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Details	about	county-level	tropical	cyclone	exposure	assessment	
	
Wind-based	exposure.	As	our	main	metric	of	tropical	cyclone	(TC)	exposure,	we	modeled	peak	
sustained	winds	associated	with	each	storm	in	each	county	and	classified	a	county	as	exposed	or	

unexposed	to	the	storm	based	on	whether	this	modeled	wind	speed	exceeded	a	certain	threshold.	

For	each	TC,	we	first	used	a	double	exponential	windspeed	model	(Willoughby	et	al.	2006)	to	model	

ground-level	peak	sustained	winds.	We	started	with	inputs	from	the	National	Hurricane	Center’s	

revised	Atlantic	hurricane	database	(HURDAT2;	Landsea	and	Franklin	2013)	on	the	storm’s	

position	and	maximum	10-meter,	1-minute	sustained	wind	speed.	From	this	data,	we	also	

determined	the	storm’s	direction	of	movement	and	forward	speed,	and	then	interpolated	all	

measurements	from	the	recorded	six-hour	intervals	to	15-minute	intervals	using	natural	cubic	

splines	with	number	of	knots	based	on	the	number	of	available	position	measurements	for	that	

storm	(Anderson	et	al.	2017a).	From	these	inputs	and	the	location	of	the	county’s	population	mean	
center	(as	determined	by	the	US	Census	Bureau,	based	on	2010	Census	results;	

https://www.census.gov/geographies/reference-files/2010/geo/2010-centers-population.html),	

we	used	the	model	to	estimate	maximum	wind	speeds	in	each	study	county	associated	with	the	

storm	as	the	storm	moves	near	or	through	the	county.	We	have	made	the	code	for	this	TC	wind	

speed	model	available	as	an	open-source	R	software	package	(Anderson	et	al.	2017b).	
	

This	modeling	resulted	in	a	time	series	of	wind	speeds	for	each	study	county	over	the	course	of	

each	storm,	with	a	separate	wind	speed	modeled	every	15	minutes	at	each	county’s	center	during	

the	storm’s	transit	for	as	long	as	the	storm	was	tracked.	From	this	collection	of	modeled	wind	

speeds,	we	determined	the	highest	wind	speeds	over	the	course	of	the	storm	for	each	county.	We	

then	classified	each	study	county	as	either	exposed	or	unexposed	to	the	storm,	based	on	whether	

this	peak	sustained	windspeed	exceeded	a	certain	threshold.	For	our	primary	analysis,	we	used	a	

threshold	of	21	m/s;	for	secondary	analysis,	we	considered	thresholds	of	12,	15,	and	18	m/s.	

	

Rain-based	exposure.	To	determine	TC	exposure	based	on	the	rainfall	experienced	in	each	study	
county,	we	used	precipitation	data	from	the	North	American	Land	Data	Assimilation	System,	phase	

2	(NLDAS-2;	Rui	et	al.	2014),	aggregated	from	its	original	1/8th	degree	grid	to	the	county	level	(Al-
Hamdan	et	al.	2014).	This	re-analysis	dataset	applies	a	land-surface	model	that	integrates	data	from	

surface	observations	and	satellites,	generating	a	time	series	of	hourly	precipitation	across	the	

continental	United	States	(US)	(Rui	et	al.	2014),	which	was	then	summed	to	measure	daily	
precipitation	values	(Al-Hamdan	et	al.	2014).	
	

We	then	matched	this	precipitation	data	spatially	and	temporally	with	storm	tracks.	For	each	

storm,	we	interpolated	the	storm	track	to	a	15-minute	interval,	from	the	original	six-hour	position	

measurements	given	in	HURDAT2,	using	a	cubic	spline	(Anderson	et	al.	2017a).	We	then	measured,	

for	each	county	in	the	study	counties,	the	distance	between	the	county’s	population-mean	center	

and	the	storm	track.	We	used	the	date	on	which	this	distance	was	smallest	as	the	date	of	the	storm’s	

closest	approach	to	the	county	(Figure	S3).	A	three-day	window	was	crafted	separately	for	each	

study	county,	centered	on	the	day	that	the	storm	was	closest	to	that	county.	Figure	S1	gives	a	

demonstration	of	this	process	for	Hurricane	Floyd	in	1999,	showing	the	evolution	of	the	exact	dates	

used	to	calculate	cumulative	rainfall	in	specific	counties	as	the	storm	moved	up	the	coast.	

Cumulative	rainfall	was	measured	as	the	sum	of	daily	precipitation	values	across	the	three-day	

window	for	each	county.	

	

We	selected	a	three-day	window	based	on	evidence	from	the	atmospheric	science	literature	on	the	

typical	size	of	tropical	cyclone	rainfields	and	tropical	cyclone	translational	speeds.	Rainfields	for	

hurricanes	hitting	the	US	typically	extend	about	250	km	from	the	storm’s	center	(Matyas	2010),	and	
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peak	rainfall	rates	tend	to	be	within	about	40	km	of	the	storm’s	center	(Lonfat,	Marks,	and	Chen	

2004).	Storms	that	bring	the	most	precipitation	to	an	area	tend	to	be	slower-moving	(in	terms	of	

translational	speed),	in	part	because	these	slower	storms	keep	a	location	within	the	rainfield	for	a	

longer	period	(Hall	and	Kossin	2019;	Matyas	2010).	In	recent	years,	the	mean	coastal	North	Atlantic	

tropical	cyclone	translational	speed	has	been	about	15.5	km/h,	with	a	5th	percentile	of	
approximately	5	km/h	(Hall	and	Kossin	2019).	A	storm	moving	at	a	very	slow	speed	of	5	km/h	

would	travel	360	km	(217	miles)	over	a	three-day	period,	while	a	storm	moving	at	15.5	km/h	

would	travel	over	1,000	km	(620	miles)	in	a	three-day	period.	One	study	investigated	residence	

times	of	North	Atlantic	tropical	cyclones—how	long	the	storms	spend	within	a	200	km	radius	of	a	

location	(Hall	and	Kossin	2019)—and	found	that,	for	the	1,110	Atlantic-basin	tropical	storms	

between	1944	and	2017,	over	90%	of	storms	never	lingered	more	than	48	hours	within	a	200	km	

radius	of	any	coastal	region	between	the	Yucatan	and	Maine	(Hall	and	Kossin	2019).	Even	for	most	

slow-moving	storms,	therefore,	a	three-day	window	will	encompass	most	or	all	of	the	period	when	

the	storm	is	close	enough	that	the	location	falls	within	the	storm’s	rainfield.	

	

Once	we	calculated	the	cumulative	rainfall	for	each	study	county	for	each	tropical	cyclone,	we	

considered	a	county	exposed	under	the	rain-based	TC	exposure	metrics	if	(1)	cumulative	rainfall	

for	the	three-day	window	surrounding	the	storm’s	closest	approach	to	the	county	surpassed	a	

certain	threshold	and	(2)	the	storm	track	came	within	500	kilometers	(km)	of	the	county	(to	

exclude	cases	where	study	counties	far	from	a	storm	experienced	high	precipitation	from	another	

weather	event	concurrent	to	the	storm	passing	elsewhere	in	the	country).	We	considered	four	

thresholds	for	exposure	classification:	50,	75,	100,	and	125	millimeters	(mm).	

	

Flood-	and	tornado-based	exposure.	We	determined	county	level	exposure	to	storm-induced	
floods	and	tornadoes	using	data	from	the	National	Oceanic	and	Atmospheric	Administration	

(NOAA)’s	Storm	Events	database	(National	Oceanic	and	Atmospheric	Administration	2018).	For	
each	TC,	this	Storm	Event	database	was	queried	for	all	study	counties	for	which	the	storm	came	

within	500	km	of	the	county	at	closest	approach.	For	each	of	these	study	counties,	we	identified	all	

flood	and	tornado	events	with	a	start	date	within	a	five-day	window	of	the	date	of	the	storm’s	

closest	approach	to	the	county.		

	

For	TC	flood	exposures,	three	counties	(Oneida	and	Broome	Counties,	NY,	and	Lackawanna	County,	

PA)	were	exposed	to	two	storms	(Hurricane	Gaston	and	Tropical	Storm	Hermine)	on	the	same	day	

(August	31,	2004).	Since	our	modeling	approach	cannot	distinguish	the	effects	of	two	storms	on	the	

same	day,	we	modeled	the	two	storm	events	as	a	single	exposure	for	these	counties.	

	

Distance-based	exposure.	Finally,	we	assessed	exposure	based	on	distance	of	the	storm’s	closest	
approach	to	the	county.	For	each	storm,	we	interpolated	the	storm	track	to	a	15-minute	interval,	

from	the	original	six-hour	position	measurements	given	in	HURDAT2,	using	a	cubic	spline	

(Anderson	et	al.	2017a).	We	then	measured,	for	each	county	in	the	study	counties,	the	distance	

between	the	county’s	population-mean	center	and	the	storm	track.	We	used	the	minimum	value	of	

this	distance	to	measure	the	storm’s	closest	approach	to	the	county.	We	investigated	four	

thresholds	of	distance:	25,	50,	75,	and	100	km.		

	

We	conducted	all	TC	exposure	assessment	using	the	R	package	“hurricaneexposure”	(Anderson	et	al.	
2017a),	which	we	created	to	make	this	county-level	hurricane	exposure	assessment	data	available	

publicly	to	other	researchers.	 	
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Statistical	models	and	supplemental	results	for	the	associations	between	the	ten	most	
severe	TC	wind	exposures	and	Medicare	emergency	hospital	admissions	
	
To	investigate	if	the	overall	estimated	associations	between	TC	exposures	and	hospital	admissions	

were	driven	by	the	few	most	severe	TC	exposures,	we	also	estimated	the	storm-specific	

associations	for	the	ten	most	severe	TC	wind	exposures,	as	well	as	the	average	associations	

between	hospitalizations	and	all	other	TC	exposures	when	excluding	these	ten	most	severe	wind	

exposures.	To	ensure	adequate	statistical	power	in	this	subgroup	analysis,	we	limited	this	analysis	

to	study	counties	with	>50,000	Medicare	beneficiaries.	

	

For	each	of	the	top	ten	TC	wind	exposures,	we	estimated	the	RR	on	the	day	of	storm’s	closest	

approach	to	the	county.	To	do	so,	we	created	a	matched	dataset	as	described	in	the	main	text	and	

then	applied	the	following	overdispersed	Poisson	model	to	the	matched	single-county,	single-storm	

data:	

	 !!~Quasipoisson(,! , .,!)	 	

	 log	(,!) = log(n") + α + β"x" + ηb" + :′<#	 (S1)	

where:	

- !!	is	the	hospital	admission	count	on	day	t;	
- ,!	is	the	expected	count	of	hospital	admissions	for	day	t;	
- .	is	an	overdispersion	parameter;	
- =!	is	the	total	number	of	unhospitalized	Medicare	beneficiaries	in	the	county	on	day	t;	
- >!	is	an	indicator	variable	denoting	whether	day	t	is	a	storm-exposed	day	or	matched	

unexposed	day;	

- ?!	is	included	as	a	linear	variable	to	adjust	for	the	long-term	linear	trend	in	hospital	
admissions	over	time,	with	@	as	the	coefficient	for	year;	

- A$	is	vector	of	categorical	variables	of	day	of	week	and	B	is	a	vector	of	coefficients	for	day	of	
week.	

	

The	value	of	C!D 	estimated	from	eq.	S1	was	used	to	calculate	the	RR	for	the	single-storm	exposure	in	
the	affected	county	on	the	day	of	storm’s	closest	approach	to	the	county.	

	

To	estimate	the	storm-period	RRs	for	the	most	severe	TC	wind	effects	on	hospital	admissions,	we	

first	calculated	the	total	count	of	hospital	admission	for	the	ten-day	storm	exposure	period	(two	

days	before	to	seven	days	after	the	storm’s	closest	approach	to	the	county),	as	well	as	for	the	same	

period	surrounding	each	matched	unexposed	day.	To	this	data	we	applied	the	following	

overdispersed	Poisson	model,	fitting	it	separately	for	each	of	the	ten	most	severe	TC	wind	

exposures:	

	 !%~Quasipoisson(,% , .,%)	 	

	 log(,%) = log(n&) + α + β&x& + ηb&	 (S2)	

where:	

- !% 	is	the	total	count	of	hospital	admissions	for	the	storm	period;	
- ,% 	is	the	expected	count	of	hospital	admissions	for	the	storm	period;	
- .	is	an	overdispersion	parameter;	
- =% 	is	the	average	of	daily	number	of	unhospitalized	Medicare	beneficiaries	in	the	county	

over	the	ten-day	storm	period;	

- >% 	is	an	indicator	variable	of	storm	exposure,	with	>% = 1	denoting	storm-exposed	period	
and	>% = 0	the	matched	unexposed	period,	with	C% 	the	coefficient	of	storm	exposure	during	
the	period;	

- ?% 	is	a	linear	term	for	year	to	adjust	for	the	long-term	linear	trend	in	hospital	admission	
over	time,	with	@	as	the	coefficient	for	year.	
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Finally,	we	investigated	the	influence	of	the	ten	most	severe	TC	wind	exposures	on	the	overall	

estimated	associations	between	TCs	and	hospital	admissions	for	all	the	storms	and	across	all	the	

exposed	counties.	We	conducted	this	analysis	based	on	the	TC	exposure	definition	of	storm-

associated	peak	sustained	winds	>21	m/s	in	the	county.	We	fit	the	equation	in	the	main	text	to	all	

other	identified	TC	exposures	(excluding	the	ten	most	severe	wind	exposures)	across	all	study	

counties	with	Medicare	beneficiaries	>	50,000.	For	this	analysis,	we	excluded	days	within	the	ten	

most	severe	wind	exposures	from	the	pool	of	candidate	unexposed	matching	days.	We	compared	

these	estimates	to	the	estimated	associations	when	all	storm	exposures	were	included	in	the	

analysis.	
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Sensitivity	analysis		
	
Sensitivity	analysis	to	exclusion	criteria	for	selecting	matched	unexposed	days.	Unexposed	
days	were	typically	not	close	in	time	to	other	storm	exposures	in	the	county.	For	example,	when	

storm	exposure	was	defined	as	local	peak	sustained	wind	speed	>21	m/s,	there	were	123	TC	

exposures	(Table	1	in	the	main	text).	For	each	TC	exposed	day,	ten	unexposed	days	were	randomly	

selected	for	matching,	resulting	a	total	of	1,230	unexposed	days	included	in	analysis.	For	805	out	of	

the	1,230	matched	unexposed	days,	there	were	no	TC	exposures	in	that	county	in	the	calendar	year	

of	the	matched	unexposed	day.	For	the	rest	of	425	matched	unexposed	days,	the	median	distance	

(days)	from	the	unexposed	day	to	the	nearest	TC-exposed	day	was	21	days,	ranging	from	3	to	114	

days.	
	
However,	to	ensure	that	our	results	were	robust	to	a	wider	exclusion	period,	we	also	conducted	a	

sensitivity	analysis.	In	the	sensitivity	analysis,	we	used	a	stricter	matching	criterion,	extending	the	

exclusion	period	to	a	two-week	(fourteen	day)	window.	The	primary	statistical	model	was	re-run	

on	this	new	version	of	matched	data.	Results	are	shown	in	Figure	S8.	Our	primary	results	were	very	

robust	to	this	study	design	choice,	as	indicated	by	the	similarity	in	point	estimates	and	confidence	

intervals	when	comparing	estimates	from	the	original	analysis	versus	the	analysis	with	a	wider	

criterion	for	excluding	days	as	candidates	for	matched	unexposed	days	based	on	proximity	to	

another	storm	in	the	county.	

	
Sensitivity	analysis	to	statistical	modeling	choices.	We	conducted	sensitivity	analyses	related	to	
several	of	the	modeling	choices	in	our	primary	statistical	model.	These	sensitivity	analyses	focused	

on	investigating	potential	problems	with	the	following	assumptions	in	our	primary	model:	(1)	use	

of	Poisson	distribution,	rather	than	a	distribution	that	would	allow	for	overdispersion;	(2)	use	of	a	

common	coefficient	across	all	study	counties	to	control	for	potential	confounding	from	long-term	

trends;	and	(3)	assumption	that	the	county-level	intercepts	are	normally	distributed,	as	assumed	

through	the	use	of	a	random	effect	in	the	primary	model.	

	
We	tested	seven	alternative	statistical	models	to	explore	for	sensitivity	and	problems	with	these	

assumptions	in	the	primary	model.	The	statistical	notation	used	for	all	models	is	given	in	Text	Box	1	

of	this	Supplemental	Appendix.	The	model	equations	for	the	primary	model	used	for	the	results	

presented	in	the	main	text,	as	well	as	each	of	the	alternative	models	tested,	are	given	in	Text	Box	2	

of	this	Supplemental	Appendix.	Text	Box	2	also	provides	more	details	of	how	each	alternative	

model	tested	for	sensitivity	from	specific	modeling	choices	made	in	the	primary	model.	Results	

from	re-fitting	the	study	data	with	each	of	these	models	are	shown	in	Figure	S9.	Estimates	were	

extremely	robust	to	all	these	changes,	with	very	similar	values	for	both	point	estimates	and	

confidence	intervals	regardless	of	the	statistical	model	used.	

	

We	also	investigated	for	problematic	overdispersion	in	the	main	results	by	estimating	dispersion	

factors	for	the	primary	statistical	modeling.	Results	are	shown	in	Table	S3	and	indicate	little	

overdispersion,	as	all	estimated	dispersion	factors	were	close	to	1.	By	contrast,	dispersion	factors	

larger	than	1.4	would	indicate	the	potential	for	problematic	overdispersion	in	the	primary	analysis	

(Korner-Nievergelt	et	al.	2015).	In	additional	to	calculating	the	dispersion	factors	(Table	S3),	we	

also	fit	an	alternative	model	(Alternative	Model	6)	with	an	observation-level	random	factor	added	

to	check	for	overdispersion	(Korner-Nievergelt	et	al.	2015).	When	using	the	primary	exposure	

metric	of	wind	>21	m/s,	the	variance	estimates	for	the	random	factor	were	very	close	to	0	(0.02	and	

0.01	for	cardiovascular	and	respiratory	hospitalizations,	respectively),	indicating	little	

overdispersion.	
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Sensitivity	analysis	using	a	negative	control	exposure.	It	is	plausible	that	there	are	long-term	
trends	in	the	probabilities	of	both	the	exposure	and	outcome	in	this	study,	and	so	there	is	the	

potential	for	confounding	by	these	long-term	patterns.	In	terms	of	exposure,	there	are	documented	

long-term	patterns	in	Atlantic-basin	tropical	cyclones'	activity	resulting	from	several	large-scale	

climate	phenomena,	including	the	El	Niño–Southern	Oscillation	(ENSO)	(Smith	et	al.	2007;	

Klotzbach	2011;	Klotzbach	and	Landsea	2015)	and	the	Atlantic	Multi-decadal	Oscillation	

(AMO)(Goldenberg	et	al.	2011).	For	Medicare	hospitalization	rates,	trends	have	been	documented	

for	several	of	the	outcomes	we	investigate	here,	either	nationally	or	locally	in	the	US,	over	periods	

similar	to	our	study	period,	including	for	heart	failure,	chronic	obstructive	pulmonary	disease,	and	

acute	myocardial	infarction	(Chen	et	al.	2011;	Holt	et	al.	2011;	Yeh	et	al.	2010).	These	trends	may	

be	related	to	changes	in	population	demographics,	risk	factors	(e.g.,	smoking,	high	blood	pressure,	

low-density	lipoprotein	cholesterol,	occupational	exposures),	underlying	health	status,	use	of	

management	medication	(e.g.,	beta	blockers),	and	probability	of	recommending	hospitalization	

versus	outpatient	care	for	a	condition	(Chen	et	al.	2011;	Holt	et	al.	2011;	Yeh	et	al.	2010).	

	
While	we	have	included	control	in	the	model	for	long-term	trends,	through	a	fixed	effect	categorical	

variable	for	year	in	the	primary	statistical	model,	it	is	possible	that	residual	confounding	persists	if	

this	control	is	not	adequately	flexible	or	if	patterns	differ	substantially	across	study	counties.	To	

examine	potential	unmeasured	confounding	from	long-term	temporal	trends	in	our	main	analysis,	

we	conducted	a	negative	control	exposure	analysis,	substituting	days	that	were	not	truly	exposed	to	

storms	but	in	the	same	year	and	time	of	year	as	the	true	storm-exposed	days	in	the	analysis.	We	

conducted	this	analysis	based	on	the	TC	exposure	definition	of	storm-associated	peak	sustained	

winds	>21	m/s	in	the	county.	

	

For	this	analysis,	we	specified	negative	control	exposure	days	as	the	set	of	days	that	were	two	

weeks	(14	days)	before	each	of	the	true	storm	dates	identified	in	the	main	exposure	assessment.	

These	negative	control	exposure	days	were	therefore	in	the	same	year	as	the	true	storm	days,	and	

so	would	capture	similar	phases	in	any	long-term	trends	across	the	study	years	that	could	

introduce	confounding	in	the	main	results.	However,	these	negative	control	exposure	days	were	

early	enough	before	the	true	storm	days	(two	weeks)	that	they	would	not	be	affected	by	the	storms’	

weather	systems	or	by	preparations	for	the	storms.	

	

With	this	set	of	negative	control	exposure	days,	we	conducted	the	same	matching	process	and	

statistical	analysis	conducted	to	obtain	our	main	results,	using	the	generalized	linear	mixed-effect	

model	described	in	equation	1	in	the	main	text.	If	our	main	results	are	the	result	of	confounding	

from	long-term	trends,	we	would	expect	this	negative	control	exposure	analysis	to	generate	effect	

estimates	that	are	similar	in	size	and	direction	to	our	main	results.	Conversely,	without	long-term	

confounding,	we	would	expect	the	negative	control	exposure	estimates	to	be	mostly	non-significant	

and	near	a	relative	risk	of	1	(i.e.,	no	association	between	negative	exposure	control	exposure	and	

hospitalizations).	Based	on	this	analysis,	we	found	little	evidence	of	residual	long-term	confounding	

in	our	primary	estimates	(Figure	S10).	
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Text box 1: Model notation

This text box provides the definition of all parameters used in the primary statistical model or one of the
alternative models considered for sensitivity analysis. Some terms are used in all models considered, while
some terms are only used in some models.

Indices

c County
l Days of lag from storm date or control date matched to storm
t Day
Observed outcome

Yt,c Number of hospitalizations observed among Medicare population on day t in county c
Y.,c Total number of hospitalizations observed among Medicare population across all days included in

the model for county c (for models in conditional Poisson family)
Other observed data

at Vector of categorical variables for year of day t (used in di�erent models than bt ; allows estimation
of a di�erent intercept for each study year)

bt Continuous variable for year of day t (used in di�erent models than at ; allows estimation of a
linear trend in baseline hospitalization rate by year)

dt Vector of categorical variables for day of week of day t
nt,c Number of people among the Medicare population who could be hospitalized on day t in county

c (captures the enrolled, unhospitalized study population size)
xt+l ,c Binary indicator of storm exposure at lag l from day t in community c
Parameters

↵ Overall model intercept
↵c Random-e�ect coe�cient capturing variation from overall intercept for county c
�l Coe�cient of association of storm exposure and hospitalization rate at lag l
�c Fixed-e�ect coe�cient capturing variation from overall intercept for county c
” Vector of coe�cients for year measured as a categorical variable (at)
⌘ Coe�cient for overall linear yearly trend
⌘c Random-e�ect coe�cient capturing variation in linear yearly trend for county c
✓c Fixed-e�ect coe�cient capturing variation in linear yearly trend for county c
Ÿ Vector of coe�cients for day of week
�t,c Expected number of hospitalizations among the Medicare population on day t in county c
⇠t,c Random-e�ect coe�cient capturing variation from overall intercept for for observation on day t

in county c
�2
↵ Variance in county-level random-e�ect intercepts

�2
⌘ Variance in county-level random-e�ect for yearly linear trend

�2
⇠ Variance in observation-level random-e�ect intercepts

� Overdispersion parameter
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Text box 2: Statistical models used for primary and sensitivity analysis

This text box provides the model equations for the primary statistical model as well as all models tested
through sensitivity analysis. For all alternative models, explanations are included of di�erences from the
primary model. All terms are defined in Text Box 1.

Primary model

The primary model used a normal Poisson distribution, with a random intercept for each study county
(↵c) and categorical variables for year (at) and day of week (dt). The association between storm exposure
at di�erent lags l from the storm day and risk of hospitalization are modeled through an unconstrained
distributed lag term (

P7
l=�2 �lxt+l ,c). The daily study population in the county that could be hospitalized

on day t (i.e., enrolled and currently unhospitalized) is included through a model o�set, log(nt,c).

Yt,c ⇠ Poisson(�t,c)

log(�t,c) = log(nt,c) + ↵ + ↵c +
7X

l=�2
�lxt+l ,c + ”Õat + ŸÕdt

↵c ⇠ Normal(0,�2
↵)

(1)

Alternative models tested for sensitivity analysis

Alternative Model 1

This model, compared to the primary model, replaces the random intercept for each study county (↵c in
Model 1) with a fixed e�ect for each study county (�c). This change removes the assumption that the
county-level intercepts are normally distributed, helping to test for sensitivity to that assumption in the
primary model. Otherwise, this model is identical to the primary model (Model 1).

Yt,c ⇠ Poisson(�t,c)

log(�t,c) = log(nt,c) + ↵ + �c +
7X

l=�2
�lxt+l ,c + ”Õat + ŸÕdt

(Model A1)

Alternative Model 2

This model replaces the random intercept for each study county (↵c in Model 1) with a fixed e�ect (�c), as
in Alternative Model 1. In addition, it alters the adjustment for long-term temporal trends by including year
as a continuous variable (bt), with a fixed-e�ect, county-specific linear term (✓c), allowing for unconstrained
variation in this trend by county. This model helps to test sensitivity to the assumption in the primary
model that long-term trends in hospitalization rates follow a similar pattern across study counties.

Yt,c ⇠ Poisson(�t,c)

log(�t,c) = log(nt,c) + ↵ + �c +
7X

l=�2
�lxt+l ,c + ✓cbt + ŸÕdt

(Model A2)

Alternative Model 3

This model uses a random intercept for each county (↵c), as in the primary model (Model 1). However,
it allows for more flexibility between counties in controlling for long-term trends by including an overall
linear trend for year (⌘) and a county-specific random-e�ect for year (⌘c) to model variations within each
county from the overall yearly trend, while constraining these county-level variations to follow a normal
distribution. As with Alternative Model 2, this model helps to test sensitivity to the assumption in the
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primary model that long-term trends in hospitalization rates follow a similar pattern across study counties,
although this model adds the constraint that county-level deviations from the overall trend are normally
distributed through use of a random rather than fixed e�ect.

Yt,c ⇠ Poisson(�t,c)

log(�t,c) = log(nt,c) + ↵ + ↵c +
7X

l=�2
�lxt+l ,c + ⌘bt + ⌘cbt + ŸÕdt

↵c ⇠ Normal(0,�2
↵)

⌘c ⇠ Normal(0,�2
⌘)

(Model A3)

Alternative Model 4

This model uses the same adjustments for year and study county as the primary model (Model 1). However,
it uses a conditional Poisson distribution, conditioning on the sum of daily hospitalizations across all
included data for a given county, Y.,c (Armstrong, Gasparrini, and Tobias 2014). The model is actually
multinomial (Armstrong, Gasparrini, and Tobias 2014), but is presented here using the given notation
to ease presentation and draw parallels with other models. Since this model is conditioned on the total
number of hospitalizations in included data for the county, it does not require a model intercept. As with
Alternative Model 1, this model removes the assumption that the county-level intercepts are normally
distributed, helping to test for sensitivity to that assumption in the primary model.

Yt,c |Y.,c ⇠ ConditionalPoisson(�t,c |Y.,c)

log(�t,c) = log(nt,c) +
7X

l=�2
�lxt+l ,c + ”Õat + ŸÕdt

(Model A4)

Alternative Model 5

This model has the same specification as Alternative Model 4 except that it uses a quasi-Poisson distribution
rather than a Poisson distribution, allowing for overdispersion through estimation of an overdispersion
parameter (�c) (Armstrong, Gasparrini, and Tobias 2014). As with Alternative Models 1 and 4, this
model removes the assumption that the county-level intercepts are normally distributed, helping to test for
sensitivity to that assumption in the primary model. Further, this model helps in assessing for evidence of
problematic overdispersion in the primary model.

Yt,c |Y.,c ⇠ ConditionalQuasipoisson(�t,c ,�c�t,c |Y.,c)

log(�t,c) = log(nt,c) +
7X

l=�2
�lxt+l ,c + ”Õat + ŸÕdt

(Model A5)

Alternative Model 6

This model is a generalized linear mixed-e�ect model with Poisson distribution, including the same
adjustments for temporal trends and locations as the primary model. This model also includes a random-
e�ect intercept for every observation (⇠t,c) to check for notable overdispersion (Korner-Nievergelt et al.
2015). As with Alternative Model 5, this model helps in assessing for evidence of problematic overdispersion
in the primary model.
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Yt,c ⇠ Poisson(�t,c)

log(�t,c) = log(nt,c) + ↵ + ↵c + ⇠t,c +
7X

l=�2
�lxt+l ,c + ”Õat + ŸÕdt

↵c ⇠ Normal(0,�2
↵)

⇠t,c ⇠ Normal(0,�2
⇠)

(Model A6)

Alternative Model 7

This model is identical to the primary model, with the exception that it uses a quasi-Poisson distribution
rather than the Poisson distribution used in the primary model. This model is fit using Penalized Quasi-
Likelihood (PQL) (Venables and Ripley 2002). As with Alternative Models 5 and 6, this model helps in
assessing for evidence of problematic overdispersion in the primary model.

Y c
t ⇠ Quasipoisson(�t,c ,��t,c)

log(�t,c) = log(nt,c) + ↵ + �c +
7X

l=�2
�lxt+l ,c + ”Õat + ŸÕdt

�c ⇠ Normal(0,�2
�,c)

(Model A7)
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Figure	S1:	Example	of	measuring	county-specific	cumulative	precipitation	for	Hurricane	Floyd	in	1999.	Each	column	represents	a	date	
between	September	13,	1999,	and	September	18,	1999.	Each	row	provides	information	for	a	set	of	US	counties—the	counties	within	500	
km	of	the	storm’s	track	for	which	the	storm	came	closest	on	a	specific	date	(Figure	S3).	For	example,	the	bottom	row	represents	counties	
in	southern	Florida,	which	the	storm	came	closest	to	on	September	14.	For	each	of	these	rows,	maps	are	included	for	the	three-day	
window	surrounding	that	date	of	closest	approach.	Each	map	panel	is	labeled	with	the	lag	for	those	counties	compared	to	this	closest	
approach	date	(lag	-1	is	the	day	before	the	closest	approach,	etc.).	The	red	line	shows	the	track	of	the	storm	as	it	approaches	and	passes	
each	area	over	those	days.	All	other	counties	(i.e.,	either	beyond	500	km	of	the	storm’s	track	or	with	a	different	date	of	closest	approach)	
are	colored	gray,	while	the	shade	of	the	colored	counties	represented	by	the	row	show	the	amount	of	precipitation	on	that	particular	date.	

Sept. 13, 1999 Sept. 14, 1999 Sept. 15, 1999 Sept. 16, 1999 Sept. 17, 1999 Sept. 18, 1999

lag −1 lag 0 lag 1

lag −1 lag 0 lag 1

lag −1 lag 0 lag 1

lag −1 lag 0 lag 1

0

50

100

150

Daily
precipitation
(mm)
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Figure	S2:	Study	counties	(n=180),	including	which	covered	>50,000	Medicare	beneficiaries	(n	=	
77)	during	the	study	period.	This	subset	of	study	counties,	shown	in	darker	brown,	was	used	for	
some	sensitivity	analysis	to	prevent	problems	with	model	convergence	in	single-storm	analyses.	 	
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Figure	S3:	Example	of	the	assignment	of	the	date	of	the	storm’s	closest	approach	for	each	county	
and	storm.	The	example	storm	shown	is	Hurricane	Floyd	in	1999.	Counties	within	500	km	of	the	
storm’s	central	track	are	shown	in	shades	of	yellow	to	green,	with	the	shade	corresponding	to	the	
date	that	the	storm	was	closest	to	that	county.	The	storm	track	was	interpolated	from	6-hour	
observations	of	central	location	to	15-minute	intervals	using	a	cubic	spline.	The	time	of	the	storm’s	
closest	approach	was	converted	from	UTC	to	the	county’s	local	time	zone	before	determining	the	
date	of	closest	approach,	since	health	data	were	recorded	by	date	based	on	local	time.	

Date of storm's
closest approach

1999−09−14 1999−09−15 1999−09−16 1999−09−17
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Figure	S4:	The	distribution	of	local	peak	sustained	winds	for	county-level	tropical	cyclone	(TC)	
exposures	under	the	primary	exposure	assessment	(local	peak	sustained	wind	in	the	county	of	21	
m/s	or	higher).	The	height	of	each	bar	shows	the	number	of	storm	exposures	that	fell	within	a	given	
range	of	local	peak	sustained	wind.	This	plot	shows	the	total	123	storm	exposures,	within	54	study	
counties,	under	this	primary	exposure	assessment	(Table	1	of	the	main	text).	Shading	in	the	
background	highlights	where	each	TC	exposure	fell	within	the	Beaufort	wind	scale.	The	color	within	
the	bars	is	used	to	highlight	which	storms	belong	to	the	group	of	the	10	most	severe	storms	in	
counties	with	50,000	or	more	Medicare	beneficiaries,	whose	hospitalization	patterns	were	assessed	
separately	and	presented	in	Table	3	of	the	main	text.	
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Figure	S5:	Estimates	of	distributed	relative	risks	for	cardiovascular	disease	hospitalizations	for	all	
TCs	and	across	all	the	exposed	counties,	under	the	thresholds	of	wind-,	rain-,	and	distance-based	
exposure	metrics	not	shown	in	Figure	2	of	the	main	text	(labeled	above	each	panel).	Circles	show	
point	estimates	and	horizontal	lines	show	95%	confidence	intervals.	The	gray	vertical	line	shows	as	
a	reference	a	relative	risk	of	1	(i.e.,	no	observed	association	between	TC	exposure	and	
hospitalization	risk).	Shading	divides	the	lag	period	among	pre-storm	days	(lightest	shade),	the	day	
of	the	storm’s	closest	approach	(darkest	shade),	and	post-storm	days	(intermediate	shade).		 	
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Figure	S6:	Estimates	of	distributed	relative	risks	for	respiratory	disease	hospitalizations	for	all	TCs	
and	across	all	the	exposed	counties,	under	the	thresholds	of	wind-,	rain-,	and	distance-based	
exposure	metrics	not	shown	in	Figure	2	of	the	main	text	(labeled	above	each	panel).	Circles	show	
point	estimates	and	horizontal	lines	show	95%	confidence	intervals.	The	gray	vertical	line	shows	as	
a	reference	a	relative	risk	of	1	(i.e.,	no	observed	association	between	TC	exposure	and	
hospitalization	risk).	Shading	divides	the	lag	period	among	pre-storm	days	(lightest	shade),	the	day	
of	the	storm’s	closest	approach	(darkest	shade),	and	post-storm	days	(intermediate	shade).	 	
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Figure	S7:	Estimates	of	relative	risks	(RR)	of	hospitalizations	for	all	TCs	(shown	with	triangle)	and	
for	TCs	excluding	the	ten	most	severe	wind-based	ones	(shown	with	circle).	Dots	show	point	
estimates	and	horizontal	lines	show	95%	confidence	intervals.	The	gray	vertical	line	shows	as	a	
reference	a	relative	risk	of	1.	Estimates	are	shown	for	lag-specific	relative	risks	for	cardiovascular	
disease	hospitalizations	(A)	and	respiratory	disease	hospitalizations	(B),	as	well	as	storm-period	
relative	risks	for	cardiovascular	and	respiratory	hospitalizations	(C).	
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Figure	S8:	Sensitivity	of	results	when	unexposed	days	were	selected	through	stricter	criteria	to	
exclude	potential	delayed	impacts	of	other	TC	exposures.	Estimates	are	shown	for	lag-specific	
relative	risks	of	hospitalization	for	cardiovascular	disease	(left)	and	respiratory	disease	(right)	
when	storm	exposure	was	defined	as	local	peak	sustained	wind	speed	21	m/s	or	higher.	Under	the	
stricter	matching	criteria	tested	here,	all	candidates	for	matched	unexposed	days	had	to	be	outside	
a	fourteen-day	window	of	any	other	storm-exposed	days	for	the	county.	
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Figure	S9:	Sensitivity	of	results	to	alternative	statistical	models.	Color	is	used	to	show	estimates	
from	different	models,	which	are	defined	and	explained	in	Text	Box	2,	with	all	notation	defined	in	
Text	Box	1.	Estimates	are	shown	for	lag-specific	relative	risks	of	hospitalization	for	cardiovascular	
disease	(left)	and	respiratory	disease	(right)	when	storm	exposure	was	defined	as	wind	speed	21	
m/s	or	higher.	Dots	show	point	estimates	and	horizontal	lines	show	95%	confidence	intervals.	The	
vertical	gray	line	shows	as	a	reference	a	relative	risk	of	1.		
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Figure	S10:	Results	of	the	negative	control	analysis	to	determine	evidence	of	confounding	results	
from	long-term	trends.	Estimates	are	shown	for	lag-specific	relative	risks	of	hospitalization	for	the	
real	storm	exposures	(red)	and	the	negative	control	exposure	days	(the	days	two	weeks	before	the	
real	storm	exposures)	(green).	Dots	show	point	estimates	and	vertical	lines	show	95%	confidence	
intervals.	The	gray	horizontal	line	shows	as	a	reference	a	relative	risk	of	1.
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Table	S1:	Comparison	of	population	sizes	of	counties	included	in	this	study	compared	to	other	counties	in	the	34	eastern	US	
states/districts	shown	in	Figure	1	of	the	main	text.	Population	sizes	are	given	for	both	the	overall	population	and	for	specific	
subpopulations	by	race,	ethnicity,	and	age.	Population	sizes	are	summed	across	all	counties	in	the	given	group	of	counties.	Values	are	
based	on	the	2000	and	2010	US	Decennial	Censuses.	
	

	 2000	Census	 2010	Census	
	 Study	counties	

(N	=	180)	
Other	counties	
in	study	states*	
(N	=	2216)	

Total	in	
counties	in	
study	states	

Study	
counties	
(N	=	180)	

Other	counties	
in	study	states	
(N	=	2216)	

Total	in	
counties	in	
study	states	

Overall	 	 	 	 	 	 	
Total	population	 111,186,366	 99,009,822	 210,196,822	 118,928,957	 109,253,991	 228,182,948	

By	race	 	 	 	 	 	 	
White	 77,257,977	 83,732,447	 160,990,424	 78,997,933	 89,365,332	 168,363,265	
Black/African-American	 21,116,405	 10,216,028	 31,332,433	 23,272,925	 11,858,130	 35,131,055	
Other	 12,811,984	 5,061,347	 17,873,331	 16,658,099	 8,030,529	 24,688,628	

By	ethnicity	 	 	 	 	 	 	
Hispanic	or	Latino	 14,913,825	 4,794,994	 19,708,819	 21,139,602	 8,288,304	 29,427,906	
Not	Hispanic	or	Latino	 96,272,541	 94,214,828	 190,487,369	 97,789,355	 100,965,687	 198,755,042	

By	age	 	 	 	 	 	 	
Under	65	years	 97,610,381	 85,545,253	 183,155,634	 104,152,658	 93,452,994	 197,605,652	
65	years	an	over	 13,575,985	 13,464,569	 27,040,554	 14,776,299	 15,800,997	 30,577,296	

								*The	states/districts	covered	in	this	study	are	shown	in	Figure	1	of	the	main	text.
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Table	S2:	Comparison	of	some	demographic	characteristics	of	counties	included	in	this	study	compared	to	other	counties	in	the	34	
eastern	US	states/districts	shown	in	Figure	1	of	the	main	text.	Each	table	cell	gives	the	median	value	of	the	county-level	estimates	of	that	
demographic	characteristic	across	all	counties	in	the	given	group	of	counties,	while	shown	in	parentheses	are	the	interquartile	range	in	
the	county-level	measurements	of	the	characteristic	across	the	group	of	counties.	Values	are	based	on	the	5-year	American	Community	
Survey	centered	on	2010.	
	
Characteristic	 Study	counties	

(N	=	180)*	
Other	counties	in	
study	states†	
(N	=	2,216)*	

Age	 	 	
Percent	65	years	and	over	 12.7	(11.2,	14.3)	 15.8	(13.7,	18.1)	

Race,	ethnicity,	and	language	 	 	
Percent	White	alone	 74.8	(62.9,	84.8)	 90.8	(77.4,	96.0)	
Percent	Black	/	African	American	alone	 13.6	(7.2,	25.6)	 3.3	(0.8,	14.3)	
Percent	Hispanic	or	Latino	 7.4	(4.4,	15.5)	 2.7	(1.4,	6.2)	
Percent	language	other	than	English	spoken	at	home	 12.3	(7.9,	21.0)	 4.3	(2.5,	8.1)	

Income	and	poverty	 	 	
Percent	below	poverty	level	 15.0	(11.0,	17.8)	 16.4	(12.4,	20.8)	
Percent	65	years	and	over	below	poverty	level	 8.4	(6.8,	10.5)	 10.0	(7.7,	13.7)	
Percent	of	households	receiving	public	assistance	incomes	of	food	stamps	/	SNAP	 12.4	(9.9,	14.7)	 13.9	(10.2,	18.2)	

Disability,	all	ages	 	 	
Percent	with	disability	 11.6	(9.9,	13.5)	 15.8	(13.1,	18.9)	
Percent	with	independent	living	difficulty	 5.5	(4.7,	6.5)	 6.9	(5.5,	8.8)	
Percent	with	ambulatory	difficulty	 6.6	(5.6,	7.8)	 9.3	(7.3,	11.6)	
Percent	with	self-care	difficulty	 2.4	(2.1,	2.9)	 3.1	(2.5,	4.1)	

Disability,	65	years	and	over	 	 	
Percent	65	years	and	over	with	disability	 36.0	(33.2,	38.7)	 40.3	(35.4,	45.6)	
Percent	65	years	and	over	with	independent	living	difficulty	 16.2	(14.7,	18.1)	 16.0	(13.3,	19.6)	
Percent	65	years	and	over	with	ambulatory	difficulty	 23.7	(20.9,	25.7)	 25.9	(21.8,	30.8)	
Percent	65	years	and	over	with	self-care	difficulty	 8.4	(7.4,	9.7)	 8.6	(6.8,	11.1)	

*Median	values	of	each	characteristic	are	given,	with	the	interquartile	range	across	the	counties	given	in	parentheses.	
†The	states/districts	covered	in	this	study	are	shown	in	Figure	1	of	the	main	text.	
	
	 	



 25 

Table	S3:	Estimates	of	relative	risk	of	hospitalizations	for	cardiovascular	and	respiratory	diseases,	as	well	as	associated	excess	admission	
estimates,	of	ten	most	severe	TC	wind	exposures	across	the	study	storms,	among	counties	with	total	number	of	Medicare	beneficiaries	
greater	than	50,000	on	the	day	of	storm’s	closest	approach.	Estimates	are	included	for	both	the	period	from	two	days	before	to	seven	days	
after	the	storm’s	closest	approach	(‘Storm	period	estimates’)	and	for	the	day	of	the	storm’s	closest	approach	to	the	community	(‘Storm	
day	estimates’).		
	
	 	 	 Cardiovascular	hospitalizations	 Respiratory	hospitalizations	
Storm	(Year)	 County	 Wind	

(m/s)a	
Relative	risk	 Attributable	

numberb	
Relative	risk	 Attributable	

numberb	
Storm	period	estimatesc	
Wilma	(2005)	 Palm	Beach	County,	FL	 51.5	 1.03	(0.89,	1.20)	 14	(-50,	68)	 1.42	(1.04,	1.93)	 38	(5,	63)	
Charley	(2004)	 Lee	County,	FL	 45.3	 1.10	(0.94,	1.28)	 15	(-11,	37)	 1.23	(0.91,	1.65)	 11	(-6,	23)	
Charley	(2004)	 Orange	County,	FL	 41.2	 1.24	(1.07,	1.43)	 36	(13,	56)	 1.44	(1.09,	1.91)	 18	(5,	28)	
Ike	(2008)	 Harris	County,	TX	 38.7	 0.94	(0.78,	1.13)	 -33	(-142,	56)	 1.45	(1.26,	1.66)	 37	(25,	48)	

Charley	(2004)	 Volusia	County,	FL	 37.0	 1.26	(0.99,	1.61)	 22	(-1,	40)	 1.11	(0.86,	1.43)	 3	(-6,	10)	
Wilma	(2005)	 Broward	County,	FL	 36.7	 1.02	(0.87,	1.21)	 9	(-59,	66)	 1.75	(1.45,	2.10)	 43	(31,	53)	
Katrina	(2005)	 Broward	County,	FL	 33.5	 1.13	(1.05,	1.21)	 38	(16,	58)	 1.36	(1.22,	1.51)	 22	(15,	28)	
Frances	(2004)	 Palm	Beach	County,	FL	 33.3	 1.06	(0.91,	1.24)	 21	(-35,	69)	 1.38	(1.15,	1.66)	 24	(11,	34)	
Irene	(1999)	 Broward	County,	FL	 33.3	 0.90	(0.74,	1.09)	 -41	(-125,	29)	 1.10	(0.93,	1.31)	 10	(-8,	25)	
Irene	(1999)	 Palm	Beach	County,	FL	 33.2	 0.84	(0.68,	1.04)	 -79	(-197,	17)	 1.43	(1.03,	1.98)	 28	(3,	46)	

Storm	day	estimatesd	
Wilma	(2005)	 Palm	Beach	County,	FL	 51.5	 0.45	(0.34,	0.58)	 -27	(-42,	-16)	 0.55	(0.15,	2.02)	 -4	(-28,	3)	
Charley	(2004)	 Lee	County,	FL	 45.3	 1.11	(0.68,	1.82)	 1	(-6,	6)	 0.37	(0.03,	5.59)	 -13	(-310,	7)	
Charley	(2004)	 Orange	County,	FL	 41.2	 1.30	(0.77,	2.19)	 5	(-7,	13)	 1.15	(0.27,	5.02)	 1	(-25,	7)	
Ike	(2008)	 Harris	County,	TX	 38.7	 0.45	(0.15,	1.36)	 -44	(-204,	9)	 1.19	(0.52,	2.74)	 2	(-14,	10)	

Charley	(2004)	 Volusia	County,	FL	 37.0	 0.71	(0.21,	2.42)	 -6	(-58,	9)	 1.50	(0.57,	3.93)	 1	(-2,	2)	
Wilma	(2005)	 Broward	County,	FL	 36.7	 0.61	(0.54,	0.69)	 -16	(-21,	-11)	 2.41	(1.76,	3.31)	 8	(6,	9)	
Katrina	(2005)	 Broward	County,	FL	 33.5	 1.15	(0.53,	2.51)	 2	(-15,	10)	 1.23	(0.35,	4.33)	 1	(-13,	5)	
Frances	(2004)	 Palm	Beach	County,	FL	 33.3	 1.12	(0.75,	1.67)	 4	(-14,	16)	 1.21	(0.69,	2.15)	 1	(-3,	4)	
Irene	(1999)	 Broward	County,	FL	 33.3	 0.66	(0.34,	1.28)	 -18	(-67,	7)	 0.58	(0.39,	0.87)	 -11	(-23,	-2)	
Irene	(1999)	 Palm	Beach	County,	FL	 33.2	 1.30	(0.48,	3.51)	 5	(-23,	16)	 3.08	(1.04,	9.14)	 3	(0,	4)	

a	Peak	sustained	winds	modeled	at	the	study	county’s	population	mean	center	over	the	storm	period.	
b	Number	of	excess	Medicare	hospitalizations	during	the	storm	exposure	in	the	study	county,	based	on	both	the	estimated	relative	risk	associated	with	
the	storm	exposure	and	the	baseline	number	of	hospitalizations	in	the	study	county.	Negative	numbers	indicate	fewer	hospitalizations	during	the	
storm	exposure	compared	to	matched	unexposed	days.	Details	on	the	calculation	of	the	attributable	number	are	given	in	the	Supplementary	Appendix.	
c	Estimates	for	the	entire	storm	period,	from	2	days	before	to	7	days	after	the	storm’s	closest	approach.	
d	Estimates	on	the	single	day	of	the	storm’s	closest	approach	to	the	study	county.	
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Table	S4:	Dispersion	diagnostic	results.	Table	shows	values	of	the	dispersion	factors	for	mixed-
effect	model	with	Poisson	distribution.	Numbers	are	calculated	using	the	dispersion_glmer	function	
from	blmeco	package	for	R	(Korner-Nievergelt	et	al.	2015).	
	

Exposure	 Cardiovascular	disease	 Respiratory	disease	
Peak	sustained	wind	
12	m/s	 1.18	 1.08	

15	m/s	 1.18	 1.08	

18	m/s	 1.19	 1.06	

21	m/s	 1.20	 1.08	

Cumulative	rainfall	
50	mm	 1.17	 1.07	

75	mm	 1.18	 1.08	

100	mm	 1.18	 1.08	

125	mm	 1.17	 1.06	

Distance	to	storm	track	
100	km	 1.17	 1.07	

75	km	 1.18	 1.07	

50	km	 1.18	 1.07	

25	km	 1.17	 1.07	

Flood	event(s)	
	 1.17	 1.07	

Tornado	event(s)	
	 1.17	 1.07	

	

.
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