# Specialization of actin isoforms derived from the loss of key interactions

# with regulatory factors

Micaela Boiero Sanders, Christopher P. Toret<sup>#</sup>, Audrey Guillotin<sup>#</sup>, Adrien Antkowiak, Thomas

Vannier, Robert C. Robinson and Alphée Michelot

## Table of contents

| Appendix Figures legends: Figure S1 to Figure S5                                                             | Pages 2-7                                                        |
|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| Appendix Table legends: Table S1 to Table S3.                                                                | Page 8                                                           |
| Appendix Figure S1<br>Appendix Figure S1, related to Figure 1. Selection of act                              | Pages 9-17                                                       |
| Appendix Figure S2<br>Appendix Figure S2, related to Figure 2. Effect of rel<br>mutations in the actin gene. | Pages 18-19<br>moving S. cerevisiae's Act1 intron and of silent  |
| Appendix Figure S3<br>Appendix Figure S3, related to Figure 3. Effects of swap                               | Pages 20-22 ping actin for different variants.                   |
| Appendix Figure S4<br>Appendix Figure S4, related to Figure 4.                                               | Page 23                                                          |
| Appendix Figure S5<br>Appendix Figure S5, related to Figure 6. Effect of a dual                              | Page 24<br>expression of actins.                                 |
| Appendix Table S1<br>Appendix Table S1. Complete list of all actins used for the                             | Pages 25-27<br>e ancestral sequence reconstruction using FastML. |
| Appendix Table S2<br>Appendix Table S2. List of plasmids used in this study.                                 | Page 28                                                          |
| Appendix Table S3<br>Appendix Table S3. List of yeast strains in this study.                                 | Page 29                                                          |
| Supplementary Methods: Equipment and Settings                                                                | Pages 30-32                                                      |

## **Appendix Figures legends**

## Appendix Figure S1, related to Figure 1. Selection of actins strategy.

A Complete phylogenetic tree that was used as input for FastML ancestral reconstruction analysis (Ashkenazy *et al*, 2012).

**B** Posterior probability for the ancestral sequences used in this study, showing high confidence in the predicted sequences.

**C** (Top) Multiple sequence alignment for all actin sequences used in this study. (Bottom) Schematic representations of actin 3D structure (1YAG, (Vorobiev *et al*, 2003)), with position of amino acid differences shown with colored dots for each actin.

**D** Schematic representation of mutagenesis strategy by homologous recombination used in this study (see also Methods).

# Appendix Figure S2, related to Figure 2. Effect of removing *S. cerevisiae*'s Act1 intron and of silent mutations in the actin gene.

In this figure, the shape of the dots allows to identify the strains on the different graphs (circles for Sc, pentagons for ScI, squares for ScNI, triangles for Sc[Ca], inversed triangles for Sc[Sp] and diamonds for Sc[At]). The color of the dots indicates the percentage of identity of the nucleotide sequences to the actin gene of S. cerevisiae, ranging from 100% (blue) to 76% (orange).

A Growth phenotypes, evaluated by 3-fold serial dilutions of different yeast strains cultures grown at 25°C for 2 days on a YPD plate. Abbreviations: Sc - wild-type *S. cerevisiae* cells, Scl - *S. cerevisiae* cells where the actin gene has been replaced with the full construct carrying the wild-type gene, ScNI - *S. cerevisiae* cells where the actin gene has been replaced with the wild-type gene but without the intron.

**B** Quantification of (A) by measurement of colony area. Data are presented as mean +/- SD (n = 31 for Sc, n = 32 for ScI, and n = 35 for ScNI). (Brown-Forsythe and Welch ANOVA tests, with Dunnett's T3 multiple comparisons tests).

**C** Actin expression levels shown by western blotting, with tubulin (Tub1p) as a loading control.

**D** Quantification of actin expression levels. Data are presented as mean +/- SD (n = 2 for all conditions, biological replicates). (Brown-Forsythe and Welch ANOVA tests, with Dunnett's T3 multiple comparisons tests).

**E** Phalloidin stain depicting F-actin organization. Images are maximum intensity projections of 3D stacks. Micrographs of Sc and ScNI cells are reproduced from Figure 2E. Scale bar: 3 μm.

**F** *In vivo* actin network deviation indexes, defined to evaluate the patch-cable balance compared to *S. cerevisiae* haploid cells (value is 0 in *S. cerevisiae*'s cells, 1 when cells contain only actin patches and -1 when cells contain only cables). Data are presented as mean +/- SD (n = 10 for all conditions). (Brown-Forsythe and Welch ANOVA tests, with Dunnett's T3 multiple comparisons tests).

**G** Polarity indexes. Data are presented as mean +/- SD (n = 10 for all conditions). (Brown-Forsythe and Welch ANOVA tests, with Dunnett's T3 multiple comparisons tests).

**H** Multiple sequence alignment of the beginning of the nucleotide sequence (top) and the beginning of the amino acid sequence (bottom), as an example of how we used coding sequences from other organisms that we modified minimally so that the final product remained *S. cerevisiae* actin.

I Growth phenotypes, evaluated by 3-fold serial dilutions of different yeast strains cultures grown at 25°C for 2 days on a YPD plate, showing the effect of silent mutations on the actin gene.

J Colony area as a function of nucleotide identity, showing a threshold of nucleotide conservation (78%<id<82%) below which growth rates drastically reduce. Data are presented as mean +/- SD (n = 17 for Sc, n = 11 for ScNI, n = 27 for Sc[Ca], n = 23 for Sc[Sp], n = 48 for Sc[At]). \*\*\*P<0.001 (Brown-Forsythe and Welch ANOVA tests, with Dunnett's T3 multiple comparisons tests).

**K** Organization of the cytoskeleton, assessed by quantification of total patch and cable intensities of phalloidin-stained cells. Data are presented as mean +/- SD (n = 30 for all conditions). \*\*P<0.01, \*\*\*P<0.001 (Brown-Forsythe and Welch ANOVA tests, with Dunnett's T3 multiple comparisons tests).

L Organization of the cytoskeleton, assessed by quantification of the number of visible patch and cables of phalloidin-stained cells. Data are presented as mean +/- SD (n = 30 for all conditions). \*P<0.05, \*\*\*P<0.001 (Brown-Forsythe and Welch ANOVA tests, with Dunnett's T3 multiple comparisons tests).

#### Appendix Figure S3, related to Figure 3. Effects of swapping actin for different variants.

In this figure, the shape of the dots allows to identify the strains on the different graphs (closed circles for Sc, closed squares for ScNI, closed triangles for N1, inversed closed triangles for KI, closed diamonds for N2, closed hexagons for Op, stars for Ca, half-open inversed triangles for Hs). The color of the dots indicates the percentage of identity of the amino acid sequences to S. cerevisiae's actin, ranging from 100% (green) to 84% (magenta).

**A** Characterization of the C4 antibody: The binding site of the C4 antibody, indicated as "C4\_Epitope", is found on Act\_Hs and on rabbit muscle actin. In all other actin variants used in this study, the sequence varies of one amino acid (called here "Mutated\_Epitope") but is recognized by C4 antibody.

**B** Western blot with equivalent amounts of purified yeast actin and rabbit actin. The amount of protein was revealed by two methods: Ponceau staining and chemiluminescence. The chemiluminescence signal corresponds to the one produced by the secondary antibody after incubation with a primary antibody anti-actin C4 and a secondary antibody conjugated with HRP.

**C** C4 actin antibody has a higher affinity for rabbit muscle actin than for *S. cerevisiae* actin: Quantification of (B) indicates that immunolabeling of rabbit muscle actin with C4 antibody leads to

a 1.48-fold more intense signal than immunolabeling of *S. cerevisiae* actin. Data are presented as mean  $\pm$  SD (n = 12 for both conditions). \*\*P<0.01 (Unpaired t test with Welch's correction).

**D** Growth phenotypes, evaluated by 3-fold serial dilutions of different yeast strains cultures grown at 25°C for 2 days on a YPD plate, showing the effect of swapping actin for different variants.

**E** Quantification of (D) by measurement of colony area. Data are presented as mean +/- SD (n = 23 for Sc, n = 18 for ScNI, n = 20 for N1, n = 23 for KI, n = 45 for N2, n = 45 for Op, n = 31 for Ca, n = 51 for Nc, n = 31 for YI, n = 28 for Hs) \*\*P<0.01, \*\*\*P<0.001 (Brown-Forsythe and Welch ANOVA tests, with Dunnett's T3 multiple comparisons tests).

**F** Organization of the cytoskeleton, assessed by quantification of total patch and cable intensities of phalloidin-stained cells. Please note that these results, provided for information, should be interpreted with caution as all actin variants except Act\_N1 have different phalloidin binding sites from Act\_Sc; this quantification is absent for Act\_Nc and Act\_YI which cannot be phalloidin-stained. Data are presented as mean +/- SD (n = 30 for all conditions). \*P<0.05, \*\*P<0.01, \*\*\*P<0.001 (Brown-Forsythe and Welch ANOVA tests, with Dunnett's T3 multiple comparisons tests).

**G** Organization of the cytoskeleton, assessed by quantification of the number of visible patch and cables of phalloidin-stained cells. Data are presented as mean +/- SD (n = 30 for all conditions). \*P<0.05, \*\*\*P<0.001 (Brown-Forsythe and Welch ANOVA tests, with Dunnett's T3 multiple comparisons tests).

**H** Phalloidin-binding sites of the actin variants expressed homozygously.

I Effect of CK-666 (DMSO control, 150  $\mu$ M and 300  $\mu$ M) on the organization of the actin cytoskeleton. Cells were stained with phalloidin after 30 min incubation with CK-666. Images are maximum intensity projections of 3D stacks.

J Quantification of actin patch resistance to CK-666 treatment. Bar graphs represent the percentage of cells with a given number of visible actin patches after CK-666 treatment. (DMSO, n = 27 for ScNI, n = 96 for N2, n = 47 for Ca, n = 24 for Op, n = 47 for Hs) (150  $\mu$ M, n = 53 for ScNI, n = 45 for N2, n = 45

= 37 for Ca, n = 49 for Op, n = 33 for Hs) (300 μM, n = 61 for ScNI, n = 42 for N2, n = 43 for Ca, n = 47 for Op, n = 49 for Hs).

K Western-blot control of similar Arp2 expression in cells expressing wild-type or Act\_N2 actins.

L Snapshots of cells expressing Arc15-GFP and wild-type or Act\_N2 actins.

**M** Quantification of the Arc15-GFP intensity in the patches normalized by the mean actin intensity of the patches for cells expressing Act\_Sc and Act\_N2. Data are presented as mean +/- SD (left n = 30 for all conditions, right, n = 114 for Sc and n = 176 for N2). \*\*\*P<0.001 (Unpaired t test with Welch's correction and Kolmogorov-Smirnov test).

#### Appendix Figure S4, related to Figure 4.

**A** Single actin filaments assembled from 3  $\mu$ M of purified Act\_Sc, Act\_N2 or Act\_Ca G-actins, in the presence of 1% of Alexa-568 labeled rabbit muscle actin, and stabilized with phalloidin (unlabeled). **B** Quantification of the fluorescence intensity along the actin filaments, showing similar degrees of integration of the fluorescent actin monomers. Data are presented as mean +/- SD (n = 20 for Act\_Sc, n = 28 for Act\_N2 and n = 18 for Act\_Ca). (Brown-Forsythe and Welch ANOVA tests, with Dunnett's T3 multiple comparisons tests).

### Appendix Figure S5, related to Figure 6. Effect of a dual expression of actins.

A Growth phenotypes, evaluated by 3-fold serial dilutions of different yeast strains cultures grown at  $25^{\circ}$ C for 2 days on a YPD plate, showing the effect of swapping actin for different variants. **B** Quantification of (A) by measurement of colony area. Data are presented as mean +/- SD (n = 21 for Sc/Sc, n = 50 for N2/N2, n = 27 for Ca/Ca, n = 21 for N2/Ca, n = 22 for Ca/N2). \*\*\*P<0.001 (Brown-Forsythe and Welch ANOVA tests, with Dunnett's T3 multiple comparisons tests). **C** Quantification of total patch and cable intensities of phalloidin-stained cells. Data are presented as mean +/- SD (n = 30 for all conditions). \*P<0.05, \*\*P<0.01, \*\*\*P<0.001 (Brown-Forsythe and Welch ANOVA tests, with Dunnett's T3 multiple comparisons tests).

**D** Quantification of number of visible patch and cables of phalloidin-stained cells. Data are presented as mean +/- SD (n = 30 for all conditions). \*P<0.05, \*\*P<0.01, \*\*\*P<0.001 (Brown-Forsythe and Welch ANOVA tests, with Dunnett's T3 multiple comparisons tests).

**E** *In vivo* actin network deviation indexes of cells treated with DMSO or 35  $\mu$ M, 75  $\mu$ M or 150  $\mu$ M CK-666. Data are presented as mean +/- SD (n = 10 for all conditions). \*P<0.05, \*\*P<0.01, \*\*\*P<0.001 (Brown-Forsythe and Welch ANOVA tests, with Dunnett's T3 multiple comparisons tests).

# Appendix Tables legends

Appendix Table S1. Complete list of all actins used for the ancestral sequence reconstruction using FastML.

**Appendix Table S2. List of plasmids used in this study.** All plasmids were done in a pGEX-4T1 backbone.

Appendix Table S3. List of yeast strains in this study.

Α





В











#### С

#### Appendix Figure S1



## D



Appendix Figure S2



5° 5° 50



Appendix Page 18



Appendix Page 19

## Appendix Figure S3



Appendix Page 20

Appendix Figure S3

н

|        | 72 | 73 | 75 | 77 | 110 | 111 | 112 | 177 | 179 | 194 | 197 | 198 | 199 | 200 | 205 | 242 | 287 |
|--------|----|----|----|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Act_Sc | Η  | Η  | -  | Т  | Μ   | Ν   | Р   | R   | D   | S   | G   | Υ   | S   | F   | Е   | Г   | V   |
| Act_N1 | Н  | Н  | 1  | Т  | М   | Ν   | Р   | R   | D   | S   | G   | Y   | S   | F   | Е   | L   | V   |
| Act_Kl | Н  | Н  |    | Т  | Μ   | Ν   | Р   | R   | D   | Α   | G   | Y   | S   | F   | Е   | L   | V   |
| Act_N2 | Н  | Н  | 1  | Т  | М   | Ν   | Р   | R   | D   | S   | G   | Y   | S   | F   | Е   | L   | V   |
| Act_Op | Н  | Н  |    | Т  | Μ   | Ν   | Р   | R   | D   | S   | G   | Y   | Т   | F   | Е   | L   | V   |
| Act_Ca | Н  | Η  |    | S  | Μ   | Ν   | Р   | R   | D   | S   | G   | Y   | S   | F   | Е   | L   | Μ   |
| Act_Nc | Н  | Н  | V  | Т  |     | Ν   | Р   | R   | D   | Α   | G   | Y   | Т   | F   | Е   | L   | V   |
| Act_YI | Н  | Н  |    | Т  |     | Ν   | Ρ   | R   | D   | S   | G   | Y   | S   | F   | E   | L   | V   |
| Act_Hs | Н  | Н  |    | Т  | L   | Ν   | Р   | R   | D   | Т   | G   | Y   | S   | F   | E   | L   | V   |



Appendix Figure S3



L







Μ



Appendix Page 22







В

С

tpm1-2::LEU2 tpm2∆::HIS3



Appendix Figure S5



Appendix Table S1.

| Species                   | UniProt Entry |
|---------------------------|---------------|
| Absidia glauca            | P26197        |
| Acanthamoeba castellanii  | P02578        |
| Achlya bisexualis         | P26182        |
| Aedes aegypti             | P49128        |
| Arabidopsis thaliana      | P53496        |
| Artemia sp.               | P18600        |
| Aspergillus oryzae        | Q2U7A3        |
| Biomphalaria alexandrina  | Q964E3        |
| Biomphalaria glabrata     | P92179        |
| Biomphalaria obstructa    | Q964E1        |
| Biomphalaria pfeifferi    | Q964E2        |
| Biomphalaria tenagophila  | Q964E0        |
| Bombyx mori               | P84183        |
| Bos mutus grunniens       | Q0PGG4        |
| Bos taurus                | P60712        |
| Branchiostoma belcheri    | Q93129        |
| Branchiostoma floridae    | Q93131        |
| Branchiostoma lanceolatum | 017503        |
| Brugia malayi             | P90689        |
| Caenorhabditis elegans    | P10984        |
| Camelus dromedarius       | P84336        |
| Candida albicans          | P14235        |
| Candida dubliniensis      | Q9UVZ8        |
| Canis lupus familiaris    | O18840        |
| Cavia porcellus           | Q71FK5        |
| Chlamydomonas reinhardtii | P53498        |
| Chlorocebus aethiops      | Q76N69        |
| Coleochaete scutata       | O65315        |
| Coprinopsis cinerea       | Q9UVX4        |
| Crassostrea gigas         | 017320        |
| Cricetulus griseus        | P48975        |
| Cryptococcus neoformans   | P48465        |
| Cryptosporidium parvum    | P26183        |
| Ctenopharyngodon idella   | P83751        |
| Cyanidioschyzon merolae   | P53500        |
| Cyprinus carpio           | P83750        |
| Danio rerio               | Q7ZVF9        |
| Dictyostelium discoideum  | P07830        |
| Drosophila melanogaster   | P10981        |

| Encephalitozoon cuniculi   | Q8SWN8 |
|----------------------------|--------|
| Entamoeba histolytica      | P11426 |
| Equus caballus             | P60708 |
| Exophiala dermatitidis     | Q8X119 |
| Fucus distichus            | P53502 |
| Fucus vesiculosus          | Q39758 |
| Gaeumannomyces graminis    | Q6TCF2 |
| Gallus gallus              | P60706 |
| Giardia intestinalis       | P51775 |
| Halocynthia roretzi        | P53461 |
| Helicoverpa armigera       | P84184 |
| Heliocidaris erythrogramma | P69002 |
| Heliocidaris tuberculata   | P69003 |
| Homo sapiens               | P60709 |
| Hydra vulgaris             | P17126 |
| Kluyveromyces lactis       | P17128 |
| Komagataella phaffii       | Q9P4D1 |
| Leishmania major           | P45520 |
| Limulus polyphemus         | P41340 |
| Lumbricus rubellus         | P91754 |
| Lumbricus terrestris       | P92182 |
| Lytechinus pictus          | P53465 |
| Macaca fascicularis        | Q4R561 |
| Mayetiola destructor       | O16808 |
| Mesocricetus auratus       | Q711N9 |
| Mesostigma viride          | O65316 |
| Mus musculus               | P60710 |
| Naegleria fowleri          | P27131 |
| Naegleria pringsheimi      | Q9NJV4 |
| Neurospora crassa          | P78711 |
| Ogataea parapolymorpha     | 074258 |
| Onchocerca volvulus        | P30163 |
| Oreochromis mossambicus    | P68143 |
| Oryctolagus cuniculus      | P29751 |
| Oryzias latipes            | P79818 |
| Ovis aries                 | P60713 |
| Oxytricha trifallax        | P53468 |
| Pan troglodytes            | Q5R1X3 |
| Phaffia rhodozyma          | P53689 |
| Physarum polycephalum      | P02576 |
| Phytophthora infestans     | P22131 |
| Phytophthora megasperma    | P13363 |

| Pisaster ochraceus            | P12716 |
|-------------------------------|--------|
| Planorbella trivolvis         | Q964D9 |
| Plasmodium berghei            | Q4Z1L3 |
| Plasmodium yoelii yoelii      | Q7RME1 |
| Pneumocystis carinii          | P43239 |
| Podocoryna carnea             | P41112 |
| Pongo abelii                  | Q5R6G0 |
| Puccinia graminis             | P50138 |
| Rattus norvegicus             | P60711 |
| Saccharomyces bayanus         | P60011 |
| Saccharomyces cerevisiae      | P60010 |
| Saccoglossus kowalevskii      | 018499 |
| Salmo salar                   | 042161 |
| Scherffelia dubia             | 065314 |
| Schistosoma mansoni           | P53471 |
| Schizophyllum commune         | Q9Y702 |
| Schizosaccharomyces pombe     | P10989 |
| Sigmodon hispidus             | Q91ZK5 |
| Sorghum bicolor               | P53504 |
| Spermophilus citellus         | Q4L0Y2 |
| Sterkiella cavicola           | O00937 |
| Sterkiella nova               | P12715 |
| Strongylocentrotus purpuratus | P12431 |
| Styela plicata                | Q00215 |
| Suillus bovinus               | Q9Y707 |
| Sus scrofa                    | Q6QAQ1 |
| Taenia solium                 | P68555 |
| Takifugu rubripes             | P68142 |
| Tetrahymena pyriformis        | P10993 |
| Tetrahymena thermophila       | P10992 |
| Thermomyces lanuginosus       | P10365 |
| Toxoplasma gondii             | P53476 |
| Triakis scyllium              | Q8JJB8 |
| Trichosurus vulpecula         | P60707 |
| Trypanosoma brucei brucei     | P12432 |
| Trypanosoma cruzi             | P53477 |
| Volvox carteri                | P20904 |
| Xenopus borealis              | P15475 |
| Xenopus laevis                | O93400 |
| Xenopus tropicalis            | Q6NVA9 |
| Yarrowia lipolytica           | Q9UVF3 |

# Appendix Table S2.

| Plasmid<br>Name | Insert     | Markers     | Full description                                                                                                                                                               |
|-----------------|------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| pMA253          | Sc         | LEU2/URA3   | Base plasmid LEU2/URA3. pGEX-4T1 replaced in between AatII and Bsu36I.<br>Full insert: AatII/5'RS/BamHI/URA3/SalI/pAct1/Act1 Gene with intron/tAct1/NotI/LEU2/SacI/3'RS/Bsu36I |
| pMA254          | Sc         | HIS3/KanMX3 | Base plasmid His/Kan. pGEX-4T1 replaced in between AatII and Bsu36I.<br>Full insert: AatII/5'RS/BamHI/HIS3/SalI/pAct1/Act1 Gene with intron/tAct1/NotI/KanMX3/SacI/3'RS/Bsu36I |
| pMA255          | ScNI       | LEU2/URA3   | AatII/5'RS/BamHI/URA3/SalI/pAct1/Act1 Gene without intron/tAct1/NotI/LEU2/SacI/3'RS/Bsu36I                                                                                     |
| pMA256          | Act_Sc[Ca] | LEU2/URA3   | AatII/5'RS/BamHI/URA3/SalI/pAct1/PacI/Act_Sc[Ca]/Xbal/tAct1/NotI/LEU2/SacI/3'RS/Bsu36I                                                                                         |
| pMA257          | Act_Sc[Sp] | LEU2/URA3   | AatII/5'RS/BamHI/URA3/SalI/pAct1/PacI/Act_Sc[Sp]/Xbal/tAct1/NotI/LEU2/SacI/3'RS/Bsu36I                                                                                         |
| pMA258          | Act_Sc[At] | LEU2/URA3   | AatII/5'RS/BamHI/URA3/SalI/pAct1/PacI/Act_Sc[At]/XbaI/tAct1/NotI/LEU2/SacI/3'RS/Bsu36I                                                                                         |
| pMA259          | Act_Sc[Hs] | LEU2/URA3   | AatII/5'RS/BamHI/URA3/SalI/pAct1/PacI/Act_Sc[Hs]/Xbal/tAct1/NotI/LEU2/SacI/3'RS/Bsu36I                                                                                         |
| pMA260          | Act_N1     | LEU2/URA3   | AatII/5'RS/BamHI/URA3/SalI/pAct1/PacI/Act_N1/Xbal/tAct1/NotI/LEU2/SacI/3'RS/Bsu36I                                                                                             |
| pMA261          | Act_Kl     | LEU2/URA3   | AatII/5'RS/BamHI/URA3/SalI/pAct1/PacI/Act_KI/XbaI/tAct1/NotI/LEU2/SacI/3'RS/Bsu36I                                                                                             |
| pMA262          | Act_N2     | LEU2/URA3   | AatII/5'RS/BamHI/URA3/SalI/pAct1/PacI/Act_N2/Xbal/tAct1/NotI/LEU2/SacI/3'RS/Bsu36I                                                                                             |
| pMA263          | Act_Op     | LEU2/URA3   | AatII/5'RS/BamHI/URA3/SalI/pAct1/PacI/Act_Op/Xbal/tAct1/NotI/LEU2/SacI/3'RS/Bsu36I                                                                                             |
| pMA264          | Act_Ca     | LEU2/URA3   | AatII/5'RS/BamHI/URA3/SalI/pAct1/PacI/Act_Ca/XbaI/tAct1/NotI/LEU2/SacI/3'RS/Bsu36I                                                                                             |
| pMA265          | Act_N3     | LEU2/URA3   | AatII/5'RS/BamHI/URA3/SalI/pAct1/PacI/Act_N3/XbaI/tAct1/NotI/LEU2/SacI/3'RS/Bsu36I                                                                                             |
| pMA266          | Act_N4     | LEU2/URA3   | AatII/5'RS/BamHI/URA3/SalI/pAct1/PacI/Act_N4/Xbal/tAct1/NotI/LEU2/SacI/3'RS/Bsu36I                                                                                             |
| pMA267          | Act_Nc     | LEU2/URA3   | AatII/5'RS/BamHI/URA3/SalI/pAct1/PacI/Act_Nc/XbaI/tAct1/NotI/LEU2/SacI/3'RS/Bsu36I                                                                                             |
| pMA268          | Act_N5     | LEU2/URA3   | AatII/5'RS/BamHI/URA3/SalI/pAct1/PacI/Act_N5/Xbal/tAct1/NotI/LEU2/SacI/3'RS/Bsu36I                                                                                             |
| pMA269          | Act_Yl     | LEU2/URA3   | AatII/5'RS/BamHI/URA3/SalI/pAct1/PacI/Act_YI/XbaI/tAct1/NotI/LEU2/SacI/3'RS/Bsu36I                                                                                             |
| pMA270          | Act_Sp     | LEU2/URA3   | AatII/5'RS/BamHI/URA3/SalI/pAct1/PacI/Act_Sp/XbaI/tAct1/NotI/LEU2/SacI/3'RS/Bsu36I                                                                                             |
| pMA271          | Act_Hs     | LEU2/URA3   | AatII/5'RS/BamHI/URA3/SalI/pAct1/PacI/Act_Hs/XbaI/tAct1/NotI/LEU2/SacI/3'RS/Bsu36I                                                                                             |
| pMA272          | Act_Sco    | LEU2/URA3   | AatII/5'RS/BamHI/URA3/SalI/pAct1/PacI/Act_Sco/XbaI/tAct1/NotI/LEU2/SacI/3'RS/Bsu36I                                                                                            |
| pMA273          | Act_At     | LEU2/URA3   | AatII/5'RS/BamHI/URA3/SalI/pAct1/PacI/Act_At/XbaI/tAct1/NotI/LEU2/SacI/3'RS/Bsu36I                                                                                             |
| pMA274          | Act_N2     | HIS3/KanMX3 | AatII/5'RS/BamHI/HIS3/SalI/pAct1/PacI/Act_N2/XbaI/tAct1/NotI/LEU2/KanMX3/3'RS/Bsu36I                                                                                           |
| pMA275          | Act_Ca     | HIS3/KanMX3 | AatII/5'RS/BamHI/HIS3/SalI/pAct1/PacI/Act_Ca/Xbal/tAct1/NotI/LEU2/KanMX3/3'RS/Bsu36I                                                                                           |

## Appendix Table S3.

| Yeast Strain<br>Name | Mating<br>type | Actin  | Genotype                                                                                                                   |
|----------------------|----------------|--------|----------------------------------------------------------------------------------------------------------------------------|
| MAY002               | а              | Sc     | MATa his3-Δ200 ura3-52 leu2-3,112                                                                                          |
| MAY003               | α              | Sc     | MATα his3-Δ200 ura3-52 leu2-3,112                                                                                          |
| MAY258               | α              | Scl    | MATα his3-Δ200 ura3-52 leu2-3,112 act1Δ::URA3-ACT1-LEU2                                                                    |
| MAY259               | α              | ScNI   | MAT $\alpha$ his3- $\Delta$ 200 ura3-52 leu2-3,112 act1 $\Delta$ ::URA3-act1- $\Delta$ intron-LEU2                         |
| MAY260               | α              | N2     | MATα his3-Δ200 ura3-52 leu2-3,112 act1Δ::URA3-act1-N2-LEU2                                                                 |
| MAY261               | α              | Ca     | MATα his3-Δ200 ura3-52 leu2-3,112 act1Δ::URA3-act1-Ca-LEU2                                                                 |
| MAY262               | N/A            | Nc     | MATα his3-Δ200 ura3-52 leu2-3,112 act1Δ::URA3-act1-Nc-LEU2                                                                 |
| MAY263               | α              | Ор     | MATα his3-Δ200 ura3-52 leu2-3,112 act1Δ::URA3-act1-Op-LEU2                                                                 |
| MAY264               | α              | N1     | MATα his3-Δ200 ura3-52 leu2-3,112 act1Δ::URA3-act1-N1-LEU2                                                                 |
| MAY265               | α              | Sc[Ca] | MATα his3-Δ200 ura3-52 leu2-3,112 act1Δ::URA3-act1-Sc[Ca]-LEU2                                                             |
| MAY266               | α              | Hs     | MATα his3-Δ200 ura3-52 leu2-3,112 act1Δ::URA3-act1-Hs-LEU2                                                                 |
| MAY267               | N/A            | ΥI     | MATα his3-Δ200 ura3-52 leu2-3,112 act1Δ::URA3-act1-Yl-LEU2                                                                 |
| MAY268               | α              | KI     | MATα his3-Δ200 ura3-52 leu2-3,112 act1Δ::URA3-act1-Kl-LEU2                                                                 |
| MAY269               | α              | Sc[At] | MATα his3-Δ200 ura3-52 leu2-3,112 act1Δ::URA3-act1-Sc[At]-LEU2                                                             |
| MAY270               | α              | Sc[Sp] | MATα his3-Δ200 ura3-52 leu2-3,112 act1Δ::URA3-act1-Sc[Sp]-LEU2                                                             |
| MAY271               | a/α            | Sc/Sc  | MATa/MATα his3-Δ200/his3-Δ200 ura3-52/ura3-52 leu2-3,112/leu2-3,112                                                        |
| MAY272               | a/α            | N2/N2  | MATa/MATα his3-Δ200/his3-Δ200 ura3-52/ura3-52 leu2-3,112/leu2-3,112<br>act1Δ::URA3-act1-N2-LEU2/act1Δ::HIS3-act1-N2-KanMX3 |
| MAY273               | a/α            | N2/Ca  | MATa/MATα his3-Δ200/his3-Δ200 ura3-52/ura3-52 leu2-3,112/leu2-3,112<br>act1Δ::URA3-act1-N2-LEU2/act1Δ::HIS3-act1-Ca-KanMX3 |
| MAY274               | a/α            | Ca/N2  | MATa/MATα his3-Δ200/his3-Δ200 ura3-52/ura3-52 leu2-3,112/leu2-3,112<br>act1Δ::URA3-act1-Ca-LEU2/act1Δ::HIS3-act1-N2-KanMX3 |
| MAY275               | a/α            | Ca/Ca  | MATa/MATα his3-Δ200/his3-Δ200 ura3-52/ura3-52 leu2-3,112/leu2-3,112<br>act1Δ::URA3-act1-Ca-LEU2/act1Δ::HIS3-act1-Ca-KanMX3 |

## Supplementary Methods: Equipment and settings

Yeast cell phalloidin staining and imaging

Imaging conditions:

MicroscopeName: Leica TCS SP8 X

ImageSize: 14.56x14.56 microns (512x512 pixels) (single cells), 116.33x116.33 microns (1392x1392 pixels) (full fields)

BitsPerPixel: 16

Step size: 30

Detector: PMT

TimeGatePulseEnd: 6000

TimeGatePulseStart: 500

TimeGateWavelength: 578

LaserName: White Light Laser

OutPutPowerPercentage: 0.7

LineAverage: 3

DyeName: Alexa-568

TargetWaveLengthBegin: 794

TargetWaveLengthEnd: 799

ObjectiveName: HC PL APO CS2 100x/1.40 OIL

ScanSpeed: 400

Zoom: 8 (single cells), 1 (full fields)

Image processing: Maximum intensity z-projection

Imaging media: 70% glycerol in PBS

Imaging temperature: 20-25 degrees

Image acquisition for branched and linear network reconstitution Imaging conditions: MicroscopeName: Axio Observer.Z1 / 7 ImageSize: 133.12x133.12 microns (2048x2048 pixels) BitsPerPixel: 16 SelectedDetector: MTBCamera\_MTBSideportChanger\_Left.HDCamC11440-42U SelectedLighthouse: HXP 120 V Intensity: 20% ExposureTime: 200 ms DyeName: Alexa-568 ObjectiveName: Plan-Apochromat 100x/1.40 Oil Ph 3 M27 ChannelFilter: Texas Red Imaging media: Motility buffer (50 mM KCl, 5 mM Hepes, 2.4 mM MgCl<sub>2</sub>; 4 mM DTT; 1 mM ATP; 0.36% methylcellulose 1500 cP and 1.5% BSA) Imaging temperature: 20-25 degrees Settings for bead images showed in figure 4. Actin alone, branched Minimum displayed value: 140 Maximum displayed value: 12700 Actin alone, linear Minimum displayed value: 120 Maximum displayed value: 2000 Actin/Tpm, branched Minimum displayed value: 150/250 Maximum displayed value: 17800/34452 Actin/Tpm, linear Minimum displayed value: 130/310 Maximum displayed value: 3600/5800 Actin/Cof, branched

Minimum displayed value: 130/30 Maximum displayed value: 17500/6922 Actin/Cof, linear Minimum displayed value: 120/50 Maximum displayed value: 6700/2650