Supplementary Material

Figure S1. Enrichment Analysis of non-pathogenic and pathogenic duplications. Non-pathogenic duplications are significantly depleted in coding and regulatory regions as well as TAD boundaries. In contrast, pathogenic duplications are significantly enriched coding regions. Both non-pathogenic and pathogenic duplications are enriched in extended telomeric regions. Grey bars and squares indicate a non-significant FC ($q - value \le 0.01$).

Figure S2. Enrichment of non-pathogenic and pathogenic deletions in ChromHMM annotation, HARs and Segmental Duplications. Pathogenic and non-pathogenic deletions are significantly depleted in polycomb-repressed and human-accelerated regions. Grey bars and squares indicate a non-significant FC ($q - value \le 0.01$).

Figure S4. Enrichment of non-pathogenic and pathogenic deletions in TAD-centric annotation. We observe strong significantly enrichment of non-pathogenic deletions in TADs without gene or enhancer annotations but significant depletion in almost all TADs containing coding or regulatory annotation. Pathogenic deletions tend to be enriched in TADs with gene or enhancer annotation. Grey bars and squares indicate a non-significant FC ($q - value \le 0.01$).

Figure S5. Enrichment of non-pathogenic and pathogenic duplications in TAD-centric. While we are not able to observe any significant enrichment or depletion of pathogenic duplications in TAD-centric annotation, we observe significant enrichment of non-pathogenic duplications in TADs without gene or enhancer annotation. Non-pathogenic duplications are also significantly depleted in most TADs with coding or regulatory annotations. Grey bars and squares indicate a non-significant FC ($q - value \le 0.01$).

Figure S6. ROC-Curves showing the classification performance of TADA, SVScore and SVFX on ClinVar variants separated into non-overlapping groups by size: Small (< 50kb), Medium (< 100kb), Medium-Large (< 1mb), Large (>= 1mb).

Figure S7. ROC-Curves showing the classification performance of TADA and CADD-SV on ClinVar and Test-Split CNVs.

Figure S8. Calibration of the Predicted Class Probabilities for the Deletion and Duplication Model. **A** shows the fraction of positives vs the mean predicted value. **B** shows the absolute count of variants predicted over mean predictive values. The dotted line in the upper plot indicates perfect calibration.

Figure S9. Ranking performance of TADA and SVScore for pathogenic ClinVar and rare GnomAD deletions.

Figure S10. Ranking performance of TADA and SVScore for pathogenic ClinVar and rare GnomAD duplications.

Figure S11. Ranking performance of the modified TADA classifier and SVScore for pathogenic ClinVar and rare GnomAD deletions.

Figure S12. Ranking performance of the modified TADA classifier and SVScore for pathogenic ClinVar and rare GnomAD duplications.

Figure S13. Pathogenicity Scores for Duplications of DD-Patients. The figure shows the computed pathogenicity scores for duplications of the DD2 patient including the pathogenic variant of DD1. Pathogenic duplications are marked in red. A potential threshold of 0.5 to separate duplications into pathogenic and non-pathogenic is indicated by the dashed line.

	chr17:67,384,271- p13.3 p13.2	70,614,461	p12	p11.2	Liliq	q11.2	412	1.12p	q21.31	q21.32 q21.33	q22	q23.1	q23.3	q24.2 q24.3	2.42p 1.82p	q25.3
	Ţ							3.23	0 kh							ŕ
	_		68,000 -	4		_		69,0	00 kb		_			70,000 kb 		_
RefSaq Genes			T	-					I						Ť	*
gnomad_genes_pf_loeuf_HI.bed	MAP2K6 0.718815666	LINC01483	LNC0145	r KCNJ16					CASC	11				LINC02095 50X9	LINC 02008	NC 00678
0DG2P_genes.bed														-		
fantom5_enhancer_phastcon_a	-	-	_	-		=	-	-	-	Ξ	-	-	_	D062P	-	Ξ
elbed a trans area	ANTOMS FANTOM	5 FANTOMS	FANTOMS FAI	NTOM5 FANTOME	5 FANTOMS FAI	NTOMS	FANTOMS	FANTOMS FANTC	INS	FANTOMS	FANTOM5 FANTON	45 FANTO	DM5	FANTOMS FANTOMS	FANTOMS FANT	OM5 FANTOM
edpeaks_ru_op_	TCF CTCF CTC	F CTCF		CTCF		CTCF	CTCF	CTCF	CTCF	CTCF	CTCF	CTC.	- "	TCF CTCF CTCF	CTCF CTCF	CTCF CT
Dixon_2015_stability_formatted											0.94656	73162654439				
ADS. bed			0.90071328	49318558												0.9007132845
DD1_pathogenic_DUP.bed														I		
								0.586	1628994778							
DD2_pathogenic_DUP.bed								0.798602	127485759							
								10000	CC/C04/77							

Figure S14. Regulatory Environment of DD-Patient Duplications. In this screenshot annotations of TADA are shown in combination with the disease-causing mutations of the DD1 and DD2 individual. The scores below the individual duplication is the computed pathogenicity score. The Genes in the GnomAD track also include their haploinsufficiency score.

Figure S15. Partial Correlations between Features of the Deletion Model.

Figure S16. Feature Importance of the Duplication Model.

Figure S17. Number of Variants Pre- and Post-Filtering.

Figure S18. Size distribution of Pathogenic and Non-Pathogenic Variants. **A** and **C** show the comparison of size distributions between pathogenic and non-pathogenic variants before and after size-matching, respectively. **B** and **D** show the same comparison for duplications. **E** shows the size distributions of non-pathogenic and pathogenic deletions for each data source before size-matching.

Figure S19. Proportion of Variants by Data Source and Pathogenicity. **A** and **B** show the proportion of non-pathogenic deletions by data source before and after size-matching, respectively. **C** and **D** show the same comparison for non-pathogenic duplications. **E**-**H** show the proportion of DECIPHER deletions and duplications by their annotated effect before and after size-matching, respectively. **I** shows the distribution of non-pathogenic variants by data source across the genome before size-matching.

Figure S20. Distribution of Non-Pathogenic Variants across the Genome

Figure S21. Classification Performance based on Reciprocal Overlap. The figure shows the changes to ROC-AUC values for increasing reciprocal overlap thresholds when comparing ClinVar deletions and duplications to our training data.

Feature	Description
Number of affected Genes	Total number of gene annotations overlapping with the corresponding CNV
Number of affected Enhancers	Total number of enhancer annotations overlapping with the corresponding CNV
Boundary Distance	Distance to the closest TAD boundary (o if there is an overlap)
Boundary Stability	The stabilitiy i.e. the conservation of the closest TAD boundary across cell types
Gene Distance	Distance to the closest gene (o if there is an overlap)
Enhancer Distance	Distance to the closest enhancer (o if there is an overlap)
DDG2P Distance	Distance to the closest gene associated with developmental disease (o if there is an overlap)
Gene LOEUF	pLoF intolerance of the closest gene
Enhancer Conservation	Primary sequence conservation of the closest enhancer
Gene HI	Predcited Haploinsufficency of the closest gene
CTCF Distance	Distance to the closest CTCF binding site (o if there is an overlap)
HI Log-Odds-Score	Aggregated predicted haploinsufficiency across all genes overlapping with the CNV
Exon Overlap	Maximum proportion of exons overlapping with the CNV
MBOI	Maximum overlap of a CNV with putative interacting fragments, of each gene in the same
WIF OI	TAD environment, normalized by the corresponding pLoF metric.

Table S1. Functional Annotation Based Features for the Training of Pathogenicity Predicting Classifiers.

	DUP Test Set	DEL Test Set	ClinVar DEL	ClinVar DUP	ClinVar DEL (<1Mb)	ClinVar DUP (<1Mb)
TADA	0.73	0.74	0.73	0.53	0.69	0.42
SVScore	0.43	0.46	0.67	0.83	0.66	0.54
VEP	0.47	0.42	0.69	0.59	0.63	0.43

Table S2. Classification performance by TADA, SVScore, and VEP measured in macro averaged F1 scores on deletions and duplications of the test split as well as ClinVar variants. F1-scores in bold indicate the best-performing method for the individual variant set.

Variants / Annotations	Source	Date
DECIPHER	https://decipher.sanger.ac.uk/	04/25/2019
GnomAD-SV	https://storage.googleapis.com/gnomad-public/papers/2019-sv/gnomad_v2.1_sv.sites.vcf.gz	03/14/2019
Audano et al.	http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/hgsv_sv_discovery/working/20181025_EEE_SV-Pop_1/	03/13/2019
UK Biobank	provided by James Priest and Matthew Aguirre (Aguirre et al., 2019)	06/18/2019
DGV	http://dgv.tcag.ca/dgv/docs/DGV.GS.March2016.50percent.GainLossSep.Final.hg19.gff3	01/14/2020
TAD Boundaries + Boundary Stability	$https://github.com/emcarthur/TAD-stability/blob/master/40kbBoundaries/40kbBoundaries_byCellType/H1_ESC_Dixon2015.bed$	06/02/2020
CTCF Binding Sites	https://www.encodeproject.org/files/ENCFF453XKM/@@download/ENCFF453XKM.bed.gz	11/27/2019
FANTOM5 Enhancer	https://fantom.gsc.riken.jp/5/datafiles/latest/extra/Enhancers/human_permissive_enhancers_phase_1_and_2.bed.gz	03/19/2019
DDG2P Genes	http://www.ebi.ac.uk/gene2phenotype/downloads/DDG2P.csv.gz	05/07/2019
Haploinsufficiency Predictions	https://decipher.sanger.ac.uk/files/downloads/HI_Predictions_Version3.bed.gz	06/10/2019
pLoF Metrics	https://storage.googleapis.com/gnomad-public/release/2.1.1/constraint/gnomad.v2.1.1.lof_metrics.by_gene.txt.bgz	05/08/2019
pcHi-C	https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE86189	11/22/2019
HAVANNAH exons	https://www.gencodegenes.org/human/	11/27/2019
Telomeres	https://genome.ucsc.edu/cgi-bin/hgTables	04/18/2019

Table S3. Sources and date obtained for variants and annotation data.