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Supplementary Fig. S1 | Main variables explaining the SOC pools at the global scale. The 
SOC pool was modelled using their absolute values, enabling the evaluation of the influence of the site properties 
on SOC content. The studied pools were: the forest floor layer (A), and the topsoil layer (B). The predictors were 
a climatic descriptor (fclimate ranging from 0 [unfavourable to biological activity] to 1 [favourable], in blue; see 
Methods), soil properties, in brown (sand content and pH value), nitrogen atmospheric deposition, in yellow, and 
the index score of the Plant Economics Spectrum (PES; see Methods) of the tree species, in violet. The influence 
of the variables was assessed using the percentage of increase of mean square error (MSE) after running the 
Random Forest approach (see Methods). Arrows indicate positive () or negative () effects of the predictors on 
SOC. 
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Supplementary Fig. S2 | Global influence of plant traits and forest biomass on SOC pools. 
Values are normalised (see Methods). Values of r2 are 0.05-0.15 (see panels for r values and P values). Results for 
the leaf photosynthetic capacity (Amax), leaf size, leaf C:N, and seed mass are not shown here (see Figure 2 for 
Amax). For these latter traits, the relationships were significant (|r| = 0.21-0.46; r2 = 0.04-0.21; P < 0.050). Linear 
regressions were fitted (level of confidence of the error band = 0.95). 
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Supplementary Fig. S3 | Relationships among the traits that constitute the Plant 

Economics Spectrum. To avoid pseudo-replications, we used only a subset of our data, containing one set 
of trait values per tree species (n = 59-178, depending on the trait). The matrix shows the results of Spearman's 
rank correlation coefficients. The symbols *, **, and *** indicate correlations with P values respectively as 
follows: P < 0.05, P < 0.01, and P < 0.001.   
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Supplementary Fig. S4 | SOC pools and phylogenetic distance among tree species. SOC 
pools are: whole soil profile (A), forest floor (B), and topsoil (C). Values are normalised (see Methods). Each dot 
is a pair of mono-specific stands of different tree species growing in the same site. The phylogenetic distance 
between the two species of a given pair is in millions of years. Linear regressions were fitted (level of confidence 
of the error band = 0.95). 
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Supplementary Fig. S5 | Model explaining the SOC pools as a function of the 

photosynthetic capacity of tree species and stand biomass. SOC pools are for the soil profile (forest 
floor + topsoil). Panels show the performance of the model (based on leaf photosynthetic capacity of tree species 
and standing biomass of stands) with: the calibration dataset (A) and an independent dataset used for validation 
(B). Values are normalised (see Methods). Linear regressions were fitted (level of confidence of the error band = 
0.95). Linear regressions take into account data reliability as weighting factor.  
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Supplementary Fig. S6 | Evaluation of the model using the calibration dataset (see Figure 
S5A). The SOC pool was modelled using the values found in the original articles of the data compilation. The 
predictors retained by the model were: maximal photosynthetic capacity of tree species (Amax) and stand biomass 
(Biomass). Other predictors were not significant. 
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Supplementary Fig. S7 | Global influence of the photosynthetic capacity of tree species on 

SOC pools. SOC pools are: forest floor (i.e. the uppermost organic layer supplied by litterfall; panel A), and 
topsoil (i.e. upper layer of mineral soil with an Equivalent Soil Mass of 3000 Mg ha-1; panel B). Values are 
normalised (see Methods). Linear regressions were fitted (level of confidence of the error band = 0.95). The symbol 
size is proportional to data reliability (see Methods), which was taken into account as a weighting factor in the 
regression.  
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Supplementary Fig. S8 | Soil organic carbon under gymnosperms and angiosperms. Values 
are normalised (see Methods). The difference was tested with a pairwise t-test (F value = 16.76). Values: n = 68 
pairs. Boxplots represent the median, the first and third quartiles, and 1.5 × the inter-quartile range. The difference 
between the two groups was tested with a pairwise t-test (two-sided). 
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Supplementary Fig. S9 | Evaluation of the model based on imputed values, including past 

land-use (see Figure 4A). The SOC pool was modelled using imputed values based on a PCA approach (see 
Methods). The predictors were: an integrated value of the functional traits constituting the plant economics 
spectrum (PES), stand biomass (Biomass), a climatic index (fclimate), soil sand content, soil pH, and past land-use 
(PLU). The tested model was as follows:  

SOC ~ (PES × Biomass) + {(PES + Biomass) : (fclimate + Sand + pH + PLU)} 
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Supplementary Fig. S10 | Evaluation of the model based on imputed values, without past 

land-use (see Figure 4B). The SOC pool was modelled using imputed values based on a PCA approach (see 
Methods). The predictors were: an integrated value of the functional traits constituting the plant economics 
spectrum (PES), stand biomass (Biomass), a climatic index (fclimate), soil sand content, and soil pH. The tested 
model was as follows:  

SOC ~ (PES × Biomass) + {(PES + Biomass) : (fclimate + Sand + pH)} 
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Supplementary Fig. S11 | Modulation of the imprint of tree species on forest SOC by past 

land-use and site fertilisation. Different colours indicate different past land-use of the studied forest. 
“agriculture” (green symbols) includes mainly grasslands, but also a few croplands and land treated with inorganic 
fertilisers; “forest” (dark grey symbols) includes mainly forests, but also a few shrublands. Values are normalised 
(see Methods). Linear regressions were fitted (level of confidence of the error band = 0.95). The symbol size is 
proportional to data reliability (see Methods), and regressions take it into account as a weighting factor.  
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Supplementary Fig. S12 | Modulation of the imprint of tree species on SOC by climate 

and soil properties. Graphs show the relationships between the index score of the Plant Economics Spectrum 
and SOC pool in interaction with climate (A), soil texture (B), and soil acidity (C). Values are normalised values 
(see Methods). Linear regressions take data reliability into account as a weighting factor. Categories are based on 
threshold values close to the median values of (A) fclimate = 0.35 (unitless), (B) soil pH = 5.0, (C) soil sand content 
= 500 mg g-1. Low values, and high, values of fclimate indicate respectively unfavourable climatic conditions (cold 
and/or dry), and favourable climatic conditions (warm and wet). Linear regressions were fitted (level of confidence 
of the error band = 0.95).  
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Supplementary Fig. S13 | Influence of stand aboveground biomass on stand litterfall flux. 
Values are normalised (see Methods). Linear regressions were fitted (level of confidence of the error band = 0.95). 
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Supplementary Fig. S14 | Aboveground stand biomass in gymnosperm and angiosperm 

forests. Unfavourable and favourable climatic conditions were defined based on an index of potential biological 
activity (fclimate; see Methods) with 0.35 as a threshold value. Values: n = 189 and 67 pairs for panels A and B. 
W value = 3134 and 459.5 for panels A and B, respectively (Wilcoxon rank sum test; two sided). Values are 
normalised (see Methods). Boxplots represent the median, the first and third quartiles, and 1.5 × the inter-quartile 
range.  
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Supplementary Fig. S15 | Data flow of the study. Yellow boxes and green boxes indicate the sources of original data and the final datasets, respectively. 
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Supplementary Fig. S16 | Map of study site locations. A few sites had no geographical coordinates 
and are located approximately. The colours indicate the SOC pool size in the upper part of the soil mineral layer 
(for an Equivalent Soil Mass of 1,000 Mg of soil per hectare). 
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Supplementary Fig. S17 | Equivalent Soil Mass calculation. Fictive example of the way original SOC values were calculated in Equivalent Soil Mass (ESM) 
values. In the panel (A), a soil profile was sampled down to 50 cm and split in four layers (0-5 cm, 5-15 cm, 15-30 cm, and 30-50 cm; circles coloured from dark brown to light 
yellow). The right vertical axis indicated the cumulative soil mass of the profile (calculated based on volume and bulk density of the sampled layers). Having the mass and the 
SOC content value of the soil layers, it enabled to calculate the SOC pool of each layer. In the panel (B), the SOC pool values (x axis) were represented in a cumulative way 
(first the layer 0-5 cm [dark brown circle], then {layer 0-5 cm + layer 5-15 cm} [light brown circle], and so on), and plotted versus the cumulative soil mass (y axis). Then, a 
regression (cubic spline) was fit (red line). This regression was used to estimate the SOC pool of layers of equivalent soil mass (ESM, in Mg-soil ha-1): the topsoil layer of 
1000 Mg-soil ha-1 contained 69.3 Mg-SOC ha-1, the second layer of 1000 Mg-soil ha-1 contained 22.5 Mg-SOC ha-1, the third layer of 1000 Mg-soil ha-1 contained 12.7 Mg-SOC ha-1, and 
so on. The panel (C) indicated the final data. In our study, we retained as main studied soil layer the cumulated value of the three uppermost ESM individual layers (i.e. having 
an ESM of 3000 Mg-soil ha-1). In this example, this soil layer (named ESM.0000-3000) had a cumulative ESM SOC value of 104.5 Mg-SOC ha-1. 
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Supplementary Fig. S18 | Relationships among the site properties. Latitude (°); Climate = fclimate 
(climate factor index; [0-1]; see Methods); N.dep = nitrogen atmospheric deposition (kg-N ha-1 yr-1); Clay, Silt, and 
Sand = particle size fractions of soils (mg g-1); pH = soil pH (unitless). The matrix shows the results of Spearman's 
rank correlation coefficients. The symbols *, **, and *** indicate correlations with P values respectively as 
follows: P < 0.05, P < 0.01, and P < 0.001. 
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Supplementary Fig. S19 | Principal Component Analysis used to produce the index score 

of the Plant Economics Spectrum (PES). The functional traits of all the studied tree species were used 
to generate a Principal Component Analysis (PCA). For full explanation, see the section “Data collection: plant 

functional traits” in Methods. The final value of the index score of the PES was the coordinate value on the first 
axis (“Dimension 1”). 
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Supplementary Fig. S20 | Principal Component Analysis used to produce the index score 

of the forest standing biomass. The variables that were directly related to biomass (“litterfall” and “tree 
biomass”), and functional traits known to be related to biomass or growth (“max height”, “growth rate”, “seed 
mass”, “wood density”) were used to generate a Principal Component Analysis (PCA). For full explanation, see 
the section “Data collection: plant functional traits” in Methods. The final value of the index score of the standing 
biomass was the coordinate value on the first axis (“Dimension 1”). 
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Supplementary Fig. S21 | Phylogenetic tree of the species of the study. Values on the phylogenetic tree are the distances in millions of years (Myr). For the 
sake of clarity, the stem lengths are not proportional to the phylogenetic distances. Values in brackets next to family names are the number of species present in our dataset. 
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Supplementary Fig. S22 | Relationships among climatic descriptors. MAT = mean annual 
temperature (°C); MAP = mean annual precipitation (mm yr-1); PET = potential evapotranspiration (mm yr-1); WB 
= water balance (MAP-PET difference); fclimate (climate factor index; [0-1]; see Methods). The matrix shows the 
results of Spearman's rank correlation coefficients. The symbols *, **, and *** indicate correlations with P values 
respectively as follows: P < 0.05, P < 0.01, and P < 0.001. 
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Supplementary Fig. S23 | Differences of SOC decomposability between arbuscular 

mycorrhizal tree species and ectomycorrhizal tree species, as influenced by the method 

used to quantify the SOC decomposability. Values (n=20, 28, 36 and 27 pairs, for the panels A, B, C 
and D, respectively) show the SOC decomposability, which is the opposite of SOC stability. Values are 
normalised. Boxplots represent the median, the first and third quartiles, and 1.5 × the inter-quartile range. 
Significant differences were tested with pairwise t-test or Wilcoxon test (two-sided), depending on data structure. 
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Supplementary Table S1 | Influence of plant functional traits and stand properties on 

SOC pools. N = number of values; r = Spearman correlation coefficient; P value. Leaf Amax: leaf photosynthetic 
maximum capacity; LDMC: leaf dry matter content; SLA and SRL: specific leaf area and specific root length; 
Leaf C, lignin, N, P, and Ca: leaf content (mass basis). Correlations were tested with the Spearman's rank 
correlation coefficients. 
 

Predictor Forest floor +Topsoil Forest floor Topsoil 

 n r P n r P n r P 

Leaf Amax (75) -0.65 <0.001 (139) -0.67 <0.001 (107) -0.25 0.009 
LDMC (33) 0.56 0.001 (58) 0.72 <0.001 (40) n.s. n.s. 
SLA (85) -0.54 <0.001 (163) -0.60 <0.001 (127) n.s. n.s. 
SRL (40) -0.60 <0.001 (90) -0.24 0.021 (53) -0.25 0.067 
Wood density (149) -0.30 <0.001 (227) -0.35 <0.001 (256) -0.11 0.087 
Leaf C (149) 0.16 0.057 (227) 0.22 0.001 (256) n.s. n.s. 
Leaf lignin (110) n.s. n.s. (171) 0.18 0.020 (147) n.s. n.s. 
Leaf N (108) -0.39 <0.001 (186) -0.57 <0.001 (164) n.s. n.s. 
Leaf C:N ratio (108) 0.39 <0.001 (186) 0.54 <0.001 (164) n.s. n.s. 
Leaf P    (103) n.s. n.s. (166) -0.23 0.002 (159) n.s. n.s. 
Leaf Ca    (74) -0.33 0.004 (126) -0.46 <0.001 (125) n.s. n.s. 
Leaf Size    (110) -0.31 0.001 (175) -0.34 <0.001 (148) -0.13 0.113 
Seed mass (122) -0.30 0.001 (200) -0.29 <0.001 (209) n.s. n.s. 
Tree max height    (145) 0.15 0.074 (223) 0.25 <0.001 (225) n.s. n.s. 
Stand biomass    (113) 0.25 0.007 (160) 0.24 0.002 (164) 0.14 0.082 
Stand litterfall    (51) 0.35 0.012 (81) 0.16 0.147 (78) n.s. n.s. 
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Supplementary Table S2 | Models predicting the SOC content. The tested models were all of the basic form: 
SOC ~ ( + Biomass) + { ( + Biomass) : (Climate + Sand + pH + PLU) } 

with: 
“:” indicates the tested interactions 
SOC = soil content in organic carbon 
 = main predictor (Amax or PES, depending on the model) 
Amax = Leaf maximum photosynthetic capacity (relative values) 
PES = score value of the Plant Economics Spectrum (imputed values) 
Biomass = stand biomass (relative values) 
Climate = climatic descriptor of the sites (fclimate) 
Sand = soil sand content 
pH = soil pH value 
PLU = site past land-use (used only in two of the four models) 

 

Model  
Retained predictors AIC r2 Adj. r2  PLU  

Amax yes (n=2) Amax  ,  Biomass -86.2 0.500 0.485 
Amax no (n=2) Amax  ,  Biomass -86.2 0.500 0.485 
PES yes (n=5) PES  ,  PES:Climate  ,  PES:pH  ,  PES:PLU , Biomass :Sand -130.4 0.207 0.180 
PES no (n=4) PES  ,  PES:Climate  ,  PES:pH  ,  Biomass :Sand -122.0 0.201 0.178 
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Supplementary Table S3 | Mean values of functional traits of several tree plant functional 

types. AM and EC: arbuscular mycorrhizal tree species and ectomycorrhizal tree species; leaf Amax: leaf 
photosynthetic maximum capacity; leaf N: leaf content in nitrogen; LDMC: leaf dry matter content; SLA and SRL: 
specific leaf area and specific root length; max height: tree maximum height. Values are means  1 standard error. 
Values followed by different letters are significantly different (P < 0.05; tested with Bonferroni test, Wilcoxon 
test, or Mann-Whitney, depending on data structure). Groups with less than 5 values were not included in the tests 
(¤). Groups with less than 3 values are not presented (n.p.). 
 

Plant functional type n Leaf Amax Leaf N LDMC SLA SRL Wood 
density 

Max 
height 

  (µmol g-1 s-1) (mg g-1) (g g-1) (mm2 mg-1) (m g-1) (kg L-1) (m) 
Angiosperm - AM 21-65 0.150.02b 21.81.3b 0.360.01ab 17.52.0c 47.37.0b 0.540.02b 30.61.8a 
Angiosperm - EC 14-34 0.150.02b 21.21.0b 0.350.02a 15.01.0bc 47.05.2b 0.620.02c 33.12.5a 
Gymnosperm - AM 2-13 0.040.01a 12.21.0a 0.370.04¤ 5.81.2a n.p. 0.470.02a 46.05.7b 
Gymnosperm - EC 16-45 0.050.01a 12.60.7a 0.420.02b 7.60.6ab 24.02.3a 0.460.01a 49.13.2b 
Broadleaf deciduous 32-68 0.170.02b 23.00.7b 0.350.01a 18.41.6c 48.35.2b 0.550.02b 33.71.5a 
Broadleaf evergreen  10-50 0.170.03b 19.91.9b 0.360.02a 13.41.1b 63.89.9b 0.610.02c 35.03.0a 
Needleleaf deciduous 1-4 0.110.04¤ 22.12.1¤ n.p. 11.71.5¤ n.p. 0.460.02¤ 47.83.4¤ 
Needleleaf evergreen 19-55 0.050.01a 11.60.4a 0.420.02b 7.00.6a 23.72.4a 0.470.01a 46.83.1b 
Angiosperm N fixer 5-26 0.200.04a 31.32.5b 0.350.03a 21.94.7b 68.120.7a 0.580.03a 23.42.1a 
Angiosperm non-fixer 57-97 0.160.02a 19.30.6a 0.360.01a 15.10.7a 48.74.0a 0.580.01a 36.21.7b 
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Supplementary Table S4 | List of the variables used in the study.  
H1, H2, H3 = hypotheses tested in the study (see main text); PES = Plant Economics Spectrum; SOC = Soil Organic Carbon;  

Variable Unit Origin Use Hypothesis 

Data weight (Wdata) [0-1] 
classified based on original publication (see 
Methods) 

Used to give a statistical weight to SOC data 
(based on the strength of the study design) 

H1, H2 

Leaf C mg/g 
original publication, or trait database, or estimated 
(see Methods) 

Trait of the PES, used as possible predictor of 
SOC 

H1 

Leaf C:N ratio _ calculated 
Leaf N mg/g original publication, or trait database 
Leaf N:P ratio _ calculated 
Leaf P mg/g original publication, or trait database 
Leaf K mg/g original publication, or trait database 
Leaf Ca mg/g original publication, or trait database 
Leaf Mg mg/g original publication, or trait database 
Leaf Mn mg/g original publication, or trait database 
Leaf Lignin mg/g original publication, or trait database 
Leaf Dry Matter 
Content (LDMC) 

g/g trait database 

Leaf area mm2 trait database 
Specific Leaf Area 
(SLA) 

mm2/mg original publication, or trait database 

Leaf type (shape) 
B=broadleaf, 
N=needleleaf 

original publication, or trait database, or 
specialised websites 

Leaf phenology 
D=deciduous, 
E=evergreen 

original publication, or trait database, or 
specialised websites 

Leaf photosynthetic 
capacity (Amax) 

µmol/g/s trait database 

Leaf stomatal 
conductance 

mmol/m2/s trait database 

Initially used (1) to confirm that our dataset was 
consistent with the PES and (2) for the gap 
filling procedure (see Methods) 

_ 

Leaf photosynthesis 
carboxylation capacity 

µmol/g/s trait database 

Litterfall C mg/g trait database 
Litterfall C:N ratio _ calculated 
Litterfall N mg/g original publication, or trait database 
Litterfall P mg/g original publication, or trait database 
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Litterfall K mg/g original publication, or trait database 
Litterfall Ca mg/g original publication, or trait database 
Litterfall Mg mg/g original publication, or trait database 
Litterfall Mn mg/g original publication, or trait database 
Fine root specific 
length (SRL) 

m/g trait database 
Trait of the PES, used as possible predictor of 
SOC 

H1 

Fine root C mg/g original publication, or trait database 

Initially used (1) to confirm that our dataset was 
consistent with the PES and (2) for the gap 
filling procedure (see Methods) 

_ 

Fine root C:N ratio _ calculated 
Fine root N mg/g original publication, or trait database 
Fine root P mg/g original publication, or trait database 
Fine root K mg/g original publication, or trait database 
Fine root Ca mg/g original publication, or trait database 
Fine root Mg mg/g original publication, or trait database 
Fine root diameter mm trait database 
Plant phylogenetic 
distance 

Myr calculated (see Methods) 
Used as a possible proxy of functional distance 
between two species 

H1 

Plant phylogeny 
spermaphyte, … , 
family, genus, species 

wikispecies 
Used as a categorical variable (e.g. angiosperms 
vs gymnosperms) that may explain SOC 

H1 

Plant mycorhizal type 
AM=arbuscular, 
EC=ecto, MIX=mixed, 
NO=no symbiosis 

trait database, or specialised publications (see 
Methods) Used as a categorical variable that may explain 

SOC 
H1 

Plant N fixation N=no, Y=yes 
original publication, or determined based on 
species genus 

Plant growth rate classes=1-3 
original publication, or trait database, or 
specialised websites 

Used as a proxy of the species ecological 
strategy 

H1 

Plant tolerance to 
drought 

classes=1-5 
trait database, or specialised publications, or 
specialised website (see Methods) 

Plant tolerance to 
waterlogging 

classes=1-5 
trait database, or specialised publications, or 
specialised website 

Plant xylem cavitation 
vulnerability (P50) 

Mpa 
trait database, or specialised publications, or 
specialised website 

Plant max height m 
original publication, or trait database, or 
specialised websites 

Trait of the PES, used as possible predictor of 
SOC 

H1 Plant seed mass mg/seed trait database, or specialised website 

Plant wood density g/cm3 
trait database, or specialised publications, or 
specialised website (see Methods) 
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Site longitude degrees original publication Used to extract data from global datasets _ 
Site latitude degrees original publication 

Used to evaluate the interactions between PES, 
SOC, and environmental conditions 

H2 

Site elevation m above sea level 
original publication, or global database (SRTM-
NASA) 

Site mean annual 
precipitation (MAP) 

mm/yr 
original publication, or global database 
(WorldClim) 

Site mean annual 
temperature (MAT) 

°C 
original publication, or global database 
(WorldClim) 

Site Koppen climate 
A=tropical, B=dry, 
C=temperate, D=snow, 
E=cold 

global database (Kottet et al., 2006) 

Site aridity index _ global database (WorldClim) 
Site potential 
evapotranspiration 
(PET) 

mm/yr global database (CGIAR) 

Site climatic conditions 
for biological activity 
(fclimate) 

[0;1], 
From 0=unfavourable 
to 1=favourable 

calculated based on latitude and mean monthly 
values of temperature and precipitation (Augusto 
et al., 2017) 

Site nitrogen 
atmospheric deposition 

kg-N/ha/yr global database (Vet et al., 2014) 

Site topography (class) plain, hill, or mountain original publication 
Site topography (value) % original publication 

Site past land-use 

forest, grassland, 
savanna, tundra, 
wetland, other 
permanent vegetation, 
desert, cropland 

original publication 

Site fertilisation history 
N=no fertilisation, 
Y=at least one 
fertilisation application 

original publication 

Site soil name 
USDA soil 
classification 

original publication 

Site soil parent material 
acid, intermediate, 
mafic, calcareous (see 
Methods) 

classified based on original publication (see 
Methods) 

Site mean value of 
topsoil texture (clay) 

mg/g 
calculated based on original publication (see 
Methods) 
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Site mean value of 
topsoil texture (silt) 

mg/g calculated based on original publication 

Site mean value of 
topsoil texture (sand) 

mg/g calculated based on original publication 

Site mean value of 
topsoil SOC 

mg/g calculated based on original publication 

Site mean value of 
topsoil P-available 
content 

µg/g calculated based on original publication 

Site mean value of 
topsoil pH-water 

_ calculated based on original publication 

Site mean value of 
topsoil base saturation 

% calculated based on original publication 

Stand age yr original publication 
Used to evaluate the interactions between PES, 
SOC, and duration of the soil exposure to 
different tree species 

H1 

Stand aboveground 
biomass 

Mg/ha original publication, or calculated 

Used a possible predictor of SOC H1, H3 

Stand aboveground 
growth 

Mg/ha/yr original publication 

Stand litterfall Mg/ha/yr original publication 
Stand fine root biomass Mg/ha original publication 
Stand fine root 
turnover 

Mg/ha/yr original publication 

Soil layer position 
(depth and thickness) 

cm original publication Used to calculate SOC values following the 
Equivalent Soil Mass method 

_ 
Soil bulk density kg/dm3 original publication, or calculated 

Soil layer texture (clay) mg/g 
original publication, or estimated by global study 
(Hengl et al., 2017; Shangguan et al., 2014) 

Used to (1) test the comparability among the 
stands of a given site, and (2) calculate the mean 
soil properties at the site scale 

H2 Soil layer texture (silt) mg/g 
original publication, or estimated by global study 
(Hengl et al., 2017; Shangguan et al., 2014) 

Soil layer texture 
(sand) 

mg/g 
original publication, or estimated by global study 
(Hengl et al., 2017; Shangguan et al., 2014) 

Soil content in organic 
carbon (SOC) 

mg/g original publication, or calculated 
Used to calculate the SOC values in ESM, 
which was the main studied variable 

H1, H2, H3 
Soil pool in organic 
carbon (SOC) 

Mg/ha original publication, or calculated 
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Soil fraction of SOC 
stability 

see Methods original publication Used as a proxy of the SOC stability H1 

Soil content in organic 
matter (SOM) 

mg/g original publication, or calculated 
Used to calculate SOC values _ 

Soil pool in organic 
matter (SOM) 

Mg/ha original publication, or calculated 

Soil content in total 
nitrogen (N-tot) 

mg/g original publication, or calculated 

Used to calculate the mean soil properties at the 
site scale 

H2 

Soil pool in total 
nitrogen (N-tot) 

Mg/ha original publication, or calculated 

Soil C:N ratio _ original publication, or calculated 
Soil content in P-
available 

µg/g original publication 

Soil pH (water) _ 
original publication, or estimated by global study 
(Hengl et al., 2017; Shangguan et al., 2014) 

Soil Cation Exchange 
Capacity (CEC) 

cmol.c/kg original publication 

Soil base saturation of 
the CEC 

% 
original publication, or estimated by global study 
(Hengl et al., 2017; Shangguan et al., 2014) 
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Supplementary Table S5 | PRISMA abstract checklist.  
 

Section and Topic  
Item 

# 
Checklist item  

Reported 

(Yes/No)  
TITLE   

Title  1 Identify the report as a systematic review. Yes 

BACKGROUND   

Objectives  2 Provide an explicit statement of the main objective(s) or question(s) the review addresses. Yes 

METHODS   

Eligibility criteria  3 Specify the inclusion and exclusion criteria for the review. Yes 

Information sources  4 Specify the information sources (e.g. databases, registers) used to identify studies and the date when each was 
last searched. 

Yes 

Risk of bias 5 Specify the methods used to assess risk of bias in the included studies. Yes 

Synthesis of results  6 Specify the methods used to present and synthesise results. Yes 

RESULTS   

Included studies  7 Give the total number of included studies and participants and summarise relevant characteristics of studies. Yes 

Synthesis of results  8 Present results for main outcomes, preferably indicating the number of included studies and participants for 
each. If meta-analysis was done, report the summary estimate and confidence/credible interval. If comparing 
groups, indicate the direction of the effect (i.e. which group is favoured). 

Yes 

DISCUSSION   

Limitations of evidence 9 Provide a brief summary of the limitations of the evidence included in the review (e.g. study risk of bias, 
inconsistency and imprecision). 

Yes 

Interpretation 10 Provide a general interpretation of the results and important implications. Yes 

OTHER   

Funding 11 Specify the primary source of funding for the review. Yes 

Registration 12 Provide the register name and registration number. No 

From: Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting 
systematic reviews. BMJ 2021;372:n71. doi: 10.1136/bmj.n71 
For more information: http://www.prisma-statement.org/  
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Supplementary Table S6 | PRISMA checklist.  
 

Section and Topic  
Item 

# 
Checklist item  Location where item is reported  

TITLE   

Title  1 Identify the report as a systematic review. Methods (Data collection: soil organic carbon): 
lines 224-226 

ABSTRACT   

Abstract  2 See the PRISMA 2020 for Abstracts checklist. Dedicated file 

INTRODUCTION   

Rationale  3 Describe the rationale for the review in the context of existing knowledge. Introduction (lines 40-47) 

Objectives  4 Provide an explicit statement of the objective(s) or question(s) the review addresses. Introduction (lines 44-62) 

METHODS   

Eligibility criteria  5 Specify the inclusion and exclusion criteria for the review and how studies were grouped for the syntheses. Methods (Data collection: soil organic carbon): 
lines 228-245 

Information sources  6 Specify all databases, registers, websites, organisations, reference lists and other sources searched or consulted to identify 
studies. Specify the date when each source was last searched or consulted. 

Methods (Data collection: soil organic carbon): 
lines 223-228 

Search strategy 7 Present the full search strategies for all databases, registers and websites, including any filters and limits used. Idem 

Selection process 8 Specify the methods used to decide whether a study met the inclusion criteria of the review, including how many reviewers 
screened each record and each report retrieved, whether they worked independently, and if applicable, details of automation 
tools used in the process. 

Idem 

Data collection 
process  

9 Specify the methods used to collect data from reports, including how many reviewers collected data from each report, 
whether they worked independently, any processes for obtaining or confirming data from study investigators, and if 
applicable, details of automation tools used in the process. 

Methods (Data collection: soil organic carbon): 
lines 245-251 

Data items  10a List and define all outcomes for which data were sought. Specify whether all results that were compatible with each outcome 
domain in each study were sought (e.g. for all measures, time points, analyses), and if not, the methods used to decide which 
results to collect. 

All details in Methods (Data collection: soil 
organic carbon; Data collection: auxiliary data; 
Data collection: plant functional traits; Dataset 
compilation: phylogenetic distance) 

10b List and define all other variables for which data were sought (e.g. participant and intervention characteristics, funding 
sources). Describe any assumptions made about any missing or unclear information. 

Idem 

Study risk of bias 
assessment 

11 Specify the methods used to assess risk of bias in the included studies, including details of the tool(s) used, how many 
reviewers assessed each study and whether they worked independently, and if applicable, details of automation tools used in 
the process. 

Data were extracted by both authors, working 
together. All studies and data were collegially 
evaluated to avoid inclusion/exclusion bias. 
See Methods 

Effect measures  12 Specify for each outcome the effect measure(s) (e.g. risk ratio, mean difference) used in the synthesis or presentation of 
results. 

Methods (Data handling and normalisation; 
Data analysis) 

Synthesis methods 13a Describe the processes used to decide which studies were eligible for each synthesis (e.g. tabulating the study intervention 
characteristics and comparing against the planned groups for each synthesis (item #5)). 

Methods (Data collection: soil organic carbon): 
lines 234-245 

13b Describe any methods required to prepare the data for presentation or synthesis, such as handling of missing summary Methods (Data handling) 
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Section and Topic  
Item 

# 
Checklist item  Location where item is reported  

statistics, or data conversions. 

13c Describe any methods used to tabulate or visually display results of individual studies and syntheses. Not applicable 

13d Describe any methods used to synthesize results and provide a rationale for the choice(s). If meta-analysis was performed, 
describe the model(s), method(s) to identify the presence and extent of statistical heterogeneity, and software package(s) 
used. 

Data were normalised to enable comparisons 
and synthesis of results (see Data handling and 
normalisation) 

13e Describe any methods used to explore possible causes of heterogeneity among study results (e.g. subgroup analysis, meta-
regression). 

Heterogeneity was assessed by using climate, 
soil properties, past land-use, plant functional 
types, and stand biomass as factors (see for 
instance Figures 3-4)  

13f Describe any sensitivity analyses conducted to assess robustness of the synthesized results. Data were analysed using different methods, 
whose results were found to be consistent to 
each other (Methods: Data analysis) 

Reporting bias 
assessment 

14 Describe any methods used to assess risk of bias due to missing results in a synthesis (arising from reporting biases). Data were evaluated collegially evaluated to 
avoid inclusion/exclusion bias. For regions 
where data were scarce, we applied the 
selection criteria with flexibility to avoid 
having areas of the world severely under-
represented in the dataset. 

Certainty assessment 15 Describe any methods used to assess certainty (or confidence) in the body of evidence for an outcome. Methods: Data analysis 

RESULTS   

Study selection  16a Describe the results of the search and selection process, from the number of records identified in the search to the number of 
studies included in the review, ideally using a flow diagram. 

Figure S15 in Supplementary Information 

16b Cite studies that might appear to meet the inclusion criteria, but which were excluded, and explain why they were excluded. Examples and criteria are given lines 236-241 
(Data collection: soil organic carbon) 

Study characteristics  17 Cite each included study and present its characteristics. Supplementary References 1-3; Source Data  

Risk of bias in studies  18 Present assessments of risk of bias for each included study. Each included study received a score of 
confidence based on explicit criteria (Data 
handling and normalisation). This score was 
used to give to each study a statistical weight 
proportional to its robustness during data 
analyses 

Results of individual 
studies  

19 For all outcomes, present, for each study: (a) summary statistics for each group (where appropriate) and (b) an effect 
estimate and its precision (e.g. confidence/credible interval), ideally using structured tables or plots. 

Not done because of the high number of 
original studies 

Results of syntheses 20a For each synthesis, briefly summarise the characteristics and risk of bias among contributing studies. Not done because of the high number of 
original studies 

20b Present results of all statistical syntheses conducted. If meta-analysis was done, present for each the summary estimate and 
its precision (e.g. confidence/credible interval) and measures of statistical heterogeneity. If comparing groups, describe the 
direction of the effect. 

Results and Supplementary Information 

20c Present results of all investigations of possible causes of heterogeneity among study results. Results and Supplementary Information 
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Section and Topic  
Item 

# 
Checklist item  Location where item is reported  

20d Present results of all sensitivity analyses conducted to assess the robustness of the synthesized results. Not done 

Reporting biases 21 Present assessments of risk of bias due to missing results for each synthesis assessed. Not done 

Certainty of evidence  22 Present assessments of certainty (or confidence) in the body of evidence for each outcome assessed. Main findings were analysed using a modelling 
approach, with a quantification of the level of 
explained variance (Results, Methods, Figure 
4) 

DISCUSSION   

Discussion  23a Provide a general interpretation of the results in the context of other evidence. Discussion 

23b Discuss any limitations of the evidence included in the review. Not done 

23c Discuss any limitations of the review processes used. Not done 

23d Discuss implications of the results for practice, policy, and future research. Final paragraph of the Discussion 

OTHER INFORMATION  

Registration and 
protocol 

24a Provide registration information for the review, including register name and registration number, or state that the review was 
not registered. 

Not done 

24b Indicate where the review protocol can be accessed, or state that a protocol was not prepared. A protocol was initially prepared by the two 
authors to enable the collaborative work. This 
protocol was revised, when necessary, during 
the course of the systematic review. However, 
the protocol was neither register nor published  

24c Describe and explain any amendments to information provided at registration or in the protocol. Amendments were made when a case study 
presented a characteristic that was not yet 
taken into account in the protocol 

Support 25 Describe sources of financial or non-financial support for the review, and the role of the funders or sponsors in the review. Described in the section Acknowledgements 

Competing interests 26 Declare any competing interests of review authors. Described in the section Competing interests 

Availability of data, 
code and other 
materials 

27 Report which of the following are publicly available and where they can be found: template data collection forms; data 
extracted from included studies; data used for all analyses; analytic code; any other materials used in the review. 

Described in the dedicated sections (Data 
availability; Code availability)  

From: Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting 
systematic reviews. BMJ 2021;372:n71. doi: 10.1136/bmj.n71; For more information: http://www.prisma-statement.org/  
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Supplementary Table S7 | Pedotransfer functions tested to estimate missing values of soil 

bulk density.  
Four pedo-transfer functions were tested: 

1. Function A [Augusto et al. Is ‘grey literature’ a reliable source of data to characterize soils at the scale of 
a region? Eur. J. Soil Sci. 61, 807–822 (2010)]: BD = soil bulk density (kg L-1); SOC = soil organic carbon 
(mg g-1); , , and  = fitted parameters.   

2. Function D [De Vos et al. Predictive quality of pedotransfer functions for estimating bulk density of forest 
soils. Soil Sci. Soc. Am. J. 69, 500–510 (2005)]: BD = soil bulk density (kg L-1); LOI = lost on ignition (%); 
Sand and Clay = textural fractions (%); Depth = position in the soil profile (cm); , 1, 2, 3, and 4 = 
fitted parameters. We tested the “CA” model of this publication. 

3. Function F [Federer et al. The organic fraction - bulk density relationship and the expression of nutrient 
content in forest soils. Can. J. For. Res. 23, 1026–1032 (1993)]: BD = soil bulk density (kg L-1); FO = 
fraction of organic matter [0-1; in mass];  and  = fitted parameters.  

4. Function RK [Ruehlmann & Korschens. Calculating the effect of soil organic matter concentration on soil 
bulk density. Soil Sci. Soc. Am. J. 73, 876–885 (2009)]: BD = soil bulk density (kg L-1); SOC = soil organic 
carbon (mg g-1); , , and  = fitted parameters. 

The validation dataset used to test the reliability of the functions was a compilation of measured values (soil bulk 
density, soil texture, soil organic carbon or soil organic matter, soil depth). This dataset consisted in 208 soils that 
are representative at the global scale of natural ecosystems (source: Augusto et al. Soil parent material - A major 
driver of plant nutrient limitations in terrestrial ecosystems. Global Change Biology 23, 3808–3824 (2017)). 
Estimated values were plotted versus measured values, and a linear regression was fitted (slope values, and 
adjusted r2 values, are presented). Following the recommendation of Pineiro et al., the linear regressions were of 
the form: y = f ( ŷ ), where y and ŷ are the measured value and the estimated value, respectively. 

[Pineiro et al. How to evaluate models: Observed vs. predicted or predicted vs. observed? Ecol. Model. 216, 316–
322 (2008)] 
 

Pedotransfer function Model Reliability 
A BD =  + ( × exp(-×SOC)) slope=0.94, r2=0.66 
D BD = ( + 1×LOI + 2×Sand + 3×Clay + 4×Depth)-1 slope=0.95, r2=0.64 
F BD = (×) / ((FO×) + ((1-FO)×)) slope=1.12, r2=0.57 

RK BD = ( - (×)) × exp(-×SOC) slope=0.90, r2=0.68 
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Supplementary Table S8 | Comparisons between observed values and global values 

describing the site properties. When the descriptors of the sites were not provided in the original values 
(below referred to as measured values), we filled the data gaps with simulated values at the global scale in 
dedicated modelling studies (referred to as estimated values; for more details, see subsection Data collection: 

auxiliary data in Methods). 
To test the reliability of the external datasets containing the estimated values, we compared them to our measured 
values (in the sites where the latter were available) by fitting linear regressions. Following the recommendation of 
Pineiro et al., the linear regressions were of the form: y = f ( ŷ ), where y and ŷ are the measured value and the 
estimated value, respectively. Are presented only the variables for which estimated values were found as reliable 
enough: MAT = mean annual temperature (°C); MAP = mean annual precipitation (mm yr-1); Elevation (m above 
sea level); soil texture (content in clay, content in sand, in mg g-1); base saturation of the cation exchange capacity 
of the soil (%). 

[Pineiro et al. How to evaluate models: Observed vs. predicted or predicted vs. observed? Ecol. Model. 216, 316–
322 (2008)] 

Variable tested Results of the linear regression between measured values and estimated values 

MAT (°C) n = 79 P < 0.001 slope = 1.02 r2 = 0.99 

MAP (mm/yr) n = 110 P < 0.001 slope = 0.98 r2 = 0.90 

Elevation (m asl) n = 91 P < 0.001 slope = 1.03 r2 = 0.95 

Soil clay (mg g-1) n = 96 P < 0.001 slope = 0.98 r2 = 0.71 

Soil sand (mg g-1) n = 91 P < 0.001 slope = 1.12 r2 = 0.86 

Soil pH n = 102 P < 0.001 slope = 0.88 r2 = 0.98 

Soil BS (%) n = 30 P < 0.001 slope = 0.75 r2 = 0.82 
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Supplementary Table S9 | Regressions used for the gap filling procedure of the plant functional traits. Leaf Amax: leaf photosynthetic maximum 
capacity (µmol g-1 s-1); Vcmax: leaf photosynthesis carboxylation capacity (µmol/g/s); Stomatal gs: leaf stomatal conductance (mmol m-2 s-1); C, N, P, and Ca: content in carbon, 
nitrogen, phosphorus, or calcium (mg g-1). The proportion of estimated values presents the number of tree species for which the trait value is estimated. Because the tree species 
were not equally present in the SOC database, and because the tree species that had estimated trait values differed from trait to trait, the percentage value was not proportional 
to the number of tree species involved in the gap filling procedure. Linear regressions were fitted. 
 

 
 
 

 

 

 

 

 

 

Estimated 
trait 

Predictor Linear model Regression performance Proportion of estimated 
values 

Leaf Amax Vcmax y = 0.187x + 0.003 P < 0.001 r2 = 0.49 n = 34 n = 4  1.5% Leaf Amax Stomatal gs y = 0.00032x + 0.034 P < 0.001 r2 = 0.44 n = 43 n = 2 
Leaf C Litterfall C y = 0.978x P < 0.001 r2 = 0.99 n = 43 n = 17  13.4% Leaf C Fine root C y = 1.027x P < 0.001 r2 = 0.99 n = 54 n = 13 
Leaf N Litterfall N y = 1.433x P < 0.001 r2 = 0.86 n = 68 n = 6  2.6% Leaf N Fine root N y = 1.436x P < 0.001 r2 = 0.84 n = 87 n = 4 
Leaf P Litterfall P y = 1.582x P < 0.001 r2 = 0.87 n = 49 n = 7  3.1% Leaf P Fine root P y = 1.412x P < 0.001 r2 = 0.83 n = 47 n = 4 

Leaf Ca Litterfall Ca y = 0.716x P < 0.001 r2 = 0.78 n = 34 n = 25  13.7% Leaf Ca Fine root Ca y = 1.386x P < 0.001 r2 = 0.77 n = 40 n = 6 
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Supplementary Table S10 | Data availability for the main functional traits used in the 

study. Leaf Amax: leaf photosynthetic maximum capacity (µmol g-1 s-1); LDMC: leaf dry matter content (g g-1); 
SLA: specific leaf area (mm2 mg-1); SRL: specific root length (m g-1); Wood density (kg L-1); Leaf C, lignin, N, P, 
and Ca: content in carbon, lignin, nitrogen, phosphorus, or calcium (mg g-1); Seed mass (mg seed-1); Tree max 
height: maximum height observed for the tree species (m). The number of values from TRY, or other sources, 
represents the total data availability before applying the procedures of curation, homogenisation, and averaging 
(see Methods); After having calculating the mean values per each tree species, we calculated the proportion of the 
tree species having a non-missing measured value, and the proportion of tree species having an estimated value.  
 

Studied traits Values 
from TRY 

Values from 
other sources 

Proportion of 
non-missing 

values 

Proportion of 
estimated values 

Range of values 

Leaf Amax 1 000 1 964 50% 1.5% 0.012–0.583 
LDMC 8 734 3 905 36% 0.0% 0.25–0.55 
SLA 2 790 9 925 75% 0.0% 1.2–97.0 
SRL 186 251 37% 0.0% 1.9–142.4 
Wood density 1 149 863 99% 0.0% 0.28–0.91 
Leaf C 2 295 63 100% 13.4% 272–589 
Leaf lignin 72 408 65% 0.0% 38–455 
Leaf N 5 339 1 855 76% 2.6% 6.5–54.4 
Leaf P    1 422 647 64% 3.1% 0.35–3.31 
Leaf Ca    312 91 51% 13.7% 1.4–23.1 
Seed mass 2 524 2 647 92% 0.0% 0.1–17696 
Tree max height   24 919 387 96% 0.0% 2–120 
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Supplementary Table S11 | Fictive example of the values available in supplementary 

information and the values used during data analysis to test a possible relationship 

between two variables. SLA: specific leaf area; RR: relative value (see above); SOC: soil organic carbon; 
SI: supplementary information containing the final dataset (Appendix 1); NA: non-available value. In this 
example, RR.SLA was not presented in the final dataset for the site B because one tree species had a missing-
value, disabling any relevant comparison with the RR.SOC (calculated based on all tree species).  
 

 
For example, in the site B, the absolute SOC values are 4.4, 5.1, 5.3, and 4.1 for the stands Acer, Cupressus, Picea, 
and Pinus, respectively. The “site value” is calculated as the mean values of its stands: 

���. ���� = 	�
�����. 
���, ���. ���������, ���. ����
, ���. ������ = 4.4 + 5.1 + 5.3 + 4.1
4 = 4.925 

Then, the relative values of SOC are calculated as the ratio of the stand value per the site value, with a log function 
to reduce the statistical weight of outliers. For the Acer stand: 

��.
��� = �� !���.
������. ���� " = �� ! 4.4
4.925" = −0.113 

The negative relative ratio value for the Acer stand indicates that the SOC pool was lower than the mean SOC pool 
of the site. 
 
In our study, we sometimes calculated the effect of plant functional types (e.g. angiosperms versus gymnosperms, 
or arbuscular mycorrhizal tree species versus ectomycorrhizal tree species). Still using the B site as an example, 
the effect of the spermatophyte type was calculated as follows: 

�� = �� ! ���. 
� ������	����. %	������	�" = �� & 	�
�'���.
���(
	�
�'���. ���������, ���. ����
, ���. �����() 

which is  

�� = �� ! 4.4
	�
�'5.1, 5.3, 4.9(" = �� !4.45.1" = −0.148 

The negative relative ratio value indicates that the SOC pool under the angiosperm species was on average lower 
than under the gymnosperm species. 
  

Site Species SLA 
(mm2 mg) 

RR.SLA 
(in SI) 

RR.SLA 
(recalculated) 

SOC 
(kg m2) 

RR.SOC 
(in SI) 

RR.SOC 
(recalculated) 

A Abies a. 5.6 -0.62 -0.62 8.5 0.00 0.00 
A Fagus s. 18.2 0.56 0.56 7.9 -0.07 -0.07 
A Picea a. 7.4 -0.34 -0.34 9.1 0.07 0.07 
B Acer p. 20.1 NA 0.57 4.4 -0.11 -0.10 
B Cupressus m. NA NA NA 5.1 0.03 NA 
B Picea a. 7.4 NA -0.43 5.3 0.07 0.09 
B Pinus p. 6.5 NA -0.56 4.9 -0.01 0.01 
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Supplementary References 
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