Supplementary Information

Subnanometric alkaline-earth oxide clusters for sustainable nitrate to ammonia photosynthesis

Jieyuan Li,1,2 Ruimin Chen,¹ Jielin Wang, ¹ Ying Zhou,³ Guidong Yang,⁴ Fan Dong1,2*

1 Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China.

2 Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313000, China.

3 School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China.

4 XJTU-Oxford Joint International Research Laboratory of Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China.

* Corresponding author: Fan Dong [\(dongfan@uestc.edu.cn;](mailto:dongfan@uestc.edu.cn) dfctbu@126.com)

Table of Context

Supplementary Figure 1. XRD patterns for pristine and MO_{NCs} deposited TNS.

Supplementary Figure 2. SEM images TNS (a), MgO_{NCs}-TNS (b), CaO_{NCs}-TNS (c), SrO_{NCs}-TNS (d) and BaO_{NCs}-TNS (e).

Supplementary Figure 3. TEM images of TNS (a), MgO_{NCs}-TNS (b), CaO_{NCs}-TNS (c), SrO_{NCs}-TNS **(d)** and BaO_{NCs}-TNS **(e)**.

Supplementary Figure 4. HAADF-STEM for MgO_{NCs}-TNS (a), CaO_{NCs}-TNS (b), SrO_{NCs}-TNS (c).

Supplementary Figure 5. TEM and elemental mapping images for MgO_{NCs}-TNS.

Supplementary Figure 6. TEM and elemental mapping images for CaO_{NCs}-TNS.

Supplementary Figure 7. TEM and elemental mapping images for SrO_{NCs}-TNS.

Supplementary Figure 8. Variation of IC signals for Mg^{2+} (a), Ca^{2+} (b) and Sr^{2+} (c) ions during the operando construction of corresponding MO_{NCs} on TNS.

Supplementary Figure 9. XPS survey spectra for pristine and BaO_{NCs} deposited TNS.

Supplementary Figure 10. XRF results for BaO_{NCs}-TNS.

Supplementary Figure 11. Low temperature (120 K) solid-state EPR results of TNS before and after irradiation for 30 min.

Supplementary Figure 12. Initial calculation models for pristine TNS (a), MgO_{NCs}-TNS **(b)**, CaO_{NCs}-TNS **(c)**, SrO_{NCs}-TNS **(d)** and BaO_{NCs}-TNS **(e)**. The blue, red, orange, dark blue, purple and green spheres depict Ti, O, Mg, Ca, Sr and Ba atoms respectively.

Supplementary Figure 13. a. Relaxed micro-structure of MgO_{NCs} deposited at TNS surface. The blue, red and orange spheres depict Ti, O and Mg atoms respectively. **b.** Calculated binding energy of BaO_{NCs} deposited at pristine and deficient TNS surfaces, respectively.

Supplementary Figure 14. a. Relaxed micro-structure of CaO_{NCs} deposited at TNS surface. The blue, red and grey spheres depict Ti, O and Ca atoms respectively. **b.** Calculated binding energy of CaO_{NCs} deposited at pristine and deficient TNS surfaces respectively.

Supplementary Figure 15. a. Relaxed micro-structure of SrO_{NCs} deposited at TNS surface. The blue, red and purple spheres depict Ti, O and Sr atoms respectively. **b.** Calculated binding energy of SrO_{NCs} deposited at pristine and deficient TNS surfaces respectively.

Supplementary Figure 16. PL spectra for pristine TNS, MgO_{NCs}-TNS, CaO_{NCs}-TNS, SrO_{NCs}-TNS and BaO_{NCs}-TNS, respectively.

Supplementary Figure 17. Time-resolved fluorescence emission decay spectra for pristine TNS, MgO_{NCs}-TNS, CaO_{NCs}-TNS, SrO_{NCs}-TNS and BaO_{NCs}-TNS, respectively.

Supplementary Figure 18. UV-vis DRS results for pristine TNS, MgO_{NCs}-TNS, $CaO_{NCs}-TNS, SrO_{NCs}-TNS, and BaO_{NCs}-TNS, respectively.$

Supplementary Figure 19. Estimated band structures. Mott-Schottky spectra (a), estimated band gap calculated by UV-vis DRS (b), XPS VB spectra (c) and illustration

for the band structures of TNS and BaONCs-TNS.

Since the contaminative C element is inevitable during the XPS tests, the band edge cannot be precisely characterized by the XPS VB spectra. Hence the Mott-Schottky spectra and UV-vis DRS were combined to determine the band structures of TNS and BaO_{NCs}-TNS.

Supplementary Figure 20. Calculated charge difference density **(a)** and planer average potential energy profile (b) for the interface between MgO_{NCs} and TNS. The charge accumulation is labeled in blue and charge depletion is labeled in yellow. The isosurface was set to 0.0047 eV \AA^{3} . Blue, red and orange spheres depict Ti, O and Mg atoms, respectively.

Supplementary Figure 21. Calculated charge difference density **(a)** and planer average potential energy profile **(b)** for the interface between CaO_{NCs} and TNS. The charge accumulation is labeled in blue and charge depletion is labeled in yellow. The isosurface was set to 0.005 eV \AA ⁻³. Blue, red and cyan spheres depict Ti, O and Ca atoms, respectively.

Supplementary Figure 22. Calculated charge difference density **(a)** and planer average potential energy profile (b) for the interface between SrO_{NCs} and TNS. The charge accumulation is labeled in blue and charge depletion is labeled in yellow. The isosurface was set to 0.005 eV \AA ⁻³. Blue, red and purple spheres depict Ti, O and Sr atoms respectively.

Supplementary Figure 23. Controlled experiment by adding Cl⁻ into the catalysis system of pristine without other cations or anions.

Supplementary Figure 24. Control experiment towards $NO₃$ RR to $NH₄$ ⁺ synthesis by replacing $TiO₂$ with $SiO₂$. The test parameters were the same with that of Fig. 3a.

Supplementary Figure 25. Initial $NO₃$ concentration optimization on BaO_{NCs} -TNS for the promotion of NH₄⁺ photosynthesis efficiency (a) and its comparison towards the pristine TNS **(b)**.

Supplementary Figure 26. Catalyst dosage optimization on BaO_{NCs} -TNS for the promotion of NH⁴ + photosynthesis efficiency **(a)** and its comparison towards the pristine TNS **(b)**.

Supplementary Figure 27. *In-situ* DRIFTS results for the preactivation of NO₃ by UV light irradiation.

The test procedure is similar with that of the in-situ DRIFTS test in Fig. 5b by replacing the $NO₃$ -contained catalyst with pristine $KNO₃$ powder. It is observed in the above figure that some bridging NO_3^- (1631 and 1173 cm⁻¹)^{1, 2} is transferred into the monodentate NO₃⁻ species (1513, 1283, 1070 and 1049 cm⁻¹)^{2, 3}, which is more active than that of the bridging NO_3 ⁻⁴. Moreover, the intermediated nitro (- NO_2 , 1432 and 1374 cm^{-1} ⁴ and NO₂⁻ (824 cm⁻¹) are obviously increased. It is concluded that the NO₃⁻ reactant can be preactivated by UV light irradiation.

Supplementary reference:

1 Zhang, X. L., He, H, Cao, H. W. & Yu, Y. B. Experimental and theoretical studies of surface nitrate species on Ag/Al₂O₃ using DRIFTS and DFT. *Spectrochim. Acta A*, **71**, 1446-1451 (2008).

2 Yang, X. F. *et al.* DRIFTS Study of Ammonia Activation over CaO and Sulfated CaO for NO Reduction by NH3. *Environ. Sci. Technol.*, **45**, 1147-1151 (2011).

3 Cui, W. *et al*. Highly Efficient Performance and Conversion Pathway of Photocatalytic NO Oxidation on SrO-Clusters@Amorphous Carbon Nitride. *Environ. Sci. Technol.*, **51**, 10682-10690 (2017).

4 Hadjiivanov, K. Identification of Neutral and Charged N_xO_y Surface Species by IR

Spectroscopy. *Catal. Rev. Sci. Eng.*, **42**, 71-144 (2000).

Supplementary Figure 28. Light source optimization on BaO_{NCs}-TNS for the promotion of NH⁴ + photosynthesis efficiency **(a)** and its comparison towards the pristine TNS **(b)**.

Supplementary Figure 29. Blank control experiment excluding the contribution of contaminative N source to NH_4^+ photosynthesis by conducting the photocatalytic activity evaluation without $NO₃$ and catalysts respectively.

Supplementary Figure 30. Detected IC signals for ${}^{14}NO_3{}^{14}NO_2{}^{\text{-}}$ (a) and ${}^{15}NO_3{}^{\text{-}}$ $^{15}NO₂$ (b) during the reaction process. The ranges of y axis were set consistently for both **(a)** and **(b)**.

Supplementary Figure 31. Detected IC signals for ${}^{14}NH_4^+(a)$ and ${}^{15}NH_4^+(b)$ during the reaction process. The ranges of y axis were set consistently for both **(a)** and **(b)**.

Supplementary Figure 32. ¹H NMR spectra of the produced NH_4 ⁺ using $14NO_3$ ⁻ and $15NO₃$ as the nitrogen source respectively.

Supplementary Figure 33. Detected IC signals for $NO₃$ consumption and $NO₂$ generation in the selectivity tests.

Supplementary Figure 34. Detected IC signals for NH_4^+ generation in the selectivity tests.

Supplementary Figure 35. Detected GC signals for H₂ generation in the selectivity tests.

Supplementary Figure 36. Calculated reaction coordinates of NO₃⁻ reduction (a) and water splitting **(b)**. The transition state was identified when a single imaginary frequency was located and all forces on atoms were zero. The blue, red, green, light grey and pink spheres depict Ti, O, Ba, N and H atoms, respectively.

Supplementary Figure 37. Plotting of standard curves of NH_4^+ in the concentration range of 0.5-5 mg L^{-1} (**a and b**), 2-20 mg L^{-1} (**c and d**) and 10-100 mg L^{-1} (**e and f**) respectively by IC detection.

Supplementary Figure 38. Plotting of standard curves of $NO₃$ in the concentration range of 2-20 mg L^{-1} (a and b) and 20-100 mg L^{-1} (c and d) respectively by IC detection.

Supplementary Figure 39. Plotting of standard curves of $NO₂$ in the concentration range of 1.2-6 mg L^{-1} by IC detection.

Supplementary Figure 40. SEM images for BaO_{NCs}-TNS before (a) and after (b) the NH₄⁺ photosynthesis reaction.

Supplementary Figure 41. TEM images for BaO_{NCs}-TNS before (a) and after (b) the NH₄⁺ photosynthesis reaction.

Supplementary Figure 42. HAADF-STEM images for BaO_{NCs}-TNS before (a) and after (b) the NH_4^+ photosynthesis reaction.

Supplementary Figure 43. XRD patterns for BaO_{NGs} -TNS before and after the $NH₄$ ⁺ photosynthesis reaction.

Supplementary Figure 44. Liquid-state EPR results for the detection of lightgenerated \bullet OH (a), \bullet O₂ (b) and ¹O₂ (c) radicals on the pristine and BaO_{NCs} deposited TNS.

Supplementary Figure 45. Calculated results for $NO₃$ adsorption at the pristine (a) and BaO_{NCs} deposited (b) TNS respectively. The blue, red, green and light grey spheres depict Ti, O, Ba and N atoms, respectively. The charge accumulation is labeled in blue and charge depletion is labeled in yellow. The isosurface was set to 0.015 eV \AA ⁻³.

 $0.0.0.0$ $0.0.0$ \bullet 0 $Q^{\bullet}Q^{\bullet}Q^{\bullet}E_r = 1.16 \text{ eV}$ \bigcirc \bullet $. 0.0.0.$ $. 0.0.0.$ NO_3 + NO_2 + O H \rightarrow NO_2 + O H مہ $0.0.0.0$ \bullet 0 $\circ \circ \circ \circ \circ \circ E_r = -0.53$ eV \circ \bullet $^{\circ}$ $^{\circ}$ \bullet $. 0.0.0.$ \bullet \bullet \bullet $NO₂ + H \rightarrow NO + COH$ q \mathbf{e} $0.0.0.0$ $0.0.0.0$ \cdot 0 \cdot 0 \cdot 0 \cdot E_r = 0.50 eV \cdot 0 \cdot 0 \cdot 0 \cdot 0 \cdot $. 0.0.0.$ $. 0.0.0.$ 'NO + 'H →'NOH σ $0.0.0.0.0$ $0.0.0.0$ \cdot 0 \cdot 0 \cdot E_r = -1.06 eV \cdot 0 \cdot 0 \cdot 0 \cdot $. 0.0.0.$ $. **0 . 0 .**$ NOH + "H-"NHOH" $0.0.0.0$ $\circ \, \bullet \, \bullet$ \bullet \bullet \bullet $Q^{\bullet}Q^{\bullet}Q^{\bullet}E_r = -1.13 \text{ eV}^{\bullet}Q^{\bullet}Q^{\bullet}$ \bullet \bullet 0 $\circ \cdot \circ \cdot$ $. **0 . 0 .**$ 'NHOH + 'H-+'NH2OH $0.0.0.0$ $0.0.0.0$ \bullet 0 \bullet 0 \bullet E_r = -0.74 eV \bullet 0 \bullet 0 \bullet 0 \bullet $.0.0.0.$ $. 0.0.0.$ $NH_2OH + M \rightarrow NH_2 + H_2O$ $0.0.0.0$ \cdot 0 \bullet . \bullet \cdot 0 \cdot 0 \cdot 0 \cdot $\frac{E_r = -1.48 \text{ eV}}{2.0 \text{ eV}}$ \cdot \circ \cdot \bullet $. 0.0.0.$ $.0.0.0.$ $^{\star}NH_{2}$ + $^{\star}H \rightarrow \cdot^{\star}NH_{3}$

Supplementary Figure 46. Calculated reaction coordinates for $NO₃$ ⁻ reduction at the pristine TNS surface (corresponding to the green line in Fig. 5c). The blue, red, light grey and pink spheres depict Ti, O, N and H atoms, respectively.

Supplementary Figure 47. Calculated reaction coordinates for $NO₃$ ⁻ reduction at the BaO_{NG} -TNS surface (corresponding to the blue line in Fig. 5c). The blue, red, green, light grey and pink spheres depict Ti, O, Ba, N and H atoms, respectively.

Supplementary Figure 48. Calculated reaction coordinates for the potential side reactions at the BaO_{NGs} -TNS surface (corresponding to the red line in Fig. 5c). The blue, red, green, light grey and pink spheres depict Ti, O, Ba, N and H, atoms respectively.

Supplementary Figure 49. Calculated reaction coordinates for the potential side reactions at the BaO_{NCs}-TNS surface (corresponding to the purple line in Fig. 5c). The blue, red, green, light grey and pink spheres depict Ti, O, Ba, N and H atoms, respectively.

Supplementary Figure 50. Raw data of the efficiency evaluation in simulated wastewater containing the phenol (a, b), benzyl alcohol (c, d) and formaldehyde (e, f) as organic contaminants. The EG is excluded as hole sacrificial agent for the formaldehyde test (g ,h)

Supplementary Figure 51. Raw data of the efficiency evaluation in simulated wastewater containing the $Co^{2+}(a, b)$, $Ni^{2+}(c, d)$ and $Cd^{2+}(e, f)$ as cation contaminants.

Supplementary Figure 52. Raw data of the efficiency evaluation in simulated wastewater containing the SO_4^2 (a, b), PO_4^3 (c, d) and CO_3^2 (e, f) as anion contaminants.

Supplementary Figure 53. pH value variation during the catalytic test.

Supplementary Figure 54. Temperature variation during the catalytic test.

Supplementary Note 1

Apparent quantum yield calculation details

●Photo flux calculation

The photon flux in our photocatalysis measurements was obtained based on the following formulas:

$$
\Theta = \frac{N}{ST}
$$

$$
N = \frac{PT \bar{\lambda}}{hc}
$$

$$
P = \bar{E}S
$$

$$
\bar{\lambda} = \frac{\int_{\Delta\lambda} \lambda E(\lambda) d\lambda}{E}
$$

where Θ is the photo flux, *N* is the incident photon number, *S* stands for the illumination area of 3.0 cm−2 , *T* refers to the illumination time, *h* corresponds to the Planck constant, c stands for the speed of light, λ refers to wavelength, $\overline{\lambda}$ refers to an average wavelength (in this work the equivalent $\overline{\lambda}$ is 524.5 nm according to the MC-X301B light source used in this work, provided by the Merry Change Technology Co., Ltd.), \overline{E} is the average optical power density measured by the optical power meter (74.6) mW cm⁻²), E is total radiation intensity, $E(\lambda)$ is the spectrum radiation intensity. Thus, the photon flux Θ could be 1.97×10^{17} s⁻¹ cm⁻².

●Apparent quantum efficiency calculation

The quantum efficiency is defined by the ratio of the effective electrons used for product formation to the total input photon flux. The reduction of $NO₃$ to $NH₄$ ⁺ molecule requires eight electrons:

$$
QE\% = \frac{Effective\ electrons}{Total\ photons} \times 100\% = 8 \text{XN/ØTS} \times 100\%
$$

where *X* is the yields of NH₄⁺, respectively. *N* is Avogadro's number, Θ is the photon flux, *T* is the irradiation time, and *S* is the illumination area. The following calculation example is based on the data from $NO₃RR$ with $BaO_{NCs}-TNS$ for 1h (Fig. 3a): *X*=8.25×10⁻³ mol, *N*=6.022×10²³ mol⁻¹, *T*=1 h, *S*=3.0 cm²; equivalent *Θ*=1.97×10¹⁷ s⁻¹ cm^{-2} .

$$
QE\% = (8 \times 8.25 \times 10^{-3} \text{ mol} \times 6.022 \times 10^{23} \text{ mol}^{-1})/(1.97 \times 10^{17} \text{ s}^{-1} \text{ cm}^{-2} \times 1 \times 3600 \text{ s} \times 3.0 \text{ cm}^2) = 0.53\%
$$

Supplementary Note 2

Competing reaction pathways of $NO₃^-$ reduction for $NH₄^+$ photosynthesis (corresponding to the red line in Fig. 5c).

$$
*NOH + {}^{\bullet}H \to *N + {}^*H_2O
$$
 (1)

$$
*N + \bullet H \to *NH
$$
 (2)

$$
*NH + \bullet H \to *NH_2 \tag{3}
$$

$$
*NH_2 + {}^{\bullet}H \to *NH_3 \tag{4}
$$

Supplementary Note 3

Potential side reaction pathways of NO_3 reduction into N_2 (corresponding to the purple and blue line in Fig. 5c).

$$
*N + *N \to *N_2 \tag{5}
$$

Supplementary Table 1 Comparison of the ammonia synthesis efficiency between $NO₃$:RR to ammonia photosynthesis catalyzed by BaO_{NCs} in this work and recently reported alkaline earth-based catalysts for ammonia synthesis.

Supplementary Table 2 Comparison of the ammonia synthesis efficiency between NO₃ RR to ammonia photosynthesis in this work and recently reported state-of-the-art ammonia synthesis routes under ambient conditions.

Chemicals	Purity	Source
Hydrofluoric Acid	48%-50%	Adamas
Titanium(IV) butoxide	99%	Adamas
Ethanol	99.7%	Greagent
Potassium nitrate	99.0%	Greagent
Magnesium chloride hexahydrate	99%	Adamas
Calcium chloride hydrate	99.0%	Acros
Strontium chloride hexahydrate	99%	Adamas
Barium chloride dihydrate	99.5%	Greagent
Phenol	$\geq 99.0\%$	Greagent
Benzyl alcohol	99%	Adamas
Formaldehyde	37.0%-40.0%	Greagent
Cobalt(II) chloride hexahydrate	99%	Adamas
Nickel(II) chloride hexahydrate	99%	Adamas
Cadmium chloride hydrate	98%	Sigma-Aldrich
Potassium sulfate	$\geq 99.0\%$	Greagent
Potassium phosphate	99%	Adamas
Potassium Carbonate	$>99.0\%$	Greagent

Supplementary Table 3 Source and purity of chemicals used in this work