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Supplementary Figure 1: Analysis of the targeting scope of (NGG-)PE2 and flexible PE2 
variants within the ClinVar database 
a, The number of NGG-, NAN-, or NGN-PAMs within the genomic region surrounding 
pathogenic variants in the ClinVar database. Only mutations shorter than 51 bp were considered 
as correctable by prime editing and PAM sites in a window of 10 bp upstream to 4 bp 
downstream of the target site were considered usable, based on Kim et al. (2021)1. 
b, Cumulative histogram of the number of available PAM sites shows that flexible PE2 variants 
(NGN+NAN) have at least 10 PAM sites available for the repair of pathogenic variants in the 
ClinVar database. 
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Supplementary Figure 2: Evaluation of reparable mutations in the ClinVar database within 
the scope of the PE_prediction machine learning algorithm 
a, Types of mutations of pathogenic variants in the ClinVar database. 
b, Number (left panel) and type (right panel) of pathogenic variants in the ClinVar database for 
which the PE_prediction machine learning algorithm can predict the efficiency of a mutation-
correcting pegRNA. 
c, Maximum predicted efficiency for repair of ClinVar pathogenic variants for mutations that fall 
within the scope of the DeepPE deep learning algorithm. Increase in available PAMs for 
pathogenic variants results in a higher median maximum predicted efficiency. Violin plots 
indicate the median (white dot), the interquantile range (thick gray bar), and the complete 
distribution excluding outliers (thin gray line). 
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Supplementary Figure 3: Correlation of prime-editing efficiency of 1-bp deletions versus 
1-bp insertions 
Re-analysis of data from Kim et al. (2021)1 to estimate the correlation of prime editing 
efficiencies of pegRNAs that create a 1-bp deletion (x-axis) to the efficiencies of corresponding 
pegRNAs with the same spacer and PBS sequence that create a 1-bp insertion. 1-bp 
substitution-edits could not be included in this comparison since Kim et al. performed 1-bp 
substitutions with much longer RTTs than 1-bp deletions. Since generation of these 1-bp 
deletions and insertions only involve a subtle difference in the RTT, optimal prediction efficiency 
would be reflected by r=1. Source data are provided as a Source Data file. 
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Supplementary Figure 4: Comparison of genomic editing of GFP→BFP to editing on the 
corresponding fluoPEER plasmid 
a, Design of three different pegRNAs converting GFP to BFP (TAC to CAT). The same three pegRNAs 
remove a single nucleotide insert on the corresponding fluoPEER plasmid, resolving a frameshift mutation 
upstream of the Cherry cassette. Note that the PAM sequences (purple) of the pegRNA 1, 2, and 3 are 
NGG, NGN, and NAN, respectively.  
b, HEK293T cells containing a lentivirally integrated genomic GFP cassette were transfected with the 
prime editing machinery to convert GFP to BFP. FACS plot shows occurrence of BFP+ cells 14 days after 
transfection with pegRNA1 (NGG-PAM) and NGG-PE2. Sanger sequencing confirms TAC to CAT 
conversion in BFP+ cells (blue outlines), but not in GFP+ cells (green outlines). 
c, Editing of integrated genomic GFP (left panel) and editing of the corresponding fluoPEER plasmid 
(middle panel) in HEK293T cells using the three pegRNA designs from (a) and 7 different prime editor 
variants (all flexible PAM prime editor variants and the NLS-adjusted ‘PE2*’ versions from Liu et al.3). 
Sanger sequencing of the genomic target region (right panel) in the same cells as shown in the left panel 
illustrates that Sanger is not sensitive enough to quantify GFP to BFP conversion for most prime editing 
conditions. When less than 10% of cells (FACS data) are edited, Sanger sequencing could not quantify 
any specific editing. Related to figure 1d. Source data are provided as a Source Data file. 
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Supplementary Figure 5: Comparison of fluoPEER ranking with predictions by the DeepPE 
algorithm 
Comparison of the prediction score of the DeepPE algorithm (left panels), fluoPEER-derived efficiency 
ratio (Cherry/GFP; middle panel), and the actual prime editing efficiencies as reported by (a) Anzalone et 
al. (2019)2 (b) Sanger sequencing performed for this work, and (c) Kim et al. (2021)1. Source data are 
provided as a Source Data file. 
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Supplementary Figure 6: Dynamics of fluoPEER under various transfection conditions and read-
out times 
a, Percentage of GFP+ cells and average of Cherry to GFP ratio in GFP+ HEK293T cells with decreasing 
amounts of total transfected plasmid DNA (PE2+pegRNA+fluoPEER).  
b, Percentage of GFP+ cells and average of Cherry to GFP ratio in GFP+ HEK293T cells with decreasing 
amounts of the fluoPEER (f-PR) plasmid DNA but equal amounts of PE2 and pegRNA plasmid DNA. As 
expected, lowering fluoPEER concentration led to decreased percentages of GFP+ cells, but increased 
reporter editing (Cherry to GFP ratio). 
c, Percentage of GFP+ cells and average of Cherry to GFP ratio in transfected cells, as measured 3 and 6 
days after transfection of PE2+pegRNA+fluoPEER. 
d, Percentage of GFP+ cells after transfection (Day 0) of the fluoPEER plasmid. On day 4, GFP+ 
(transfected) cells were FACS sorted to get a 100% GFP+ HEK293T population. These cells were plated 
and subsequently FACS sorted on day 10 and day 18 to measure disappearance of GFP-positivity. 
Source data are provided as a Source Data file. Error bars represent standard deviations from the mean 
of at least n = 2 biologically independent replicates. 
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Supplementary Figure 7: testing various pegRNAs and prime editor variants for seven genomic 
loci and fluoPEER-predicted editing in organoids 
a, FluoPEER plasmids were created to test prime editing strategies for the correction or creation of seven 
different genomic mutations. FluoPEER plasmids were transfected into HEK293T cells together with the 
indicated pegRNA + prime editor combinations. Cherry over GFP signal ratio was measured using FACS 
analysis after 3 days. Related to Fig. 1f, in which the pegRNA + prime editor combinations with the highest 
fluoPEER prediction scores were used for prime editing in primary organoid cells. Error bars represent 
standard deviations from the mean of at least n = 2-3 biologically independent replicates. 
b, Sanger sequencing of clonal liver-derived organoids with monoallelic and biallelic I1174N mutations in 
exon 32 of IARS1, using peg14 from (a). 
c, Clonal organoid lines with monoallelic (2 clones) and biallelic (2 clones) IARS1I1174N mutations were 
continually passaged for 32 days. Clones with biallelic, but not monoallelic, IARS1I1174N mutations had 
lower organoid reconstitution capacity and could be passaged less often due to slower growth. 
d, Correction of pathogenic MUTR369H mutations in liver organoids derived from an MMA patient could not 
be corrected using two different pegRNA designs. This corresponds to very low fluoPEER prediction 
scores for these targeting strategies as shown in (a). Source data are provided as a Source Data file. 
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Supplementary Figure 8: Characterization of prime editor NLS adaptations and PE4max using 
fluoPEER  
a, Comparison of fluoPEER scores for flexible PE2 variants and the corresponding PE2* variants with 
nuclear localization sequence (NLS) adaptations3. 
b, Conversion of genomically integrated GFP to BFP using various PE2 and PE2* variants. Related to Fig. 
2b. Note that the PE2* NLS adaptations did not result in an overall increase of fluoPEER scores nor an 
overall increase in genomic editing efficiency. The data shown in Supplementary Fig. 4c were reused for 
(b). 
c, Comparison of fluoPEER scores and genomic editing for PE3(b) (PE2 + nicking gRNA) and PE5(b) 
(PE4max + nicking gRNA). PE5(b) does not yield higher fluoPEER scores, nor higher genomic editing 
efficiencies for an IARS1 2-bp substitution and MUT 1-bp substitution (+1 A>G) mutation in HeLa cells 
compared to PE3(b). However, PE5 yields fewer unwanted indels compared to PE3 for the IARS1 2-bp 
substitution. Error bars represent standard deviations from the mean of at least n = 2-3 biologically 
independent replicates. Significance was analyzed using a two-tailed unpaired Student’s t-test (*P <0.05). 
Source data are provided as a Source Data file. 
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Supplementary Figure 9: Dynamics of cotransfection of four fluorescent plasmids 
a, Mixtures of plasmids (5kb) containing CMV-mTurquoise2, CMV-eGFP, CMV-mKO2, and/or CMV-
mCherry were transfected into HEK293T cells and inspected by FACS after 2 days. FACS plots show 
proper compensation in the ‘fluorescence minus one’ (FOI) controls (top row) and a strong correlation 
between fluorescent intensities from different plasmids in the condition containing all four plasmids 
(bottom row) 
b, Quantification indicated very high (>90%) cotransfection efficiency. This strongly suggests that 2-4 fold 
enrichment of genomic editing in fluoPEER-edited vs. fluoPEER-unedited cells (Fig. 2a) cannot be the 
result of inefficient cotransfection of plasmids encoding prime editing machinery (PE2+pegRNA) in 
fluoPEER-unedited cells. Error bars represent standard deviations from the mean of n = 6 biologically 
independent replicates. Source data are provided as a Source Data file. 
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Supplementary Figure 10: RNA sequencing analysis of fluoPEER-edited versus -unedited cells 
a, HEK293T cells were transfected with prime editor and pegRNA plasmids creating either IARS1 2-bp 
substitution or CTNNB1 6-bp deletion mutations, together with the corresponding fluoPEER plasmid. 48 
hours after transfection, fluoPEER-edited (GFP+CH+) and fluoPEER-unedited (GFP+CH-) cells were sorted 
and genomic editing efficiencies for each population were estimated using Sanger sequencing. 
b, RNA-sequencing was performed in replicates of each population from (a). MA-plot shows significant 
(adjusted p-value <0.05) up- and downregulation of 279 and 164 genes, respectively in fluoPEER-edited 
versus -unedited cells. 
c, Enrichment plot of the ‘DNA repair’ pathway, which was the most enriched ‘Reactome Database’ 
pathway in fluoPEER-edited versus -unedited cells. 
d, EnrichR analysis of fluoPEER-edited versus -unedited cells. 
e, Hoechst staining in HEK293T cells transfected with the fluoPEER plasmid and prime editing machinery 
shows enrichment of reporter editing signal in G2, 24 hours after transfection. Gating strategies can be 
found in Supplementary fig. 12b. Error bars represent standard deviations from the mean of n = 6 
biologically independent replicates. Significance was analyzed using One-way ANOVA. Source data are 
provided as a Source Data file. 
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Supplementary Figure 11: Sanger sequencing is unable to quantify <15% editing of total reads 
When comparing quantification of four prime editing conditions in HEK293T cells by Sanger sequencing 
and NGS, Sanger sequencing was unable to quantify edited reads when lower or equal to 15% of all 
reads. Source data are provided as a Source Data file. 
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Supplementary Figure 12: Flow cytometry gating strategies 
a, Example of gating strategy for a fluoPEER experiment in HEK293T cells. The ‘P1+P2+P3’ gate selects 
for single cells; the ‘live’ gate selects for DAPI negative, live cells. The GFP+ gate selects for cells that 
were transfected with fluorescent reporter plasmid. Lower left panel shows the Cherry/GFP plot and 
population hierarchy for an ineffective (CTNNB1, pegRNA1) and lower right panel for an effective 
(CTNNB1, pegRNA3) prime editing strategy.  
b, Example of gating strategy for cell cycle phase based on Hoechst signal intensity. Note that cells were 
analyzed at the time of transfection of prime editing plasmids, which was 2 hours after release from G1/S 
or G2/M block. 
 



Supplementary table 1: off-target analyses for two prime edit conditions in transfected cells vs. fluoPEER-edited cells.

Condition pegRNA Spacer Prime editor Nearest off-target Mismatches

CTNNB1_5bp-del CAACAGTCTTACCTGGACTCNGG NGG-PE2 CAGCACTCTGACCTGGACTCTGG 3bp 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

MUT_+1 A>G GGTGGTATCACCCCTCCACANNN SpRY-PE2 GGTGGTATCATCCCTCCTCAATG 2bp 0.1% 0.1% 0.1% 0.0% 0.0% 0.1% 0.0% 0.0%

No unwanted off-target editing was detected above the noise level (negative control) in any of the prime edit conditions.

Editing in negative control Editing in transfected (GFP+) Editing in fluoPEER-edited (GFP+RFP+)



Supplementary Note 1: FluoPEER design and plasmid cloning 
 
pegRNA 
 
PegRNAs should be designed according to the following guiding principles: 

1. pegRNA spacers with high Cas9 sgRNA binding scores. Currently available Cas9 
prediction algorithms have been developed using SpCas9 (NGG-recognizing), but do 
not discriminate between NGG and non-NGG PAMs. For this study, we selected 
spacers with an on-target score of at least 20, based on an algorithm developed by 
Doench et al. (2016)3 which was employed in the Benchling web interface.  

2. pegRNA primer binding sites (PBSs) with length 9-15 and a GC-count of at least 5 
and a GC-content of at least 40%. If this is not possible, for instance when targeting a 
mutation in an AT-rich region, pick a PBS with a GC-count of at least 4 and GC-
content >30%. 

3. pegRNA reverse transcriptase templates (RTTs) with length 9-20, spanning the 
genomic region at least 6 bp downstream of the intended edit. For example, when the 
intended edit is located at position +6 from the pegRNA nicking site, the RTT should 
be at least 12 nucleotides in length. When the RTT length is less than 12, if possible, 
pick a G for the last edit. 

4. If possible, the RTT should create a (silent) PAM mutation to increase editing 
efficiency. When using the flexible SpRY-PE2, PAM mutations are not expected to 
increase editing efficiency. 

 
FluoPEER 
fluoPEER needs a STOP codon or frameshift in the genomic insert to function. In case the 
genomic target already contains either, 45-100 bp (50-60 bp have been tested most) around 
the mutation of interest can be selected. The genomic insert should at least contain the full 
spacer and extension (PBS+RTT) sequences of all designed pegRNAs, including a margin of 
5 bp upstream and 5 bp downstream. In case none such frameshift nor STOP codon is 
present, one will have to be inserted. In addition to the example provided in Fig. 1d and S4a, 
we will provide two examples below: 
 
Example 1: CFTR 3bp insertion 
The edit on the genomic DNA is a 3bp CTT insertion. This is not a frameshift mutation: 
ATTAAAGAAAATATCAT–--TGGTGTTTCCTATGATGAATATAGATAC → 
ATTAAAGAAAATATCATCTTTGGTGTTTCCTATGATGAATATAGATAC 
 
For the fluoPEER, an additional T was inserted, leading to a frameshift mutation. 
ATTAAAGAAAATACTCAT–--TGGTGTTTCCTATGATGAATATAGATAC → 
ATTAAAGAAAATATCATCTTTGGTGTTTCCTATGATGAATATAGATAC 
Note that using this specific fluoPEER, only pegRNAs with spacers binding downstream from 
the 3bp insertion can be tested. 
 
Example 2: MUT A>G point mutation 
The edit on the genomic DNA is an A>G mutation, which does not resolve a STOP codon. 
TCCCTTGGACGGCCAGATATTCTTGTCAAGTGTGGAGGGGTGATACCACCTCAG → 
TCCCTTGGACGGCCAGATATTCTTGTCATGTGCGGAGGGGTGATACCACCTCAG 
 
For the fluoPEER, an additional A>t point mutation was added, leading to STOP codon. 
TCCCTTGGACGGCCAGATATTCTTGTCtAGTGTGGAGGGGTGATACCACCTCAG → 
TCCCTTGGACGGCCAGATATTCTTGTCATGTGCGGAGGGGTGATACCACCTCAG 
 
 
  



Important notes: 
1. The fluoPEER plasmid and not the pegRNA design should be modified, such that the 

same pegRNAs can be used to edit both the fluoPEER plasmid and the genomic 
target. 

2. In some cases, generating the desired mutation will create another stop downstream 
of the mutation (for example, when mutating at an exon-intron junction, this could 
occur). Always check the translation of the fluoPEER genomic insert before and after 
the intended edit for STOP codons; successfully edited inserts should not contain 
frameshifts or STOP codons. 

3. The PAM site and spacer sequence (including PBS) of all pegRNAs should not be 
altered by the addition of a frameshift mutation or creation of a stop-mutation for the 
correct functioning of fluoPEER. In most cases, there is a significant difference in 
spacer binding scores and GC-content between the DNA sequence upstream and 
downstream of the target mutation, offering an obvious optimal region for spacer and 
PBS binding, respectively. This means that most of the tested pegRNAs will bind the 
same strand and can therefore be tested on the same fluoPEER plasmid. In case it is 
unavoidable, design two fluoPEER plasmids for the mutation instead. 

 
STEP 1 
Digest the pmGFP-P2A-K0-P2A-RFP plasmid by making the following mix: 
Component Volume 

1 µg pmGFP-P2A-K0-P2A-RFP plasmid X 

SalI (NEB) 1 µl 

Acc65I (NEB) 1 µl 

Buffer R3.1 (NEB) 3 µl 

Distilled water To 50 µl 

Put the mix at 37 °C for 16 hours and isolate the 6 kb band from gel. 
 
STEP 2 
Once the genomic insert has been selected, two oligos need to be ordered: 
TOP: 5‘TCGACC’-[GENOMIC INSERT]-‘G’3 
BOTTOM: 5‘GTACC’[GENOMIC INSERT REVERSE COMPLEMENT]-‘GG’3 
 
Anneal the oligos according to the following protocol: 
Component Volume 

TOP oligo (100 µM) 1 µl 

BOTTOM oligo (100 µM) 1 µl 

PNK (NEB) 1 µl 

PNK buffer 10x (NEB) 1 µl 

Distilled water 6 µl 



Total 10 µl 
 
Heat the mix to 95 °C for 3 minutes and ramp down to 20 °C at 5 °C / min. 
Dilute the oligos 1:10 by adding 90 µl water to the mix.  
 
STEP 3 
 
Ligate the plasmid and annealed oligos in the following mix: 
Component Volume 

Digested pmGFP-P2A-K0-P2A-RFP plasmid 30 ng 

Annealed genomic insert 1 µl @ 1 µM 

T4 DNA ligase (NEB) 1 µl 

T4 DNA ligase buffer 10X (NEB) 1 µl 

Distilled water To 10 µl 
 
Set at 21 °C for 60 minutes and transform. 
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