

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Predictors of mortality in acute ischemic stroke treated with endovascular thrombectomy despite successful reperfusion: subgroup analysis of DIRECT-MT

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-053765
Article Type:	Original research
Date Submitted by the Author:	26-May-2021
Complete List of Authors:	Li, Hao; Maoming People's Hospital, Department of Neurology Huang, Jinbo ; Maoming People's Hospital, Department of Neurology Cao, Jie; Changzhou First People's Hospital, Neurosurgery Ye, Shisheng; Maoming People's Hospital, Department of Neurology Chen, Hai ; Maoming People's Hospital, Department of Neurology Liao, Geng ; Maoming People's Hospital, Department of Neurology Du, Weijie ; Maoming People's Hospital, Department of Neurology Li, Chaomao ; Maoming People's Hospital, Department of Neurology Yuan, Li ; Maoming People's Hospital, Department of Neurology Fang, Ling ; Maoming People's Hospital, Department of Neurology Yang, Pengfei; Naval Medical University Changhai hospital, Department of Neurosurgery Zhang, Yong-wei; Naval Medical University Changhai hospital, Department of Neurology Xing, Pengfei; Naval Medical University Changhai hospital, Department of Neurology Zhang, Xiaoxi ; Naval Medical University Changhai hospital, Department of Neurology Zhang, Xiaoxi ; Naval Medical University Changhai hospital, Department of Neurosurgery Ye, Xiaofei; Naval Medical University Changhai hospital, Department of Neurosurgery Ye, Xiaofei; Naval Medical University Changhai hospital, Department of Neurosurgery Liu, Sheng ; Jiangsu Provincial People's Hospital, Department of Neurosurgery Liu, Sheng ; Liaocheng People's Hospital, Department of Neurosurgery Yang, Liyong; Liaocheng People's Hospital, Department of Neurosurgery Yang, Zhi; Maoming People's Hospital, Department of Neurosurgery Liu, Jianmin ; Naval Medical University Changhai hospital, Department of Neurosurgery
Keywords:	Stroke < NEUROLOGY, Neurology < INTERNAL MEDICINE, NEUROSURGERY

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Title page

Predictors of mortality in acute ischemic stroke treated with endovascular thrombectomy despite successful reperfusion: subgroup analysis of DIRECT-MT

Hao Li1[†], Jinbo Huang1[†], Jie Cao2[†], Shisheng Ye1, Hai Chen1, Geng Liao1, Weijie

Du1, Chaomao Li1, Li Yuan1, Ling Fang1, Pengfei Yang3, Yongwei Zhang4, Pengfei

Xing4, Xiaoxi Zhang3, Xiaofei Ye5, Ya Peng2, Sheng Liu6, Liyong Zhang7*, Zhi

Yang1*, Jianmin Liu3, on behalf of the direct-mt investigators

Corresponding Author:

Liyong Zhang, 13346256936@163.com; Zhi Yang, mmyangz@163.com.

[†]Three authors contributed equally to this editorial.

Number of Tables: 2; Supplemental material:1; Word count: 3669.

Keywords: acute ischemic stroke; reperfusion; mortality; mechanical thrombectomy

Abstract

Objectives: We sought to determine the predictors of 90-day mortality despite successful reperfusion.

Design: Subgroup analysis of a multicenter randomized clinical trial.

Setting: This study used data from the DIRECT-MT (Direct Intra-arterial thrombectomy in order to Revascularize AIS patients with large vessel occlusion Efficiently in Chinese Tertiary hospitals: a Multicenter randomized clinical Trial) trial. **Participants:** 622 patients enrolled in DIRECT-MT.

Results: Overall successful reperfusion rate was 82.0% (510/622), and 18.5% (115/622) of patients died within 90 days. Univariate analysis identified increased risks of mortality for age \geq 70 years, history of diabetes mellitus, National Institutes of Health Stroke Scale (NIHSS) score at baseline \geq 17, Alberta Stroke Program Early Computed Tomography Score (ASPECTS) <9, glucose level at hospital arrival \geq 130 mg/dl, location of internal carotid artery occlusion, embolization into a new territory, symptomatic ICH, and a decreased risk of mortality for smoking. In multivariable analysis, smoking (OR, 0.38; 95% CI, 0.17 to 0.83; P=0.015), NIHSS score \geq 17(OR, 3.14; 95% CI, 1.77 to 5.55; P<0.001), glucose level at hospital arrival \geq 130 mg/dl (OR, 2.54; 95% CI, 1.51 to 4.27; P<0.001), and symptomatic ICH (OR, 11.70; 95% CI, 4.74 to 28.89; P<0.001) were significant independent predictors of 90-day mortality.

Conclusions: Symptomatic ICH is a strong predictor of 90-day mortality in acute ischemic stroke treated with mechanical thrombectomy despite successful reperfusion, as well as, severe neurologic deficits (NIHSS score \geq 17) and high glucose level (glucose level \geq 130mg/dl) at hospital arrival. However, further studies need to be performed to confirm the association between smoking and mortality.

Strengths and limitations of this study

The study used a multicenter randomized clinical trial data from DIRECT-MT.

The large sample size provides robustness and strong statistical power for the reported outcomes.

All patients in the DIRECT-MT trial were Chinese, which may limit the generalizability of the findings to other populations.

Introduction

The overwhelming benefit of endovascular thrombectomy for acute ischemic stroke (AIS) with large-vessel occlusion in the anterior circulation has been demonstrated¹⁻⁵. A large number of studies show that successful reperfusion was a powerful predictor of good outcomes in acute ischemic stroke. However, despite the rates of successful reperfusion (modified Thrombolysis in Cerebral Infarction(mTICI) score 2b or 3) up to 71%, the mortality at 90 days remains high, approximately up to 15%⁶. Thus, it remains important to understand which factors influence mortality despite successful reperfusion. Some studies have identified predictors that influence mortality in patients with acute stroke treated with the thrombectomy, such as age, National Institute of Health Stroke Scale (NIHSS) score, vessel occlusion site, passes with the thrombectomy device and use of rescue therapy^{7, 8}. But the predictors of mortality despite successful reperfusion have been less intensively addressed thus far.

Direct Intra-arterial thrombectomy in order to Revascularize AIS patients with large vessel occlusion Efficiently in Chinese Tertiary hospitals: a Multicenter randomized clinical Trial (DIRECT-MT) is an investigator-initiated, multicenter, prospective, randomized, open-label trial, designed to determine whether endovascular thrombectomy alone would be noninferior to combined treatment with endovascular thrombectomy preceded by intravenous alteplase in patients who had acute ischemic stroke with large-vessel occlusion in the anterior circulation⁹. Thus, in this subgroup analysis, using the data from DIRECT-MT trial, we investigated the predictors of 90-day mortality in acute ischemic stroke treated with endovascular thrombectomy despite successful reperfusion. Approval to conduct this study was obtained from the institutional review board.

Methods

Patients Selection

Study patients were obtained from the DIRECT-MT trial of patients with good quality final angiographic images (performed with digital subtraction angiography) could be assessed for eTICI by the core laboratory. Details of the DIRECT-MT patient selection

can be found in the original report⁹.

Data

In addition to patient demographic and baseline characteristics, data included information on radiological imaging, procedural complications, symptomatic ICH and clinical outcomes. Successful reperfusion was defined as achieving the eTICI score (range, 0 [no reperfusion] to 3 [complete reperfusion]) of 2b, 2c, or 3 on the final angiogram after thrombectomy¹⁰. Symptomatic intracranial hemorrhage (ICH) was defined on the basis of Heidelberg criteria¹¹. Cause of stroke was determined according to the medical history, clinical features, and results on digital subtraction angiography, including cardioembolism, intracranial atherosclerosis, ipsilateral extracranial internal carotid artery (ICA) obstruction and undetermined. All radiological imaging was assessed by an independent imaging core-lab blinded to the trial group assignments. All imaging was read by two independent readers and a consensus reading was performed by a senior reader of each team in case of discrepancies. More details of the design, methods and results of DIRECT-MT trial have been reported previously¹².

Statistical Analysis

Since for age, NIHSS score at baseline, Alberta Stroke Program Early Computed Tomography Score and glucose level at hospital arrival we observed a nonlinear relationship, we determined the optimal cutoff value discriminating between mortality and survival using restricted cubic spline functions. Data are presented as numbers with percentages. Pearson chi-square test or Fisher exact test was used to compared baseline characteristics, angiographic outcomes, procedural complications and symptomatic between the mortality and survival groups in univariate analysis. Variables with P \leq 0.05 in the univariate analysis were included in the multivariable logistic regression modelbuilding process, except symptomatic ICH, to evaluate association with 90-day mortality. Multivariable models were built basing on backwards selection. The retention criterion was set at p \leq 0.05. In the second multivariable model, symptomatic ICH was included as covariate to determine whether symptomatic ICH modifies the estimated effect of the baseline characteristics as predictors of mortality. All data were processed using the SAS software, version 9.2 (SAS Institute).

Patient and Public Involvement

Patients and/or the public were not involved in the design, or conduct, or reporting, or dissemination plans of this research.

Results

The DIRECT-MT enrolled 656 consecutive patients with acute ischemic stroke treated with endovascular thrombectomy with or without intravenous alteplase. A total of 17 patients were primarily excluded, because poor quality angiographic images could not be assessed for eTICI, thus leaving 622 patients to participate in the analysis. Of these, 510 patients (77.7%) achieved successful reperfusion (eTICI \geq 2b). Mortality was lower in patients with successful reperfusion compared with those without successful reperfusion (15.3% [78/510] versus 33.0% [37/112]; P<0.001). In successful reperfusion patients, procedural complications (vessel dissection, contrast extravasation, embolization into a new territory, femoral access complications) occurred in 73 patients (14.3%).

The shape of the relationship with age, NIHSS score at baseline, ASPECTS score and glucose level appeared to be nonlinear (online supplementary Figure I). We identified a value of 70 years for age, 17 for NIHSS score, 9 for ASPECT score and 130 mg/dl for glucose level as optimal cutoff value for discriminating deceased from survived patients. Baseline characteristics, angiographic outcomes, procedural complications and symptomatic ICH for study patients are summarized in table1. The mortality group had a significantly higher prevalence of age \geq 70 years, diabetes mellitus, NIHSS score at baseline ≥ 17 , ASPECTS score < 9, glucose level at hospital arrival ≥ 130 mg/dl, location of internal carotid artery occlusion, embolization into a new territory, symptomatic ICH than the survival group had. Inversely, prevalence of smoking was lower in mortality group. There was no difference was found for sex, hypertension, hypercholesterolemia, previous ischemic stroke, peripheral artery disease, heart disease, atrial fibrillation, chronic heart failure, myocardial infarction, mechanical aorta and/or mitral valve rep, statin, antiplatelet agents, anticoagulant pretreatment, intravenous thrombolysis, cause of stroke, anesthesia, extracranial stent placement, intracranial stent placement, vessel dissection, contrast extravasation, femoral access complications.

BMJ Open

In multivariable analysis (Table2), NIHSS score ≥ 17 (OR, 3.14; 95% CI, 1.77 to 5.55; P<0.001) and glucose level at hospital arrival ≥ 130 mg/dl (OR, 2.54; 95% CI, 1.51 to 4.27; P<0.001) remained independently associated with a higher risk of mortality. The rate of smoking (OR, 0.38; 95% CI, 0.17 to 0.83; P=0.015) remained lower in mortality group. In the second multivariable model, symptomatic ICH was significant (OR, 11.70; 95% CI, 4.74 to 28.89; P<0.001) when added to the model but did not substantively change the estimated effects of smoking, NIHSS score at baseline ≥ 17 , and glucose level at hospital arrival ≥ 130 mg/dl.

Discussion

In the present study, we used data from the DIRECT-MT trial to identify potential clinical, angiographic, procedural complications, and symptomatic ICH factors of 90day mortality in acute ischemic stroke treated with endovascular thrombectomy despite successful reperfusion. We found that NIHSS score at baseline≥17 and glucose level at hospital arrival ≥130 mg/dl were independently associated with higher mortality, whereas smoking was associated with lower risk of mortality. Furthermore, symptomatic ICH significantly increased mortality, whereas procedural complications were not associated with mortality. Similar to the original report of DIRECT-MT, intravenous thrombolysis was not associated with 90-day mortality in successful reperfusion patients. Other factors, such as age, proximal occlusion, diabetes mellitus, although reported in previous studies^{8, 13}, were not related to mortality in our analysis. For anterior circulation stroke, a high NIHSS score on admission has been correlated with 90-day mortality after endovascular thrombectomy despite successful reperfusion⁸, in line with the present study. This indicates that it is difficult to reverse the outcome of stroke with severe neurological deficit (as indicated by a high NIHSS score) despite successful reperfusion. In our analysis of the DIRECT-MT data, we determined a NIHSS score cutoff value of 17, and NIHSS score \geq 17 increased the risk of a mortality approximately threefold, whereas the increase estimated for glucose level was two. In our study, we found that glucose level at hospital arrival ≥130 mg/dL can increase the risk of 90-day mortality. Hyperglycemia (defined as admission serum glucose >140

mg/dL), similarly to present study previously has been correlated with poor outcomes

or mortality in acute ischemic stroke patients with large vessel occlusion after endovascular thrombectomy^{14, 15}. In previous studies and present study, hyperglycemia was defined in accordance with the absolute glucose concentration, failing to distinguish between poor management of diabetes and a physiologic stress response to acute stroke. Recently, a novel index of stress hyperglycemia ratio (SHR, the admission random blood glucose divided by the glycosylated hemoglobin level) was proved to be a better predictor of poor outcome or mortality than absolute hyperglycemia in patients treated with endovascular thrombectomy^{16, 17}. But we did not collect hemoglobin level and could not calculate SHR to assess the association between SHR and mortality after endovascular thrombectomy for acute occlusion in the anterior circulation. However, there is no evidence that the administration of intravenous insulin improves functional outcomes or mortality rates in acute ischemic stroke¹⁸.

Smoking is a well-known independent risk factor for stroke. Interestingly, previous studies have reported that smoking was associated with a lower risk of mortality^{19, 20}, calling smoking paradox in literature. Currently, the mechanism of the smoking paradox has not yet been explained, and its existence is controversial. Some researchers insisted that the smoking paradox was probably caused by unmeasured or residual confounding, younger age and other differences in baseline characteristics, not the biological effects of smoking²¹⁻²³. Statistical methods such as multivariable regression or propensity score analysis may address most, but not all, of the confounding in risk analyses. Furthermore, previous studies and our study did not distinguish current smokers from ex-smokers and had no medical record of the quantity of smoking. Therefore, we could not assess the effects of smoking status and quantity on the outcome.

We further found symptomatic ICH resulted in significantly increased mortality. In our study, 5.3% cases with successful reperfusion developed symptomatic ICH, similarly to what is reported in randomized controlled trials (4.4%)⁶. But there was no difference in the incidence of symptomatic ICH between successful reperfusion with failed reperfusion patients. Interestingly, Möhlenbruch et al. published a report on risk factors of intracranial hemorrhage after endovascular thrombectomy of anterior circulation

ischemic stroke²⁴. In their analysis, they found complete reperfusion (eTICI 3) were attributable to lower ICH rate in comparison to subtotal recanalization (eTICI 2b, eTICI 2c), and had lower quantity of thrombectomy maneuvers, which was a risk factor of hemorrhagic transformation.

Our analysis has several limitations. First, DIRECT-MT trial was designed in accordance with the 2015 American Heart Association/American Stroke Association guidelines²⁵. All stent retriever devices approved by China Food and Drug Administration were allowed in the trial as a first line, and aspiration devices were allowed as a second option. Recently, newer generation devices such as aspiration catheters have been used as first-line devices for large vessel occlusion. In addition, all patients in the DIRECT-MT trial were Chinese, which may limit the generalizability of the findings to other populations. Moreover, DIRECT-MT trial did not distinguish current smokers from ex-smokers and had no medical record of the quantity of smoking, which probably resulted in the smoking paradox. Finally, we could not exclude overfitting in multivariate analyses, as well as, a loss of power to identify independent predictors.

Conclusions

In conclusion, symptomatic ICH is a strong predictor of 90-day mortality in acute ischemic stroke treated with endovascular thrombectomy despite successful reperfusion, as well as, a severe neurological deficit (NIHSS score \geq 17) and high glucose level (glucose level \geq 130mg/dl) at hospital arrival. However, further studies need to be performed to confirm the association between smoking and mortality.

Author affiliations

¹ Department of Neurology, Maoming People's Hospital, Maoming, China

² Department of Neurosurgery, Third Affiliated Hospital of Soochow University, Changzhou, China

³ Department of Neurosurgery, Naval Medical University Changhai hospital, Shanghai, China

⁴ Department of Neurology, Naval Medical University Changhai hospital, Shanghai, China ⁵ Department of Statistics, Naval Medical University Changhai hospital, Shanghai, China

⁶ Department of Radiology, Jiangsu Provincial People's Hospital of Nanjing Medical University, Nanjing, China

⁷ Department of Neurosurgery, Liaocheng People's Hospital of Shandong First Medical University, Liaocheng, China

Acknowledgement: We thank all DIRECT-MT investigators.

Author Contributions

ZY, LYZ and JML contributed to conception and design of the study. HL, JBH, JC and SSY drafted the manuscript or tables or figures. PFY, YWZ, PFX and XXZ contributed to comments on the draft manuscript and revised the report. Site investigators contributed to data acquisition not analysis. HC, GL, WJD, CML, LY, LF, YP and SL coordinated the study. XFY conducted the statistical analysis.

Ethics Approval

This trial was approved by Ethics Committee (EC) of Shanghai Changhai Hospital (ID: CHEC2018-003) on Jan 15,2018.

Conflict of Interest Statement

None declared.

Funding Sources

This study was supported by High-level Hospital Construction Research Project of Maoming People's Hospital (no grant number).

Data sharing statement: The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

- Campbell B, Mitchell P, Kleinig T, et al. Endovascular therapy for ischemic stroke with perfusion-imaging selection. *The New England journal of medicine*. 2015;372:1009-18 doi: 10.1056/NEJMoa1414792
- Saver J, Goyal M, Bonafe A, et al. Stent-retriever thrombectomy after intravenous t-pa vs. T-pa alone in stroke. *The New England journal of medicine*. 2015;372:2285-95 doi: 10.1056/NEJMoa1415061
- Goyal M, Demchuk A, Menon B, et al. Randomized assessment of rapid endovascular treatment of ischemic stroke. *The New England journal of medicine*. 2015;372:1019-30 doi: 10.1056/NEJMoa1414905
- Berkhemer O, Fransen P, Beumer D, et al. A randomized trial of intraarterial treatment for acute ischemic stroke. *The New England journal of medicine*. 2015;372:11-20 doi: 10.1056/NEJMoa1411587
- Jovin T, Chamorro A, Cobo E, et al. Thrombectomy within 8 hours after symptom onset in ischemic stroke. *The New England journal of medicine*. 2015;372:2296-306 doi: 10.1056/NEJMoa1503780
- Goyal M, Menon B, van Zwam W, et al. Endovascular thrombectomy after large-vessel ischaemic stroke: A meta-analysis of individual patient data from five randomised trials. *Lancet (London, England)*. 2016;387:1723-31 doi: 10.1016/s0140-6736(16)00163-x
- Shi Z, Loh Y, Walker G, et al. Clinical outcomes in middle cerebral artery trunk occlusions versus secondary division occlusions after mechanical thrombectomy: Pooled analysis of the mechanical embolus removal in cerebral ischemia (merci) and multi merci trials. *Stroke*. 2010;41:953-60 doi: 10.1161/strokeaha.109.571943
- Linfante I, Walker G, Castonguay A, et al. Predictors of mortality in acute ischemic stroke intervention: Analysis of the north american solitaire acute stroke registry. *Stroke*. 2015;46:2305-8 doi: 10.1161/strokeaha.115.009530

- Yang P, Zhang Y, Zhang L, et al. Endovascular thrombectomy with or without intravenous alteplase in acute stroke. *N Engl J Med.* 2020;382:1981-93 doi: 10.1056/NEJMoa2001123
- Goyal M, Fargen K, Turk A, et al. 2c or not 2c: Defining an improved revascularization grading scale and the need for standardization of angiography outcomes in stroke trials. *Journal of neurointerventional surgery*. 2014;6:83-6 doi: 10.1136/neurintsurg-2013-010665
- von Kummer R, Broderick J, Campbell B, et al. The heidelberg bleeding classification: Classification of bleeding events after ischemic stroke and reperfusion therapy. *Stroke*. 2015;46:2981-6 doi: 10.1161/strokeaha.115.010049
- Yang P, Treurniet K, Zhang L, et al. Direct intra-arterial thrombectomy in order to revascularize ais patients with large vessel occlusion efficiently in chinese tertiary hospitals: A multicenter randomized clinical trial (direct-mt)-protocol. *International journal of stroke : official journal of the International Stroke Society*. 2020;15:689-98 doi: 10.1177/1747493019882837
- Panni P, Gory B, Xie Y, et al. Acute stroke with large ischemic core treated by thrombectomy. *Stroke*. 2019;50:1164-71 doi: 10.1161/strokeaha.118.024295
- 14. Kim J, Jahan R, Saver J. Impact of glucose on outcomes in patients treated with mechanical thrombectomy: A post hoc analysis of the solitaire flow restoration with the intention for thrombectomy study. *Stroke*. 2016;47:120-7 doi: 10.1161/strokeaha.115.010753
- Goyal N, Tsivgoulis G, Pandhi A, et al. Admission hyperglycemia and outcomes in large vessel occlusion strokes treated with mechanical thrombectomy. *Journal of NeuroInterventional Surgery*. 2018;10:112 doi: 10.1136/neurintsurg-2017-012993
- Wang L, Zhou Z, Tian X, et al. Impact of relative blood glucose changes on mortality risk of patient with acute ischemic stroke and treated with mechanical thrombectomy. *Journal of Stroke and Cerebrovascular Diseases*. 2019;28:213-19 doi: 10.1016/j.jstrokecerebrovasdis.2018.09.036

1 2	
3 4 17	. Chen X, Liu Z, Miao J, et al. High stress hyperglycemia ratio predicts poor
5	outcome after mechanical thrombectomy for ischemic stroke. Journal of stroke
7	
8 9	and cerebrovascular diseases : the official journal of National Stroke
10	Association. 2019;28:1668-73 doi: 10.1016/j.jstrokecerebrovasdis.2019.02.022
11 12 18	. Bellolio MF, Gilmore RM, Stead LG. Insulin for glycaemic control in acute
13	ischaemic stroke. The Cochrane database of systematic reviews.
14 15	2011:Cd005346 doi: 10.1002/14651858.CD005346.pub3
16 17 10	
18	. Tong X, Wang C, Liao X, et al. Smoking-thrombolysis relationship depends on
19 20	ischemic stroke subtype. Stroke. 2016;47:1811-6 doi:
21	10.1161/strokeaha.116.013124
22 23 20	. Ali S, Smith E, Bhatt D, et al. Paradoxical association of smoking with in-
24 25	
26	hospital mortality among patients admitted with acute ischemic stroke. Journal
27 28	of the American Heart Association. 2013;2:e000171 doi:
29	10.1161/jaha.113.000171
30 31 21	. Zhang P, Guo Z, Sun X, et al. Meta-analysis of the smoker's paradox in acute
32	
33 34	ischemic stroke patients receiving intravenous thrombolysis or endovascular
35 36	treatment. Nicotine & tobacco research : official journal of the Society for
37	Research on Nicotine and Tobacco. 2019;21:1181-88 doi: 10.1093/ntr/ntz094
38 39 22	. Kurmann R, Engelter S, Michel P, et al. Impact of smoking on clinical outcome
40	and recanalization after intravenous thrombolysis for stroke: Multicenter cohort
41 42	
43 44	study. Stroke. 2018;49:1170-75 doi: 10.1161/strokeaha.117.017976
45 23	. Wang H, Huang C, Sun Y, et al. Smoking paradox in stroke survivors?:
46 47	Uncovering the truth by interpreting 2 sets of data. <i>Stroke</i> . 2020;51:1248-56 doi:
48 49	10.1161/strokeaha.119.027012
50 24	. Neuberger U, Kickingereder P, Schönenberger S, et al. Risk factors of
51 ² 7 52	intracranial hemorrhage after mechanical thrombectomy of anterior circulation
53 54	
55	ischemic stroke. Neuroradiology. 2019;61:461-69 doi: 10.1007/s00234-019-
56 57	02180-6
58 25 59	. Powers W, Derdeyn C, Biller J, et al. 2015 american heart association/american
60	stroke association focused update of the 2013 guidelines for the early
	12
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

management of patients with acute ischemic stroke regarding endovascular treatment: A guideline for healthcare professionals from the american heart association/american stroke association. *Stroke*. 2015;46:3020-35 doi: 10.1161/str.000000000000074

Table1 Baseline characteristics, angiographic outcomes, procedural details and complications in mortality and survival at 90 days.

r m y m			
	Mortality	Survival	
项目	n=78	n=432	P value
age≥70	49(62.82)	198(45.83)	0.0057
sex (male)	44(56.41)	250(57.87)	0.8102
Diabetes Mellitus	23(29.49)	72(16.67)	0.0074
Hypertension	51(65.38)	259(59.95)	0.3659
Hypercholesterolemia	1(1.28)	18(4.17)	0.3611
Previous ischemic stroke	11(14.10)	59(13.66)	0.9163
Peripheral artery disease	0(0.00)	3(0.69)	1.0000
Heart disease	44(56.41)	221(51.16)	0.3928
Atrial fibrillation	43(55.13)	192(44.44)	0.0815
Chronic heart failure	4(5.13)	26(6.02)	0.9632
Myocardial infarction	6(7.69)	23(5.32)	0.5717
Mechanical aorta and/or miti	ral 1(1.28)	10(2.31)	0.8773
valve rep			
Smoking	8(10.26)	112(25.93)	0.0027
Statin	4(5.13)	37(8.56)	0.3042
Antiplatelet agents	13(16.67)	72(16.67)	1.0000
Anticoagulant pretreatment	6(7.69)	34(7.87)	0.9571
NIHSS score at baseline≥17	60(76.92)	214(49.54)	< 0.0001
ASPECT score < 9	47(61.04)	201(46.74)	0.0208

Page 15 of 19

 BMJ Open

Intravenous thrombolysis	40(51.28)	227(52.55)	0.8370
Glucose level ≥130 mg/dl	50	171	< 0.0001
Location of intracranial arter	у		
occlusion			
ICA	40(51.28)	142(32.87)	0.0075
M1 middle cerebral arter	y 32(41.03)	248(57.41)	
segment			
M2middle cerebral arter	y 6(7.69)	42(9.72)	
segment			
Cause of stroke			
Cardioembolic	39(50.00)	189(43.75)	0.1399
Intracranial atherosclerosis	10(12.82)	32(7.41)	
Ipsilateral extracranial	4(5.13)	44(10.19)	
Undetermined	25(32.05)	167(38.66)	
Anesthesia			
Local anesthesia	27(35.06)	158(37.26)	0.2423
Sedation	18(23.38)	129(30.42)	
General anesthesia	32(41.56)	137(32.31)	
Extracranial stent placement	2(2.56)	37(8.56)	0.0664
Intracranial stent placement	11(14.10)	37(8.56)	0.1232
Procedural complications			
Vessel dissection	2(2.56)	6(1.39)	0.7843
Contrast extravasation	3(3.85)	7(1.62)	0.3891
Embolization into a new	w 14(17.95)	40(9.26)	0.0217
territory			
Femoral access complications	0(0.00)	1(0.23)	1.0000
	16(20.51)	11(2.55)	< 0.0001

1	
2	
3	
4	
5	
6	
7	
, 8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19 20	
20	
21	
22	
23	
24	
25	
26	
27	
28	
20	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39 40	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
49 50	
51	
52	
53	
54	
55	
56	
57	
58	
20	

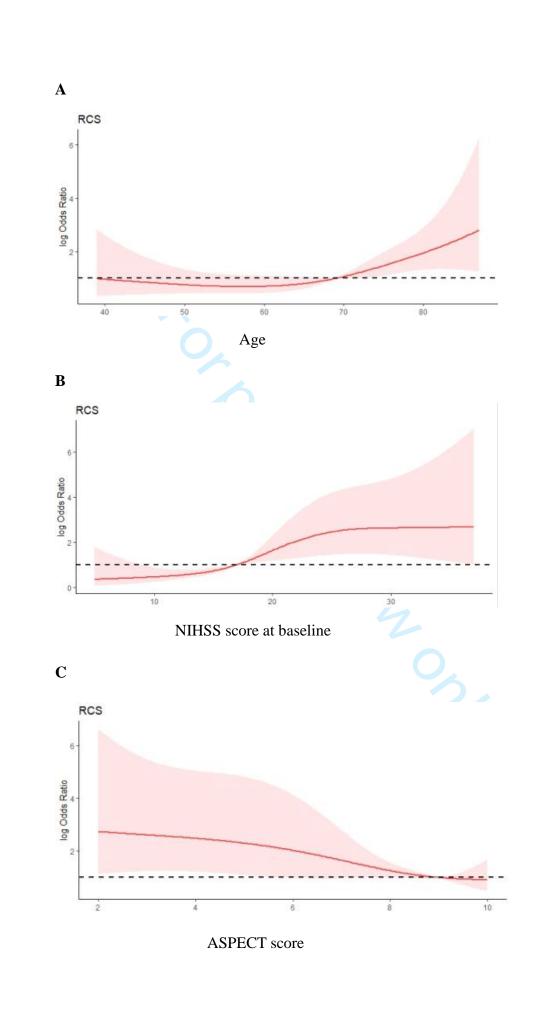

1

Table 2. Independent predictors of 90-day mortality.

Model 1		Model 2		
	OR (95% CI)	P value	OR (95% CI)	P value
Smoking	0.38(0.17-0.83)	0.015	0.30(0.13-0.70)	0.005
NIHSS score	3.14(1.77-5.55)	< 0.001	3.08 (1.70-5.60)	< 0.001
Glucose level	2.54(1.51-4.27)	< 0.001	2.62(1.52-4.52)	< 0.001
Symptomatic	Not include	-	11.70(4.74-	< 0.001
ICH			28.89)	

NIHSS, National Institutes of Health Stroke Scale; ICH, intracranial hemorrhage.

.s of Health St

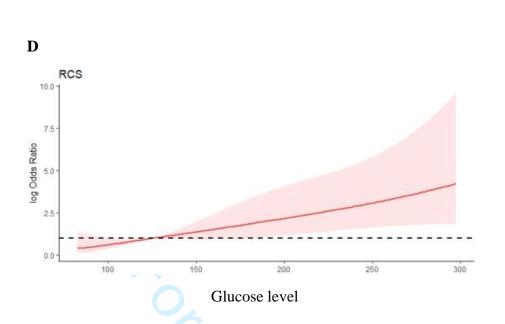


Figure I. Shape of association of 90-day mortality with age (A), National Institutes of Health Stroke Scale (NIHSS) score at baseline (B), Alberta Stroke Program Early Computed Tomography Score (ASPECTS) (C) and glucose level (D). The optimal cutoff value for discriminating deceased from survivor patients was 70 years for age, 17 for NIHSS score, 9 for ASPECT score and 130 mg/dl for glucose level.

CONSORT 2010 checklist of information to include when reporting a randomised trial*

Section/Topic	ltem No	Checklist item	Reported on page No
Title and abstract			
	1a	Identification as a randomised trial in the title	1-2
	1b	Structured summary of trial design, methods, results, and conclusions (for specific guidance see CONSORT for abstracts)	1-2
Introduction			
Background and	2a	Scientific background and explanation of rationale	3
objectives	2b	Specific objectives or hypotheses	3
Methods			
Trial design	3a	Description of trial design (such as parallel, factorial) including allocation ratio	3-4
indi debigir	3b	Important changes to methods after trial commencement (such as eligibility criteria), with reasons	NA
Participants	4a	Eligibility criteria for participants	3-4
	4b	Settings and locations where the data were collected	3-4
Interventions	5	The interventions for each group with sufficient details to allow replication, including how and when they were actually administered	3-4
Outcomes	6a	Completely defined pre-specified primary and secondary outcome measures, including how and when they were assessed	3-4
	6b	Any changes to trial outcomes after the trial commenced, with reasons	3-4
Sample size	7a	How sample size was determined	3-4
•	7b	When applicable, explanation of any interim analyses and stopping guidelines	3-4
Randomisation:			
Sequence	8a	Method used to generate the random allocation sequence	3-4
generation	8b	Type of randomisation; details of any restriction (such as blocking and block size)	3-4
Allocation concealment mechanism	9	Mechanism used to implement the random allocation sequence (such as sequentially numbered containers), describing any steps taken to conceal the sequence until interventions were assigned	3-4
Implementation	10	Who generated the random allocation sequence, who enrolled participants, and who assigned participants to interventions	3-4
Blinding	11a	If done, who was blinded after assignment to interventions (for example, participants, care providers, those	3-4
CONSORT 2010 checklist		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	Pag

		assessing outcomes) and how	
	11b	If relevant, description of the similarity of interventions	3-4
Statistical methods	12a	Statistical methods used to compare groups for primary and secondary outcomes	3-4
	12b	Methods for additional analyses, such as subgroup analyses and adjusted analyses	3-4
Results			
Participant flow (a	13a	For each group, the numbers of participants who were randomly assigned, received intended treatment, and	NA
diagram is strongly		were analysed for the primary outcome	
recommended)	13b	For each group, losses and exclusions after randomisation, together with reasons	5-6
Recruitment	14a	Dates defining the periods of recruitment and follow-up	5-6
	14b	Why the trial ended or was stopped	NA
Baseline data	15	A table showing baseline demographic and clinical characteristics for each group	5-6
Numbers analysed	16	For each group, number of participants (denominator) included in each analysis and whether the analysis was	5-6
		by original assigned groups	
Outcomes and	17a	For each primary and secondary outcome, results for each group, and the estimated effect size and its	5-6
estimation		precision (such as 95% confidence interval)	
	17b	For binary outcomes, presentation of both absolute and relative effect sizes is recommended	NA
Ancillary analyses	18	Results of any other analyses performed, including subgroup analyses and adjusted analyses, distinguishing	NA
		pre-specified from exploratory	
Harms	19	All important harms or unintended effects in each group (for specific guidance see CONSORT for harms)	NA
Discussion			
Limitations	20	Trial limitations, addressing sources of potential bias, imprecision, and, if relevant, multiplicity of analyses	10
Generalisability	21	Generalisability (external validity, applicability) of the trial findings	8-10
Interpretation	22	Interpretation consistent with results, balancing benefits and harms, and considering other relevant evidence	NA
Other information			
Registration	23	Registration number and name of trial registry	2
Protocol	24	Where the full trial protocol can be accessed, if available	3
Funding	25	Sources of funding and other support (such as supply of drugs), role of funders	

*We strongly recommend reading this statement in conjunction with the CONSORT 2010 Explanation and Elaboration for important clarifications on all the items. If relevant, we also recommend reading CONSORT extensions for cluster randomised trials, non-inferiority and equivalence trials, non-pharmacological treatments, herbal interventions, and pragmatic trials. Additional extensions are forthcoming: for those and for up to date references relevant to this checklist, see <u>www.consort-statement.org</u>.

CONSORT 2010 checklist

BMJ Open

Predictors of mortality in acute ischemic stroke treated with endovascular thrombectomy despite successful reperfusion: subgroup analysis of a multicenter randomized clinical Trial

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-053765.R1
Article Type:	Original research
Date Submitted by the Author:	20-Jan-2022
Complete List of Authors:	Li, Hao; Maoming People's Hospital, Department of Neurology Huang, Jinbo ; Maoming People's Hospital, Department of Neurology Cao, Jie; Changzhou First People's Hospital, Neurosurgery Ye, Shisheng; Maoming People's Hospital, Department of Neurology Chen, Hai ; Maoming People's Hospital, Department of Neurology Liao, Geng ; Maoming People's Hospital, Department of Neurology Du, Weijie ; Maoming People's Hospital, Department of Neurology Li, Chaomao ; Maoming People's Hospital, Department of Neurology Yuan, Li ; Maoming People's Hospital, Department of Neurology Fang, Ling ; Maoming People's Hospital, Department of Neurology Yang, Pengfei; Naval Medical University Changhai hospital, Department of Neurosurgery Zhang, Yongwei; Naval Medical University Changhai hospital, Department of Neurology Xing, Pengfei; Naval Medical University Changhai hospital, Department of Neurology Zhang, Xiaoxi ; Naval Medical University Changhai hospital, Department of Neurosurgery Ye, Xiaofei; Naval Medical University Changhai hospital, Department of Neurosurgery Ye, Xiaofei; Naval Medical University Changhai hospital, Department of Neurosurgery Ye, Xiaofei; Naval Medical University, Department of Statistics Peng, Ya; Changzhou No. 1 People's Hospital, Department of Neurosurgery Liu, Sheng ; Jiangsu Provincial People's Hospital of Nanjing Medical University, Department of Radiology Zhang, Liyong; Liaocheng People's Hospital, Department of Neurosurgery Yang, Zhi; Maoming People's Hospital, Department of Neurosurgery Liu, Jianmin ; Naval Medical University Changhai hospital, Department of Neurosurgery
Primary Subject Heading :	Neurology
Secondary Subject Heading:	Surgery
Keywords:	Stroke < NEUROLOGY, Neurology < INTERNAL MEDICINE, NEUROSURGERY

1	
2	
3	
4	SCHOLAR ONE [™]
5	Manuscripts
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
60	i or peer review only intep.//onljopen.onlj.com/site/about/guidelines.kittili

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

2		
3 4	1	Title page
5		
6 7	2	Predictors of mortality in acute ischemic stroke treated with endovascular
7 8 9	3	thrombectomy despite successful reperfusion: subgroup analysis of a multicenter
10	4	randomized clinical Trial
11 12 12	5	
13 14 15	6	Hao Li1 [†] , Jinbo Huang1 [†] , Jie Cao2 [†] , Shisheng Ye1, Hai Chen1, Geng Liao1, Weijie
16 17 18	7	Du1, Chaomao Li1, Li Yuan1, Ling Fang1, Pengfei Yang3, Yongwei Zhang4, Pengfei
19 20	8	Xing4, Xiaoxi Zhang3, Xiaofei Ye5, Ya Peng2, Sheng Liu6, Liyong Zhang7*, Zhi
21 22 23	9	Yang1*, Jianmin Liu3, on behalf of the direct-mt investigators
24 25 26	10	Corresponding Author:
27 28	11	Liyong Zhang, <u>13346256936@163.com</u> ; Zhi Yang, <u>mmyangz@163.com</u> .
29 30 31	12	[†] Three authors contributed equally to this editorial.
32 33	13	
34	14	Number of Tables: 2; Supplemental material:1; Word count: 3616.
35 36 37	15	Keywords: acute ischemic stroke; reperfusion; mortality; mechanical thrombectomy
38 39	16	
40 41	17	
42	18	
43 44	19	
45 46	20	
47 48	21	
49 50	22	
51 52	23	
53 54	24	
55 56	25	
57 58	26	
59 60	27	

1	
2	Abstract
3	Objectives: We sought to determine the predictors of 90-day mortality despite
4	successful reperfusion.
5	Design: Subgroup analysis of a multicenter randomized clinical trial.
6	Setting: This study used data from the DIRECT-MT (Direct Intra-arterial
7	thrombectomy in order to Revascularize AIS patients with large vessel occlusion
8	Efficiently in Chinese Tertiary hospitals: a Multicenter randomized clinical Trial) trial.
9	Participants: 622 patients enrolled in DIRECT-MT.
10	Results: Overall successful reperfusion rate was 82.0% (510/622), and 18.5% (115/622)
11	of patients died within 90 days. Univariate analysis identified increased risks of
12	mortality for age \geq 70 years, history of diabetes mellitus, National Institutes of Health
13	Stroke Scale (NIHSS) score on admission \geq 17, NIHSS score after thrombectomy (24 \pm
14	6h) ≥ 11 , Alberta Stroke Program Early Computed Tomography Score (ASPECTS)
15	<9, glucose level at hospital arrival≥130 mg/dl, location of internal carotid artery
16	occlusion, embolization into a new territory, symptomatic ICH, and a decreased risk of
17	mortality for smoking. In multivariable analysis, smoking (OR, 0.38; 95% CI, 0.17 to
18	0.83; P=0.015), NIHSS score on admission≥17(OR, 3.14; 95% CI, 1.77 to 5.55;
19	P<0.001), glucose level at hospital arrival \geq 130 mg/dl (OR, 2.54; 95% CI, 1.51 to 4.27;
20	P<0.001), symptomatic ICH (OR, 11.70; 95% CI, 4.74 to 28.89; P<0.001) and NIHSS
21	score after thrombectomy $(24 \pm 6h) \ge 11(OR, 12.04; 95\% \text{ CI}, 5.09 \text{ to } 28.46; P<0.001)$
22	were significant independent predictors of 90-day mortality.
23	Conclusions: Symptomatic ICH and high post-thrombectomy NIHSS score are strong
24	predictor of 90-day mortality in acute ischemic stroke treated with mechanical
25	thrombectomy despite successful reperfusion, as well as, high NIHSS score and high
26	glucose level at hospital arrival. However, further studies need to be performed to
27	confirm the association between smoking and mortality.
28	Strengths and limitations of this study

- 29 The study used a multicenter randomized clinical trial data from DIRECT-MT.
- 30 The large sample size provides robustness and strong statistical power for the reported

1 outcomes.

All patients in the DIRECT-MT trial were Chinese, which may limit the generalizability
of the findings to other populations.

4 Introduction

The overwhelming benefit of endovascular thrombectomy for acute ischemic stroke (AIS) with large-vessel occlusion in the anterior circulation has been demonstrated¹⁻⁵. A large number of studies show that successful reperfusion was a powerful predictor of good outcomes in acute ischemic stroke. However, despite the rates of successful reperfusion (modified Thrombolysis in Cerebral Infarction(mTICI) score 2b or 3) up to 71%, the mortality at 90 days remains high, approximately up to 15%⁶. Thus, it remains important to understand which factors influence mortality despite successful reperfusion. Some studies have identified predictors that influence mortality in patients with acute stroke treated with the thrombectomy, such as age, National Institute of Health Stroke Scale (NIHSS) score, vessel occlusion site, passes with the thrombectomy device and use of rescue therapy^{7, 8}. But the predictors of mortality despite successful reperfusion have been less intensively addressed thus far.

Direct Intra-arterial thrombectomy in order to Revascularize AIS patients with large vessel occlusion Efficiently in Chinese Tertiary hospitals: a Multicenter randomized clinical Trial (DIRECT-MT) is an investigator-initiated, multicenter, prospective, randomized, open-label trial, designed to determine whether endovascular thrombectomy alone would be noninferior to combined treatment with endovascular thrombectomy preceded by intravenous alteplase in patients who had acute ischemic stroke with large-vessel occlusion in the anterior circulation⁹. Thus, in this subgroup analysis, using the data from DIRECT-MT trial, we investigated the predictors of 90-day mortality in acute ischemic stroke treated with endovascular thrombectomy despite successful reperfusion. Approval to conduct this study was obtained from the institutional review board.

29 Methods

Patients Selection

Study patients were obtained from the DIRECT-MT trial of patients with good quality
 final angiographic images (performed with digital subtraction angiography) could be
 assessed for eTICI by the core laboratory. Details of the DIRECT-MT patient selection
 can be found in the original report⁹.

5 Data

In addition to patient demographic and baseline characteristics, data included information on radiological imaging, procedural complications, symptomatic ICH, NIHSS score after thrombectomy $(24 \pm 6h)$ and clinical outcomes. Successful reperfusion was defined as achieving the eTICI score (range, 0 [no reperfusion] to 3 [complete reperfusion]) of 2b, 2c, or 3 on the final angiogram after thrombectomy¹⁰. Symptomatic intracranial hemorrhage (ICH) was defined on the basis of Heidelberg criteria¹¹. Cause of stroke was determined according to the medical history, clinical features, and results on digital subtraction angiography, including cardioembolism, large-artery occlusion and undetermined. All radiological imaging was assessed by an independent imaging core-lab blinded to the trial group assignments. All imaging was read by two independent readers and a consensus reading was performed by a senior reader of each team in case of discrepancies. More details of the design, methods and results of DIRECT-MT trial have been reported previously¹².

Statistical Analysis

Since for age, NIHSS score at baseline, NIHSS score after thrombectomy $(24 \pm 6h)$, Alberta Stroke Program Early Computed Tomography Score and glucose level at hospital arrival we observed a nonlinear relationship, we determined the optimal cutoff value discriminating between mortality and survival using restricted cubic spline functions. Data are presented as numbers with percentages. Pearson chi-square test or Fisher exact test was used to compared baseline characteristics, angiographic outcomes, procedural complications and symptomatic ICH between the mortality and survival groups in univariate analysis. In the first multivariable model, variables with $P \le 0.05$ in the univariate analysis were included in the multivariable logistic regression model-building process, except symptomatic ICH and NIHSS score after thrombectomy (24

Page 7 of 20

BMJ Open

 \pm 6h), to evaluate association with 90-day mortality. In the second multivariable model, symptomatic ICH was included as covariate to determine whether symptomatic ICH modifies the estimated effect of the baseline characteristics as predictors of mortality. In the third multivariable model, NIHSS score after thrombectomy $(24 \pm 6h)$ was included, except NIHSS score at baseline and symptomatic ICH, to evaluate association with 90-day mortality. Multivariable models were built basing on backwards selection. The retention criterion was set at $p \le 0.05$. All data were processed using the SAS software, version 9.2 (SAS Institute).

9 Patient and Public Involvement

Patients and/or the public were not involved in the design, or conduct, or reporting, ordissemination plans of this research.

Results

The DIRECT-MT enrolled 656 consecutive patients with acute ischemic stroke treated with endovascular thrombectomy with or without intravenous alteplase. A total of 17 patients were primarily excluded, because poor quality angiographic images could not be assessed for eTICI, thus leaving 622 patients to participate in the analysis. Of these, 510 patients (77.7%) achieved successful reperfusion (eTICI \geq 2b). Mortality was lower in patients with successful reperfusion compared with those without successful reperfusion (15.3% [78/510] versus 33.0% [37/112]; P<0.001). In successful reperfusion patients, procedural complications (vessel dissection, contrast extravasation, embolization into a new territory, femoral access complications) occurred in 73 patients (14.3%).

The shape of the relationship with age, NIHSS score on admission, NIHSS score after thrombectomy $(24 \pm 6h)$, ASPECTS score and glucose level appeared to be nonlinear (online supplementary Figure I). We identified a value of 70 years for age, 17 for NIHSS score on admission, 11 for NIHSS score after thrombectomy $(24 \pm 6h)$, 9 for ASPECT score and 130 mg/dl for glucose level as optimal cutoff value for discriminating deceased from survived patients. Baseline characteristics, angiographic outcomes, procedural complications, NIHSS score after thrombectomy $(24 \pm 6h)$ and symptomatic ICH for study patients are summarized in table1. The mortality group had

a significantly higher prevalence of age \geq 70 years, diabetes mellitus, NIHSS score on admission ≥ 17 , NIHSS score after thrombectomy $(24 \pm 6h) \geq 11$, ASPECTS score < 9, glucose level at hospital arrival ≥130 mg/dl, location of internal carotid artery occlusion, embolization into a new territory, symptomatic ICH than the survival group had. Inversely, prevalence of smoking was lower in mortality group. There was no difference was found for sex, hypertension, hypercholesterolemia, previous ischemic stroke, peripheral artery disease, heart disease, atrial fibrillation, chronic heart failure, myocardial infarction, mechanical aorta and/or mitral valve rep, statin, antiplatelet agents, anticoagulant pretreatment, intravenous thrombolysis, cause of stroke, anesthesia, extracranial stent placement, intracranial stent placement, vessel dissection, contrast extravasation, femoral access complications.

In the first multivariable analysis model (Table2), NIHSS score on admission ≥ 17 (OR, 3.14; 95% CI, 1.77 to 5.55; P<0.001) and glucose level at hospital arrival \geq 130 mg/dl (OR, 2.54; 95% CI, 1.51 to 4.27; P<0.001) remained independently associated with a higher risk of mortality. The rate of smoking (OR, 0.38; 95% CI, 0.17 to 0.83; P=0.015) remained lower in mortality group. In the second multivariable model, symptomatic ICH was significant (OR, 11.70; 95% CI, 4.74 to 28.89; P<0.001) when added to the model but did not substantively change the estimated effects of smoking, NIHSS score on admission≥17, and glucose level at hospital arrival≥130 mg/dl. In the third multivariable model, NIHSS score after thrombectomy≥11 (OR, 12.04; 95% CI, 5.09 to 28.46; P<0.001) was also a significant independent predictors of 90-day mortality.

22 Discussion

In the present study, we used data from the DIRECT-MT trial to identify potential clinical, angiographic, procedural complications, and symptomatic ICH factors of 90-day mortality in acute ischemic stroke treated with endovascular thrombectomy despite successful reperfusion. We found that NIHSS score at baseline≥17 and glucose level at hospital arrival≥130 mg/dl were independently associated with higher mortality, whereas smoking was associated with lower risk of mortality. Furthermore, symptomatic ICH significantly increased mortality, whereas procedural complications were not associated with mortality. Similar to the original report of DIRECT-MT,

Page 9 of 20

BMJ Open

intravenous thrombolysis was not associated with 90-day mortality in successful reperfusion patients. Other factors, such as age, proximal occlusion, diabetes mellitus, although reported in previous studies^{8, 13}, were not related to mortality in our analysis. For anterior circulation stroke, a high NIHSS score on admission has been correlated with 90-day mortality after endovascular thrombectomy despite successful reperfusion⁸, in line with the present study. This suggests that it is difficult to reverse the outcome of stroke with severe neurological deficit (as indicated by a high NIHSS score) despite successful reperfusion. Because a substantial volume of brain tissue is already irreversibly injured in acute ischemic stroke patients by the time reperfusion occurs. In DIRECT-MT, 36.6% of the patients had a good functional recovery at 90 days despite more than 80% of the patients achieved successful reperfusion, which also can be explained by the above reasons. We determined a NIHSS score cutoff value of 17 on admission and 11 at 24±6 hours after thrombectomy respectively, and NIHSS score higher than cutoff value increased the risk of a mortality approximately threefold and twelve times respectively. It indicates that post-thrombectomy (24±6 hours)NIHSS score was a stronger predictor than NIHSS score on admission.

In our study, we found that glucose level at hospital arrival≥130 mg/dL can increase the risk of 90-day mortality. Hyperglycemia (defined as admission serum glucose >140 mg/dL), similarly to present study previously has been correlated with poor outcomes or mortality in acute ischemic stroke patients with large vessel occlusion after endovascular thrombectomy^{14, 15}. In previous studies and present study, hyperglycemia was defined in accordance with the absolute glucose concentration, failing to distinguish between poor management of diabetes and a physiologic stress response to acute stroke. Recently, a novel index of stress hyperglycemia ratio (SHR, the admission random blood glucose divided by the glycosylated hemoglobin level) was proved to be a better predictor of poor outcome or mortality than absolute hyperglycemia in patients treated with endovascular thrombectomy^{16, 17}. But we did not collect hemoglobin level and could not calculate SHR to assess the association between SHR and mortality after endovascular thrombectomy for acute occlusion in the anterior circulation. However, there is no evidence that the administration of intravenous insulin improves functional

 outcomes or mortality rates in acute ischemic stroke¹⁸. Moreover, hyperglycemia may
also occur after mechanical thrombectomy, both in diabetic and non-diabetic patients.
And recent study demonstrated that glucose levels within 24 hours after mechanical
thrombectomy is able to predict adverse outcomes in acute ischemic stroke¹⁹. But
DIRECT-MT trial only collected the admission glucose level. Therefore,we could not
evaluate the impact of the glucose levels within 24 hours after mechanical
thrombectomy on stroke mortality.

Smoking is a well-known independent risk factor for stroke. Interestingly, previous studies have reported that smoking was associated with a lower risk of mortality^{20, 21}, calling smoking paradox in literature. Currently, the mechanism of the smoking paradox has not yet been explained, and its existence is controversial. Some researchers insisted that the smoking paradox was probably caused by unmeasured or residual confounding, younger age and other differences in baseline characteristics, not the biological effects of smoking²²⁻²⁴. Statistical methods such as multivariable regression or propensity score analysis may address most, but not all, of the confounding in risk analyses. Furthermore, previous studies and our study did not distinguish current smokers from ex-smokers and had no medical record of the quantity of smoking. Therefore, we could not assess the effects of smoking status and quantity on the outcome.

We further found symptomatic ICH resulted in significantly increased mortality. In our study, 5.3% cases with successful reperfusion developed symptomatic ICH, similarly to what is reported in randomized controlled trials $(4.4\%)^6$. But there was no difference in the incidence of symptomatic ICH between successful reperfusion with failed reperfusion patients. Interestingly, Möhlenbruch et al. published a report on risk factors of intracranial hemorrhage after endovascular thrombectomy of anterior circulation ischemic stroke²⁵. In their analysis, they found complete reperfusion (eTICI 3) were attributable to lower ICH rate in comparison to subtotal recanalization (eTICI 2b, eTICI 2c), and had lower quantity of thrombectomy maneuvers, which was a risk factor of hemorrhagic transformation.

30 Our analysis has several limitations. Firstly, DIRECT-MT trial was designed in

accordance with the 2015 American Heart Association/American Stroke Association guidelines²⁶. All stent retriever devices approved by China Food and Drug Administration were allowed in the trial as a first line, and aspiration devices were allowed as a second option. Recently, newer generation devices such as aspiration catheters have been used as first-line devices for large vessel occlusion. Secondly, all patients in the DIRECT-MT trial were Chinese, which may limit the generalizability of the findings to other populations. In a pooled analysis of five thrombectomy trials, redominantly enrolled white patients, functional recovery was higher (46% VS 36.6%) despite a lower percentage of patients (71% VS more than 80%) with reperfusion⁶. It is possible that Chinese patients have more intracranial atherosclerotic lesions than white patients do²⁷. Thirdly, DIRECT-MT trial did not distinguish current smokers from ex-smokers and had no medical record of the quantity of smoking, which probably resulted in the smoking paradox. And DIRECT-MT trial did not collect the glucose level after thrombectomy, which is also a predictor of outcomes. Finally, we could not exclude overfitting in multivariate analyses, as well as, a loss of power to identify independent predictors.

17 Conclusions

In conclusion, symptomatic ICH and high post-thrombectomy NIHSS score (NIHSS score≥11) are strong predictor of 90-day mortality in acute ischemic stroke treated with
endovascular thrombectomy despite successful reperfusion, as well as, high NIHSS score (NIHSS score≥17) and glucose level (glucose level≥130mg/dl) at hospital arrival.
However, further studies need to be performed to confirm the association between smoking and mortality.

- 24 Author affiliations
- ²⁵ ¹ Department of Neurology, Maoming People's Hospital, Maoming, China
- ² Department of Neurosurgery, Third Affiliated Hospital of Soochow University,
 Changzhou, China
- ³ Department of Neurosurgery, Naval Medical University Changhai hospital, Shanghai,
 China
 - ⁴ Department of Neurology, Naval Medical University Changhai hospital, Shanghai,

1	China
2	⁵ Department of Statistics, Naval Medical University Changhai hospital, Shanghai,
3	China
4	⁶ Department of Radiology, Jiangsu Provincial People's Hospital of Nanjing Medical
5	University, Nanjing, China
6	⁷ Department of Neurosurgery, Liaocheng People's Hospital of Shandong First Medical
7	University, Liaocheng, China
8	
9	Acknowledgement: We thank all DIRECT-MT investigators.
10	
11	Author Contributions
12	ZY, LYZ and JML contributed to conception and design of the study. HL, JBH, JC and
13	SSY drafted the manuscript or tables or figures. PFY, YWZ, PFX and XXZ contributed
14	to comments on the draft manuscript and revised the report. Site investigators
15	contributed to data acquisition not analysis. HC, GL, WJD, CML, LY, LF, YP and SL
16	coordinated the study. XFY conducted the statistical analysis.
17	
18	Ethics Approval
19	This trial was approved by Ethics Committee (EC) of Shanghai Changhai Hospital (ID:
20	CHEC2018-003) on Jan 15,2018.
21	
22	Conflict of Interest Statement
23	None declared.
24	
25	Funding Sources
26	This study was supported by High-level Hospital Construction Research Project of
27	Maoming People's Hospital (no grant number).
28	
29	Data sharing statement: The data that support the findings of this study are available
30	from the corresponding author upon reasonable request.

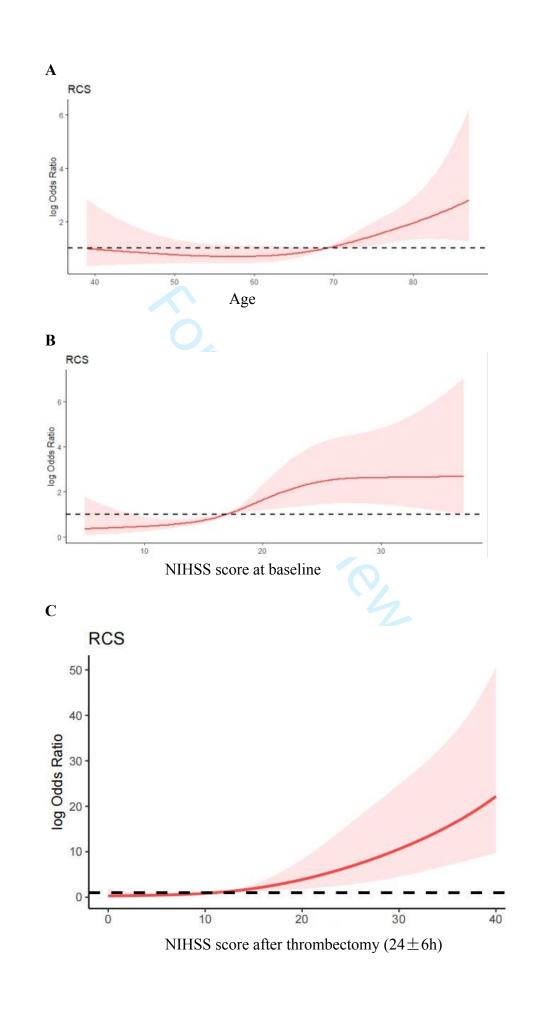
1			
2			
3	1		
4 5	-		
6	2		
7		D 4	
8	3	Refer	ences
9	4	1.	Campbell B, Mitchell P, Kleinig T, et al. Endovascular therapy for ischemic
10	5		stroke with perfusion-imaging selection. The New England journal of medicine.
11 12	6		2015;372:1009-18 doi: 10.1056/NEJMoa1414792
13	7	2.	Saver J, Goyal M, Bonafe A, et al. Stent-retriever thrombectomy after
14	, 8	2.	intravenous t-pa vs. T-pa alone in stroke. <i>The New England journal of medicine</i> .
15			
16	9		2015;372:2285-95 doi: 10.1056/NEJMoa1415061
17 18	10	3.	Goyal M, Demchuk A, Menon B, et al. Randomized assessment of rapid
18 19	11		endovascular treatment of ischemic stroke. The New England journal of
20	12		medicine. 2015;372:1019-30 doi: 10.1056/NEJMoa1414905
21	13	4.	Berkhemer O, Fransen P, Beumer D, et al. A randomized trial of intraarterial
22	14		treatment for acute ischemic stroke. The New England journal of medicine.
23	15		2015;372:11-20 doi: 10.1056/NEJMoa1411587
24 25	16	5.	Jovin T, Chamorro A, Cobo E, et al. Thrombectomy within 8 hours after
26	17	0.	symptom onset in ischemic stroke. The New England journal of medicine.
27	18		2015;372:2296-306 doi: 10.1056/NEJMoa1503780
28		(
29	19	6.	Goyal M, Menon B, van Zwam W, et al. Endovascular thrombectomy after
30 31	20		large-vessel ischaemic stroke: A meta-analysis of individual patient data from
32	21		five randomised trials. Lancet (London, England). 2016;387:1723-31 doi:
33	22		10.1016/s0140-6736(16)00163-x
34	23	7.	Shi Z, Loh Y, Walker G, et al. Clinical outcomes in middle cerebral artery trunk
35	24		occlusions versus secondary division occlusions after mechanical
36 37	25		thrombectomy: Pooled analysis of the mechanical embolus removal in cerebral
38	26		ischemia (merci) and multi merci trials. Stroke. 2010;41:953-60 doi:
39	27		10.1161/strokeaha.109.571943
40	28	8.	Linfante I, Walker G, Castonguay A, et al. Predictors of mortality in acute
41	29	0.	ischemic stroke intervention: Analysis of the north american solitaire acute
42			
43 44	30	0	stroke registry. <i>Stroke</i> . 2015;46:2305-8 doi: 10.1161/strokeaha.115.009530
45	31	9.	Yang P, Zhang Y, Zhang L, et al. Endovascular thrombectomy with or without
46	32		intravenous alteplase in acute stroke. N Engl J Med. 2020;382:1981-93 doi:
47	33		10.1056/NEJMoa2001123
48	34	10.	Goyal M, Fargen K, Turk A, et al. 2c or not 2c: Defining an improved
49 50	35		revascularization grading scale and the need for standardization of angiography
51	36		outcomes in stroke trials. Journal of neurointerventional surgery. 2014;6:83-6
52	37		doi: 10.1136/neurintsurg-2013-010665
53	38	11.	von Kummer R, Broderick J, Campbell B, et al. The heidelberg bleeding
54	39		classification: Classification of bleeding events after ischemic stroke and
55 56			_
50 57	40		
58	41	10	10.1161/strokeaha.115.010049
59	42	12.	Yang P, Treurniet K, Zhang L, et al. Direct intra-arterial thrombectomy in order
60	43		to revascularize ais patients with large vessel occlusion efficiently in chinese

1 2			
3			
4	1		tertiary hospitals: A multicenter randomized clinical trial (direct-mt)-protocol.
5	2		International journal of stroke : official journal of the International Stroke
6	3		Society. 2020;15:689-98 doi: 10.1177/1747493019882837
7	4	13.	Panni P, Gory B, Xie Y, et al. Acute stroke with large ischemic core treated by
8 9	5		thrombectomy. Stroke. 2019;50:1164-71 doi: 10.1161/strokeaha.118.024295
10	6	14.	Kim J, Jahan R, Saver J. Impact of glucose on outcomes in patients treated with
11	7		mechanical thrombectomy: A post hoc analysis of the solitaire flow restoration
12	, 8		with the intention for thrombectomy study. <i>Stroke</i> . 2016;47:120-7 doi:
13			
14 15	9	1.7	10.1161/strokeaha.115.010753
15 16	10	15.	Goyal N, Tsivgoulis G, Pandhi A, et al. Admission hyperglycemia and
17	11		outcomes in large vessel occlusion strokes treated with mechanical
18	12		thrombectomy. Journal of NeuroInterventional Surgery. 2018;10:112 doi:
19	13		10.1136/neurintsurg-2017-012993
20	14	16.	Wang L, Zhou Z, Tian X, et al. Impact of relative blood glucose changes on
21 22	15		mortality risk of patient with acute ischemic stroke and treated with mechanical
22	16		thrombectomy. Journal of Stroke and Cerebrovascular Diseases. 2019;28:213-
24	17		19 doi: 10.1016/j.jstrokecerebrovasdis.2018.09.036
25	18	17.	Chen X, Liu Z, Miao J, et al. High stress hyperglycemia ratio predicts poor
26		17.	
27	19		outcome after mechanical thrombectomy for ischemic stroke. Journal of stroke
28 29	20		and cerebrovascular diseases : the official journal of National Stroke
30	21		Association. 2019;28:1668-73 doi: 10.1016/j.jstrokecerebrovasdis.2019.02.022
31	22	18.	Bellolio MF, Gilmore RM, Stead LG. Insulin for glycaemic control in acute
32	23		ischaemic stroke. The Cochrane database of systematic reviews.
33	24		2011:Cd005346 doi: 10.1002/14651858.CD005346.pub3
34 35	25	19.	Merlino G, Smeralda C, Sponza M, et al. Dynamic hyperglycemic patterns
36	26		predict adverse outcomes in patients with acute ischemic stroke undergoing
37	27		mechanical thrombectomy. Journal of clinical medicine. 2020;9doi:
38	28		10.3390/jcm9061932
39	29	20.	Tong X, Wang C, Liao X, et al. Smoking-thrombolysis relationship depends on
40 41		20.	ischemic stroke subtype. <i>Stroke</i> . 2016;47:1811-6 doi:
42	30		
43	31		10.1161/strokeaha.116.013124
44	32	21.	Ali S, Smith E, Bhatt D, et al. Paradoxical association of smoking with in-
45	33		hospital mortality among patients admitted with acute ischemic stroke. Journal
46 47	34		of the American Heart Association. 2013;2:e000171 doi:
47	35		10.1161/jaha.113.000171
49	36	22.	Zhang P, Guo Z, Sun X, et al. Meta-analysis of the smoker's paradox in acute
50	37		ischemic stroke patients receiving intravenous thrombolysis or endovascular
51	38		treatment. Nicotine & tobacco research : official journal of the Society for
52 53	39		Research on Nicotine and Tobacco. 2019;21:1181-88 doi: 10.1093/ntr/ntz094
53 54	40	23.	Kurmann R, Engelter S, Michel P, et al. Impact of smoking on clinical outcome
55		<i>4J</i> .	
56	41		and recanalization after intravenous thrombolysis for stroke: Multicenter cohort
57	42		study. Stroke. 2018;49:1170-75 doi: 10.1161/strokeaha.117.017976
58 50			
59 60			

60				-		
58 59			Variable	n=78	n=432	P value
57				Mortality	Survival	
55 56	33	compl	ications in mortality and su	rvival at 90 days		
53 54	32		1 Baseline characteristics,	001		al details and
51 52	31					
49 50	30					
47 48	29					
46	28					
44 45	27					
42 43						
40 41	26					
38 39	25					
37	24					
35 36	23					
33 34	22					
31 32	21					
29 30	20					
27 28	19					
26	18					
24 25	17		10.1161/strokeaha.113.0035			
22	16		intracranial atherosclerosi			
21 22	14 15	21.	intracranial large artery s			
19 20	13 14	27.	10.1161/str.000000000000000000000000000000000000		and outcomes a	f symptomotic
18	12		association/american strok		Stroke. 2015;46:	3020-35 doi:
16 17	11		treatment: A guideline for			
14 15	9 10		management of patients w	-	-	-
13	8 9	26.	Powers W, Derdeyn C, Bille stroke association focused			
11 12	7		02180-6			
9 10	6		ischemic stroke. Neurorad		-	
8	4 5	25.	Neuberger U, Kickingered intracranial hemorrhage afte			
6 7	3	25	10.1161/strokeaha.119.0270			· 1 · C · C
4 5	2		Uncovering the truth by inte			
3	1	24.	Wang H, Huang C, Sun	Y, et al. Smoking	g paradox in stro	ke survivors?:
2						

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

	BMJ Open		
age≥70	49(62.82)	198(45.83)	0.0057
sex (male)	44(56.41)	250(57.87)	0.8102
Diabetes Mellitus	23(29.49)	72(16.67)	0.0074
Hypertension	51(65.38)	259(59.95)	0.3659
Hypercholesterolemia	1(1.28)	18(4.17)	0.3611
Previous ischemic stroke	11(14.10)	59(13.66)	0.9163
Peripheral artery disease	0(0.00)	3(0.69)	1.0000
Heart disease	44(56.41)	221(51.16)	0.3928
Atrial fibrillation	43(55.13)	192(44.44)	0.0815
Chronic heart failure	4(5.13)	26(6.02)	0.9632
Myocardial infarction	6(7.69)	23(5.32)	0.5717
Mechanical aorta and/or mitra	ıl 1(1.28)	10(2.31)	0.8773
valve rep			
Smoking	8(10.26)	112(25.93)	0.0027
Statin	4(5.13)	37(8.56)	0.3042
Antiplatelet agents	13(16.67)	72(16.67)	1.0000
Anticoagulant pretreatment	6(7.69)	34(7.87)	0.9571
NIHSS score on admission≥17	60(76.92)	214(49.54)	< 0.000
NIHSS score after thrombectomy	y 72(92.31)	197(45.60)	< 0.000
(24±6h) ≥11			
ASPECT score < 9	47(61.04)	201(46.74)	0.0208
Intravenous thrombolysis	40(51.28)	227(52.55)	0.8370
Glucose level ≥130 mg/dl	50	171	< 0.000
Location of intracranial arter	у		
occlusion			
ICA	40(51.28)	142(32.87)	0.0075
M1 middle cerebral artery segment	32(41.03)	248(57.41)	
M2middle cerebral artery segment	6(7.69)	42(9.72)	
Cause of stroke			
	14		


	Model	1	Model 2	Model
12	Table 2. Independent predictors	of 90-day mo	rtality.	
11				
10				
9				
8				
7				
6				
5				
4				
3	hemorrhage.		4	
2	Early Computed Tomography Sco			_
1	NIHSS, National Institutes of Heal			
	Symptomatic ICH	16(20.51)	11(2.55)	<0.0001
	Femoral access complications	0(0.00)	1(0.23)	1.0000
	Embolization into a new territory	14(17.95)	40(9.26)	0.0217
	Contrast extravasation	3(3.85)	7(1.62)	0.3891
	Vessel dissection	2(2.56)	6(1.39)	0.7843
	Procedural complications	11(14.10)	57(0.50)	0.1252
	Extracranial stent placement Intracranial stent placement	2(2.56) 11(14.10)	37(8.56) 37(8.56)	0.1232
	General anesthesia	32(41.56)	137(32.31)	0.0664
	Sedation	18(23.38)	129(30.42)	
	Local anesthesia	27(35.06)	158(37.26)	0.2423
	Anesthesia			
	Undetermined	25(32.05)	167(38.66)	
	Large-artery occlusion	14(17.95)	76(17.59)	

P value

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Smoking	0.38(0.17-	0.015	0.30(0.13-0.70)	0.005	0.450(0.202-1.003)	0.051
	0.83)					
NIHSS score on	3.14(1.77-	< 0.001	3.08 (1.70-5.60)	< 0.001	-	-
admission≥17	5.55)					
Glucose level	2.54(1.51-	< 0.001	2.62(1.52-4.52)	< 0.001	2.174(1.270-3.721)	0.005
	4.27)					
Symptomatic ICH	Not include	-	11.70(4.74-	< 0.001	Not include	-
			28.89)			
NIHSS score after	Not include	-	Not include	-	12.04(5.09-28.46)	< 0.001
thrombectomy ≥11						

1 NIHSS, National Institutes of Health Stroke Scale; ICH, intracranial hemorrhage.

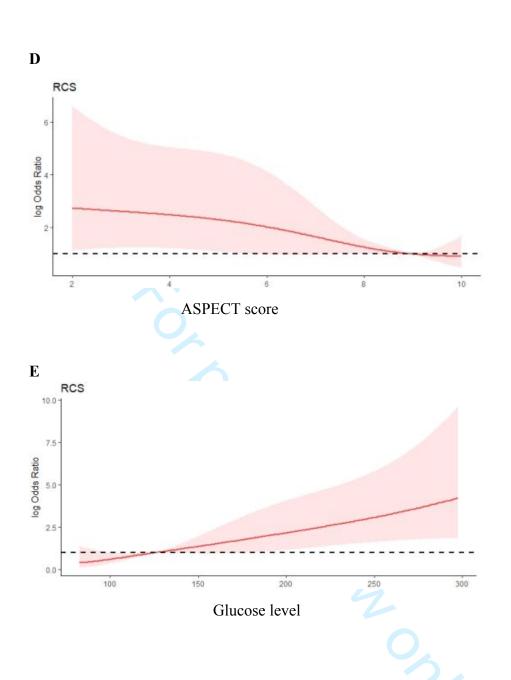


Figure I. Shape of association of 90-day mortality with age (A), National Institutes of Health Stroke Scale (NIHSS) score at baseline (B), NIHSS score after thrombectomy $(24 \pm 6h)$ (C), Alberta Stroke Program Early Computed Tomography Score (ASPECTS) (D) and glucose level (E). The optimal cutoff value for discriminating deceased from survivor patients was 70 years for age, 17 for NIHSS score at baseline, 11 for NIHSS score after thrombectomy, 9 for ASPECT score and 130 mg/dl for glucose level.

CONSORT 2010 checklist of information to include when reporting a randomised trial*

Section/Topic	ltem No	Checklist item	Reported on page No
Title and abstract			
	1a	Identification as a randomised trial in the title	1-2
	1b	Structured summary of trial design, methods, results, and conclusions (for specific guidance see CONSORT for abstracts)	1-2
Introduction			
Background and	2a	Scientific background and explanation of rationale	3
objectives	2b	Specific objectives or hypotheses	3
Methods			
Trial design	3a	Description of trial design (such as parallel, factorial) including allocation ratio	3-4
Ū	3b	Important changes to methods after trial commencement (such as eligibility criteria), with reasons	NA
Participants	4a	Eligibility criteria for participants	3-4
	4b	Settings and locations where the data were collected	3-4
Interventions	5	The interventions for each group with sufficient details to allow replication, including how and when they were actually administered	3-4
Outcomes	6a	Completely defined pre-specified primary and secondary outcome measures, including how and when they were assessed	3-4
	6b	Any changes to trial outcomes after the trial commenced, with reasons	3-4
Sample size	7a	How sample size was determined	3-4
	7b	When applicable, explanation of any interim analyses and stopping guidelines	3-4
Randomisation:			
Sequence	8a	Method used to generate the random allocation sequence	3-4
generation	8b	Type of randomisation; details of any restriction (such as blocking and block size)	3-4
Allocation concealment mechanism	9	Mechanism used to implement the random allocation sequence (such as sequentially numbered containers), describing any steps taken to conceal the sequence until interventions were assigned	3-4
Implementation	10	Who generated the random allocation sequence, who enrolled participants, and who assigned participants to interventions	3-4
Blinding	11a	If done, who was blinded after assignment to interventions (for example, participants, care providers, those	3-4
CONSORT 2010 checklist		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	Pag

		assessing outcomes) and how	
	11b	If relevant, description of the similarity of interventions	3-4
Statistical methods	12a	Statistical methods used to compare groups for primary and secondary outcomes	3-4
	12b	Methods for additional analyses, such as subgroup analyses and adjusted analyses	3-4
Results			
Participant flow (a	13a	For each group, the numbers of participants who were randomly assigned, received intended treatment, and	NA
diagram is strongly		were analysed for the primary outcome	
recommended)	13b	For each group, losses and exclusions after randomisation, together with reasons	5-6
Recruitment	14a	Dates defining the periods of recruitment and follow-up	5-6
	14b	Why the trial ended or was stopped	NA
Baseline data	15	A table showing baseline demographic and clinical characteristics for each group	5-6
Numbers analysed	16	For each group, number of participants (denominator) included in each analysis and whether the analysis was	5-6
		by original assigned groups	
Outcomes and	17a	For each primary and secondary outcome, results for each group, and the estimated effect size and its	5-6
estimation		precision (such as 95% confidence interval)	
	17b	For binary outcomes, presentation of both absolute and relative effect sizes is recommended	NA
Ancillary analyses	18	Results of any other analyses performed, including subgroup analyses and adjusted analyses, distinguishing	NA
Llormo	10	pre-specified from exploratory	
Harms	19	All important harms or unintended effects in each group (for specific guidance see CONSORT for harms)	NA
Discussion			
Limitations	20	Trial limitations, addressing sources of potential bias, imprecision, and, if relevant, multiplicity of analyses	10
Generalisability	21	Generalisability (external validity, applicability) of the trial findings	8-10
Interpretation	22	Interpretation consistent with results, balancing benefits and harms, and considering other relevant evidence	NA
Other information			
Registration	23	Registration number and name of trial registry	2
Protocol	24	Where the full trial protocol can be accessed, if available	3
Funding	25	Sources of funding and other support (such as supply of drugs), role of funders	

*We strongly recommend reading this statement in conjunction with the CONSORT 2010 Explanation and Elaboration for important clarifications on all the items. If relevant, we also recommend reading CONSORT extensions for cluster randomised trials, non-inferiority and equivalence trials, non-pharmacological treatments, herbal interventions, and pragmatic trials. Additional extensions are forthcoming: for those and for up to date references relevant to this checklist, see <u>www.consort-statement.org</u>.

CONSORT 2010 checklist