e+001 0 2e+003 1.49 0.27 3e+001 3e+003 631.25 631.25 1.54 0.25 Tentative 1e+003 0 1.60 2e+001 Found 0.16 2e+003 1.68 2e+001 0000 Found 0.15 631.25 97.69 1e+004 1e+006 Found 1.72 631.25 1.96 1e+003 2e+001

0.12

631.25

Compound S16

Compound S22

S198

Supplementary References

- Marelius, J.; Kolmodin, K.; Feierberg, I.; Åqvist, J. Q: A Molecular Dynamics Program for Free Energy Calculations and Empirical Valence Bond Simulations in Biomolecular Systems. *J. Mol. Graph. Model.* 1998, 16, 213–225.
- (2) Jorgensen, W. L.; Maxwell, D. S.; Tirado-Rives, J. Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids. J. Am. Chem. Soc. 1996, 118, 11225–11236.
- (3) Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys. 1983, 79, 926–935.
- (4) King, G.; Warshel, A. A Surface Constrained All-Atom Solvent Model for Effective Simulations of Polar Solutions. *J. Chem. Phys.* **1989**, *91*, 3647–3661. https://doi.org/10.1063/1.456845.
- (5) Ryckaert, J. P.; Ciccotti, G.; Berendsen, H. J. C. Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes. *J. Comput. Phys.* 1977, 23, 327–341.
- (6) Lee, F. S.; Warshel, A. A Local Reaction Field Method for Fast Evaluation of Long-Range Electrostatic Interactions in Molecular Simulations. J. Chem. Phys. 1992, 97, 3100–3107.
- (7) Beutler, T. C.; Mark, A. E.; van Schaik, R. C.; Gerber, P. R.; van Gunsteren, W. F. Avoiding Singularities and Numerical Instabilities in Free Energy Calculations Based on Molecular Simulations. *Chem. Phys. Lett.* **1994**, *222*, 529–539.
- (8) Zwanzig, R. W. High Temperature Equation of State by a Perturbation Method. I. Nonpolar Gases. J. Chem. Phys. 1954, 22, 1420–1426.
- (9) Matricon, P.; Ranganathan, A.; Warnick, E.; Gao, Z. G.; Rudling, A.; Lambertucci, C.; Marucci, G.; Ezzati, A.; Jaiteh, M.; Dal Ben, D.; Jacobson, K. A.; Carlsson, J. Fragment Optimization for GPCRs by Molecular Dynamics Free Energy Calculations: Probing Druggable Subpockets of the A2A Adenosine Receptor Binding Site. *Sci. Rep.* 2017, 7 (6398).
- (10). Begnini, F.; Poongavanam, V.; Over, B.; Castaldo, M.; Geschwindner, S.; Johansson, P.; Tyagi, M.; Tyrchan, C.; Wissler, L.; Sjo, P.; Schiesser, S.; Kihlberg, J., Mining Natural Products for Macrocycles to Drug Difficult Targets. *J. Med. Chem.* 2021, *64* (2), 1054-1072.