Supplemental Online Content

Hoiland RL, Rikhraj KJK, Thiara S, et al. Neurologic prognostication after cardiac arrest using brain biomarkers: a systematic review and meta-analysis. *JAMA Neurol*. Published online February 28, 2022. doi: 10.1001/jamaneurol.2021.5598

eAppendix 1. Detailed Methods

eAppendix 2. Search Strategy for MEDLINE

eAppendix 3. Outline of Data Inclusion for Studies With Duplicated Data **eAppendix 4.** QUADAS-2 Results

eFigure 1. Receiver Operator Characteristic Curves for the Diagnostic Accuracy of Brain Biomarkers Post ROSC for Predicting Unfavorable Outcome at 24 hours. **eFigure 2.** Receiver Operator Characteristic Curves for the Diagnostic Accuracy of Brain Biomarkers Post ROSC for Predicting Unfavorable Outcome at 72 hours. **eFigure 3.** Receiver Operator Characteristic Curves for the Diagnostic Accuracy of Brain Biomarkers for Predicting Unfavorable outcome at 48 hours in patients that underwent targeted temperature management.

eFigure 4. Group Differences in Brain Biomarkers Between Patients That Underwent TTM with Favorable and Unfavorable Neurological Outcome.

eFigure 5. Receiver Operator Characteristic Curves for the Diagnostic Accuracy of Brain Biomarkers for Predicting Unfavorable outcome at 48 hours in patients that had an out-of-hospital cardiac arrest.

eFigure 6. Group Differences in Brain Biomarkers Between Patients That Had an Out-of-Hospital Cardiac Arrest with Favorable and Unfavorable Neurological Outcome.

eFigure 7. QUADAS-2 assessment for risk of bias and concerns of applicability **eTable 1.** Study Characteristics.

eTable 2. Receiver Operator Characteristic Curve Analysis for the Diagnostic Accuracy of Brain Biomarkers for Predicting Unfavorable outcome at 48 hours in patients where outcome was determined ≥3 months following cardiac arrest. **eTable 3.** Concentration Thresholds for Each Biomarker.

eTable 4. Studies Including Outcome Determination at Times Other Than Hospital Discharge and 6 Months.

eTable 5. Studies Including Survival vs Death as Outcome. **eReferences.**

This supplementary material has been provided by the authors to give readers additional information about their work.

Appendix 1: Detailed Methods

Literature Search

We searched the following electronic databases from inception to September 15th, 2021. MEDLINE, Embase, Evidence-Based Medicine Reviews, CINAHL, Cochrane Database and the WHO Global Health Library. We also searched the Cochrane Central Register of Controlled Trials, BioMed Central, ClinicalTrials.gov, WHO International Clinical Trials Registry Platform and Thomson Center Watch for unpublished works.

Search Terms

We used two subsets of search terms. The first included studies that identified biomarkers of interest: "biomarker," "neuron specific enolase," "NSE," "S100 beta," "S100 calcium binding protein," "glial fibrillary protein," "GFAP," "neurofilament-light," "Nf-L," "Tau," "ubiquitin carboxyl hydrolase L1" and "UCH-L1." The second included studies with the following terms: "cardiac arrest," "post cardiac arrest," "hypoxic ischemic brain injury," "anoxic brain injury," "ROSC," and "return of spontaneous circulation." The two search terms were combined using "AND" to identify relevant studies. See Appendix 2 for the MEDLINE search strategy.

Modification of inclusion criteria

Upon review of the literature we felt it necessary to include additional time points for outcome determination that were not specified within the PROSPERO registration, which was restricted to hospital discharge and 6-months. This was due to the large amount of studies and thus patients wherein outcome determination was not made strictly at hospital discharge or at 6-© 2022 American Medical Association. All rights reserved. months but instead in between those time points. We have provided a table (eTable 4) outlining the specific studies that assessed outcomes at time points that differed from hospital discharge or 6-months. As noted in the final row of eTable 4, 36 studies (41% of all studies) and 5495 patients (52% of all patients) performed outcome determination at a time differing from hospital discharge and 6-months. Exclusion of these studies would have significantly limited this systematic review and meta-analysis by reducing the sample size by ~50%. Further, to increase generalizability and provide data to inform clinicians / patients, we included time points between discharge and 6-months to provide outcome time points that could enrich the findings by increasing the longitudinal timing of outcome determination. Similarly, we felt it appropriate to include studies that used survival versus death as their outcome as this comprised 9 studies (10% of all studies) and 741 patients (7% of all patients), which is outlined in eTable 5.

Additional exclusion criteria

We excluded studies that did not: 1) dichotomize neurological outcomes; 2) specify timing of bio-specimen collection or outcome determination; 3) report diagnostic test accuracy, biomarker concentration or did not report data compatible for extraction (e.g. figures that cannot be accurately digitized).

Study Selection

Using a two-stage selection process, two reviewers (RH and KR) independently screened abstracts using the inclusion and exclusion criteria. If the abstract was unavailable, the full text was reviewed instead. Following abstract screening, the reviewers independently reviewed each

identified full text before collaboratively making decisions on study inclusion. Disagreements regarding study inclusions were resolved by a third reviewer (MS).

Data Extraction & Quality Assessment

Four reviewers (RH, KR, ST and MS) used a pre-formatted spreadsheet (Microsoft Excel®, Redmond Washington, USA) to collect data on the study design, inclusion and exclusion criteria, brain biomarkers levels, diagnostic test accuracy, and neurological outcome. Study quality was assessed by two reviewers (RH and KR) using the QUADAS-2 scale. Studies were rated on their risk of bias and applicability in four domains: patient selection, index test, reference standard, and flow and timing.

Appendix 2: Search strategy for MEDLINE

MEDLINE

- 1. Biomarker.mp.
- 2. Neuron specific enolase.mp.
- 3. NSE.mp.
- 4. S100 beta.mp.
- 5. S100 calcium binding protein.mp.
- 6. Glial fibrillary protein.mp.
- 7. GFAP.mp.
- 8. Neurofilament-light.mp.
- 9. Nf-L.mp.
- 10. Tau.mp.
- 11. Ubiquitin Carboxyl Hydrolase L1.mp
- 12. UCH-L1.mp.
- 13. 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12
- 14. Cardiac arrest.mp.
- 15. Post cardiac arrest.mp.
- 16. Hypoxic ischemic brain injury.mp.
- 17. Anoxic brain injury.mp.
- 18. ROSC.mp.
- 19. Return of spontaneous circulation.mp.
- 20. 14 or 15 or 16 or 17 or 18 or 19
- 21. 13 and 20

Appendix 3: Outline of data inclusion for studies with duplicated data.

Data that were duplicated across more than one publication were not duplicated across our analysis, nor in our summary data in Table 1. However, publications with duplicated data that reported their data in a different fashion (ROC curves versus group summary statistics) or for different time points may have contributed to different aspects of this meta-analysis. Groups of publications with duplicated data are outlined below and the specific data from each is noted:

TTM studies:

Stammet et al., 2015. Journal of the American College of Cardiology:

- NSE: Summary statistics (median±IQR) at 24hr, 48hr and 72hr
- NSE: ROC data at 24hr, 48hr, and 72hr

Mattsson et al., 2017. Annals of Neurology:

- Tau: Summary statistics (median±IQR) at 24hr, 48hr and 72hr
- Tau: ROC data at 24hr, 48hr, and 72hr

Stammet et al., 2017. Critical Care:

- S100B: Summary statistics (median±IQR) at 24hr, 48hr, and 72hr
- S100B: ROC data at 24hr, 48hr and 72hr

Moseby-Knappe et al., 2019. JAMA Neurology:

- Nf-L: Summary statistics (median±IQR) at 24hr, 48hr and 72hr
- Nf-L: ROC data at 24hr, 48hr, and 72hr

Stefanizzi *et al.*, 2020. *International Journal of Molecular Sciences*: © 2022 American Medical Association. All rights reserved. • No data contributed to meta-analysis

Ebner et al., 2020. Resuscitation:

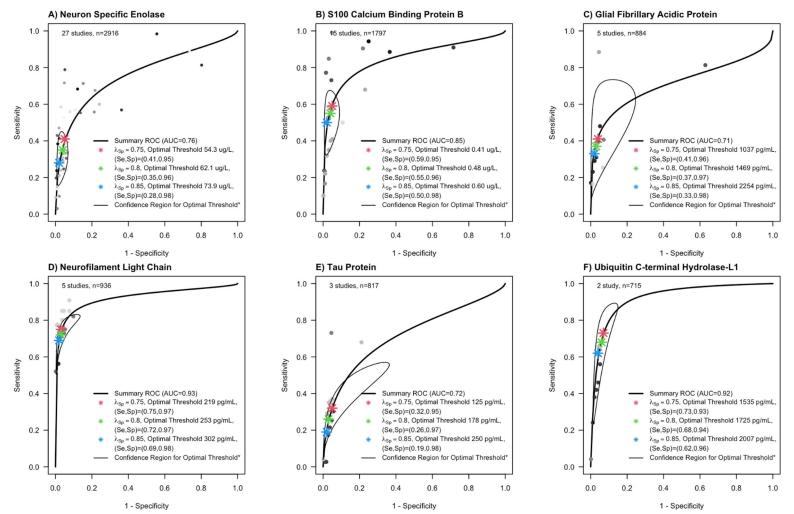
- GFAP: Summary statistics (median±IQR) at 24hr, 48hr, 72hr
- GFAP: ROC data at 24hr, 48hr and 72hr
- UCH-L1: Summary statistics (median±IQR) at 24hr, 48hr, 72hr
- UCH-L1: ROC data at 24hr, 48hr and 72hr

Moseby-Knappe et al., 2021. Intensive Care Medicine:

• No data contributed to meta-analysis

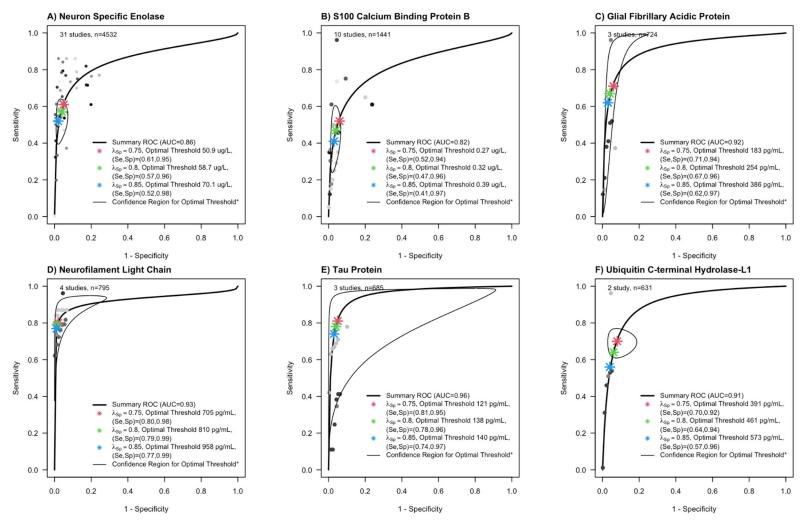
COMACARE studies:

Jakkula et al., 2019. Critical Care:

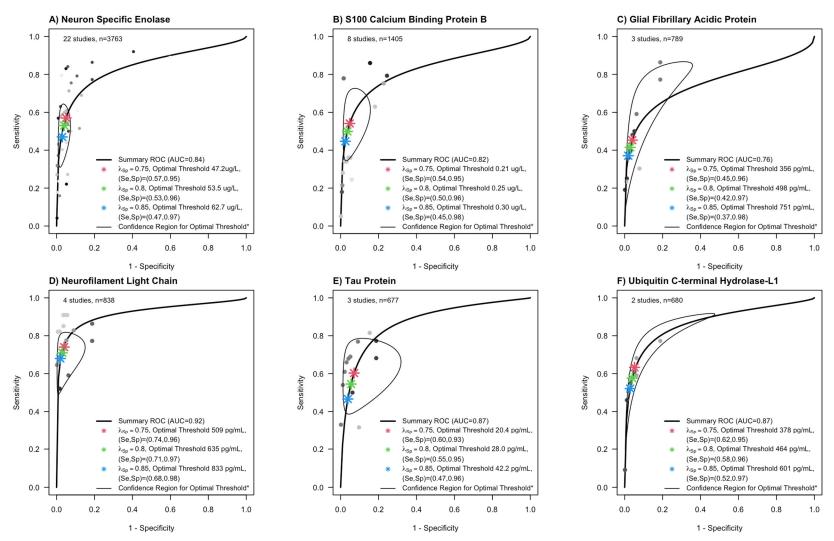

• NSE: Summary statistics (median±IQR) at 48hr

Wihersaari et al., 2021. Intensive Care Medicine:

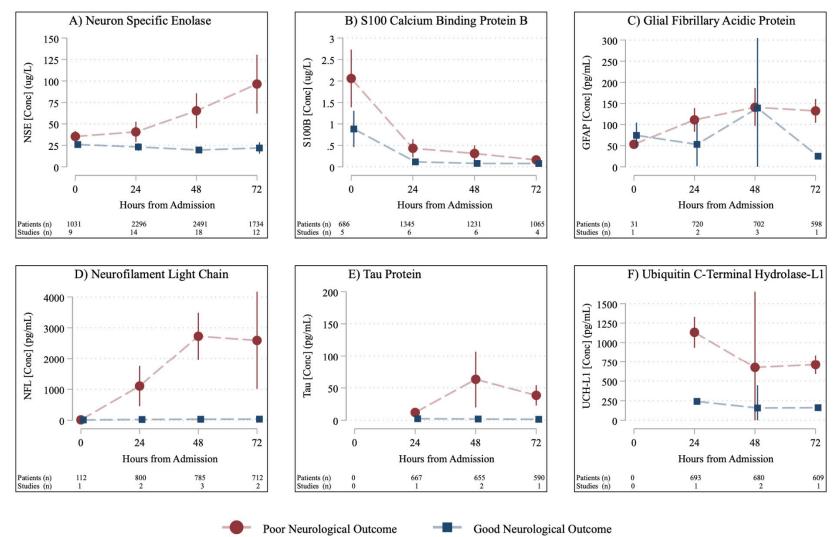
- Nf-L: Summary statistics (median±IQR) at 24hr, 48hr and 72hr
- Nf-L: ROC data at 0hr, 24hr, 48hr, and 72hr


Appendix 4: QUADAS-2 results

It was determined that for patient selection 31% of studies had a low risk of bias, 54% had a high risk of bias, and the risk of bias was unclear in 15% of studies. Studies most commonly were assigned a high risk of bias because they did not avoid inappropriate patient exclusion. For the index test (biomarkers), it was unclear (i.e. not specified) in 54% of studies if results were interpreted without the knowledge of the reference standard (clinical outcomes), while it was unclear (i.e. not specified) in 51% of studies if results of the reference standard were interpreted without the knowledge of the index test. Risk of bias was determined to be low for 43% of studies regarding the index test category and for 44% of studies regarding the reference standard category. Risk of bias related to flow and timing was high for 44% of studies, where the interval between the index test (biomarkers) and reference standard (neurological outcome) was determined as not appropriate in 40% of studies. Overall, the concerns of applicability were low in 92% of studies for patient selection, 92% of studies for the index test, and 94% of studies for the reference standard (See eFigure 7).

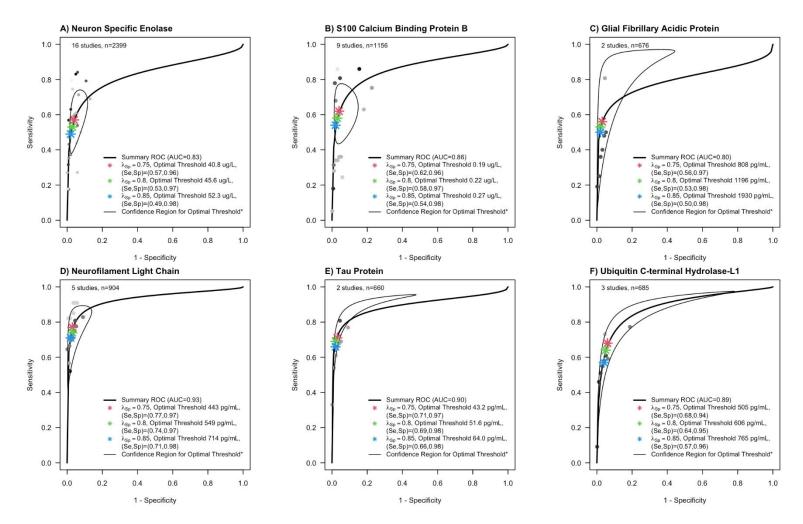

eFigure 1. Receiver Operator Characteristic Curves for the Diagnostic Accuracy of Brain Biomarkers Post ROSC for Predicting Unfavorable Outcome at 24 hours. Summary receiver operator characteristic (SROC) curves and their confidence intervals for each biomarker at 24 hours post return of spontaneous circulation (ROSC) are presented. Each individual black/grey dot represents a unique study. We estimated optimal thresholds for each biomarker for particular weights of specificity. We weighted specificity at 75% (red symbols), 80% (green symbols), and 85% (blue symbols) with sensitivity weighted 25%, 20%, and 15% respectively. For each weight of specificity an optimal threshold on the SROC curve was determined and is reported in the figure for each variable. The

SROC AUC and 95% confidence intervals for each biomarker are: NSE- 0.76 (0.66-0.84); S100b- 0.85 (0.77-0.91); GFAP- 0.71 (0.42-0.90); NFL- 0.93 (0.87-0.95); Tau- 0.72 (0.46-0.90); UCH-L1- 0.92 (0.69-0.97).

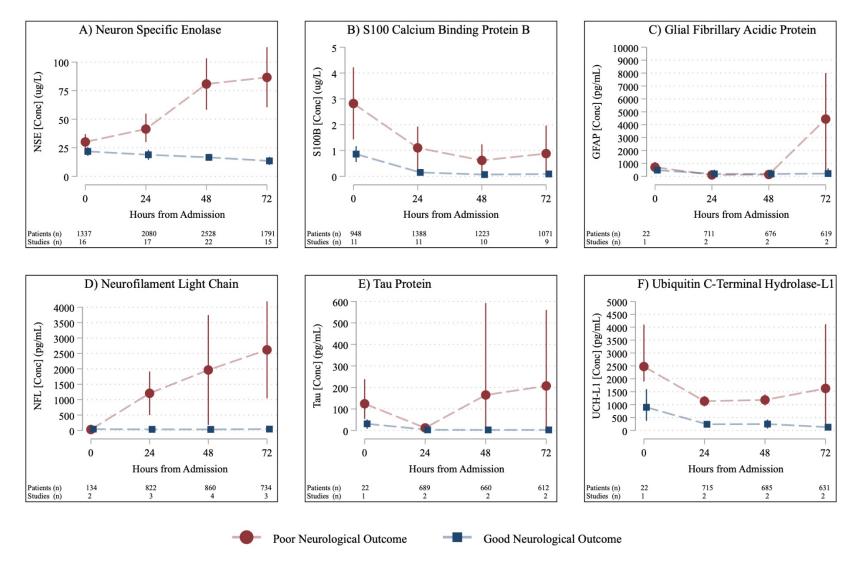

eFigure 2. Receiver Operator Characteristic Curves for the Diagnostic Accuracy of Brain Biomarkers Post ROSC for Predicting Unfavorable Outcome at 72 hours. Summary receiver operator characteristic (SROC) curves and their confidence intervals for each biomarker at 72 hours post return of spontaneous circulation (ROSC) are presented. Each individual black/grey dot represents a unique study. We estimated optimal thresholds for each biomarker for particular weights of specificity. We weighted specificity at 75% (red symbols), 80% (green symbols), and 85% (blue symbols) with sensitivity weighted 25%, 20%, and 15% respectively. For each weight of specificity an optimal threshold on the SROC curve was determined and is reported in the figure for each variable. The

SROC AUC and 95% confidence intervals for each biomarker are: NSE- 0.86 (0.80-0.90); S100b- 0.82 (0.72-0.90); GFAP- 0.92 (0.40-0.99); NFL- 0.93 (0.87-0.96); Tau- 0.96 (0.22-0.99); UCH-L1- 0.91 (0.81-0.93).

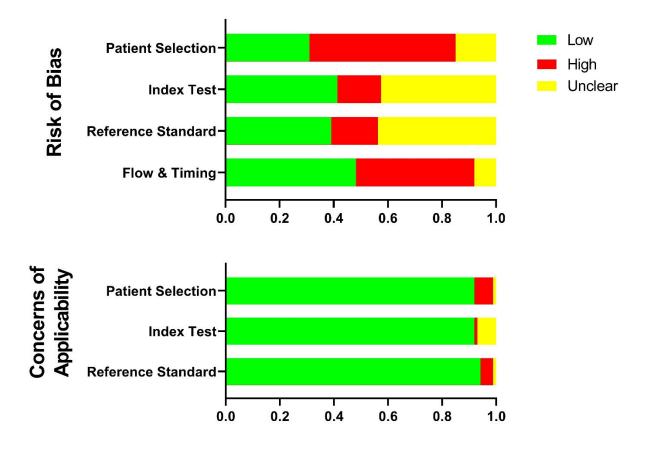
eFigure 3. Receiver Operator Characteristic Curves for the Diagnostic Accuracy of Brain Biomarkers for Predicting Unfavorable outcome at 48 hours in patients that underwent targeted temperature management. Summary receiver operator characteristic (SROC) curves and their confidence intervals for each biomarker are presented. Each individual black/grey dot represents a unique study. We estimated optimal thresholds for each biomarker for particular weights of specificity. We weighted specificity at 75% (red symbols), 80% (green symbols), and 85% (blue symbols) with sensitivity weighted 25%, 20%, and 15%


respectively. For each weight of specificity an optimal threshold on the SROC curve was determined and is reported in the figure for each variable. The SROC AUC and 95% confidence intervals for each biomarker are: NSE- 0.84 (0.77-0.90); S100b- 0.82 (0.72-0.90); GFAP- 0.76 (0.42-0.93); NFL- 0.92 (0.86-0.95); Tau- 0.87 (0.80-0.92); UCH-L1- 0.87 (0.41-0.97).

eFigure 4. Group Differences in Brain Biomarkers Between Patients That Underwent TTM with Favorable and Unfavorable Neurological Outcome. The median concentration and spread (interquartile range) are reported in patients with favorable (blue squares) and unfavorable (red circles) outcome at 0, 24,


48, and 72 hours following admission. The number of patients and studies included in the determination of the median and interquartile range for each time point is noted within each graph.

 $\ensuremath{\textcircled{\text{\scriptsize C}}}$ 2022 American Medical Association. All rights reserved.


eFigure 5. Receiver Operator Characteristic Curves for the Diagnostic Accuracy of Brain Biomarkers for Predicting Unfavorable outcome at 48 hours in patients that had an out-of-hospital cardiac arrest. Summary receiver operator characteristic (SROC) curves and their confidence intervals for each biomarker are presented. Each individual black/grey dot represents a unique study. We estimated optimal thresholds for each biomarker for particular weights of specificity. We weighted specificity at 75% (red symbols), 80% (green symbols), and 85% (blue symbols) with sensitivity weighted 25%, 20%, and 15% respectively. For each weight of specificity an optimal threshold on the SROC curve was determined and is reported in the figure for each variable. The SROC AUC and 95%

confidence intervals for each biomarker are: NSE- 0.83 (0.77-0.89); S100b- 0.86 (0.79-0.92); GFAP- 0.80 (0.59-0.92); NFL- 0.93 (0.86-0.97); Tau- 0.90 (0.74-0.97); UCH-L1- 0.89 (0.53-0.99).

eFigure 6. Group Differences in Brain Biomarkers Between Patients That Had an Out-of-Hospital Cardiac Arrest with Favorable and Unfavorable Neurological Outcome. The median concentration and spread (interquartile range) are reported in patients with favorable (blue squares) and unfavorable (red

circles) outcome at 0, 24, 48, and 72 hours following admission. The number of patients and studies included in the determination of the median and interquartile range for each time point is noted within each graph.

eFigure 7. QUADAS-2 assessment for risk of bias and concerns of applicability.

eTable 1. Study Characteristics.

Study	Study Design	Inclusion Criteria	Exclusion Criteria	Biomarkers assessed	Neurologic Scale	Time of outcome determination	Number of patients
Adler et al. 2021 ¹ PMID: 34328545	Retrospective	Non-traumatic OHCA	Not specified	NSE, Nf-L	CPC 1&2 vs. CPC 3-5	Hospital discharge	53
Akin et al. 2021 ² PMID: 33411836	Retrospective	OHCA patients	Death before 3-days of ICU stay	NSE, S100B	CPC 1&2 vs. CPC 3-5	Day of discharge from either inpatient medical treatment or intensive care neurological rehabilitation,	251
Auer et al. 2006 ³ PMID: 17175624	Prospective	ROSC after CPR of at least 5 min; non-traumatic normothermic IHCA or OHCA.	History of cancer before CPR; transfer from other ICUs; non- cardiac etiology for the cardiac arrest.	NSE	Survival	Survival to hospital discharge or death	17
Barbella et al. 2020 ⁴ PMID: 32044334	Retrospective	Adults admitted for cardiac arrest	Not specified	NSE	CPC 1-3 vs. 4&5	3 months post CA	158
Bongiovanni et al. 2020 ⁵ PMID: 32016534	Prospective	All comatose adult patients resuscitated from CA for whom data were available for N20 response on SSEP, complete pupillary and corneal reflexes evaluation, EEG and NSE determination	Brain death within 24h	NSE	CPC 1&2 vs. 3-5	3 months after CA	485

¹Adler et al., (2021). J Neurol. doi: 10.1007/s00415-021-10722-3

²Akin et al., (2021). PLoS One. 16(1):e0245210

³Auer et al., (2006). CJEM. 8(1):13-8.

⁴Barbella et al., (2020). Resuscitation. 149:17-23

⁵Bongiovanni et al., (2020). Intensive Care Med. 46(5):963-972

Bottiger et al. 2001 ⁶ PMID: 11390339	Prospective	Patients who had undergone CPR after nontraumatic cardiac arrest before admission to the hospital and who were covered by the local physician-staffed advanced cardiac life support system	Not specified	NSE, S100B	CPC 1 vs. CPC 4&5	14 days post ROSC	66
Choi et al. 2016 ⁷ PMID: 27287003	Prospective	All cardiac arrest patients with sustained unconsciousness, regardless of location of arrest or initial rhythm,	Age < 18 years old, traumatic arrest, marked signs of infection	NSE, S100B	CPC 1&2 vs. CPC 3-5	Hospital discharge	119
Chung-Esaki et al. 2018 ⁸ PMID: 30145080	Prospective	Adult patients ≥18 years who were resuscitated from cardiac arrest and had persistent coma after return of spontaneous circulation.	Patients with pre- existing DNR orders, pregnancy, terminal or severe coexisting systemic disease limiting life expectancy, active enrollment in experimental drug therapies/procedures which would interfere with the study or lack of surrogate decision maker to provide informed consent.	NSE	GOS 3-5 vs. 1- 2	6 months post arrest	98
Clifford- Mobley et al. 2020 ⁹ PMID: 31615270	Prospective	Post-OHCA patients who had serum NSE measured on admission	Death within the first 72h and no subsequent NSE concentration available	NSE	Survival	ICU discharge	142

⁶Bottiger *et al.*, (2001). *Circulation*. 103(22):2694-8. ⁷Choi *et al.*, (2016). *Emerg Med J*. 33(10):690-5 ⁸Chung-Esaki *et al.*, (2018). *J Clin Neurosci*. 57:99-104. ⁹Clifford Mobley *et al.* (2020). *Ann Clin Biochem*. 57(1):69-76

Daubin et al. 2011 ¹⁰ PMID: 21824428 Derwall et al.	Prospective Prospective	Patients who remained in coma at 48 hours after cardiac arrest were included in the analysis Adults >18 years	Patients who died or awoke within the first 48 hours of admission were excluded Sepsis, stroke, previous	NSE S100B	CPC 1-3 vs. 4&5 CPC 1&2 vs. 3-	3 months post CA 14 days post	97 68
2009 ¹¹ PMID: 19368739	Tospective	old suffering from non traumatic out of hospital CA	CPR and cancer in last 6 months	51000	5	ROSC	00
Deye et al. 2020 ¹² PMID: 32858156	Prospective	All comatose adult patients ≥18 years old who suffered from non-traumatic and successfully resuscitated CA with sustained ROSC (>20min), hospitalized in ICU and TTM- treated	Conscious patients, without sustained ROSC, refractory CA or cardiogenic shock after CA necessitating ECLS, DNR order and patients without any S100B values measured	NSE, S100B	CPC 1&2 vs. 3- 5	At hospital discharge and 3 months after CA	330
Disanto et al. 2019 ¹³ PMID: 31375414	Prospective	Patients with post- anoxic encephalopathy due to CA who were consecutively admitted to the ICU of Ticino Cardiocentre.	Not specified	NSE, NF-L	Survival	1 month after CA	14

¹⁰Daubin *et al.*, (2011). *BMC Cardiovasc Discord*. 11:48.
¹¹Derwall *et al.*, (2009). *Crit Care*. 13(2):R58.
¹²Deye *et al.*, (2020). *Resuscitation*. 156:251-259.
¹³Disanto *et al.*, (2019). *Epilepsy Behav*. 101(Pt B):106432

Duez et al. 2018 ¹⁴ PMID: 29175384	Retrospective	OHCA with a presumed cardiac origin, Glasgow Coma Scale below 8, sustained spontaneous circulation after resuscitation (no need for cardiac compressions for 20 min and clinical signs of circulation), aged between 18 and 80 years	Time to ROSC > 60 min, terminal disease, severe coagulopathy, unwitnessed OHCA with asystole as first rhythm, time from cardiac arrest to the initiation of cooling > 240 min, pregnancy, previous neurological disease with cognitive impairment, persistent cardiogenic shock, systolic blood pressure below 80 mmHg despite vasoactive treatment and/or aortic balloon pump intervention, suspected or confirmed acute intracerebral bleeding/acute stroke, acute coronary artery bypass surgery, or lack of consent	NSE, S100B	CPC 1&2 vs. 3- 5	6 months post discharge	115
Ebner et al. 2020 ¹⁵ PMID: 32445783	Prospective	Patients 18 years or older who were unconscious (GCS <8) on admission to hospital after out-of-hospital cardiac arrest of presumed cardiac cause, irrespective of the initial rhythm. Eligible patients had more than 20 consecutive minutes of ROSC.	Not Specified	GFAP, UCH- L1	CPC 1&2 vs. 3- 5	6 months post arrest	717

¹⁴Duez *et al.*, (2018). *Resuscitation*. 122:79-86. ¹⁵Ebner *et al.*, (2020). *Resuscitation*. 154:61-68.

Einav et al. 2012 ¹⁶ PMID: 22813607	Prospective	All patients with non-traumatic OHCA, age 18 years, who were brought after ROSC to the Shaare Zedek Medical Center	Arrest triggered by acute hemorrhage, hanging or drowning	NSE, S100B	CPC 1&2 vs. 3- 5	Within 24hr of discharge	195
Einav et al. 2013 ¹⁷ PMID: 23391666	Prospective	All patients aged ≥18 years who had undergone non- traumatic OHCA and resuscitation and were brought to the SZMC after ROSC	Patients who had arrested due to acute hemorrhage or external causes were excluded.	NSE, S100B	Survival	Hospital discharge	158
Elmer et al. 2016 ¹⁸ PMID: 26457752	Prospective	In-hospital and out-of-hospital cardiac arrest; having received chest compressions or defibrillation; ED arrests considered OHCA	Younger than 18; presented greater than 6 hours after ROSC; had withdrawal of life- sustaining therapy within 6 hours of presentation, pregnant, prisoner, or they arrested secondary to a surgical or traumatic etiology	NSE, S100B	Survival	Hospital Discharge	86
Gillick et al. 2018 ¹⁹ PMID: 29679695	Retrospective	Patients with OHCA admitted to the Intensive care unit	Not specified	NSE	CPC 1&2 vs. 3- 5	At hospital discharge	72
Gulay et al. 2016 ²⁰ PMID: 27966313	Prospective	Not Specified	Age under 18, head trauma, trauma related arrest, status epilepticus, and patients who died in first 24 hours	NSE, S100B, GFAP	GOS 3-5 vs. 1&2	Discharge	30

¹⁶Einav et al., (2012). J Am Coll Cardiol. 60(4):304-11.

¹⁷Einav et al., (2013). Resuscitation. 84(8):1083-8

¹⁸Elmer *et al.*, (2016). *Crit Care Med.* 44(1):111-9. ¹⁹Gillick *et al.*, (2018). *Resuscitation*. 128:24-30.

²⁰Gulay et al., (2016). Turk J Med Sci. 46(5):1459-1468.

Hasper et al. 2009 ²¹ PMID: 19874577	Retrospective	Not Specified	Death before 3rd day of study, incomplete data records, pre- existing need for renal replacement therapy, pre-existing advanced renal disease	NSE	CPC 1&2 vs. 3- 5	ICU Discharge	171
Hasslacher et al. 2014 ²² PMID: 25138227	Prospective	All consecutive adult patients (at least 18 years) admitted to the medical ICU after successful CPR.	Presence of neuroendocrine tumour, stroke, intracranial hemorrhage or trauma as a cause of CA or life expectancy of <24h as determined by the treating physicians.	NSE	CPC 1&2 vs. 3- 5	At hospital discharge	134
Hasslacher et al. 2020 ²³ PMID: 32004662	Prospective	Adult patients aged ≥18 years with an in-hospital or out- of-hospital cardiac arrest with presumed cardiac cause admitted to the ICU after successful CPR	Presence of neuroendocrine tumour, stroke, intracranial hemorrhage or trauma as a cause of CA or life expectancy of <24h as determined by the treating physicians.	Tau	CPC 1&2 vs. 3- 5	Discharge from hospital or at death in ICU	132
Hayashida et al. 2010 ²⁴ PMID: 20033352	Retrospective	Out of hospital cardiac arrest patients admitted to the emergency medical center	Patients with a history of trauma, extracorporeal CPR, severe stroke on initial head CT, withdrawal due to terminal disease or persistent untreatable hypotension	GFAP	CPC 1&2 vs. 3- 5	6 months after ROSC	21

²¹Hasper *et al.*, (2009). *Crit Care*. 13(5):R168.
²²Hasslacher *et al.*, (2014). *Intensive Care Med*. 40(10):1518-27.
²³Hasslacher *et al.*, (2020). *Resuscitation*. 148:207-214.
²⁴Hayashida *et al.*, (2010). *Neurocrit Care*. 12(2):252-7.

Helwig et al. 2017 ²⁵ PMID: 28054291	Prospective	A documented successful out of hospital or in- hospital CPR within the last 60 h	 (1) age under 18 years, (2) previous stroke within the last 12 months, (3) traumatic brain injury within the last 12 months, (4) any brain tumor in medical history 	NSE, GFAP	mGOS 0-3 vs. 4&5	4 weeks after CPR	100
Hoiland et al. 2021 ²⁶ PMID: 34287000	Prospective	Eligible patients met the following inclusion criteria: a) age \geq 19; b) sustained cardiac arrest $>$ 10 minutes requiring cardiopulmonary resuscitation; c) post-return of spontaneous circulation (ROSC) Glasgow Coma Score \leq 8 and motor score \leq 5 in the absence of clinical confounders (sedative medications, core body temperature < 35°C, electrolyte disturbances, hypoglycemia); d) study enrollment with 72 hours of the initial cardiac arrest.	Patients were excluded if they met any of the following: a) anticipated withdrawal of life-sustaining therapies within the next 24 hours; b) previous or current traumatic brain injury, intracranial hemorrhage or stroke; c) concurrent coagulopathy (international normalized ratio > 1.5, prothrombin time > 40 seconds, platelet count < 100 x 10 ⁹ cells); d) concurrent anti-platelet or anticoagulant medications; e) anticipated cardiac catheterization within the next 7 days.	NSE, GFAP, Nf-L, Tau, UCH-L1	CPC 1&2 vs. 3-5	6 months post arrest	18

Huang et al. 2016 ²⁷ PMID: 27256246	Prospective	Eligible patients included adult (> 18 years old) non- traumatic OHCA patients who were successfully resuscitated with sustained ROSC for more than 20 minutes	Patients were excluded if they were transferred to other hospitals for post-cardiac arrest care, or if their relatives or surrogates refused to participate in the study. Patients with do not attempt resuscitation orders and those expecting to survive for less than 180 days due to underlying diseases before the cardiac arrest also were excluded	S100B	Survival	Hospital discharge	99
Huesgen et al. 2021 ²⁸ PMID: 34223394	Prospective	Non-traumatic OHCA patients	Patients were excluded if pregnant, incarcerated, or had advanced directives precluding resuscitation. Other exclusion criteria were the presence of another neurologic disease, brain injury, brain cancer, end-stage renal disease, and end-stage liver disease.	GFAP, Nf-L, UCH-L1, Tau, & S100B	CPC 1&2 vs. CPC 3-5	6 months post arrest	22
Hunziker et al. 2021 ²⁹ PMID: 33472689	Prospective	OHCA patients	None	NSE & Nf-L	CPC 1&2 vs. CPC 3-5	Hospital discharge	164
Jakkula et al. 2019 ³⁰ PMID: 31088512	Retrospective	Not Specified	Not Specified	NSE	CPC 1&2 vs. 3- 5	6 months post arrest	118

²⁷Huang *et al.*, (2016). *Sci Rep.* 6:27187.
²⁸Huesgen *et al.*, (2021). *Resusc Plus.* 7:100133.
²⁹Hunziker *et al.*, (2021). *Crit Care.* 25(1):32.
³⁰Jakkula *et al.*, (2019). *Crit Care.* 23(1):171.

Jang et al. 2019 ³¹ PMID: 30732223	Prospective	Adult patients (aged >18 years) who were successfully resuscitated and achieved ROSC after non-traumatic out of hospital CA (OHCA) and then received TTM at 33°C were enrolled in this study	Patients with possible causes of coma other than CA (head injury, poisoning, or cerebrovascular accident) and those with severe neurological disorder or stroke, end-stage non-cardiac disease, severe disability (Glasgow-Pittsburgh cerebral performance category, CPC \geq 3), or end-stage renal or liver disease were excluded. In addition, patients who died within 24hours after hospital admission were not included.	S100B	CPC 1&2 vs. 3-5	3 months post CA	97
Kaneko et al. 2017 ³² PMID: 28482803	Prospective	Not Specified	Trauma, non- cardiogenic disorder	NSE, S100B	CPC 1&2 vs. 3- 5	Hospital discharge	43
Kang et al. 2021 ³³ PMID: 33917473	Prospective	Adult comatose OHCA patients treated with TT<.	Next of kin declined treatment following cardiac arrest, <18 years of age, if the cardiac arrest was cause due to trauma, failure to maintain TTM, ineligibility for lumbar puncture	NSE, S100B	CPC 1&2 vs. CPC 3-5	3 months after ROSC	45

³¹Jang *et al.*, (2019). *Medicine (Baltimore)*. 98(6):e14496.
 ³²Kaneko *et al.*, (2017). *BMC Cardiovasc Disord*. 17(1):111.
 ³³Kang *et al.*, (2021). *J Clin Med*. 10(7):1531.

Kim et al. 2012 ³⁴ PMID: 22932993	Retrospective	OHCA patients older than 15 years who were treated with mild hypothermia and underwent a brain MRI for prognostic purposes were identified	Not Specified	NSE	CPC 1&2 vs. 3- 5	6 months post arrest	43
Kim et al. 2020 ³⁵ PMID: 33002033	Retrospective	Patients who underwent at least one NSE value measurement between 48 and 72 hours after ROC and received both a brain CT scan within 24 hour after ROSC and DW-MRI within 7 days after ROSC	Age <18years old, CA due to trauma or intracranial hemorrhage, a previous history of neurological disease and CT or DW- MRI with a poor image quality	NSE	CPC 1&2 vs. 3-5	6 months after CA	109
Larsson et al. 2014 ³⁶ PMID: 25260722	Prospective	Inclusion criteria were CA treated with TH and age > 18 years.	Not specified	NSE, S100B, GFAP	CPC 1&2 vs. 3- 5	6 months post arrest	125

Lascarrou et al.	Prospective	Patients	Exclusion criteria were	NSE	CPC 1&2 vs.	90 days post	101
202137	1	resuscitated after	a no-flow time > 10		CPC 3-5	arrest	
PMID:		cardiac arrest in a	minutes; a low-flow				
33301887		non-shockable	time (from initiation of				
		rhythm due to any	CPR to ROSC) of more				
		cause, ≥ 18 years of	than 60 minutes; major				
		age	hemodynamic				
		C	instability (continuous				
			epinephrine or				
			norepinephrine				
			infusion >1				
			μg//Kg/min); time from				
			cardiac arrest to				
			screening of more than				
			300 minutes; moribund				
			condition; Child–Pugh				
			class C cirrhosis of the				
			liver; pregnancy or				
			breast-feeding; status				
			of being under				
			guardianship; status of				
			being an inmate at a				
			correctional facility;				
			previous inclusion in				
			another randomized,				
			controlled trial				
			involving patients with				
			cardiac arrest in which				
			the neurologic outcome				
			at 90 days was assessed				
			as the primary end				
			point; lack of health				
			insurance; and decision				
			by the next of kin for				
			the patient not to				
			participate.				

Leao et al. 2015 ³⁸ PMID: 26761469	Prospective	Systolic BP >80, GCS <9,	Patients with a core temperature lower than 30°C, coagulopathy, cryoglobulinemia, severe bleeding, intracerebral hemorrhage and known terminal illness were excluded.	NSE	CPC 1&2 vs. 3- 5	6 months (not specified if post d/c or arrest)	67
Lee et al. 2020 ³⁹ PMID: 31187435	Retrospective	Non-traumatic comatose cardiac arrest survivors >18years old who were treated with TH and for whom HbA1c was measured.	Transferred to another facility or died during TH, no measurement of HbA1c, treated with a target temperature other than 33 degrees Celsius and/or target duration other than 24h, received ECMO during post-cardiac arrest care or missing data regarding glucose levels during TH.	NSE	CPC 1&2 vs. 3- 5	6 months after CA	384

Lee et al.	Retrospective	OHCA patients	Confirmation of	NSE	CPC 1&2 vs.	6 months post-	475
202140	-	>18 years of age	hemorrhagic or		CPC 3-5	cardiac arrest	
PMID:			ischemic stroke as the				
34302037			cause of cardiac arrest,				
			CPC of 3 or 4 before				
			cardiac arrest, body				
			temperature <30 °C				
			upon arrival, non-				
			provision of post-				
			resuscitation care,				
			including TTM,				
			meaningful response to				
			verbal commands				
			following ROSC, non-				
			measurement of serum				
			NSE level at 48 or 72 h				
			afer ROSC, non-				
			assessment of FOUR				
			score or GCS score				
			afer ROSC, initial GCS				
			score>8, WLST, and				
			unknown neurological				
			outcome at 6 months.				

Martens et al. 1996 ⁴¹ PMID: 8808372	Prospective	Patients who sustained cardiac arrest (out of hospital or in hospital) who did not wake up shortly after ROSC.	Patients dying due to cardiac failure before level of consciousness could be adequately assessed.	NSE	Survival	At discharge from ICU	34
Martinez-Losas et al. 2020 ⁴² PMID: 30857978	Retrospective	In and out of hospital CA survivors of suspected cardiac origin, irrespective of initial rhythm and cooled to 32 degrees to 34 degrees for 24 hours, confirmation of both persistent comatose state after ROSC and absence of contraindications for TTM, and had at least 1 serum NSE determination during hospitalization and did not die within 72 hours after admission.	Not specified	NSE	CPC 1&2 vs. 3-5	3 months after CA	320

⁴¹Martens (1996). *Acad Emerg Med.* 3(2):126-31. ⁴²Martinez-Losas *et al.*, (2020). *Rev Esp Cardiol (Engl Ed).* 73(2):123-130.

Mattsson et al. 2017 ⁴³ PMID: 28981963	Prospective	The TTM trial was a prospective study of effects of targeted temperature management at 33C versus 36C in patients who were unconscious after out-of-hospital cardiac arrest.	Not specified	NSE, Tau (NSE not included in analyses to avoid duplication)	CPC 1&2 vs. 3- 5	6 months post CA	689
Meisner et al. 2020 ⁴⁴ PMID: 30397762	Retrospective	Patients successfully resuscitated from non-traumatic cardiac arrest outside of the hospital.	Patients who died within 8 hours, with missing information on the temperature profile or who were under 18 years of age.	NSE	GOS 3-5 vs. 1&2	Time of transfer out of the ICU	149
Mortberg et al. 2011 ⁴⁵ PMID: 22092212	Prospective	Patients resuscitated from CA of age >18 years, systolic pressure >80mmHg for more than 5 min after ROSC and unconscious with GCS <7 and included within 6h after CA.	Patients with terminal disease.	Tau	CPC 1&2 vs. 3- 5	At discharge and 6 months after CA. The higher of the 2 CPC scores were used for patients who died after ICU discharge.	22

⁴³Mattsson *et al.*, (2017). Ann Neurol. 82(5):665-675.
 ⁴⁴Meisner *et al.*, (2020). Med Klin Intensivmed Notfmed. 115(1):43-51.
 ⁴⁵Mortberg *et al.*, (2011). Acta Anaesthesiol Scand. 55(9):1132-8.

Moseby- Knappe et al. 2019 ⁴⁶ PMID: 30383090	Prospective	Patients 18 years or older who were unconscious (GCS <8) on admission to hospital after out-of-hospital cardiac arrest of presumed cardiac cause, irrespective of the initial rhythm. Eligible patients had more than 20 consecutive minutes of ROSC.	Interval from the return of spontaneous circulation to screening of more than 240 minutes, unwitnessed arrest with asystole as the initial rhythm, suspected or known acute intracranial hemorrhage or stroke and a body temperature of <30 degrees Celcius.	NSE, S100B, NF-L, Tau (NSE not included in analyses to avoid duplication)	CPC 1&2 vs. 3- 5	6 months after CA	717
Moseby- Knappe et al. 2021 ⁴⁷ PMID: 34417831	Retrospective	Patients 18 years of age or older who were unconscious (GCS <8) on admission to the hospital after out-of-hospital cardiac arrest of presumed cardiac cause, irrespective of the initial rhythm. More than 20 consecutive minutes of spontaneous circulation after resuscitation.	An interval from the return of spontaneous circulation to screening of more than 240 minutes, unwitnessed arrest with asystole as the initial rhythm, suspected or known acute intracranial hemorrhage or stroke, and a body temperature of less than 30°C.	NSE, S100B, Nf-L, Tau, UCH-L1, GFAP	CPC 1&2 vs. CPC 3-5	6 months post- cardiac arrest	717

Nakstad et al. 2020 ⁴⁸ PMID: 31926258	Prospective	Patients ≥18 years old, comatose (GCS<9) OHCA patients of cardiac and non-cardiac causes with stable ROSC (>20min).	OHCA following trauma/acute onset intra-cerebral pathology, CPR<5min followed by spontaneous awakening, OUHU admission >6h after OHCA and treatment withdrawal in the ED (based on an abstain- from-resuscitation wish, terminal cancer disease, or very advanced age/dementia).	NSE	CPC 1&2 vs. 3-5	6 months after OHCA	259
Okasanen et al. 2009 ⁴⁹ PMID: 18954930	Retrospective	Out-of-hospital VF of presumed cardiac origin, witnessed arrest, age ≥ 18 years, basic life support delayed less than 15min, ROSC less than 35 min and unresponsiveness at hospital admission	Persistent hypotension (MAP <65mmHg for >30min) despite therapy, pregnancy, terminal illness, pre- arrest illness limiting follow-up (e.g Dementia) or DNR order.	NSE	CPC 1&2 vs. 3-5	6 months after CA	90
Peluso et al. 2021 ⁵⁰ PMID: 34356123	Retrospective	Adult patients (>18 years) who remained with a Glasgow coma scale (GCS) <9 after hospital admission and were admitted into the intensive care unit (ICU).	Patients with early deaths or awakening (<24 h) who did not have at least two prognostic tools assessed.	NSE	CPC 1&2 vs. CPC 3-5	3 months after CA	137

⁴⁸Nakstad *et al.*, (2020). *Resuscitation*. 149:170-179.
 ⁴⁹Oksanen *et al.*, (2009). *Resuscitation*. 80(2):165-70.
 ⁵⁰Peluso *et al.*, (2021). *Brain Sci*. 11(7):888.

Pfeifer et al. 2005 ⁵¹ PMID: 15797275	Prospective	Patients who arrived at our ICU within 12hours after ROSC and survived for a minimum of 48h	Not specified	NSE, S100B	GOS 3-5 vs. 1&2	28 days after CPR	97
Prohl et al. 2007 ⁵² PMID: 17414735	Prospective	Glasgow Coma scale ≤3	Patients were excluded if the observed interval between collapse and the start of cardiopulmonary resuscitation had lasted for >15 mins. Excluded in ROSC could not be achieved in 60minutes. Patients with previous cardiac arrest and with known or co-existing neurologic disorders or neoplasms of the amine precursor uptake and decarboxylation system were excluded.	NSE, S100B	CPC 1-3 vs. 4&5	6-months post arrest	80
Rana et al. 2012 ⁵³ PMID: 22322567	Prospective	Witnessed out of hospital CA of presumed cardiac origin	Presence of previous neurological disease or pregnancy	NSE, S100B	GOS 3-5 vs. 1&2; mGOS 3- 5 vs. 1&2	6 months after CA	97
Rana et al. 2013 ⁵⁴ PMID: 23287695	Prospective	Age 18-80 years old, witnessed out of hospital CA of presumed cardiac origin, absence of previous neurological disease and pregnancy	Not specified	NF-L	mGOS 3-5 vs. 1&2	6 months after CPR	61

⁵¹Pfeifer *et al.*, (2005). *Resuscitation*. 65(1):49-55.
⁵²Prohl *et al.*, (2007). *Crit Care Med*. 35(5):1230-7.
⁵³Rana *et al.*, (2012). *Clin Res Cardiol*. 101(7):533-43
⁵⁴Rana *et al.*, (2013). *Int J Cardiol*. 168(2):1322-7

Roger et al. 2015 ⁵⁵ PMID: 26324761	Retrospective	Our inclusion criteria included adult patients (18 years) successfully resuscitated following OHCA and admitted to ICUs	In-hospital cardiac arrest patients and patients who died before ICU admission were excluded	NSE	CPC 1&2 vs. 3- 5	6 months post CA	80
Rosen et al. 2001 ⁵⁶ PMID: 11382525	Prospective	Patients with OHCA	Patients with a fatal outcome within 24 h were not included in the study. (17 patients with cardiac arrests were not included for technical reasons.)	NSE, S100B	GOS 3-5 vs. 1&2	Days 14, 45, 90 and 365 post arrest - used the best recorded result at any of the examinations	65
Rossetti et al. 2012 ⁵⁷ PMID: 22323758	Prospective	Consecutive comatose adults admitted between December 2009 and April 2011 to the Department of Intensive Care Medicine of our hospital, after successful resuscitation from CA, and treated with TH	Patients diagnosed as being in brain death upon rewarming, or without signs of EEG activity ("flat recording"), were not included in the study	NSE	CPC 1&2 vs. 3- 5	3 months from discharge	61
Ruivo et al. 2016 ⁵⁸ PMID: 27374413	Retrospective	Comatose adults (unable to follow verbal commands after ROSC) aged ≥18 years admitted to the ICU with ROSC after in- hospital or out-of- hospital CA who were treated by TH	Patients without known time of CA, in a comatose state before CA, or with a terminal illness that preceded CA were excluded	NSE	CPC 1&2 vs. 3- 5	6 months post discharge	15

⁵⁵Roger et al., (2015). Anaesth Crit Care Pain Med. 34(4):231-7.
 ⁵⁶Rosen et al., (2001). Resuscitation. 49(2):183-91.
 ⁵⁷Rossetti et al., (2012). Neurology. 78(111):796-802.
 ⁵⁸Ruivo et al., (2016). Rev Port Cardiol. 35(7-8):423-31.

Ryczek et al. 2021 ⁵⁹ PMID: 34125928	Prospective	OHCA patients who remained unconscious at first presentation with a Glasgow Coma Scale score ≤8.	Not specified	NSE	CPC 1&2 vs. CPC 3-5	Discharge (ICU or hospital discharge not specified)	82
Ryoo et al. 2020 ⁶⁰ PMID: 31936049	Retrospective	Age >18 years; OHCA; unconsciousness after ROSC; treated with TTM	Intracranial hemorrhage, acute stroke, DNR, pre-arrest cerebral dysfunction, severe comorbidity and expected death within 180 days	NSE	CPC 1&2 vs. 3- 5	28 days after cardiac arrest	160
Samaniego et al. 2011 ⁶¹ PMID: 20680517	Prospective	Age 18 years or older, successful cardiopulmonary resuscitation and persistent coma defined as: no eye opening to voice and inability to follow commands	Pre-existing "do not resuscitate" status, severe coexisting systemic disease with a limited life expectancy, and brain death, patients who died within 72h of initial cardiac arrest.	NSE	GOS 3-5 vs. 1&2	3 months post arrest	85

Scheel et al.	Retrospective	Cranial CT within	Thirteen patients were	NSE	CPC 1&2 vs. 3-	ICU Discharge	98
201362		first seven days	excluded from further		5		
PMID:		following cardiac	analysis for findings				
23566292		arrest	that would have biased				
			measurement of				
			Hounsfield units and				
			GWR calculation (only				
			contrast enhanced CCT				
			available (3),				
			hydrocephalus and				
			shunt artifact (3),				
			severe movement				
			artifacts (2),				
			intracerebral				
			hemorrhage (3), old				
			large ischemic lesion				
			(1), massive				
			calcification of the				
			basal ganglia (1)				
Schoerkhuber	Prospective	Adult patients aged	No ROSC could be	NSE	CPC 1&2 vs. 3-	Best CPC	56
et al. 1999 ⁶³	_	18-75 years	achieved or if		5	within 6	
PMID:		admitted after	spontaneous circulation			months after	
10436107		witnessed, non	returned within the first			ROSC	
		traumatic,	minute of collapse				
		normothermic, in-	-				
		or out of hospital					
		cardiac arrest					

Schrage et al.	Retrospective	Patients admitted	Patients who were	NSE	CPC 1-3 vs.	Hospital	129
201964	1	for ECMO	awake within 24h after		4&5	discharge	
PMID:		treatment of	the index event and			C	
30654013		cardiogenic shock	patients who decreased				
		or refractory	within 24h after the				
		cardiac arrest and	index event				
		prior CPR. Only					
		patients with					
		ECMO					
		implantation					
		within 6h after					
		CPR or ECMO					
		implantation					
		during active CPR					
		and with available					
		NSE were selected.					

Shinozaki et al.	Prospective	All patients	Death before admission	NSE, S100B	CPC 1&2 vs. 3-	Best-ever	80
200965		presented with	or within 20 min after		5	achieved CPC	
PMID:		either out-of-	ROSC, age under 17			within 6	
19535196		hospital or in-	years, previously			months from	
		hospital non-	known irreversible			the onset of CA	
		traumatic CA were	brain damage (CPC 3-4			in cases	
		included if they	before CA event),			"discharged	
		met the definition	recovery of			alive" and best-	
		for "survived	consciousness			ever achieved	
		event" who	(GCS <u>></u> 9) soon after			CPC for the	
		remained	ROSC until admission,			time period	
		unconscious	patients whose CPC			between onset	
		(GCS < 8) and age	were not evaluated due			of CA and in-	
		\geq 18 years.	to death under			hospital death	
		"Survived event"	analgesic sedation.			in cases	
		in the out-of-				"discharged	
		hospital setting				dead." In cases	
		indicates sustained				of "discharged	
		spontaneous				dead within 24h	
		circulation				after CA," the	
		following ROSC				patients who	
		until admission				had no	
		and transfer of care				consciousness	
		to the medical staff				were classified	
		at the receiving				into "poor	
		hospital. In the in-				neurological	
		hospital setting,				outcome."	
		"survived event"					
		means sustained					
		circulation					
		following ROSC					
		for >20min.					

Son et al. 2020 ⁶⁶ PMID: 32164225	Retrospective	Adult comatose out-of-hospital cardiac arrest survivors treated with TTM, patients with collected NSE levels who underwent brain imaging (CT, MRI or both) after ROSC	Patients aged <18 years, patients with traumatic CA, patients with an interrupted TTM, patients not eligible for TTM, patients administered extracorporeal membrane oxygenation and patients ineligible for lumbar puncture.	NSE	CPC 1&2 vs. 3- 5	3 months after CA	58
Song et al. 2010 ⁶⁷ PMID: 20047785	Prospective	Patients who presented with CA	Gained ROSC before arriving to ED, did not receive CPR due to DNR order, were regarded as dead on arrival or were pregnant	S100B	Survival	1 month after CA	151
Song et al. 2021 ⁶⁸ PMID: 33922191	Retrospective	Non-traumatic comatose OHCA adult survivors >18 years of age and treated with TTM	Ineligible for TTM, who failed to maintain a temperature of 33°C during TTM due to unstable hemodynamics, whose TTM initiation was performed 6 h after ROSC, who had insufficient laboratory data obtained <6 h after ROSC, or those who had missing information at the time of CA or CPR.	NSE	CPC 1&2 vs. CPC 3-5	3 months after ROSC	106
Stammet et al. 2013 ⁶⁹ PMID: 23684684	Prospective	Unconscious on admission, GCS <8	Not Specified	NSE, S100B	CPC 1&2 vs. 3- 5	6 months (not specified if post arrest or post d/c)	75

⁶⁶Son et al., (2020). J Clin Med. 9(3):744.

⁶⁷Song *et al.*, (2010). *Resuscitation*. 81(3):337-42.
⁶⁸Song *et al.*, (2021). *J Clin Med*. 10(9):1825.
⁶⁹Stammet *et al.*, (2013). *J Am Coll Cardiol*. 62(9):851-8.

Stammet et al.	Prospective	Patients 18 years	Interval from the return	NSE	CPC 1&2 vs. 3-	6 months after	686
2015 ⁷⁰		or older who were	of spontaneous		5	CA	
PMID:		unconscious (GCS	circulation to screening				
25975474		<8) on admission	of more than 240				
		to hospital after	minutes, unwitnessed				
		out-of-hospital	arrest with asystole as				
		cardiac arrest of	the initial rhythm,				
		presumed cardiac	suspected or known				
		cause, irrespective	acute intracranial				
		of the initial	hemorrhage or stroke				
		rhythm. Eligible	and a body temperature				
		patients had more	of <30 degrees Celsius.				
		than 20					
		consecutive					
		minutes of ROSC.					
Stammet et al.	Prospective	Patients 18 years	Not Specified	S100B	CPC 1&2 vs. 3-	6 months (not	687
201771		or older who were			5	specified if post	
PMID:		unconscious (GCS				arrest or post	
28629472		<8) on admission				d/c)	
		to hospital after					
		out-of-hospital					
		cardiac arrest of					
		presumed cardiac					
		cause, irrespective					
		of the initial					
		rhythm. Eligible					
		patients had more					
		than 20					
		consecutive					
		minutes of ROSC.					

⁷⁰Stammet *et al.*, (2015). *J Am Coll Cardiol*. 65(19):2104-14. ⁷¹Stammet *et al.*, (2017). *Crit Care*. 21(1):153.

Stefanizzi et al. 2020 ⁷² PMID: 32575355	Retrospective	25 cardiac arrest patients with either a good (CPC 1) or poor (CPC 5) neurological outcome at 6 months were enrolled in this study.	Not specified	NSE	CPC 1 vs. 5	Six months (post-CA or discharge not specified)	50
Steffen et al. 2010 ⁷³ PMID: 20403168	Retrospective	Not Specified	Not Specified	NSE	CPC 1&2 vs. 3- 5	ICU discharge	230
Storm et al. 2012 ⁷⁴ PMID: 22284447	Prospective	Thirty-five consecutive patients resuscitated from cardiac arrest were included in the study.	Not specified	NSE	CPC 1&2 vs. 3- 5	Discharge from ICU	35
Streitberger et al. 2017 ⁷⁵ PMID: 28426467	Retrospective	Shockable or non- shockable rhythm, TTM,	Not Specified	NSE	CPC 1&2 vs. 3- 5	At ICU discharge	1053
Sugita et al. 2017 ⁷⁶ PMID: 28950909	Prospective	Patients who achieved ROSC from OHCA and who were brought to the emergency and critical care department, regardless of cardiac or non- cardiac etiology.	Informed consent not obtained, cases of multiple trauma, end stage malignancy, death in the ED, bedridden prior to hospitalization and <18 years old.	NSE	CPC 1&2 vs. 3- 5	90 days after ROSC	128

⁷²Stefanizzi *et al.*, (2020). *Int J Mol Sci*. 21(12):4353.
⁷³Steffen *et al.*, (2010). *Crit Care*. 14(2):R69.
⁷⁴Storm *et al.*, (2012). *Scand J Trauma Resusc Emerg Med*. 20:6.
⁷⁵Streitberger *et al.*, (2017). *Crit Care Med*. 45(7):1145-1151.
⁷⁶Sugita *et al.*, (2017). *Crit Care*. 21(1):247.

Tat et al. 201977	Prospective	Between ages of	Age under 18 or over	NSE, S100B	Survival	30 days post	40
PMID:		18-85 and cardiac	85, pregnancy, trauma,			arrest	
30650128		arrest	acute bleeding from				
			non-traumatic				
			condition, re-arrest				
			with unsuccessful				
			resuscitation within 6				
			hours of hospital				
			arrival, arrest				
			secondary to				
			hypothermia, terminal				
			neoplastic disease,				
			inmates, and absence				
			of informed consent.				

Tiainen et al. 2003 ⁷⁸ PMID: 14631087	Prospective	All adult patients aged 18-75 years of age, witnessed out of hospital CA, ventricular fibrillation or non- perfusing tachycardia as initial rhythm, presumed cardiac origin of arrest, estimated interval of 5-15min from collapse to first attempt at resuscitation by emergency medical personnel and an interval of <60minutes from collapse to ROSC.	Presence of emergency medical personnel, CA from intoxication or trauma, response to verbal command after ROSC and before randomization, tympanic temperate <30 degrees celsius on admission, evidence of hypotension (MAP <60mmHg) for >30min after ROSC and before randomization, evidence of hypoxia (arterial O2 sat <85%) for >15 minutes after ROSC and before randomization, a terminal illness, pre- existing coagulopathy,	NSE, S100B	CPC 1&2 vs. 3- 5	6 months after CA	70
Tsetsou et al. 2018 ⁷⁹ PMID: 28337603	Prospective	Patients older than 18 years successfully resuscitated after CA (in-hospital: out-of-hospital CA ratio was 1:10), who were managed with TTM at 36degrees C in the medical-surgical intensive care unit	pregnancy, unavailable for follow-up, enrollment in another study. Patients that died within 24 h after CA were excluded	NSE	CPC 1&2 vs. 3- 5	3 months from discharge	61

Wihersaari et al. 2019 ⁸⁰ PMID: 31022497	Prospective	OHCA patients who were unconscious and admitted to Finnish ICU, those with biomarkers	Not Specified	NSE	CPC 1&2 vs. 3- 5	12 months post arrest	249
Wihersaari et al. 2021 ⁸¹ PMID: 32852582	Prospective	120 comatose OHCA patients resuscitated from an initial shockable rhythm	Not Specified	NF-L	CPC 1&2 vs. 3- 5	6 months after CA	112
Wurm et al., 2021 ⁸² PMID: 34342833	Retrospective	Patients were included with a Glasgow Coma Scale score of 3 at admission and when the reason for cardiac arrest was either cardiac, respiratory, hemodynamic, or metabolic.	Patients were excluded when there was a history of previous cardiac arrest, neurological disorders or central nervous system neoplasms, psychiatric illness, substance abuse including alcohol, and the ongoing use of psychotropic medications.	NSE, S100B, Nf-L	CPC 1&2 vs. CPC 3-5	6 months following cardiac arrest	70
You et al. 2019 ⁸³ PMID: 31585184	Prospective	OHCA patients >18 years old who had been treated using TTM	Patients with traumatic cardiac arrest, patients ineligible for lumbar puncture (ie. Brain CT showed severe cerebral edema, obliteration of the basal cisterns or an occult intracranial mass lesion), patients receiving ECMO, relatives unable to consent to an LP	NSE	CPC 1&2 vs. 3- 5	6 months after ROSC	34

⁸⁰Wihersaari et al., (2019). Resuscitation. 139:214-221.

⁸¹Wihersaari et al., (2021). Intensiv Care Med. 47(1):39-48.
⁸²Wurm et al., (2021). Neurocrit Care. Doi: 10.1007/s12028-021-01321-1

⁸³You et al., (2019). Resuscitation. 145:185-191.

Zellner et al. 2013 ⁸⁴ PMID: 23528678	Retrospective	Coma after cardiac arrest with ROSC. Patients needed to be 18 years or older. Furthermore the decision to apply TH needed to be made by the attending physician. The patients also needed to survive the first night in the ICU	Patients with do-not- resuscitate/-do-not- intubate orders after initial cardiopulmonary resuscitation(CPR) and patients with in- hospital cardiac arrests in the operating room, the catheterization lab, on an ICU or with telemetry.	NSE, S100B	CPC 1&2 vs. 3- 5	6 months post discharge	123
Zhai et al. 2020 ⁸⁵ PMID: 32802436	Retrospective	All emergency department OHCA patients who achieved ROSC.	Pre-arrest cognitive impairment, existing terminal illness, missing data regarding baseline characteristics, or outcome	NSE	Survival	Hospital discharge	61
Zingler et al. 2003 ⁸⁶ PMID: 12584414	Prospective	Not Specified	Hypothermia (<35C)	NSE, S100B	CPC 1-3 vs. 4&5	12 weeks post arrest	27

eTable 2. Receiver Operator Characteristic Curve Analysis for the Diagnostic Accuracy of Brain Biomarkers for Predicting Unfavorable outcome at 48 hours in patients where outcome was determined ≥3 months following cardiac arrest.

	AUC	95% CI's
NSE	0.83	0.75 - 0.89
S100B	0.85	0.76 - 0.90
GFAP	0.81	0.46 - 0.96
Nf-L	0.92	0.88 - 0.95
Tau	0.86	0.73 - 0.93
UCH-L1	0.88	0.52 - 0.99

eTable 3. Concentration thresholds for each biomarker. Concentration threshold and corresponding sensitivity to achieve 95% & 100% specificity for each biomarker. Values are derived from the SROCs presented in the main analysis (Figure 2).

Biomarker	Specificity Cut-Off	Sensitivity	Concentration Threshold (ug/L or pg/mL)
NSE	95%	55%	46.7
	100%	6%	455
S100B	95%	56%	0.287
	100%	5%	5.95
GFAP	95%	52%	287
	100%	11%	33392
NF-L	95%	78%	553
	100%	21%	44766
Tau	95%	64%	91.5
	100%	2.9%	8176
UCH-L1	95%	64%	583
	100%	6%	11644

Study	Outcome determination	Sample size
Barbella et al. 2020; PMID: 32044334	3 months post CA	158
Bongiovanni et al. 2020; PMID: 32016534	3 months after CA	485
Bottiger et al. 2001; PMID: 11390339	14 days post ROSC	66
Clifford-Mobley et al. 2020; PMID: 31615270	ICU discharge	142
Daubin et al. 2011; PMID: 21824428	3 months post CA	97
Derwall et al. 2009; PMID: 19368739	14 days post ROSC	68
Deye et al. 2020; PMID: 32858156	At hospital discharge and 3 months after CA	330
Disanto et al. 2019; PMID: 31375414	1 month after CA	14
Einav et al. 2012; PMID: 22813607	Within 24hr of discharge	195
Hasper et al. 2009; PMID: 19874577	ICU Discharge	171
Helwig et al. 2017; PMID: 28054291	4 weeks after CPR	100
Jang et al. 2019; PMID: 30732223	3 months post CA	97
Kang et al. 2021; PMID: 33917473	3 months after ROSC	45
Lascarrou et al. 2021; PMID: 33301887	90 days post arrest	101
Martens et al. 1996; PMID: 8808372	At discharge from ICU	34
Martinez-Losas et al. 2020; PMID: 30857978	3 months after CA	320
Meisner et al. 2020; PMID: 30397762	Time of transfer out of the ICU	149
Peluso et al. 2021; PMID: 34356123	3 months after CA	137
Pfeifer et al. 200; PMID: 15797275	28 days after CPR	97
Rosen et al. 2001; PMID: 11382525	Days 14, 45, 90 and 365 post arrest	65
Rossetti et al. 2012; PMID: 22323758	3 months from discharge	61
Ryczek et al. 2021; PMID: 34125928	Discharge (ICU or hospital discharge not specified)	82
Ryoo et al. 2020; PMID: 31936049	28 days after cardiac arrest	160
Samaniego et al. 2011; PMID: 20680517	3 months post arrest	85
Scheel et al. 2013; PMID: 23566292	ICU Discharge	98
Son et al. 2020; PMID: 32164225	3 months after CA	58
Song et al. 2010; PMID: 20047785	1 month after CA	151
Song et al. 2021; PMID: 33922191	3 months after ROSC	106
Steffen et al. 2010; PMID: 20403168	ICU discharge	230
Storm et al. 2012; PMID: 22284447	Discharge from ICU	35
Streitberger et al. 2017; PMID: 28426467	At ICU discharge	1053
Sugita et al. 2017; PMID: 28426467	90 days after ROSC	128
Tat et al. 2019; PMID: 30650128	30 days post arrest	40
Tsetsou et al. 2018; PMID: 28337603	3 months from discharge	61
Wihersaari et al. 2019; PMID: 31022497	12 months post arrest	249
Zingler et al. 2003; PMID: 12584414	12 weeks post arrest	27
36 studies (41.9% of total)		5495 patients (52.0% of total)

eTable 4. Studies including outcome determination at times other than hospital discharge and 6-months.

CA, Cardiac arrest; CPR, cardiopulmonary resuscitation; ICU, Intensive care unit; ROSC, return of spontaneous circulation

Study	Sample size
Auer et al. 2006; PMID: 17175624	17
Clifford-Mobley et al. 2020; PMID: 31615270	142
Disanto et al. 2019; PMID: 31375414	14
Einav et al. 2013; PMID: 23391666	158
Elmer et al. 2016; PMID: 26457752	86
Huang et al. 2016; PMID: 27256246	99
Martens et al. 1996; PMID: 8808372	34
Song et al. 2010; PMID: 20047785	151
Tat et al. 2019; PMID: 30650128	40
Zhai et al. PMID: 32802436	61
10 studies (11.6% of total)	802 patients (7.6% of total)

eTable 5. Studies including survival versus death as an outcome.

e-REFERENCES

- 1. Adler C, Onur OA, Braumann S, et al. Absolute serum neurofilament light chain levels and its early kinetics predict brain injury after out-of-hospital cardiac arrest. *J Neurol*. 2021. doi:10.1007/s00415-021-10722-3
- 2. Akin M, Garcheva V, Sieweke JT, et al. Neuromarkers and neurological outcome in outof-hospital cardiac arrest patients treated with therapeutic hypothermia-experience from the HAnnover COoling REgistry (HACORE). *PLoS One*. 2021;16(1):e024510. doi:10.1371/journal.pone.0245210
- 3. Auer J, Berent R, Weber T, et al. Ability of neuron-specific enolase to predict survival to hospital discharge after successful cardiopulmonary resuscitation. *Can J Emerg Med.* 2006;8(1):13-18.
- 4. Barbella G, Novy J, Marques-Vidal P, Oddo M, Rossetti AO. Added value of somatosensory evoked potentials amplitude for prognostication after cardiac arrest. *Resuscitation*. 2020;149(July 2019):17-23. doi:10.1016/j.resuscitation.2020.01.025
- 5. Bongiovanni F, Romagnosi F, Barbella G, et al. Standardized EEG analysis to reduce the uncertainty of outcome prognostication after cardiac arrest. *Intensive Care Med.* 2020;46(5):963-972. doi:10.1007/s00134-019-05921-6
- 6. Böttiger BW, Möbes S, Glätzer R, et al. Astroglial protein S-100 is an early and sensitive marker of hypoxic brain damage and outcome after cardiac arrest in humans. *Circulation*. 2001;103(22):2694-2698. doi:10.1161/01.CIR.103.22.2694
- 7. Choi S, Park K, Ryu S, et al. Use of S-100B, NSE, CRP and ESR to predict neurological outcomes in patients with return of spontaneous circulation and treated with hypothermia. *Emerg Med J.* 2016;33(10):690-695. doi:10.1136/emermed-2015-205423
- 8. Chung-Esaki HM, Mui G, Mlynash M, Eyngorn I, Catabay K, Hirsch KG. The neuron specific enolase (NSE) ratio offers benefits over absolute value thresholds in post-cardiac arrest coma prognosis. *J Clin Neurosci*. 2018;57:99-104. doi:10.1016/j.jocn.2018.08.020
- Clifford-Mobley O, Palmer F, Rooney K, Skorko A, Bayly G. Serum neuron-specific enolase measurement for neuro-prognostication post out-of-hospital cardiac arrest: Determination of the optimum testing strategy in routine clinical use. *Ann Clin Biochem*. 2020;57(1):69-76. doi:10.1177/0004563219886326
- Daubin C, Quentin C, Allouche S, et al. Serum neuron-specific enolase as predictor of outcome in comatose cardiac-arrest survivors: A prospective cohort study. *BMC Cardiovasc Disord*. 2011;11:1-13. doi:10.1186/1471-2261-11-48
- Derwall M, Stoppe C, Brücken D, Rossaint R, Fries M. Changes in S-100 protein serum levels in survivors of out-of-hospital cardiac arrest treated with mild therapeutic hypothermia: A prospective, observational study. *Crit Care*. 2009;13(2):1-7. doi:10.1186/cc7785
- 12. Deye N, Nguyen P, Vodovar N, et al. Protein S100B as a reliable tool for early prognostication after cardiac arrest. *Resuscitation*. 2020;156:251-259.

doi:10.1016/j.resuscitation.2020.08.010

- 13. Disanto G, Prosperetti C, Gobbi C, et al. Serum neurofilament light chain as a prognostic marker in postanoxic encephalopathy. *Epilepsy Behav.* 2019;101:106432. doi:10.1016/j.yebeh.2019.07.033
- 14. Duez CHV, Grejs AM, Jeppesen AN, et al. Neuron-specific enolase and S-100b in prolonged targeted temperature management after cardiac arrest: A randomised study. *Resuscitation*. 2018;122:79-86. doi:10.1016/j.resuscitation.2017.11.052
- 15. Ebner F, Moseby-Knappe M, Mattsson-Carlgren N, et al. Serum GFAP and UCH-L1 for the prediction of neurological outcome in comatose cardiac arrest patients. *Resuscitation*. 2020;(May):1-8. doi:10.1016/j.resuscitation.2020.05.016
- Einav S, Kaufman N, Algur N, Kark JD. Modeling serum biomarkers S100 beta and neuron-specific enolase as predictors of outcome after out-of-hospital cardiac arrest: An aid to clinical decision making. *J Am Coll Cardiol*. 2012;60(4):304-311. doi:10.1016/j.jacc.2012.04.020
- 17. Einav S, Kaufman N, Algur N, Strauss-Liviatan N, Kark JD. Brain biomarkers and management of uncertainty in predicting outcome of cardiopulmonary resuscitation: A nomogram paints a thousand words. *Resuscitation*. 2013;84(8):1083-1088. doi:10.1016/j.resuscitation.2013.01.031
- Elmer J, Jeong K, Abebe KZ, et al. Serum neutrophil gelatinase-associated lipocalin predicts survival after resuscitation from cardiac arrest. *Crit Care Med.* 2016;44(1):111-119. doi:10.1097/CCM.00000000001357
- Gillick K, Rooney K. Serial NSE measurement identifies non-survivors following out of hospital cardiac arrest. *Resuscitation*. 2018;128(December 2017):24-30. doi:10.1016/j.resuscitation.2018.04.010
- Gulay O, Aydin D, Erbuyun K, et al. Neurological outcome after cardiac arrest: a prospective study of the predictive ability of prognostic biomarkers neuron-specific enolase, glial fibrillary acidic protein, S-100B, and procalcitonin. *Turk J Med Sci.* 2017;46(5):1459-1468.
- 21. Hasper D, von Haehling S, Storm C, Jörres A, Schefold JC. Changes in serum creatinine in the first 24 hours after cardiac arrest indicate prognosis: An observational cohort study. *Crit Care*. 2009;13(5):1-7. doi:10.1186/cc8144
- 22. Hasslacher J, Lehner GF, Harler U, et al. Secretoneurin as a marker for hypoxic brain injury after cardiopulmonary resuscitation. *Intensive Care Med.* 2014;40(10):1518-1527. doi:10.1007/s00134-014-3423-4
- 23. Hasslacher J, Rass V, Beer R, et al. Serum tau as a predictor for neurological outcome after cardiopulmonary resuscitation. *Resuscitation*. 2020;148(January):207-214. doi:10.1016/j.resuscitation.2020.01.022
- 24. Hayashida H, Kaneko T, Kasaoka S, et al. Comparison of the predictability of neurological outcome by serum procalcitonin and glial fibrillary acidic protein in postcardiac-arrest patients. *Neurocrit Care*. 2010;12(2):252-257. doi:10.1007/s12028-009-

9318-5

- 25. Helwig K, Seeger F, Hölschermann H, et al. Elevated Serum Glial Fibrillary Acidic Protein (GFAP) is Associated with Poor Functional Outcome After Cardiopulmonary Resuscitation. *Neurocrit Care*. 2017;27(1):68-74. doi:10.1007/s12028-016-0371-6
- 26. Hoiland RL, Ainslie PN, Wellington CL, et al. Brain hypoxia is associated with neuroglial injury in humans post-cardiac arrest. *Circ Res*. 2021;129(5):583-597.
- Huang CH, Tsai MS, Chien KL, et al. Predicting the outcomes for out-of-hospital cardiac arrest patients using multiple biomarkers and suspension microarray assays. *Sci Rep.* 2016;6(January):1-10. doi:10.1038/srep27187
- 28. Huesgen KW, Elmelige YO, Yang Z, et al. Ultra-early serum concentrations of neuronal and astroglial biomarkers predict poor neurological outcome after out-of-hospital cardiac arrest—a pilot neuroprognostic study. *Resusc Plus*. 2021;7(January 2021):100133. doi:10.1016/j.resplu.2021.100133
- 29. Hunziker S, Quinto A, Ramin-Wright M, et al. Serum neurofilament measurement improves clinical risk scores for outcome prediction after cardiac arrest: results of a prospective study. *Crit Care*. 2021;25(1):1-14. doi:10.1186/s13054-021-03459-y
- 30. Jakkula P, Hästbacka J, Reinikainen M, et al. Near-infrared spectroscopy after out-ofhospital cardiac arrest. *Crit Care*. 2019;23(1):1-8. doi:10.1186/s13054-019-2428-3
- 31. Jang JH, Park W Bin, Lim YS, et al. Combination of S100B and procalcitonin improves prognostic performance compared to either alone in patients with cardiac arrest: A prospective observational study. *Med (United States)*. 2019;98(6):1-8. doi:10.1097/MD.00000000014496
- Kaneko T, Fujita M, Ogino Y, Yamamoto T, Tsuruta R, Kasaoka S. Serum neutrophil gelatinase-associated lipocalin levels predict the neurological outcomes of out-of-hospital cardiac arrest victims. *BMC Cardiovasc Disord*. 2017;17(1):1-6. doi:10.1186/s12872-017-0545-y
- 33. Kang C, Jeong W, Park JS, et al. Comparison of prognostic performance between neuronspecific enolase and s100 calcium-binding protein b obtained from the cerebrospinal fluid of out-of-hospital cardiac arrest survivors who underwent targeted temperature management. *J Clin Med.* 2021;10(7). doi:10.3390/jcm10071531
- 34. Kim J, Choi BS, Kim K, et al. Prognostic performance of diffusion-weighted MRI combined with NSE in comatose cardiac arrest survivors treated with mild hypothermia. *Neurocrit Care*. 2012;17(3):412-420. doi:10.1007/s12028-012-9773-2
- 35. Kim SH, Kim HJ, Park KN, et al. Neuron-specific enolase and neuroimaging for prognostication after cardiac arrest treated with targeted temperature management. *PLoS One*. 2020;15(10 Octuber):1-13. doi:10.1371/journal.pone.0239979
- 36. Larsson IM, Wallin E, Kristofferzon ML, Niessner M, Zetterberg H, Rubertsson S. Postcardiac arrest serum levels of glial fibrillary acidic protein for predicting neurological outcome. *Resuscitation*. 2014;85(12):1654-1661. doi:10.1016/j.resuscitation.2014.09.007

- Lascarrou JB, Miailhe AF, le Gouge A, et al. NSE as a predictor of death or poor neurological outcome after non-shockable cardiac arrest due to any cause: Ancillary study of HYPERION trial data. *Resuscitation*. 2021;158(November):193-200. doi:10.1016/j.resuscitation.2020.11.035
- Leão RN, Ávila P, Cavaco R, Germano N, Bento L. Hipotermia terapêutica após parada cardíaca: Preditores de prognóstico. *Rev Bras Ter Intensiva*. 2015;27(4):322-332. doi:10.5935/0103-507X.20150056
- Lee BK, Lee DH, Jeung KW, Yun SW, Callaway CW, Rittenberger JC. Glycated Hemoglobin is Associated with Glycemic Control and 6-Month Neurologic Outcome in Cardiac Arrest Survivors Undergoing Therapeutic Hypothermia. *Neurocrit Care*. 2020;32(2):448-458. doi:10.1007/s12028-019-00758-9
- 40. Lee JH, Kim YH, Lee JH, et al. Combination of neuron-specific enolase measurement and initial neurological examination for the prediction of neurological outcomes after cardiac arrest. *Sci Rep.* 2021;11(1):1-9. doi:10.1038/s41598-021-94555-0
- 41. Martens P. Serum neuron-specific enolase as a prognostic marker for irreversible brain damage in comatose cardiac arrest survivors. *Acad Emerg Med.* 1996;3(2):126-131.
- 42. Martínez-Losas P, López de Sá E, Armada E, et al. Neuron-specific enolase kinetics: an additional tool for neurological prognostication after cardiac arrest. *Rev Española Cardiol (English Ed.* 2020;73(2):123-130. doi:10.1016/j.rec.2019.01.008
- 43. Mattsson N, Zetterberg H, Nielsen N, et al. Serum tau and neurological outcome in cardiac arrest. *Ann Neurol*. 2017;82(5):665-675. doi:10.1002/ana.25067
- 44. Meißner S, Nuding S, Schröder J, Werdan K, Ebelt H. Relationship between body temperature, neuron-specific enolase, and clinical course in patients after out-of-hospital cardiac arrest. *Medizinische Klin Intensivmed und Notfallmedizin*. 2020;115(1):43-51. doi:10.1007/s00063-018-0508-9
- 45. Mörtberg E, Zetterberg H, Nordmark J, Blennow K, Rosengren L, Rubertsson S. S-100B is superior to NSE, BDNF and GFAP in predicting outcome of resuscitation from cardiac arrest with hypothermia treatment. *Resuscitation*. 2011;82(1):26-31. doi:10.1016/j.resuscitation.2010.10.011
- Moseby-Knappe M, Mattsson N, Neilsen N, et al. Serum Neurofilament Light Chain for Prognosis of Outcome After Cardiac Arrest. *JAMA Neurol*. 2019;76(1):64-71. doi:10.1001/jamaneurol.2018.3223
- 47. Moseby-Knappe M, Mattsson-Carlgren N, Stammet P, et al. Serum markers of brain injury can predict good neurological outcome after out-of-hospital cardiac arrest. *Intensive Care Med.* 2021;47(9):984-994. doi:10.1007/s00134-021-06481-4
- 48. Nakstad ER, Staer-Jensen H, Wimmer H, et al. Late awakening, prognostic factors and long-term outcome in out-of-hospital cardiac arrest results of the prospective Norwegian Cardio-Respiratory Arrest Study (NORCAST). *Resuscitation*. 2020. doi:10.1016/j.resuscitation.2019.12.031
- 49. Oksanen T, Tiainen M, Skrifvars MB, et al. Predictive power of serum NSE and OHCA

score regarding 6-month neurologic outcome after out-of-hospital ventricular fibrillation and therapeutic hypothermia. *Resuscitation*. 2009;80(2):165-170. doi:10.1016/j.resuscitation.2008.08.017

- 50. Peluso L, Boisdenghien T, Attanasio L, et al. Multimodal approach to predict neurological outcome after cardiac arrest: A single-center experience. *Brain Sci.* 2021;11(7):1-10. doi:10.3390/brainsci11070888
- 51. Pfeifer R, Börner A, Krack A, Sigusch HH, Surber R, Figulla HR. Outcome after cardiac arrest: Predictive values and limitations of the neuroproteins neuron-specific enolase and protein S-100 and the Glasgow Coma Scale. *Resuscitation*. 2005;65(1):49-55. doi:10.1016/j.resuscitation.2004.10.011
- 52. Prohl J, Röther J, Kluge S, et al. Prediction of short-term and long-term outcomes after cardiac arrest: A prospective multivariate approach combining biochemical, clinical, electrophysiological, and neuropsychological investigations. *Crit Care Med.* 2007;35(5):1230-1237. doi:10.1097/01.CCM.0000261892.10559.85
- 53. Rana OR, Schröder JW, Kühnen JS, et al. The Modified Glasgow Outcome Score for the prediction of outcome in patients after cardiac arrest: A prospective clinical proof of concept study. *Clin Res Cardiol*. 2012;101(7):533-543. doi:10.1007/s00392-012-0423-7
- 54. Rana OR, Schröder JW, Baukloh JK, et al. Neurofilament light chain as an early and sensitive predictor of long-term neurological outcome in patients after cardiac arrest. *Int J Cardiol.* 2013;168(2):1322-1327. doi:10.1016/j.ijcard.2012.12.016
- 55. Roger C, Palmier L, Louart B, et al. Neuron specific enolase and Glasgow motor score remain useful tools for assessing neurological prognosis after out-of-hospital cardiac arrest treated with therapeutic hypothermia. *Anaesth Crit Care Pain Med.* 2015;34(4):231-237. doi:10.1016/j.accpm.2015.05.004
- 56. Rosén H, Sunnerhagen KS, Herlitz J, Blomstrand C, Rosengren L. Serum levels of the brain-derived proteins S-100 and NSE predict long-term outcome after cardiac arrest. *Resuscitation*. 2001;49(2):183-191. doi:10.1016/S0300-9572(00)00348-8
- 57. Rossetti AO, Carrera E, Oddo M. Early EEG correlates of neuronal injury after brain anoxia. *Neurology*. 2012;78(11):796-802. doi:10.1212/WNL.0b013e3182768eaf
- 58. Ruivo C, Jesus C, Morais J, Viana P. Preditores de morte em doentes pós-paragem cardíaca submetidos a hipotermia terapêutica: experiência inicial de um centro não-terciário. *Rev Port Cardiol*. 2016;35(7-8):423-431. doi:10.1016/j.repc.2016.03.006
- 59. Ryczek R, Kwasiborski PJ, Dymus J, et al. Neuron-specific enolase concentrations for the prediction of poor prognosis of comatose patients after out-of-hospital cardiac arrest: an observational cohort study. *Kardiol Pol.* 2021;79(5):546-553.
- 60. Ryoo SM, Kim YJ, Sohn CH, Ahn S, Seo DW, Kim WY. Prognostic abilities of serial neuron-specific enolase and lactate and their combination in cardiac arrest survivors during targeted temperature management. *J Clin Med*. 2020;9(1):1-9. doi:10.3390/jcm9010159
- 61. Samaniego EA, Mlynash M, Caulfield AF, Eyngorn I, Wijman CAC. Sedation confounds

outcome prediction in cardiac arrest survivors treated with hypothermia. *Neurocrit Care*. 2011;15(1):113-119. doi:10.1007/s12028-010-9412-8

- 62. Scheel M, Storm C, Gentsch A, et al. The prognostic value of gray-white-matter ratio in cardiac arrest patients treated with hypothermia. *Scand J Trauma Resusc Emerg Med*. 2013;21(1):1-7. doi:10.1186/1757-7241-21-23
- 63. Schoerkhuber W, Kittler H, Sterz F, et al. Time Course of Serum Neuron-Specific Enolase: A predictor of neurological outcome in patients resuscitated from cardiac arrest. *Stroke*. 1999;30(8):1598-1603. doi:10.1161/01.str.30.8.1598
- 64. Schrage B, Rübsamen N, Becher PM, et al. Neuron-specific-enolase as a predictor of the neurologic outcome after cardiopulmonary resuscitation in patients on ECMO. *Resuscitation*. 2019;136(October 2018):14-20. doi:10.1016/j.resuscitation.2019.01.011
- 65. Shinozaki K, Oda S, Sadahiro T, et al. Serum S-100B is superior to neuron-specific enolase as an early prognostic biomarker for neurological outcome following cardiopulmonary resuscitation. *Resuscitationitation*. 2009;80:870-875. doi:10.1016/j.resuscitation.2009.05.005
- 66. Son SH, Lee IH, Park JS, et al. Does combining biomarkers and brain images provide improved prognostic predictive performance for out-of-hospital cardiac arrest survivors before target temperature management? *J Clin Med*. 2020;9(3). doi:10.3390/jcm9030744
- 67. Song KJ, Shin S Do, Ong MEH, Jeong JS. Can early serum levels of S100B protein predict the prognosis of patients with out-of-hospital cardiac arrest? *Resuscitation*. 2010;81(3):337-342. doi:10.1016/j.resuscitation.2009.10.012
- 68. Song HG, Park JS, You Y, et al. Using out-of-hospital cardiac arrest (Ohca) and cardiac arrest hospital prognosis (cahp) scores with modified objective data to improve neurological prognostic performance for out-of-hospital cardiac arrest survivors. *J Clin Med.* 2021;10(9):1-12. doi:10.3390/jcm10091825
- Stammet P, Wagner DR, Gilson G, Devaux Y. Modeling serum level of s100β and bispectral index to predict outcome after cardiac arrest. *J Am Coll Cardiol*. 2013;62(9):851-858. doi:10.1016/j.jacc.2013.04.039
- 70. Stammet P, Collignon O, Hassager C, et al. Neuron-specific enolase as a predictor of death or poor neurological outcome after out-of-hospital cardiac arrest and targeted temperature management at 33°C and 36°C. *J Am Coll Cardiol*. 2015;65(19):2104-2114. doi:10.1016/j.jacc.2015.03.538
- 71. Stammet P, Dankiewicz J, Nielsen N, et al. Protein S100 as outcome predictor after outof-hospital cardiac arrest and targeted temperature management at 33 °C and 36 °C. *Crit Care*. 2017;21(1):1-10. doi:10.1186/s13054-017-1729-7
- 72. Stefanizzi FM, Nielsen N, Zhang L, et al. Circulating levels of brain-enriched micrornas correlate with neuron specific enolase after cardiac arrest—a substudy of the target temperature management trial. *Int J Mol Sci.* 2020;21(12):1-9. doi:10.3390/ijms21124353
- 73. Steffen IG, Hasper D, Ploner CJ, et al. Mild therapeutic hypothermia alters neuron specific enolase as an outcome predictor after resuscitation: 97 prospective hypothermia

patients compared to 133 historical non-hypothermia patients. *Crit Care*. 2010;14(2). doi:10.1186/cc8975

- 74. Storm C, Nee J, Jörres A, Leithner C, Hasper D, Ploner CJ. Serial measurement of neuron specific enolase improves prognostication in cardiac arrest patients treated with hypothermia: A prospective study. *Scand J Trauma Resusc Emerg Med.* 2012;20:1-6. doi:10.1186/1757-7241-20-6
- 75. Streitberger KJ, Leithner C, Wattenberg M, et al. Neuron-Specific Enolase Predicts Poor Outcome after Cardiac Arrest and Targeted Temperature Management: A Multicenter Study on 1,053 Patients. *Crit Care Med.* 2017;45(7):1145-1151. doi:10.1097/CCM.00000000002335
- 76. Sugita A, Kinoshita K, Sakurai A, Chiba N, Yamaguchi J, Kuwana T. Systemic impact on secondary brain aggravation due to ischemia / reperfusion injury in post-cardiac arrest syndrome : a prospective observational study using high-mobility group box 1 protein. *Crit Care.* 2017;21(247):1-12. doi:10.1186/s13054-017-1828-5
- 77. Tat RM, Golea A, Vesa ŞC, Ionescu D. Resistin—Can it be a new early marker for prognosis in patients who survive after a cardiac arrest? A pilot study. *PLoS One*. 2019;14(1):1-12. doi:10.1371/journal.pone.0210666
- Tiainen M, Roine RO, Pettilä V, Takkunen O. Serum Neuron-Specific Enolase and S-100B Protein in Cardiac Arrest Patients Treated with Hypothermia. *Stroke*. 2003;34(12):2881-2886. doi:10.1161/01.STR.0000103320.90706.35
- 79. Tsetsou S, Novy J, Pfeiffer C, Oddo M, Rossetti AO. Multimodal Outcome Prognostication After Cardiac Arrest and Targeted Temperature Management: Analysis at 36 °C. *Neurocrit Care*. 2018;28(1):104-109. doi:10.1007/s12028-017-0393-8
- Wihersaari L, Tiainen M, Skrifvars MB, et al. Usefulness of neuron specific enolase in prognostication after cardiac arrest: Impact of age and time to ROSC. *Resuscitation*. 2019;139(April):214-221. doi:10.1016/j.resuscitation.2019.04.021
- 81. Wihersaari L, Ashton NJ, Reinikainen M, et al. Neurofilament light as an outcome predictor after cardiac arrest: a post hoc analysis of the COMACARE trial. *Intensive Care Med*. 2021. doi:10.1007/s00134-020-06218-9
- 82. Wurm R, Arfsten H, Muqaku B, et al. Prediction of Neurological Recovery After Cardiac Arrest Using Neurofilament Light Chain is Improved by a Proteomics-Based Multimarker Panel. *Neurocrit Care*. 2021. doi:10.1007/s12028-021-01321-1
- 83. You Y, Park JS, Min J, et al. The usefulness of neuron-specific enolase in cerebrospinal fluid to predict neurological prognosis in cardiac arrest survivors who underwent target temperature management: A prospective observational study. *Resuscitation*. 2019;145(June 2019):185-191. doi:10.1016/j.resuscitation.2019.09.027
- 84. Zellner T, Gärtner R, Schopohl J, Angstwurm M. NSE and S-100B are not sufficiently predictive of neurologic outcome after therapeutic hypothermia for cardiac arrest. *Resuscitation*. 2013;84(10):1382-1386. doi:10.1016/j.resuscitation.2013.03.021
- 85. Zhai Q, Feng L, Zhang H, et al. Serial disseminated intravascular coagulation score with

neuron specific enolase predicts the mortality of cardiac arrest-a pilot study. *J Thorac Dis*. 2020;12(7):3573-3581. doi:10.21037/jtd-20-580

86. Zingler VC, Krumm B, Bertsch T, Fassbender K, Pohlmann-Eden B. Early prediction of neurological outcome after cardiopulmonary resuscitation: A multimodal approach combining neurobiochemical and electrophysiological investigations may provide high prognostic certainty in patients after cardiac arrest. *Eur Neurol*. 2003;49(2):79-84. doi:10.1159/000068503