
Supplementary Methods 

PrediXcan method: 

PrediXcan (Gamazon et al., 2015) is a gene-based association test that prioritizes genes 

which are likely to be causal for the phenotype. It implements an elastic net-based method for 

selecting variants associated with gene expression in a given reference panel, and then uses 

those variants to predict gene expression in a cohort with only genotype data. We downloaded 

the PrediXcan software (see URLs) along with its prepackaged weights for gene expression data 

from PredictDB (see URLs). Weights for gene expression using RNA sequencing data were 

obtained from the Genotype-Tissue Expression project (version 7) (Zhang & Lin, 2013) (whole 

blood, genes= 6208; and EBV transformed lymphocytes, genes=3000), Depression Genes and 

Networks (Battle et al., 2014) (whole blood, genes=11538, n=922), and Multi-Ethnic Study of 

Atherosclerosis (Europeans only, monocytes, genes=4647) (Mogil et al., 2018).  Imputed 

genotypes for all cohorts were filtered for imputation quality based on R2 > 0.3; variants not 

meeting this threshold were excluded from the analysis. We use DGN as our primary reference 

panel for all TWAS analyses as it is the largest single whole blood RNA-seq dataset. 

 

cpgen: 

We used the R package cpgen to perform conditional analysis of TWAS-significant genes, 

while accounting for a KING kinship matrix. However, cpgen is designed in such a way that it 

performs eigenvalue decomposition on the cohort sample for every function call. Since we had 

239 TWAS-significant associations, this would have required eigenvalue decomposition on a 



sample of N ~ 55,000 for each of those 239 associations, a computationally burdensome 

calculation. Thus, we slightly modified the cpgen script. Specifically, we computed the 

eigenvalue decomposition on the GERA sample outside of the cpgen script (for each 

phenotype), and then subsequently loaded the appropriate eigenvectors and eigenvalues into 

the program, modifying the script so that it could take these eigenvectors and eigenvalues as 

input. 

 

Included cohorts: 

These TWAS analyses were limited to self-reported white or European ancestry 

participants, for easy comparability with the DGN European ancestry eQTL panel, including 

input of LD information into the R Shiny application (see R Shiny Methods), and with the largest 

single-ancestry blood cell trait GWAS.   

Genetic Epidemiology Research on Adult Health and Aging (GERA). The GERA cohort includes 

over 100,000 adults who are members of the Kaiser Permanente Medical Care Plan, Northern 

California Region (KPNC) and consented to research on the genetic and environmental factors 

that affect health and disease, linking together clinical data from electronic health records, 

survey data on demographic and behavioral factors, and environmental data with genetic 

data(Banda et al., 2015; Kvale et al., 2015).  By self-report, the GERA cohort is 81% White and 

19% minority. Each GERA participant provided a saliva sample for extraction of DNA, which was 

conducted at KPNC using Oragene kits (DNA Genotek Inc., Ottawa, ON, Canada). DNA samples 

were genotyped at the Genomics Core Facility of UCSF. Genotyping was completed as 

previously described (Kvale et al., 2015) using 4 different custom Affymetrix Axiom arrays with 



ethnic-specific content to increase genomic coverage. In addition to the QC protocols 

performed during genotyping, a total of six subjects, all female, were dropped due to sex non-

agreement according to the Plink v1.07 --geno option and variants with more than 10% 

missingness were removed. Genotype data were phased without external reference using Eagle 

v2.3 and then imputed to 1000 Genomes Phase 3 v5 using Minimac3. Principal components 

analysis was used to characterize genetic structure in this European sample (Banda et al., 2015). 

Hematological measures were extracted from medical records. In individuals with multiple 

measurements, the first visit with complete white blood cell differential (if any) was used for 

each participant. Otherwise, the first visit was used. In total, 54,542 non-Hispanic White 

individuals with hematological measures were included in the analysis. 

GERA GWAS results were included in the R Shiny app as well. In the app, GERA 

phenotypes (log10 transformed for WBC subtypes) were based on inverse normalized residuals 

and adjusted for sex, age, age-squared, and the first 10 genetic principal components; analysis 

was done with Bolt LMM as implemented in rvtests (Zhan, Hu, Li, Abecasis, & Liu, 2016), as 

used in the meta-analyses reported in (Vuckovic et al., 2020). We excluded those without a 

valid date of blood cell count measurement, with age < 18 years, or with discordant genotypic 

and phenotypic sex, as well as those with no blood cell trait data. The cohort also has 

longitudinal data; we preferentially selected the first visit with complete data for all measures. 

If no visit had complete data, we used the first available visit. We also excluded extreme blood 

cell measures: WBC>200x109 cells/L, HGB>20 g/dL, HCT>60%, and PLT>1000x109 cells/L. For 

WBC subtypes, we analyzed log10-transformed absolute counts obtained by multiplying 

relative counts with total WBC count. Custom Axiom arrays used for GERA genotyping have 



been previously described (Hoffmann, Kvale, et al., 2011; Hoffmann, Zhan, et al., 2011), as has 

genotype calling with apt-probeset-genotype and generation of PCs using EIGENSOFT4.2 (Banda 

et al., 2015). 

Women’s Health Initiative (WHI). WHI originally enrolled 161,808 women aged 50-79 between 

1993 and 1998 at 40 centers across the US, including both a clinical trial (including three trials 

for hormone therapy, dietary modification, and calcium/vitamin D) and an observational study 

arm (The Women's Health Initiative Study Group). WHI recruited a socio-demographically 

diverse population representative of US women in this age range. Two WHI extension studies 

conducted additional follow-up on consenting women from 2005-2010 and 2010-2015. 

Genotyping was available on some WHI participants through the WHI SNP Health Association 

Resource (SHARe) resource, which used the Affymetrix 6.0 array and on other participants 

through the MEGA array (Wojcik et al., 2019). Imputation and association analysis was 

performed separately in individuals with Affymetrix only, MEGA only, and both Affymetrix and 

MEGA data. For variants with both Affymetrix and MEGA genotypes available, MEGA genotypes 

were used. In total, 18,100 self-reported white women with hematological phenotypes were 

included. All WHI subcohorts were imputed to 1000 Genomes Phase 3. Six sub-cohorts from the 

WHI study were included in the meta-analysis and phenotypes were not collected uniformly 

across the cohorts. Sample size information for each phenotype is contained in Supplementary 

Table 8. 

Atherosclerosis Risk in Communities Study (ARIC). The ARIC study was initiated in 1987 and 

recruited participants age 45-64 years from 4 field centers (Forsyth County, NC; Jackson, MS; 

northwestern suburbs of Minneapolis, MN; Washington County, MD) to study cardiovascular 



disease and its risk factors ("The Atherosclerosis Risk in Communities (ARIC) Study: design and 

objectives. The ARIC investigators," 1989), including the participants of self-reported European 

ancestry included here. Standardized physical examinations and interviewer-administered 

questionnaires were conducted at baseline (1987-89), three triennial follow-up examinations, a 

fifth examination in 2011-13, a sixth exam in 2016-2017 and a seventh exam in 2018-2019. 

Genotyping was performed through the CARe consortium Affymetrix 6.0 array (Musunuru et 

al., 2010). ARIC European American genotype data were imputed to Haplotype Reference 

Consortium (HRC) (McCarthy et al., 2016). In total, 9,345 European ancestry participants with 

hematological phenotypes were included in the analysis. All phenotypes were adjusted for 

study site, age, age squared, sex, and top ten PCs and were inverse normalized. 

Mount Sinai BioMe Biobank. The Mount Sinai BioMe Biobank, founded in September 2007, is 

an ongoing, broadly consented EHR-linked bio- and data repository that enrolls participants 

non-selectively from the Mount Sinai Medical Center patient population. The BioMe Biobank 

draws from a population of over 70,000 inpatient and 800,000 outpatient visits annually from 

over 30 broadly selected clinical sites of the Mount Sinai Medical Center (MSMC). As of 

September 2020, BioMe has enrolled more than 50,000 patients that represent a broad racial, 

ethnic and socioeconomic diversity with a distinct and population-specific disease burden, 

characteristic of the communities served by Mount Sinai Hospital. BioMe participants are 

predominantly of African (AA, 24%), Hispanic/Latino (HL, 35%), European (EA, 32%), and other 

ancestry (OA, 10%). All blood cell phenotype data, as well as demographic variables, were 

extracted from the patients’ EHRs. Genotyping was performed using the Illumina GSA array 

(~640.000 variants) and genotype data were imputed using the “1000G Phase 3 v5” reference 



panel. In total, 8,455 European ancestry participants with hematological phenotypes were 

included in the analysis. All phenotypes were adjusted for study site, age, age squared, sex, and 

top ten PCs and were inverse normalized. The BioMe Biobank Program operates under a Mount 

Sinai Institutional Review Board-approved research protocol. All study participants provided 

written informed consent. 

 

R Shiny: 

Additional details relevant to the production of the LocusXcanR application in R Shiny 

follow. Correlation of predicted expression among genes at the locus was calculated using R’s 

cor function, and LD among variants was computed using plink --r2 

(https://zzz.bwh.harvard.edu/plink/ld.shtml). We used the visNetwork function for network 

visualizations and the ggplot2 function to produce all other figures. Tables were produced using 

the DT package (https://www.rdocumentation.org/packages/DT/versions/0.16). The 

IdeogramTrack (https://rdrr.io/bioc/Gviz/man/IdeogramTrack-class.html) uses Genome 

Reference Consortium Human Build 37 (GRCh37) and UCSC cytogenetic bands from 

http://hgdownload.cse.ucsc.edu/goldenpath/hg19/database/.  
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