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Figure S1. Enrichment Analysis of non-pathogenic and pathogenic duplications. Non-pathogenic duplications are sig-
nificantly depleted in coding and regulatory regions as well as TAD boundaries. In contrast, pathogenic duplications
are significantly enriched coding regions. Both non-pathogenic and pathogenic duplications are enriched in extended
telomeric regions. Grey bars and squares indicate a non-significant FC (¢ — value < 0.01).
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Figure S2. Enrichment of non-pathogenic and pathogenic deletions in ChromHMM annotation, HARs and Segmental
Duplications. Pathogenic and non-pathogenic deletions are significantly depleted in polycomb-repressed and human-
accelerated regions. Grey bars and squares indicate a non-significant FC (¢ — value < 0.01).
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Figure S3. Enrichment of non-pathogenic and pathogenic duplications in ChromHMM annotation, HARs and Seg-
mental Duplications. Non-pathogenic duplications are significantly enriched segmental duplications and significantly
depleted in polycomb-repressed, heterochromatin and human-accelerated regions. Pathogenic duplications are signifi-
cantly deplete in HARs. Grey bars and squares indicate a non-significant FC (¢ — value < 0.01).
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Figure S4. Enrichment of non-pathogenic and pathogenic deletions in TAD-centric annotation. We observe strong
significantly enrichment of non-pathogenic deletions in TADs without gene or enhancer annotations but significant
depletion in almost all TADs containing coding or regulatory annotation. Pathogenic deletions tend to be enriched in
TADs with gene or enhancer annotation. Grey bars and squares indicate a non-significant FC (¢ — value < 0.01).
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Figure S5. Enrichment of non-pathogenic and pathogenic duplications in TAD-centric. While we are not able to observe
any significant enrichment or depletion of pathogenic duplications in TAD-centric annotation, we observe significant
enrichment of non-pathogenic duplications in TADs without gene or enhancer annotation. Non-pathogenic duplications
are also significantly depleted in most TADs with coding or regulatory annotations. Grey bars and squares indicate a
non-significant FC (¢ — value < 0.01).
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Figure S6. ROC-Curves showing the classification performance of TADA, SVScore and SVEX on ClinVar variants sep-
arated into non-overlapping groups by size: Small (< 50kb), Medium (< 100kb), Medium-Large (< 1mb), Large (>= 1mb).
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Figure S7. ROC-Curves showing the classification performance of TADA and CADD-SV on ClinVar and Test-Split
CNVs.
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Figure S8. Calibration of the Predicted Class Probabilities for the Deletion and Duplication Model. A shows the fraction
of positives vs the mean predicted value. B shows the absolute count of variants predicted over mean predictive values.
The dotted line in the upper plot indicates perfect calibration.
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Figure S9. Ranking performance of TADA and SVScore for pathogenic ClinVar and rare GnomAD deletions.



100. n=586

m TADA
mEm SVScore

80 4

60

Percentage

40-

20

1 2 3 4 5 6-10 11-20 21-40 41-60 61-80 81-100
Ranks

Figure $10. Ranking performance of TADA and SVScore for pathogenic ClinVar and rare GnomAD duplications.
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Figure S11. Ranking performance of the modified TADA classifier and SVScore for pathogenic ClinVar and rare Gno-
mAD deletions.
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Figure $12. Ranking performance of the modified TADA classifier and SVScore for pathogenic ClinVar and rare Gno-
mAD duplications.
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Figure S13. Pathogenicity Scores for Duplications of DD-Patients. The figure shows the computed pathogenicity scores
for duplications of the DD2 patient including the pathogenic variant of DD1. Pathogenic duplications are marked in red.
A potential threshold of 0.5 to separate duplications into pathogenic and non-pathogenic is indicated by the dashed line.
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Figure S$15. Partial Correlations between Features of the Deletion Model.
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Figure S$16. Feature Importance of the Duplication Model.
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Figure S18. Size distribution of Pathogenic and Non-Pathogenic Variants. A and C show the comparison of size dis-
tributions between pathogenic and non-pathogenic variants before and after size-matching, respectively. B and D show
the same comparison for duplications. E shows the size distributions of non-pathogenic and pathogenic deletions for
each data source before size-matching.
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Figure S19. Proportion of Variants by Data Source and Pathogenicity. A and B show the proportion of non-pathogenic
deletions by data source before and after size-matching, respectively. C and D show the same comparison for non-
pathogenic duplications. E-H show the proportion of DECIPHER deletions and duplications by their annotated effect
before and after size-matching, respectively. I shows the distribution of non-pathogenic variants by data source across
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the genome before size-matching.
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Figure S21. Classification Performance based on Reciprocal Overlap. The figure shows the changes to ROC-AUC values
for increasing reciprocal overlap thresholds when comparing ClinVar deletions and duplications to our training data.



Feature

Description

Number of affected Genes

Total number of gene annotations overlapping with the corresponding CNV

Number of affected Enhancers

Total number of enhancer annotations overlapping with the corresponding CNV

Boundary Distance

Distance to the closest TAD boundary (o if there is an overlap)

Boundary Stability

The stabilitiy i.e. the conservation of the closest TAD boundary across cell types

Gene Distance

Distance to the closest gene (o if there is an overlap)

Enhancer Distance

Distance to the closest enhancer (o if there is an overlap)

DDGz2P Distance Distance to the closest gene associated with developmental disease (o if there is an overlap)
Gene LOEUF pLoF intolerance of the closest gene

Enhancer Conservation Primary sequence conservation of the closest enhancer

Gene HI Predcited Haploinsufficency of the closest gene

CTCF Distance Distance to the closest CTCF binding site (o if there is an overlap)

HI Log-Odds-Score

Aggregated predicted haploinsufficiency across all genes overlapping with the CNV

Exon Overlap

Maximum proportion of exons overlapping with the CNV

MPOI

Maximum overlap of a CNV with putative interacting fragments, of each gene in the same
TAD environment, normalized by the corresponding pLoF metric.

Table S1. Functional Annotation Based Features for the Training of Pathogenicity Predicting Classifiers.

DUP Test Set | DEL Test Set | ClinVar DEL | ClinVar DUP | ClinVar DEL (<1Mb) | ClinVar DUP (<1Mb)
TADA 0.73 0.74 0.73 0.53 0.69 0.42
SVScore 0.43 0.46 0.67 0.83 0.66 0.54
VEP 0.47 0.42 0.69 0.59 0.63 0.43

Table S2. Classification performance by TADA, SVScore, and VEP measured in macro averaged F1 scores on deletions
and duplications of the test split as well as ClinVar variants. Fi-scores in bold indicate the best-performing method for

the individual variant set.

Variants / Annotations Source Date
DECIPHER https://decipher.sanger.ac.uk/ 04/25/2019
GnomAD-SV https://storage.googleapis.com/gnomad-public/papers/2019-sv/gnomad_v2.1_sv.sites.vcf.gz 03/14/2019
Audano et al. http://ftp.1000genomes.ebi.ac.uk/vol/ftp/data_collections/hgsv_sv_discovery/working/20181025_EEE_SV-Pop_1/ 03/13/2019
UK Biobank provided by James Priest and Matthew Aguirre (Aguirre et al., 2019) 06/18/2019
DGV http://dgv.tcag.ca/dgv/docs/DGV.GS.Marchz016.50percent.GainLossSep.Final.hg19.gff3 01/14/2020
TAD Boundaries + Boundary Stability | https://github.com/emcarthur/TAD-stability-heritability/blob/master/ gokbBoundaries/4okbBoundaries_byCell Type/H1_ESC_Dixonzo15.bed | 06/02/2020
CTCF Binding Sites https://www.encodeproject.org/files/ENCFF453XKM/@@download/ENCFF453XKM.bed.gz 1/27/2019
FANTOM;5 Enhancer https://fantom.gsc.riken.jp/s/datafiles/latest/extra/Enhancers/human_permissive_enhancers_phase_1_and_z2.bed.gz 03/19/2019
DDG2P Genes http://www.ebi.ac.uk/genezphenotype/downloads/DDGz2P.csv.gz 05/07/2019
Haploinsufficiency Predictions https://decipher.sanger.ac.uk/files/downloads/HI_Predictions_Version3.bed.gz 06/10/2019
pLoF Metrics https://storage.googleapis.com/gnomad-public/release/2.1.1/constraint/gnomad.v2.1.1.1of_metrics.by_gene.txt.bgz 05/08/2019
pcHi-C https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE86189 11/22/2019
HAVANNAH exons https://www.gencodegenes.org/human/ 11/27/2019
Telomeres https://genome.ucsc.edu/cgi-bin/hgTables 04/18/2019

Table S3. Sources and date obtained for variants and annotation data.




