

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Associations of statin use with 30-day adverse outcomes among 4,801,406 Veterans with and without SARS-CoV-2

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-058363
Article Type:	Original research
Date Submitted by the Author:	14-Oct-2021
Complete List of Authors:	Wander, Pandora; VA Puget Sound Health Care System Seattle Division; University of Washington, Department of Medicine Lowy, Elliott; Veterans Affairs Puget Sound Health Care System; University of Washington, Department of Health Systems and Population Health Beste, Lauren A.; Veterans Affairs Puget Sound Health Care System; University of Washington, Department of Medicine Tulloch-Palomino, Luis; Veterans Affairs Puget Sound Health Care System; University of Washington, Department of Medicine Korpak, Anna; Veterans Affairs Puget Sound Health Care System Peterson, Alexander; Veterans Affairs Puget Sound Health Care System Kahn, Steven E.; University of Washington Danaei, Goodarz; Harvard School of Public Health, Department of Global Health and Population Boyko, Edward J.; Veterans Affairs Puget Sound Health Care System, Seattle Epidemiologic Research and Information Center
Keywords:	COVID-19, Epidemiology < TROPICAL MEDICINE, INTERNAL MEDICINE

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

Associations of statin use with 30-day adverse outcomes among 4,801,406 Veterans with and without SARS-CoV-2 Authors: Pandora L Wander, MD, MS^{a,b}; Elliott Lowy, PhD^{a,c}; Lauren A Beste, MD, MSc^{a,b}; Luis Tulloch-Palomino, MD^{a,b}; Anna Korpak, PhD^a; Alexander C Peterson, MSc^a; Steven E Kahn, MB, ChB^{a,b}; Goodarz Danaei, MD, ScD^d; Edward J Boyko, MD, MPH^{a,b} Affiliations: ^aVeterans Affairs Puget Sound Health Care System, Seattle, WA ^bDepartment of Medicine, University of Washington, Seattle, WA ^cDepartment of Health Systems and Population Health, University of Washington, Seattle, WA ^dDepartments of Global Health and Population, Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA Correspondence to: Pandora L. Wander VA Puget Sound Healthcare System 1660 S. Columbian Way, S-111-MED Seattle, WA 98108 lwander@u.washington.edu ORCID: 0000-0003-3671-1464 Running title: Statin use and 30-day outcomes in SAR-CoV-2 Word count (not including title, abstract, acknowledgment, references, tables, and figure legends): 2,900

BMJ Open

ABSTRACT

Objective: To estimate associations of statin use with hospitalization, intensive care unit (ICU) admission, and mortality at 30 days among individuals with and without a positive test for SARS-CoV-2

Design: Retrospective cohort study

Setting: U.S. Veterans Health Administration (VHA)

Participants: All Veterans receiving VHA health care with \geq 1 positive nasal swab for SARS-CoV-2 between March 1, 2020 and March 10, 2021 (cases; n=231,154) and a comparator group of controls comprising all Veterans who did not have a positive nasal swab for SARS-CoV-2 but who did have \geq 1 clinical lab test performed during the same time period (n=4,570,252).

Main outcomes: Associations of (1) Any statin use, (2) use of specific statins, or (3) low-/moderate- vs. highintensity statin use at the time of positive nasal swab for SARS-CoV-2 (cases) or result of clinical lab test (controls) assessed from pharmacy records with hospitalization, ICU admission, and death at 30 days.

Results: Among individuals who tested positive for SARS-CoV-2, statin use was associated with lower odds of death at 30 days (OR 0.81 [95%CI 0.77–0.85]) but not with hospitalization or ICU admission. Over the same time period, associations were significantly stronger among individuals without a positive test for SARS-CoV-2: hospitalization OR 0.79 (95%CI 0.77–0.80), ICU admission OR 0.86 (95%CI 0.81–0.90), and death 0.60 (95%CI 0.58–0.62), p for interaction all <0.001. Among SARS-CoV-2–positive individuals, associations were similar comparing use of specific statins to no statin. Compared to low-/moderate-intensity statin use, high-intensity statin use was not associated with lower odds of ICU admission or death.

Conclusions: Associations of statin use with lower adverse 30-day outcomes are weaker among individuals who tested positive for SARS-CoV-2 compared to individuals without a positive test, indicating that statins do not exert SARS-CoV-2–specific effects.

SUMMARY BOXES

What is already known on the topic:

-Statin use at diagnosis is associated with lower risk of hospitalization, mortality in many observational studies

conducted among individuals with COVID-19.

-Whether these associations are similar in individuals with and without COVID-19 is unknown

Funding Source: VA Clinical Science Research & Development COVID19-8990-19

What this study adds:

-In this observational study among 231,154 Veterans with a positive nasal swab for SARS-CoV-2 and a

negative control population of 4,570,252 Veterans without a positive test for SARS-CoV-2, statin use was

associated with lower odds of adverse 30-day outcomes in both groups, but associations of statin use with

lower 30-day outcomes were substantially weaker among SARS-CoV-2-positive individuals compared to

individuals without a positive test.

-Statins may not exert SARS-CoV-2–specific effects. Existing evidence suggesting a protective association of statin use with adverse outcomes after COVID-19 may be an artifact of bias, likely due to residual confounding.

Strengths and limitations of this study

- Large, well characterized national (U.S.) sample
- First study to formally assess and compare statin effects seen in SARS-CoV-2 infection using a negative control
- Observational design cannot exclude the possibility of residual confounding
- Did not capture hospitalizations or diagnoses occurring outside VHA

BMJ Open

INTRODUCTION

New cases of COVID-19/SARS-CoV-2 infection continue to occur at high rates in the United States and worldwide with few treatments available to decrease mortality. Statin use at the time of COVID-19 diagnosis has been associated with a lower risk of short-term mortality in observational studies¹ and systematic reviews², and may have promise for this purpose. However, preliminary findings from a randomized placebo-controlled trial of patients admitted to the ICU did not show a protective effect of atorvastatin 20 mg/day on 30-day mortality after COVID-19 diagnosis, among patients not taking statins prior to admission³. These paradoxical findings may reflect the presence of residual confounding in observational studies. In addition, effects of statins on mortality after COVID-19 may differ across populations, for example, among individuals with or without cardiovascular disease (CVD), or specific to certain statins but not all medications in this class. Therefore, observational studies with comprehensive strategies to reduce bias from unmeasured confounding and examine associations by comorbidities and statin type are needed to improve estimates of the potential causal effect of statin use at diagnosis on mortality after COVID-19.

To address these gaps, we used national data from the Veterans Health Administration (VHA) to quantify the independent association of statin use at diagnosis with adverse outcomes from COVID-19 at 30 days, including hospitalization, intensive-care unit (ICU) admission, and mortality. We used the following strategies to mitigate or estimate bias: 1) directed-acyclic graphs to guide the choice of potential confounders; 2) comparison of associations among SARS-CoV-2 infected individuals (n=231,154) with associations among an uninfected comparator sample (n=4,570,252); and 3) a dose-response analysis comparing low- or moderate-intensity statin use to high-intensity use. In additional analyses, we investigated associations of individual statins with 30-day outcomes after COVID-19 and evaluated the magnitude of the statin-mortality association in strata of sex, age, race, BMI, clinical comorbidities, and C-reactive protein (CRP) level prior to diagnosis.

METHODS

Study setting and population

The Veterans Health Administration (VHA)—the largest integrated healthcare system in the United States provides care to more than 7 million Veterans at 170 medical centers and 1,074 outpatient sites⁴. We used data from the Corporate Data Warehouse (CDW), a data repository derived from VHA's integrated electronic medical record, including a COVID-19 Shared Data Resource, which contains analytic variables for all enrollees tested for SARS-CoV-2⁵. The study was approved by the institutional review board at VA Puget Sound Health Care System. The requirement for informed consent was waived.

Patient and public involvement

Patients or the public were not involved in the design, or conduct, or reporting, or dissemination plans of our research

Selection of the SARS-CoV-2-positive cohort

We identified all enrollees with one or more positive nasal swabs for SARS-CoV-2 between March 1, 2020, and March 10, 2021. The index date was defined as the date the first positive test was performed. Most tests were performed in VA laboratories using US Food and Drug Administration (FDA)-approved RealTime (Abbott Laboratories) or Xpert-Xpress (Cepheid) SARS-CoV-2 assays. A small number were sent to outside 04.0 laboratories.

Selection of the SARS-CoV-2–negative cohort

Individuals without a positive nasal swab for SARS-CoV-2 and with any clinical lab test available in the medical record between March 1, 2020, and March 31, 2021, were chosen as a comparison group. A negative nasal swab for SARS-CoV-2 was not required for inclusion. Participants without a positive nasal swab for SARS-CoV-2 were assigned an index month during the study period for which they had a lab result, and a random index date during the index month which was used as the start of follow-up.

Exposure

Statin use was defined as receipt of a statin prescription with a fill date prior to the index date and a quantity prescribed that would extend past the index date. Statin intensity was defined as low, moderate, or high using definitions from the American Heart Association/American College of Cardiology guidelines on management of

BMJ Open

cholesterol⁶. Prescribing data were available for the following specific statins: Atorvastatin, fluvastatin, lovastatin, pitavastatin, pravastatin, rosuvastatin, simvastatin.

Covariates

We collected data on age, sex, race/ethnicity, VHA facility location, and urban, rural, or highly rural residence using a validated classification scheme that has been previously described⁷. Body mass index (BMI) was defined as weight in kg divided by (height in meters)². Smoking status was classified as current, former, or never based on VHA health factors data. If no smoking code was entered, the participant was classified as never smoked. At-risk drinking was defined using a score \geq 3 for men and \geq 4 for women on the Alcohol Use Disorders Identification Test consumption questions (AUDIT-C)⁸. Comorbidities (hypertension (HTN), CVD, and heart failure) were identified using ICD-9-CM and -10 codes entered after October 1, 1999, the date when VHA began using a universal electronic health record⁹. We defined chronic kidney disease (CKD) by categories of estimated glomerular filtration rate¹⁰ using the most recent creatinine at least 3 days, but not more than 1 year, before the index date. For individuals with data available on CRP at least 14 days but not more than six months before the index date (n=27,630), we dichotomized CRP values as normal or elevated based on cut points provided for each assay at the testing site because a variety of assays for these biomarkers are used across the VA system. We also controlled for prior statin use to approximate a comparison of incident users and non-users. We defined prior statin use as receipt of a statin prescription with a fill date that included the time period six months prior to the index date.

Outcomes

We collected data on all hospitalizations, ICU admissions, and deaths occurring through March 10, 2021. Deaths were verified by official sources including VHA Patient Treatment File, the Beneficiary Identification Records Locator Subsystem (BIRLS), and VA/CMS Medicare Vital Status File; Social Security Administration (SSA) Death Master File; death certificates, and VHA National Cemetery Administration¹¹.

Statistical analyses

We summarized baseline characteristics for SARS-CoV-2 infected and uninfected participants, stratified by statin use at the index date. We used multiple imputation with 10 sets of imputations for analyses that included BMI or CKD due to approximately 20% missing values for each of these variables. We used DAGitty¹² to generate a directed acyclic graph (DAG) to assist in variable selection. We fit separate logistic regression models for individuals with and without a positive swab for SARS-CoV-2, testing the association of statin use at index date with occurrence of hospitalization, ICU admission, and death, adjusting for the minimal sufficient covariate set to estimate the total effect of statin use according to our DAG (statin use ≥ six months prior to diagnosis, sex, age, race/ethnicity, BMI, tobacco use, facility location, urban/rural status, eGFR, and history of diabetes, hypertension, cardiovascular disease, heart failure, and alcohol use disorder) separately. In combined models, we tested for the presence of multiplicative first-order interactions to determine whether the association between statins and odds of hospitalization, ICU admission, and death at 30 days differed between persons with and without a positive swab for SARS-CoV-2. In a sensitivity analysis, we examined associations of statin use at diagnosis with occurrence of hospitalization, ICU admission, and death in models that were not adjusted for statin use six months prior to diagnosis.

Among individuals with a positive swab for SARS-CoV-2, we fit logistic regression models examining associations of specific statins compared to no statin use with outcomes adjusted for sex, age, race/ethnicity, BMI, tobacco use, facility location, urban/rural status, eGFR, and history of diabetes, hypertension, cardiovascular disease, heart failure, and alcohol use disorder, as well as models comparing low-intensity to moderate- or high-intensity statin use. We evaluated the magnitude of the statin-mortality association in strata of sex, age, race, BMI, clinical comorbidities, and prior CRP concentration and tested for first-order multiplicative interactions by using interaction terms in combined models.

Role of the funding source

The analysis was funded by VA Clinical Science Research & Development, which had no role in its design, conduct, analysis, or reporting.

RESULTS

BMJ Open

SARS-CoV-2 infected participants were 60.9 years old (\pm 16.5) on average, and 10% percent (n= 23,974) were female. Thirty percent (69,263) had an active statin prescription at enrollment. During the 30 days after diagnosis, 14% (32,490) of SARS-CoV-2 infected participants were hospitalized, 3% (6,140) were admitted to the ICU, and 5% (12,111) died. SARS-COV-2 uninfected participants were 61.6 years old (\pm 16.7) on average, and 13% (577,718) were female. Thirty percent (1,389,364) had an active statin prescription at enrollment. During the 30 days after the index date, 2% (91,604) were hospitalized, 0.2% (9,298) were admitted to the ICU, and 0.4% died (n=19,298) (**Table 1**).

Among SARS-COV-2 positive individuals, statin use was associated with lower odds of death at 30 days (OR 0.81 [95%CI 0.77–0.85]), but not with hospitalization or ICU admission. Among SARS-COV-2 negative individuals, statin use was associated with lower odds of hospitalization (OR 0.79 [95%CI 0.77–0.80]), ICU admission (OR 0.86 [95%CI 0.81-0.90]), and death at 30 days (OR 0.60 [95%CI 0.58-0.62]). (Table 2a). Compared to persons with SARS-CoV-2 infection, OR for all three outcomes were significantly lower in persons without SARS-CoV-2 infection, as reflected by p<0.001 for the interaction term of SARS-CoV-2*statin use in all three models. Among individuals with and without SARS-CoV-2 infection, adjustment for receipt of statin six months prior to baseline attenuated the magnitude of the association of statin use at diagnosis with all outcomes (Fig. 1, Table 2b). Among persons with SARS-CoV-2 infection, associations with outcomes were similar for individual statins (Table 3). Compared to low-/moderate-intensity, high-intensity statin use was associated with higher odds of hospitalization (1.06 [95%CI 1.01–1.10]) but not with ICU admission or death (Table 4). Among persons with SARS-CoV-2 infection, associations of statin use with hospitalization differed across strata of sex, age, race (Black vs. non-Black), and eGFR (e.g., OR for hospitalization in Black) participants 0.98 [95%CI 0.92–1.03], OR for hospitalization in non-Black participants 0.92 [95%CI 0.89–0.95], p for interaction = 0.022). Associations of statin use with ICU admission differed across strata of sex and ethnicity (Latinx vs. not Latinx) (e.g., OR for ICU admission in Latinx participants 0.77 [95%CI 0.62–0.95], OR for ICU admissioni in non-Latinx participants 0.94 [95%CI 0.89–1.00], p for interaction = 0.044). Associations of statin use with mortality differed across strata of age, race/ethnicity (white vs. non-white and Black vs. non-Black), and BMI (e.g., OR for mortality in Black participants 0.83 [95%CI 0.76–0.92], OR for mortality in nonBlack participants 0.77 [95%Cl 0.74–0.81], p for interaction = 0.006). Associations did not differ across strata of prevalent diabetes, hypertension, or CVD (**Supplementary Fig. 1–3**).

CONCLUSIONS

In this cohort of U.S. Veterans with (n=231,154) and without (n=4,570,252) a positive respiratory swab for SARS-CoV-2, statin use was independently associated with lower odds of death at 30 days compared to no statin use, but this association over a similar time period was significantly stronger among Veterans without a positive respiratory swab for SARS-CoV-2. Among individuals with and without a positive respiratory swab for SARS-CoV-2, adjusting for prior statin use attenuated the association of statin use with all outcomes; however, in every case the magnitude of the association remained substantially greater among individuals without a diagnosis of COVID-19. Associations were similar for specific statins, and receipt of high-potency statin was not associated with lower odds of any outcome compared to moderate and low potency, except for a small difference in the odds of hospitalization. Associations were not significantly different in strata of prevalent diabetes, hypertension, or cardiovascular disease. Furthermore, the lack of a gradient of effect with statin potency also does not support a potential causal benefit of statin use. Taken together, these results suggest that while statin use is associated with lower mortality among individuals with a positive swab for SARS-CoV-2, the benefit is actually smaller for than it is for those without evidence of SARS-CoV-2 infection and does not support a possible anti-COVID effect of statin treatment.

Use of negative controls is an important technique to detect confounding or other sources of bias in epidemiological studies¹³ that has gone underutilized in the era of COVID-19 research. An instructive example is the association of pneumonia or influenza vaccination with all-cause mortality seen in elderly individuals despite rigorous control for confounding by factors related to overall health status¹⁴. Using negative controls, Jackson et al. examined the association of vaccination with a negative control outcome: mortality prior to influenza season¹⁵. They found a stronger association with mortality during the period prior to influenza season compared to during or after, a biologically implausible result that was attributed by the authors to preferential receipt of vaccines by healthy individuals. This source of bias is now recognized in studies of this topic¹⁶. While

BMJ Open

the use of a negative control outcome is not precisely analogous to the methods used in the current study, the example can inform interpretation of the current findings.

Several recent systematic reviews and meta-analyses have examined the association of prior statin use with short-term outcomes after COVID-19^{2,17-22}. Many of these reported an inverse association of statin use at diagnosis with mortality. For example, statin use was associated with a lower hazard of death (HR 0.72 [95%CI 0.69–0.75]) in a large population-based study of English patients with diabetes independent of age and comorbid CVD²³. In a recent nationwide U.S. study of hospitalized individuals (n=10,541), outpatient statin, either alone or with blood pressure-lowering medications, was associated with lower odds of in-hospital death (OR 0.59 [95%CI 0.50–0.69]). The magnitude of the association of statin use at diagnosis with mortality reported in these and other analyses is guite similar to the OR in the current report among individuals with COVID-19 in models that were not adjusted for prior statin use (OR for death at 30 days 0.78 [95% CI 0.75–0.82]), likely reflecting similar strategies for confounder adjustment. The lower COVID-19 mortality risk among statin users, however, is not a universal finding. In fact, among French hospitalized patients with diabetes, statin use at diagnosis was associated with higher odds of death at 28 days (OR 1.46 [95% CI 1.08–1.95])²⁴. Reasons for these disparate findings are unclear but may be due in part to differences in timing, as early in the pandemic, treatments such as dexamethasone and remdesivir were not widely used. Consistent with this, in the French cohort mortality was about 21% at 28 days, considerably higher than our overall 30-day mortality rate of about 7%. No prior study to our knowledge has examined outcomes following statin use comparing SARS-CoV-2 infected and uninfected statin users.

We noted several differences in outcomes associated with statin use by certain characteristics such as sex, age, and race (Supplementary Fig. 1-3). As our main analysis did not show evidence of a lower risk of outcomes associated with statin use confined to COVID-19 infected participants, these interactions likely reflect associations independent of presence of this infection and therefore reflecting effect modification between statin use, stratum variables, and outcomes of interest.

Our study has several strengths, most importantly a large, well characterized national sample. To our

knowledge, this is the largest observational study of prior statin use and adverse outcomes from SARS-CoV-2 in the United States (n=4,801,406) as well as the first to formally assess and compare statin effects seen in SARS-CoV-2 infection using a negative control (non-infected statin users). Second, we used several methods designed to mitigate or quantify bias due to unmeasured confounding. We: 1) constructed a DAG to estimate the minimal sufficient adjustment set to estimate the total effect of statin use on 30-day outcomes; 2) compared associations in SARS-CoV-2 infected individuals and an uninfected comparator sample; and 3) conducted dose-response analyses using statin potency to reflect dose. In addition, most VHA enrollees receive medical care and medications without cost, which likely decreases the contribution of unmeasured financial factors to differences in the quality of care received and most importantly to receipt of statin medications. Our results should be considered within the context of several limitations. The VHA population is generally older, with lower income and socioeconomic status ²⁵ than the U.S. population as a whole, and our findings may not be generalizable to non-VHA populations. Additionally, the proportion of women was low (13%); however, although women comprised only a small proportion of the sample, the number of female participants (n=601,765) is adequate for robust statistical inference. We were also unable to capture hospitalizations or some outpatient prescriptions that occurred outside VHA, although VHA users are asked to provide notification within 72 hours of an outside hospital admission, and when possible are transferred to a VHA facility, which would then be captured in the VHA electronic health record. Finally, not all individuals in the comparator group were tested for SARS-CoV-2, so we were unable to exclude the possibility that some participants were misclassified. We elected to include individuals without SARS-CoV-2 tests because individuals with indications for SARS-CoV-2 testing may represent a particular (and sicker) population than the general group of VA enrollees as a whole. Further, based on the current results, inclusion of individuals with undiagnosed COVID-19 in the SARS-CoV-2-negative comparator group would be expected to attenuate observed associations of statin use with adverse outcomes. It is unlikely that exclusion of participants with undiagnosed COVID-19 from the comparator group would have resulted in a reduction in the observed negative association between statin use and mortality, as this would have required an opposite association to be present between undiagnosed COVID-19 infection and mortality, a possibility for which there is little reason or evidence to support.

BMJ Open

In conclusion, statin use is associated with lower odds of 30-day mortality both among U.S. Veterans with or without a positive respiratory swab for SARS-CoV-2 indicating that statins may not exert COVID-19-specific beneficial effects.

FUNDING. The work was funded by VA Clinical Science Research & Development COVID19-8990-19

COMPETING INTERESTS. There are no relevant conflicts of interest to disclose.

DATA AVAILABILITY. Access to VA electronic health records data is limited to researchers with active, VA appointments and an IRB-approved protocol.

CONTRIBUTORSHIP. PLW conceived the project, designed the overall research plan, and wrote the first draft of the manuscript. EL analyzed the data and reviewed/edited the manuscript, LB contributed to the conception of the work and reviewed/edited the manuscript, LTP contributed to the conception of the work and reviewed/edited the manuscript, AK contributed to design/interpretation of the analyses and reviewed/edited the manuscript, AP contributed to the design/interpretation of the analyses and reviewed/edited the manuscript. SEK contributed to the conception of the work and reviewed/edited the manuscript. GD contributed to the design/interpretation of the analyses and reviewed/edited the project, designed the overall research plan, and reviewed/edited the manuscript.

LICENCE. The Corresponding Author has the right to grant on behalf of all authors and does grant on behalf of all authors, <u>a worldwide licence</u> to the Publishers and its licensees in perpetuity, in all forms, formats and media (whether known now or created in the future), to i) publish, reproduce, distribute, display and store the Contribution, ii) translate the Contribution into other languages, create adaptations, reprints, include within collections and create summaries, extracts and/or, abstracts of the Contribution, iii) create any other derivative work(s) based on the Contribution, iv) to exploit all subsidiary rights in the Contribution, v) the inclusion of

electronic links from the Contribution to third party material where-ever it may be located; and, vi) licence any

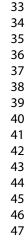
third party to do any or all of the above.

ETHICS STATEMENT. The study was approved by the institutional review board at VA Puget Sound Health Care System, Seattle, WA, USA (#01897). The requirement for informed consent was waived.

DEEEDENAEA

15		REFERENCES
16		
17 18 19	1.	Daniels LB, Ren J, Kumar K, et al. Relation of prior statin and anti-hypertensive use to severity of disease among patients hospitalized with COVID-19: Findings from the American Heart Association's
20	_	COVID-19 Cardiovascular Disease Registry. <i>PloS one.</i> 2021;16(7):e0254635.
21	2.	Pal R, Banerjee M, Yadav U, Bhattacharjee S. Statin use and clinical outcomes in patients with COVID-
22		19: An updated systematic review and meta-analysis. Postgraduate medical journal. 2021.
23	3.	Rubin R. Could Statins Do More Than Lower Cholesterol in Patients With COVID-19? JAMA : the
24		journal of the American Medical Association. 2021.
25	4.	U.S. Department of Veterans Affairs: VHA. https://www.va.gov/health/. Accessed 9/28/2020, 2020.
26	5.	CDW COVID-19 Shared Data Resource (intranet-only resource).
27		https://vhacdwdwhweb100.vha.med.va.gov/phenotype/index.php/COVID-19:Shared_Data_Resource.
28		Accessed 9/28/2020, 2020.
29	6.	Grundy SM, Stone NJ, Bailey AL, et al. 2018 🔨
30		AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the
31		Management of Blood Cholesterol: A Report of the American College of Cardiology/American Heart
32		Association Task Force on Clinical Practice Guidelines. Circulation. 2019;139(25):e1082-e1143.
33	7.	West AN, Lee RE, Shambaugh-Miller MD, et al. Defining "rural" for veterans' health care planning. The
34		Journal of rural health : official journal of the American Rural Health Association and the National Rural
35		Health Care Association. 2010;26(4):301-309.
36	8.	Bush K, Kivlahan DR, McDonell MB, Fihn SD, Bradley KA. The AUDIT alcohol consumption questions
37		(AUDIT-C): an effective brief screening test for problem drinking. Ambulatory Care Quality Improvement
38		Project (ACQUIP). Alcohol Use Disorders Identification Test. Archives of internal medicine.
39		1998;158(16):1789-1795.
40	9.	Quan H, Sundararajan V, Halfon P, et al. Coding algorithms for defining comorbidities in ICD-9-CM and
41		ICD-10 administrative data. <i>Medical care</i> . 2005;43(11):1130-1139.
42 42	10.	Young BA, Katz R, Boulware LE, et al. Risk Factors for Rapid Kidney Function Decline Among African
43 44		Americans: The Jackson Heart Study (JHS). American journal of kidney diseases : the official journal of
44 45		the National Kidney Foundation. 2016;68(2):229-239.
46	11.	Sohn MW, Arnold N, Maynard C, Hynes DM. Accuracy and completeness of mortality data in the
47		Department of Veterans Affairs. Popul Health Metr. 2006;4:2.
48	12.	Textor J, van der Zander B, Gilthorpe MS, Liskiewicz M, Ellison GT. Robust causal inference using
49		directed acyclic graphs: the R package 'dagitty'. International journal of epidemiology. 2016;45(6):1887-
50		1894.
51	13.	Lipsitch M, Tchetgen Tchetgen E, Cohen T. Negative controls: a tool for detecting confounding and
52		bias in observational studies. <i>Epidemiology</i> . 2010;21(3):383-388.
53	14.	Rivetti D, Jefferson T, Thomas R, et al. Vaccines for preventing influenza in the elderly. <i>Cochrane</i>
54		Database Syst Rev. 2006(3):CD004876.
55	15.	Jackson LA, Jackson ML, Nelson JC, Neuzil KM, Weiss NS. Evidence of bias in estimates of influenza
56	10.	vaccine effectiveness in seniors. International journal of epidemiology. 2006;35(2):337-344.
57	16.	Levett-Jones T. Vaccines for preventing influenza in the elderly: A Cochrane review summary.
58	10.	International journal of nursing studies. 2020;109:103372.
59		

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml


BMJ Open

- 17. Hariyanto TI, Kurniawan A. Statin and outcomes of coronavirus disease 2019 (COVID-19): A systematic review, meta-analysis, and meta-regression. *Nutrition, metabolism, and cardiovascular diseases : NMCD.* 2021;31(6):1662-1670.
- 18. Permana H, Huang I, Purwiga A, et al. In-hospital use of statins is associated with a reduced risk of mortality in coronavirus-2019 (COVID-19): systematic review and meta-analysis. *Pharmacol Rep.* 2021;73(3):769-780.
- Hariyanto TI, Kurniawan A. Statin therapy did not improve the in-hospital outcome of coronavirus disease 2019 (COVID-19) infection. *Diabetes Metab Syndr.* 2020;14(6):1613-1615.
- 20. Wu KS, Lin PC, Chen YS, Pan TC, Tang PL. The use of statins was associated with reduced COVID-10 19 mortality: a systematic review and meta-analysis. *Annals of medicine*. 2021;53(1):874-884.
- Vahedian-Azimi A, Mohammadi SM, Heidari Beni F, et al. Improved COVID-19 ICU admission and
 mortality outcomes following treatment with statins: a systematic review and meta-analysis. *Arch Med Sci.* 2021;17(3):579-595.
- Onorato D, Pucci M, Carpene G, Henry BM, Sanchis-Gomar F, Lippi G. Protective Effects of Statins
 Administration in European and North American Patients Infected with COVID-19: A Meta-Analysis.
 Semin Thromb Hemost. 2021;47(4):392-399.
- Holman N, Knighton P, Kar P, et al. Risk factors for COVID-19-related mortality in people with type 1
 and type 2 diabetes in England: a population-based cohort study. *Lancet Diabetes Endocrinol.* 2020;8(10):823-833.
- 20
 24. Cariou B, Goronflot T, Rimbert A, et al. Routine use of statins and increased mortality related to COVID-19 in inpatients with type 2 diabetes: Results from the CORONADO study. *Diabetes & metabolism.* 2020.
- 23
 24
 25
 26
 27
 28
 29
 29
 2017;55 Suppl 9 Suppl 2:S9-S15.

Table 1. Characteristics of VHA Veterans with and without a positive respiratory swab for SARS-CoV-2 (March 1, 2020–March 10, 2021), stratified by presence of an active statin prescription at enrollment

	Overa	11	No positive	e respirat Co ^v	ory swab for S /-2	SARS-	≥1 posit	ive respi SARS-0	ratory swa CoV-2	b for
	n=4,801,	406	No stat prescrip	tion	Active st prescript	tion	No sta prescrip	otion	Active prescri	iption
			n=3,180,	888	n=1,389,	364	n=161,	891	n=69,	263
Age, years	61.6	±16.7	58.3	±17.7	69.3	±10.8	57.8	±17.5	68.0	±11.4
Age category, years										
19-39	661,777	14%	613,885	19%	15,272	1%	31,645	20%	975	1%
40-49	482,871	10%	402,201	13%	54,467	4%	22,718	14%	3,485	5%
50-59	728,340	15%	516,328	16%	172,006	12%	29,099	18%	10,907	169
60-69	993,105	21%	600,530	19%	346,361	25%	28,785	18%	17,429	259
70-79	1,408,065	29%	735,949	23%	610,855	44%	33,303	21%	27,958	409
80+	525,548	11%	311,010	10%	189,825	14%	16,204	10%	8,509	129
Sex at birth, female	601,692	13%	509,443	16%	68,275	5%	20,598	13%	3,376	5%
Race/ethnicity			, -		, -				-)	
White	3,335,105	69%	2,122,989	67%	1,055,742	76%	106,448	66%	49,926	729
Black	860,829	18%	582,091	18%	226,384	16%	38,080	24%	14,274	219
Hispanic	333,593	7%	230,848	7%	79,866	6%	17,770	11%	5,109	79
Other	542,562	11%	430,377	14%	94,575	7%	13,410	8%	4,200	69
Body-mass index, kg/m ²	30.2	±6.09	29.8	±6.04	30.8	±6.06	30.9	±6.35	31.9	±6.2
Body-mass index category, kg/m ²	00.2	10.00	20.0	10.01	00.0	10.00	00.0	10.00	01.0	±0.2
<18.5	28,116	1%	20,717	1%	6,230	1%	951	1%	218	00
18.5-24.9	553,988	17%	379,204	20%	152,657	14%	16,249	15%	5,878	119
25-29.9	1,107,238	35%	687,781	36%	367,799	34%	34,949	32%	16,709	309
30-34.9	869,628	27%	507,893	26%	313,277	29%	30,944	29%	17,514	329
35-39.9	399,754	13%	224,651	12%	149,833	14%	15,734	15%	9,536	179
≥ 40	208,950	7%	113,491	6%	80,708	8%	9,077	8%	9,550 5,674	10
Tobacco use	200,330	1 /0	110,401	0 /0	00,700	0 /0	3,077	0 /0	5,074	10
Never	1,747,387	36%	1,338,452	42%	328,440	24%	62,782	39%	17,713	269
Former	1,729,275	36%	984,318	31%	651,438	47%	58,321	36%	35,198	51 ⁰
Current	1,323,044	28%	857,133	27%	408,908	29%	40,651	25%	16,352	249
Urban/rural/highly rural ZIP code	1,323,044	20 /0	007,100	21 /0	400,900	2370	40,001	2370	10,332	24
Highly rural	57,047	1%	34,211	1%	20,620	1%	1,360	1%	856	19
Rural	1,561,076	33%	975,607	31%	518,394	37%	43,690	27%	23,385	349
Urban	3,172,176	55 % 66%	2,163,063	68%	847,474	61%	116,643	72%	23,385 44,996	659
Unknown	9,407	0%	7,022	0%	2,298	0%	61	0%	44,990 26	00
Estimated glomerular filtration rate, ml/min/1.73 m ²	9,407	0 /0	1,022	0 /0	2,290	0 /0	01	0 /0	20	0
≥ 90	938,310	27%	654,399	31%	235,893	20%	36,230	32%	11,788	199
2 90 60-89	1,718,393		1,034,287		235,893 599,357		54,598	32 <i>%</i> 48%		
		49% 15%		49%		50%			30,151	48
45-59	520,635	15%	268,392	13%	226,556	19%	13,799	12%	11,888	19
30-44	212,116	6%	100,776	5%	100,175	8%	5,626	5%	5,539	9
15-29	58,464	2%	27,223	1%	27,527	2%	1,906	2%	1,808	3
<15 or dialysis	25,765	1%	12,803	1%	10,449	1%	1,503	1%	1,010	2
Active statin prescription six months prior to enrollment	1,375,009	29%	259,070	8%	1,046,850	75%	17,020	11%	52,069	75

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Diabetes	1,482,197	31%	679,909	21%	716,920	52%	44,364	27%	41,004	599
lypertension	2,874,378	60%	1,551,529	49%	1,176,398	85%	86,382	53%	60,069	87
Cardiovascular disease	1,749,197	36%	857,912	27%	794,940	57%	53,635	33%	42,710	62
leart failure	352,710	7%	144,971	5%	183,128	13%	12,388	8%	12,223	18
Alcohol use disorder	909,010	19%	629,005	20%	238,333	17%	31,212	19%	10,460	15
Statin prescribed		ĺ								
lone	3,341,657	70%	3,179,903	100%	0	0%	161,754	100%	0	0
torvastatin	872,981	18%			829,795	60%			43,186	629
Iuvastatin	364	<1%			348	0%			16	0
ovastatin	15,375	<1%			14,751	1%			624	1
Pitavastatin	801	<1%			748	<1%			53	<1
Pravastatin	123,779	3%			118,039	8%			5,740	8
Rosuvastatin	173,943	4%			165,066	12%			8,877	13
Simvastatin	270,806	6%			260,039	19%			10,767	16
ligh-potency statin (vs. low- or moderate-potency)*	616,824	42%	0	<1%	585,224	42%	0	<1%	31,600	46
lean hsCRP in the prior six months, mg/L**	17.3	±136	16.4	±151	18.2	±120	19.9	±49.6	21.0	±52
ISCRP in the prior six months ≥2 mg/L**	390,796	41%	217,408	40%	145,787	42%	17,407	44%	10,194	45
lean hsCRP at or after the index date, mg/L***	29.3	±54.1	22.2	±46.6	25.6	±50.8	57.8	±70.8	65.2	±71
SCRP at or after the index date $\leq 2 \text{ mg/L}^{***}$	125,178	52%	61,501	46%	34,630	49%	18,260	75%	10,787	79
T	- .		COMES		· · · · · ·					
lospital admission within 30 days	124,094	3%	61,651	2%	29,953	2%	20,280	13%	12,210	189
CU admission within 30 days	15,438	<1%	5,710	<1%	3,588	<1%	3,754	2%	2,386	3
Death w/in 30 days	31,409	1%	13,074	<1%	6,224	<1%	7,815	5%	4,296	6
Data are presented as mean ± standard deviation (SD) for continuou- -values for global differences in participant characteristics across can based on estimated % LDL-c reduction * up to 14 days prior to index date (Overall n=958,343) ** Overall n=224,930		. ,	-	use all <0.0						

Table 2a. Odds ratios from logistic regression models testing the association of active statin prescription at enrollment with adverse 30-day outcomes among VHA Veterans with and without a positive respiratory swab for SARS-CoV-2, including adjustment for prior statin use

1	SARS-CoV-2, including adjustment for prior statin use	<u>}</u>			Ne	nositi	ve swa	h n=/	1 568 6	89								>1 nos	itivo ev	vah	n=231,0	17			
2		Hos	pital a	dmice		•	ve swa CU adm	,	, ,		Dea	th		Hos	pital ad	dmiee	ion	•	CU adm	,	,	, , ,	Deat	h	
3		OR	•	95%C		OR		95%CI		OR		95%C	1	OR		95%C		OR		5%C		OR		11 95%CI	
4		-				-				-								-				-			0.05
5	Active statin prescription at enrollment	0.79	0.77	—	0.80	0.98	0.95	—	1.01	0.86	0.81	_	0.90	0.94	0.88	—	1.01	0.60	0.58	_	0.62	0.81	0.77	_	0.85
6	Statin prescription six months prior to enrollment	0.91	0.89	—	0.93	0.93	0.90	_	0.96	0.88	0.83	_	0.93	0.97	0.91	—	1.04	0.93	0.90	_	0.97	0.94	0.89	_	0.99
7	Sex at birth, female	0.73	0.71	—	0.75	0.75	0.71	_	0.79	0.73	0.67	_	0.80	0.74	0.65	—	0.84	0.63	0.58	_	0.69	0.56	0.50	—	0.64
8	Age category, years	4.40	4.40		1 10	0.04	o 		o o -	0.04	0 = 1		0.00		0 = 1		0 -1					0.45	0.44		0.04
9	19-39	1.16	1.12	—	1.19	0.61	0.57	_	0.65	0.61	0.54	—	0.69	0.60	0.51	_	0.71	0.26	0.22	_	0.30	0.15	0.11	_	0.21
10	40-49	0.97	0.94	—	1.01	0.75	0.70	_	0.80	0.81	0.73	_	0.91	0.68	0.59		0.79	0.46	0.40	_	0.54	0.38	0.30	_	0.48
11	50-59	ref	ref		ref	ref	ref		ref	ref	ref		ref	ref	ref		ref	ref	ref		ref	ref	ref		ref
12	60-69	1.01	0.99	—	1.03	1.29	1.23	—	1.34	1.16	1.08	—	1.25	1.32	1.21	—	1.46	1.95	1.81	_	2.10	2.86	2.55	—	3.20
13	70-79	0.81	0.79	—	0.83	1.43	1.37	—	1.49	1.00	0.92	_	1.08	1.49	1.36	—	1.64	2.60	2.41	_	2.79	5.93	5.32	_	6.61
	<u>>80</u>	0.96	0.93	—	0.99	1.81	1.71	_	1.91	0.95	0.87	_	1.04	1.62	1.45	_	1.82	5.06	4.68	_	5.46	13.86	12.37	_	15.53
14	White (vs not white)	1.21	1.14	—	1.28	0.88	0.81		0.97	1.23	1.02	_	1.49	0.74	0.61	_	0.91	1.10	0.95	_	1.27	0.87	0.74	_	1.04
15	Black vs(not Black)	1.49	1.40	_	1.58	1.36	1.24		1.50	1.53	1.26	—	1.85	1.10	0.89	_	1.35	1.05	0.90	_	1.22	0.78	0.66	—	0.94
16	Hispanic (vs not Hispanic)	1.07	1.04	_	1.10	1.16	1.10	—	1.22	1.23	1.13	—	1.35	1.03	0.92	—	1.15	1.07	0.99	_	1.14	1.13	1.04	_	1.24
17	Body-mass index category, kg/m ²																								
18	<18.5	1.35	1.29	—	1.42	1.14	1.01	-	1.29	1.51	1.31	—	1.73	1.35	1.06	—	1.72	2.48	2.33	—	2.65	1.81	1.59	—	2.07
19	18.5-24.9	ref	ref		ref	ref	ref		ref	ref	ref		ref	ref	ref		ref	ref	ref		ref	ref	ref		ref
20	25-29.9	0.75	0.73	—	0.76	0.81	0.78	—	0.85	0.70	0.65	_	0.74	0.89	0.82	—	0.97	0.54	0.52	—	0.56	0.73	0.68	—	0.79
21	30-34.9	0.67	0.65	—	0.68	0.76	0.73	—	0.80	0.62	0.57	—	0.66	0.88	0.81	—	0.96	0.42	0.40	—	0.44	0.69	0.64	—	0.74
22	35-39.9	0.63	0.61	—	0.65	0.76	0.72	—	0.80	0.57	0.52	_	0.62	0.85	0.76	—	0.94	0.37	0.35	—	0.40	0.64	0.59	—	0.70
	≥40	0.65	0.63	—	0.67	0.87	0.82	—	0.93	0.59	0.53	—	0.65	1.03	0.91	—	1.16	0.43	0.39	—	0.46	0.80	0.72	_	0.88
23	Tobacco use																								
24	Never	ref	ref		ref	ref	ref		ref	ref	ref		ref	ref	ref		ref	ref	ref		ref	ref	ref		ref
25	Former	1.25	1.23	—	1.28	1.11	1.08	—	1.15	1.12	1.06	—	1.19	1.10	1.02	-	1.17	1.09	1.04	—	1.13	1.18	1.12	—	1.24
26	Current	2.02	1.98	_	2.06	1.39	1.35	_	1.44	1.76	1.66	_	1.87	1.29	1.20		1.39	1.67	1.60	_	1.74	1.24	1.17	_	1.32
27	Urban/rural/highly rural residence																								
28	Highly rural	0.68	0.64	_	0.73	0.58	0.50	_	0.66	0.98	0.82	_	1.18	0.74	0.54	_	1.00	0.92	0.81	_	1.05	1.16	0.98	_	1.38
29	Rural	0.74	0.73	_	0.75	0.70	0.68	_	0.72	0.74	0.70	_	0.78	0.88	0.82	_	0.93	0.89	0.87	-	0.92	1.03	0.99	_	1.08
30	Urban	ref	ref		ref	ref	ref		ref	ref	ref		ref	ref	ref		ref	ref	ref		ref	ref	ref		ref
31	Unknown	0.25	0.18	_	0.35	0.27	0.10	_	0.75	0.35	0.13	_	0.94	0.55	0.08	_	3.99	0.80	0.51	_	1.25	1.77	0.73	_	4.30
32	Diabetes	1.18	1.16	_	1.20	1.30	1.27	_	1.34	1.26	1.21	_	1.32	1.26	1.19	_	1.34	1.41	1.36	_	1.45	1.37	1.31	_	1.43
33	Hypertension	1.22	1.19	_	1.24	1.30	1.25	_	1.35	1.30	1.22	_	1.39	1.29	1.19	_	1.41	1.09	1.04	_	1.14	0.96	0.90	_	1.02
	Cardiovascular disease	2.04	2.01	_	2.08	1.84	1.79	_	1.90	2.69	2.55	_	2.84	2.08	1.95	_	2.23	1.88	1.81	_	1.95	1.24	1.18	_	1.30
34	Heart failure	2.13	2.09	_	2.16	1.64	1.59	_	1.70	2.34	2.22	_	2.46	1.53	1.43	_	1.63	2.51	2.42	_	2.59	1.31	1.25	_	1.38
35	Alcohol use disorder	1.12	1.10	_	1.14	0.75	0.72	_	0.78	1.03	0.97	_	1.09	0.86	0.79	_	0.93	0.78	0.75	_	0.82	0.68	0.64	_	0.73
36							-																		
37	Estimated algoratular filtration rate, ml/min/1 72 m ²																								
38	Estimated glomerular filtration rate, ml/min/1.73 m ²	rof	rof		rof	rof	rof		rof	rof	rof		rof	rof	rof		rof	rof	rof		rof	rof	rof		rof
39	≥ 90	ref	ref		ref	ref	ref		ref	ref	ref		ref	ref	ref		ref	ref	ref		ref	ref	ref		ref
40	60-89 45 50	0.80	0.79	_	0.82	0.90	0.87	—	0.93	0.80	0.76		0.85	0.96	0.88	—	1.04	0.60	0.57	—	0.62	1.10	1.02	_	1.18
-	45-59	0.84	0.81	_	0.86	0.99	0.94	—	1.03	0.84	0.78	_	0.91	1.00	0.91	—	1.10	0.71	0.67	—	0.74	1.44	1.33	_	1.56
41	30-44	0.93	0.90	—	0.96	1.10	1.04	—	1.16	0.92	0.84	_	1.01	1.14	1.02	—	1.29	0.99	0.93	—	1.05	1.83	1.68	_	1.99
42	15-29	1.15	1.10	—	1.20	1.31	1.21	_	1.42	1.14	1.01	—	1.29	1.32	1.14	—	1.53	2.07	1.94	_	2.21	2.65	2.36	—	2.97
43	<15 or dialysis	1.60	1.52	—	1.69	1.46	1.33	_	1.60	1.77	1.56	—	2.00	1.51	1.29	—	1.77	3.07	2.85	_	3.32	2.48	2.16	—	2.85

44 Models additionally adjusted for month of diagnosis and geographic location by Veterans Integrated Service Network location

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

45 46 47

BMJ Open

Table 2b. Odds ratios from logistic regression models testing the association of active statin prescription at enrollment with adverse 30-day outcomes among VHA Veterans with and without a positive respiratory	!
swab for SARS-CoV-2, without adjustment for prior statin use	

1 2	swab for SARS-Cov-2, without adjustmen				No	o positi	ve swa	b, n=	4,568,6	89								≥1 pos	sitive s	wab, r	n=231,0	17			
2 3		Hos	spital a	dmiss	sion	IC	CU adm	issio	n		Dea	th		Hos	spital ad	dmiss	sion	IC	CU adm	nissio	n		Deat	:h	
3 4		OR	ć	95%C	I	OR	ę	95%C	l	OR	ç	95%C	;	OR	ç	95%C	;I	OR	ę	95%CI		OR	ę	95%CI	
	Active statin prescription at enrollment	0.75	0.74	_	0.76	0.80	0.76	_	0.83	0.58	0.56	—	0.59	0.94	0.91	—	0.96	0.93	0.88	_	0.98	0.78	0.75	—	0.82
5	Sex at birth, female	0.73	0.71	_	0.75	0.73	0.67	_	0.81	0.63	0.58	_	0.69	0.75	0.71	_	0.79	0.74	0.65	_	0.84	0.57	0.50	_	0.65
6	Age category, years																								
7	19-39	1.16	1.13	_	1.20	0.61	0.54	_	0.69	0.26	0.22	—	0.30	0.61	0.58	—	0.66	0.60	0.51	—	0.71	0.15	0.11	—	0.21
8	40-49	0.98	0.95	_	1.01	0.82	0.73	_	0.92	0.47	0.40	—	0.54	0.75	0.71	—	0.80	0.68	0.59	—	0.79	0.38	0.30	—	0.48
9	50-59	ref	ref		ref	ref	ref		ref	ref	ref		ref	ref	ref		ref	ref	ref		ref	ref	ref		ref
10	60-69	1.01	0.98	_	1.03	1.16	1.08	_	1.25	1.95	1.81	—	2.10	1.28	1.23	—	1.34	1.32	1.21	—	1.45	2.86	2.55	—	3.20
11	70-79	0.81	0.79	_	0.83	0.99	0.92	_	1.07	2.59	2.41	—	2.78	1.43	1.36	—	1.49	1.49	1.36	—	1.64	5.92	5.31	—	6.60
12	≥80	0.96	0.93	_	0.99	0.95	0.87	_	1.04	5.06	4.68	—	5.46	1.81	1.71	—	1.91	1.62	1.45	—	1.82	13.86	12.37	—	15.53
13	White (vs not white)	1.20	1.14	_	1.28	1.23	1.02		1.49	1.10	0.95	_	1.27	0.88	0.81	_	0.97	0.75	0.61	_	0.91	0.87	0.74	—	1.04
	Black vs(not Black)	1.49	1.40	—	1.58	1.53	1.26	-	1.86	1.05	0.90	—	1.22	1.37	1.24	—	1.50	1.10	0.89	—	1.35	0.78	0.66	—	0.94
14	Hispanic (vs not Hispanic)	1.07	1.04	—	1.10	1.23	1.13	_	1.35	1.06	0.99	_	1.14	1.16	1.10	_	1.22	1.03	0.92	—	1.15	1.13	1.04	_	1.24
15	Body-mass index category, kg/m ²																								
16	<18.5	1.35	1.29	_	1.42	1.51	1.32	_	1.74	2.49	2.33	_	2.65	1.14	1.02		1.29	1.35	1.06	_	1.72	1.82	1.59	_	2.07
17	18.5-24.9	ref	ref		ref	ref	ref		ref	ref	ref		ref	ref	ref		ref	ref	ref		ref	ref	ref		ref
18	25-29.9	0.75	0.73	_	0.76	0.70	0.65	_	0.74	0.54	0.52		0.56	0.81	0.78	_	0.85	0.89	0.82	_	0.97	0.73	0.68	_	0.79
19	30-34.9	0.67	0.65	_	0.68	0.61	0.57	_	0.66	0.42	0.40		0.44	0.76	0.73	_	0.80	0.88	0.81	_	0.96	0.68	0.64	_	0.74
20	35-39.9	0.63	0.61	_	0.64	0.57	0.52	_	0.62	0.37	0.35		0.40	0.76	0.72	_	0.80	0.85	0.76	_	0.94	0.64	0.59	_	0.70
21	≥40	0.65	0.63	_	0.67	0.58	0.53	_	0.65	0.43	0.39	_	0.46	0.87	0.81	_	0.92	1.03	0.91	_	1.16	0.79	0.72	_	0.88
22	Tobacco use																								
23	Never	ref	ref		ref	ref	ref		ref	ref	ref		ref	ref	ref		ref	ref	ref		ref	ref	ref		ref
	Former	1.25	1.22	_	1.27	1.12	1.05	_	1.19	1.09	1.04	_	1.13	1.11	1.08	-	1.15	1.10	1.02	_	1.17	1.18	1.12	_	1.24
24	Current	2.02	1.98	_	2.05	1.76	1.66	_	1.87	1.66	1.60	_	1.74	1.39	1.35	-	1.44	1.29	1.20	_	1.39	1.24	1.17	_	1.32
25	Urban/rural/highly rural residence																		•						
26	Highly rural	0.68	0.64	_	0.73	0.98	0.82	_	1.18	0.92	0.81	_	1.05	0.57	0.50	_	0.66	0.74	0.54	_	1.00	1.16	0.98	_	1.38
27	Rural	0.74	0.73	_	0.75	0.74	0.70	_	0.78	0.89	0.86	_	0.92	0.70	0.68	_	0.72	0.87	0.82	-	0.93	1.03	0.99	_	1.08
28	Urban	ref	ref		ref	ref	ref		ref	ref	ref		ref	ref	ref		ref	ref	ref		ref	ref	ref		ref
29	Unknown	0.25	0.18	_	0.35	0.35	0.13	_	0.94	0.80	0.51	_	1.25	0.27	0.10	_	0.74	0.55	0.08	_	3.98	1.75	0.72	_	4.27
30	Diabetes	1.17	1.15	_	1.19	1.25	1.20	_	1.31	1.40	1.36	_	1.45	1.30	1.26	_	1.33	1.26	1.19	_	1.33	1.36	1.30	_	1.42
31	Hypertension	1.21	1.19	_	1.24	1.29	1.21	_	1.38	1.09	1.04	_	1.13	1.30	1.25	_	1.35	1.29	1.18	_	1.41	0.96	0.90	_	1.02
32	Cardiovascular disease	2.03	2.00	_	2.07	2.67	2.53	_	2.82	1.87	1.80		1.94	1.84	1.78		1.89	2.08	1.94	_	2.23	1.24	1.18	_	1.30
	Heart failure	2.12	2.08	_	2.16	2.33	2.21	_	2.45	2.50	2.41	_	2.59	1.64	1.59		1.70	1.53	1.43	_	1.63	1.31	1.25	_	1.38
33	Alcohol use disorder	1.12	1.10	_	1.14	1.03	0.97	_	1.09	0.78	0.75	_	0.82	0.75	0.73	_	0.78	0.86	0.79	_	0.93	0.68	0.64	_	0.73
34			-																						0.70
35	Estimated glomerular filtration rate,																								
36	ml/min/1.73 m² ≥ 90	rof	rof		rof	rof	rof		rof	rof	ref		rof	ref	rof		rof	ref	rof		rof	ref	rof		rof
37		ref	ref 0.79		ref	ref	ref		ref	ref	0.57		ref		ref		ref	0.96	ref 0.88		ref		ref		ref 1.18
38	60-89 45-59	0.80		_	0.82 0.86	0.80	0.75 0.78		0.85 0.91	0.60 0.71	0.57 0.67	_	0.62 0.74	0.90	0.86	_	0.93 1.03		0.88	_	1.04	1.09 1.44	1.02	—	1.18
39			0.81			0.84						_	-	0.98	0.94			1.00		_	1.09		1.33	—	
40	30-44	0.93	0.90	—	0.96	0.92	0.84	_	1.01	0.99	0.93	_	1.05	1.10	1.04	_	1.16	1.14	1.02	_	1.29	1.83	1.68	—	1.99
	15-29	1.14	1.09	_	1.20	1.14	1.01	_	1.29	2.07	1.94	_	2.21	1.31	1.21	_	1.42	1.32	1.14	_	1.53	2.65	2.36	—	2.97
41 42	<15 or dialysis	1.60	1.52	_	1.69	1.77	1.56	_	2.01	3.08	2.85	—	3.32	1.46	1.33	_	1.60	1.51	1.29	—	1.77	2.48	2.16	_	2.85

Models additionally adjusted for month of diagnosis and geographic location by Veterans Integrated Service Network location

 Table 3. Odds ratios from logistic regression models testing the association of specific statins compared to no statin with adverse 30-day outcomes among VHA

 Veterans with a positive respiratory swab for SARS-CoV-2, n=231,017

		Hosp	ital a	dmissio	on		ICI	U adm	nission			0	Death	<u>ا</u>	
	OR	9	95% C		p value	OR	9	95% C		p value	OR	95	% CI		p value
No statin	ref					ref					ref				
Atorvastatin	0.98	0.95	_	1.01	0.136	0.96	0.90	—	1.02	0.194	0.80	0.76	_	0.84	< 0.00
Fluvastatin	1.47	0.45		4.82	0.524	1.79	0.23	—	13.80	0.577	0.55	0.07		4.43	0.57
Lovastatin	0.73	0.57		0.93	0.012	0.48	0.26	—	0.90	0.022	0.64	0.45		0.91	0.01
Pitavastatin	0.45	0.16		1.26	0.128	0.66	0.09	—	4.80	0.679	0.82	0.25		2.68	0.73
Pravastatin	0.93	0.86	_	1.00	0.045	0.94	0.81	—	1.10	0.443	0.78	0.70	_	0.87	<0.00
Rosuvastatin	0.81	0.76		0.86	<0.001	0.82	0.72	—	0.93	0.002	0.72	0.65		0.79	<0.00
Simvastatin	0.91	0.86	_	0.97	0.001	0.91	0.80	_	1.02	0.107	0.77	0.71	_	0.84	<0.00
Sex at birth, female	0.75	0.71	_	0.80	<0.001	0.74	0.65	_	0.84	<0.001	0.57	0.50		0.65	<0.00
Age category, years															
19-39	0.61	0.58	—	0.66	<0.001	0.60	0.51	—	0.71	<0.001	0.15	0.11	_	0.21	<0.00
40-49	0.75	0.71		0.80	<0.001	0.68	0.59	_	0.79	<0.001	0.38	0.30	_	0.48	<0.00
50-59	ref					ref					ref				
60-69	1.28	1.23	_	1.34	<0.001	1.32	1.21	—	1.45	<0.001	2.85	2.55	_	3.20	<0.00
70-79	1.43	1.36	_	1.49	<0.001	1.49	1.36	_	1.64	<0.001	5.92	5.31		6.60	<0.00
≥80	1.81	1.71	_	1.91	<0.001	1.62	1.45	_	1.82	<0.001	13.86	12.37	_	15.54	<0.00
White (vs. not white)	0.88	0.81	_	0.97	0.007	0.75	0.61	_	0.91	0.004	0.88	0.74	_	1.04	0.12
Black (vs. not Black)	1.36	1.24		1.50	<0.001	1.10	0.89		1.35	0.390	0.78	0.66		0.94	0.00
Hispanic (vs. not Hispanic)	1.16	1.10	_	1.22	<0.001	1.03	0.92	_	1.15	0.633	1.13	1.04	_	1.24	0.00
Body-mass index category, kg/m ²								N							
<18.5	1.15	1.02	_	1.29	0.025	1.35	1.06	_	1.73	0.015	1.82	1.59	_	2.08	<0.00
18.5-24.9	ref					ref					ref				
25-29.9	0.81	0.78	_	0.85	<0.001	0.89	0.82	_	0.97	0.006	0.73	0.68	_	0.79	<0.00
30-34.9	0.76	0.73		0.80	<0.001	0.88	0.81	_	0.97	0.006	0.68	0.64		0.74	<0.00
35-39.9	0.76	0.72	_	0.80	<0.001	0.85	0.76	_	0.94	0.002	0.64	0.59	_	0.70	<0.00
≥40	0.87	0.81		0.92	<0.001	1.03	0.91	_	1.16	0.675	0.79	0.72		0.88	<0.00
Tobacco use															
Never	ref														
Former	1.11	1.08		1.15	<0.001	1.10	1.02	_	1.17	0.010	1.18	1.12		1.24	<0.00
Current	1.39	1.35		1.44	<0.001	1.29	1.20	_	1.39	<0.001	1.24	1.17		1.32	<0.00
Urban/rural/highly rural residence															
Highly rural	0.57	0.50		0.66	<0.001	0.74	0.54	_	1.00	0.051	1.16	0.97	_	1.38	0.09
Rural	0.70	0.68		0.72	<0.001	0.88	0.82	_	0.93	<0.001	1.04	0.99	_	1.08	0.14
Urban	ref					ref					ref				
Unknown	0.27	0.10		0.74	0.011	0.55	0.08	_	3.96	0.549	1.75	0.72	_	4.25	0.22
Diabetes	1.29	1.26	_	1.33	< 0.001	1.26	1.19	_	1.33	< 0.001	1.36			1.42	<0.00
Hypertension	1.30	1.25	_	1.35	< 0.001	1.29	1.18	_	1.41	< 0.001	0.96			1.02	0.14
Cardiovascular disease	1.84	1.78	_	1.89	< 0.001	2.08	1.94	_	2.23	< 0.001	1.24			1.30	<0.00
Heart failure	1.64	1.58	_	1.69	<0.001	1.53	1.43		1.63	<0.001	1.31	1.25		1.38	<0.00

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

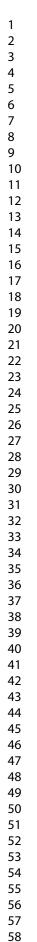
Table 3 CONTINUED. Odds ratios from logist	c regression models testing the association of individual statins compared to no statin with adverse 30-day outcomes
among VHA Veterans with a positive respirato	

nated glomerular filtration rate,															
in/1.73 m ²															
	ref					ref					ref				
9	0.90	0.87	_	0.93	<0.001	0.96	0.88	_	1.04	0.273	1.10	1.02	_	1.18	0.018
9	0.99	0.94	_	1.03	0.519	1.00	0.91	_	1.10	0.941	1.44	1.33	_	1.56	<0.001
4	1.10	1.04	—	1.16	0.001	1.15	1.02	—	1.29	0.024	1.83	1.68	—	1.99	<0.001
9	1.31	1.21	_	1.42	<0.001	1.32	1.14	_	1.53	<0.001	2.65	2.36	_	2.97	<0.001
or dialysis	1.45	1.32		1.59	<0.001	1.51	1.29	—	1.77	<0.001	2.48	2.16		2.84	<0.001
	in/1.73 m² 9 9 4 9	in/1.73 m ² ref 0.90 0.99 1.10 1.31	in/1.73 m ² ref 0.90 0.87 0.99 0.94 1.10 1.04 1.31 1.21	in/1.73 m ² ref 0.90 0.87 — 0.99 0.94 — 1.10 1.04 — 1.31 1.21 —	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					

Models additionally adjusted for month of diagnosis and geographic location by Veterans Integrated Service Network location; not adjusted for the presence of an active statin prescription six months prior to enrollment tor peer review only

Table 4. Odds ratios from logistic regression models testing the association of low- or moderate- vs. high-potency active statin prescription at enrollment with adverse 30-day
outcomes among VHA Veterans with a positive respiratory swab for SARS-CoV-2, n=69,263

		Hospit	tal ac	dmissio	n		IC	U adm	nission				Dea	ith	
	OR	95	5% C	I	p value	OR	9	95% C		p value	OR		95% C		p valu
High-potency statin	1.06	1.01	_	1.10	0.011	1.05	0.96	—	1.15	0.258	0.97	0.91	_	1.04	0.4
Sex at birth, female	0.89	0.80	_	1.00	0.041	0.95	0.75	_	1.19	0.634	0.52	0.40	_	0.68	<0.0
Age category, years															
19-39	0.82	0.63	—	1.06	0.123	0.46	0.22	—	0.98	0.045	0.10	0.01	—	0.73	0.0
40-49	0.74	0.64	—	0.86	<0.001	0.55	0.38	—	0.79	0.001	0.45	0.27	—	0.75	0.0
50-59	ref					ref					ref				
60-69	1.30	1.20	—	1.40	<0.001	1.24	1.06	—	1.45	0.009	2.45	2.02	—	2.96	<0.0
70-79	1.47	1.36	—	1.58	<0.001	1.47	1.25	—	1.72	<0.001	4.42	3.67	—	5.32	<0.0
≥80	1.95	-	—	2.15	<0.001	1.69	1.40	—	2.04	<0.001	9.54	7.84	—	11.60	<0.0
White (vs not white)	0.81	0.69	—	0.96	0.012	0.75	0.52	—	1.08	0.118	0.85	0.64	—	1.11	0.2
Black vs(not Black)	1.31	1.10	—	1.55	0.002	1.12	0.77	—	1.63	0.545	0.80	0.60	—	1.06	0.1
Hispanic (vs not Hispanic)	1.12	1.02	—	1.22	0.013	0.91	0.75	—	1.10	0.330	1.20	1.04	—	1.38	0.0
Body-mass index category, kg/m ²															
<18.5	1.04	0.79	-	1.38	0.766	1.19	0.71	—	1.98	0.511	1.45	1.02	—	2.05	0.0
18.5-24.9	ref					ref					ref				
25-29.9	0.81	0.75	-	0.86	<0.001	0.89	0.77	—	1.02	0.095	0.78	0.70	—	0.87	<0.0
30-34.9	0.78	0.73	_	0.84	<0.001	0.92	0.80	—	1.07	0.272	0.78	0.70	—	0.87	<0.0
35-39.9	0.78	0.71	—	0.85	<0.001	0.90	0.76	—	1.06	0.188	0.75	0.67	—	0.85	<0.0
≥40	0.86	0.77	_	0.95	0.002	1.08	0.89	—	1.30	0.452	0.91	0.78	—	1.06	0.2
Tobacco use															
Never	ref					ref					ref				
Former	1.18	1.12	—	1.25	<0.001	1.16	1.03	—	1.30	0.013	1.29	1.18	—	1.40	<0.0
Current	1.36	1.28	_	1.44	<0.001	1.36	1.19	—	1.55	<0.001	1.21	1.09	_	1.34	<0.0
Urban/rural/highly rural residence															
Highly rural	0.59	0.47	—	0.73	<0.001	0.93	0.61	-	1.42	0.728	1.40	1.08		1.82	0.0
Rural	0.68	0.65	—	0.72	<0.001	0.87	0.79	-	0.96	0.006	1.05	0.97		1.12	0.2
Urban	ref					ref					ref				
Unknown	0.17	0.02	—	1.26	0.083	1.69	0.22	—	12.83	0.612	1.41	0.31	—	6.48	0.6
Diabetes	1.29		—	1.35	<0.001	1.16	1.05	—	1.27	0.003	1.31	1.22	—	1.41	<0.0
Hypertension	1.28		—	1.39	<0.001	1.38	1.14	—	1.67	0.001	0.98	0.85		1.11	0.7
Cardiovascular disease	1.71		—	1.80	<0.001	1.96	1.75	—	2.21	<0.001	1.25	1.14	—	1.36	<0.0
Heart failure	1.68	1.60	—	1.77	<0.001	1.58	1.44	—	1.74	<0.001	1.33	1.23		1.43	<0.0
Alcohol use disorder	0.66	0.62	—	0.71	<0.001	0.81	0.71	—	0.94	0.004	0.69	0.61	—	0.77	<0.0
Estimated glomerular filtration rate, ml/min/1.73 m ²															
≥ 90	ref					ref					ref				
60-89	0.98	0.92	—	1.05	0.625	1.05	0.91	—	1.20	0.538	1.14	1.01	—	1.29	0.0
45-59	1.08		_	1.16	0.050	1.05	0.90	_	1.24	0.530	1.58		_	1.82	<0.0
30-44	1.21	1.10	—	1.32	<0.001	1.20	1.00	—	1.44	0.055	2.00	1.72	—	2.33	<0.0
15-29	1.53	1.35	—	1.72	<0.001	1.37	1.09	—	1.72	0.007	3.19	2.69	—	3.78	<0.0
<15 or dialysis	1.64	1.42	_	1.90	<0.001	1.95	1.52	_	2.50	<0.001	3.01	2.44	_	3.73	<0.0


Models additionally adjusted for month of diagnosis and geographic location by Veterans Integrated Service Network location; not adjusted for the presence of an active statin prescription six months prior to enrollment

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

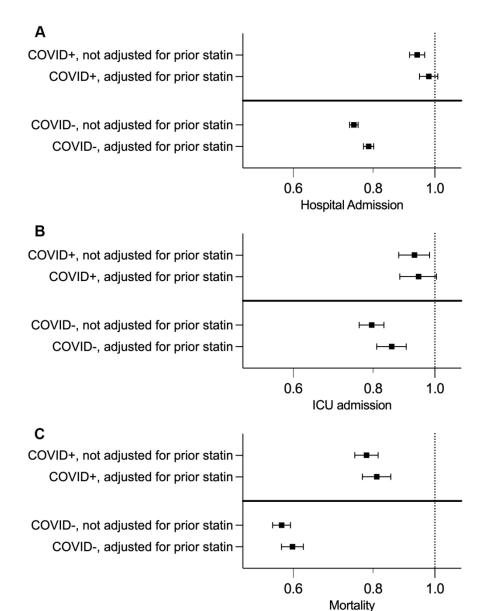

Figure Legend

Fig. 1. ORs and 95% confidence intervals for associations of statin use at study enrollment with A) hospitalization, B) ICU admission, and C) death at 30 days before and after adjustment for statin use six months prior to diagnosis among VHA Veterans with and without a positive respiratory swab for SARS-CoV-2. All analyses are adjusted for sex, age, race/ethnicity, BMI, tobacco use, facility location, urban/rural status, eGFR, and history of diabetes, hypertension, cardiovascular disease, heart failure, and alcohol use disorder.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

123x166mm (300 x 300 DPI)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 25
25
26

Subgroup	No. of participants	OR (95% CI)	P for interaction
All participants	231017		
Sex at birth			0.001
Male	207043		
Female	23974	. ⊢ ∎–⊣	
Age group			0.018
<40	32620	<u>⊢÷</u> •+-1	
40-49	26203	i i i i i i i i i i i i i i i i i i i	
50-59	40006		
60-69	46214	HEH	
70-79	61261	: H ar i	
80+	24713	. ⊢ ∎⊣	
Body-mass index category, kg/m ²			0.468
<18.5	1169		
18.5-24.9	22127	: +=	
25-29.9	51658	H B -1	
30-34.9	48458	+∎-1	
35-39.9	25270		
≥ 40	14751	·	
Estimated glomerular filtration rate, ml/min/1.73 m ²			< 0.0001
≥ 90	48018	:	010001
60-89	84749	E HEH	
45-59	25687		
30-44	11165		
15-29	3714		
<15 or dialysis	2513		
Diabetes	2010		0.412
No	145649	HEH	0.112
Yes	85368		
Hypertension	00000		0.838
No	84566	+	0.000
Yes	146451		
Cardiovascular disease	140401	-	0.171
No	134672	H#H	0.171
Yes	96345		
White race	00040	-	0.069
No	74643	H	0.000
Yes	156374		
Black race	100014	-	0.022
No	178663		0.022
Yes	52354		
Latino ethnicity	0E00T		0.324
No	208138		0.024
Yes	22879		
Prior CRP high	22013		0.455
No	34292	⊦∎₁	0.400
Yes	27601		
165	2/001		Г
	0.5	0 0.75 1.0 1	.25

762x1005mm (72 x 72 DPI)

1
2
3
4
5 6
7
8
9
10 11
12
13
14
15 16
17
18
19
20
21 22
23
24
25
26 27
27
29
30
31
32 33
34
35
36 37
37 38
39
40
41
42 43
43 44
45
46
47 49
48 49
50
51
52
53 54
55
56
57

57 58 59

60

Subgroup	No. of participants	OR (95% CI)	P for interaction
All participants	231017	H	
Sex at birth			0.024
Male	207043	H	
Female	23974	⊢ →	
Age group			0.397
<40	32620	←	
40-49	26203	← ■	
50-59	40006	i . ■ I	
60-69	46214	; 	
70-79	61261	⊢ ∎ -1	
80+	24713	⊢ -	
Body-mass index category, kg/m ²			0.984
<18.5	1169	$\leftarrow \bullet \downarrow \rightarrow$	
18.5-24.9	22127	·	
25-29.9	51658	⊢ ∎1	
30-34.9	48458	i⊢∎_1	
35-39.9	25270	·	
≥ 40	14751	i	
Estimated glomerular filtration rate, ml/min/1.73 m ²			0.066
≥ 90	48018		01000
60-89	84749		
45-59	25687		
30-44	11165	· - ·	
15-29	3714		
<15 or dialysis	2513		
Diabetes	2010		0.166
No	145649		0.100
Yes	85368		
Hypertension	00000		0.329
No	84566		0.020
Yes	146451	· · ·	
Cardiovascular disease	140451		0.99
No	134672	:	0.55
Yes	96345		
White race	90345		0.968
No	74643	F=	0.966
Yes	156374		
Black race	150374		0.352
	170000		0.352
No	178663	H B -1	
Yes	52354	. ⊢ ∎⊣	0.044
Latino ethnicity	000100	·	0.044
No	208138		
Yes	22879		0.007
Prior CRP high			0.987
No	34292		
Yes	27601		
		0.50 0.75 1.0 1.25	
	← Favors	prior statin use Favors no prior st	
		•	

762x1005mm (72 x 72 DPI)

1
2
3
4
5
6
7
8
~
9
9 10
-
10
10 11
10 11 12
10 11 12 13
10 11 12 13 14

Subgroup	No. of participants	OR (95% CI)	P for interaction
All participants	231017		
Sex at birth			0.991
Male	207043	.	
Female	23974	\leftarrow	
Age group			< 0.0001
<40	32620	\leftarrow	
40-49	26203	\leftarrow	() () () () () () () () () ()
50-59	40006	÷	
60-69	46214	·	
70-79	61261	H	
80+	24713	H	
Body-mass index category, kg/m²			< 0.0001
<18.5	1169	<i< td=""><td></td></i<>	
18.5-24.9	22127		
25-29.9	51658	i ⊢ ∎i	
30-34.9	48458	: 	
35-39.9	25270	. ⊢ ∎–⊣	
≥ 40	14751		
Estimated glomerular filtration rate, ml/min/1.73 m ²			0.223
≥ 90	48018	⊢ •−−1	
60-89	84749	i-∎-i	
45-59	25687	·-∎	
30-44	11165	;	
15-29	3714	· · · · · ·	
<15 or dialysis	2513	<u>⊢</u>	
Diabetes			0.539
No	145649	⊢ i ∎⊣	
Yes	85368	₩ E H	
Hypertension			0.6
No	84566	⊢ ∎	
Yes	146451	i i i i i i i i i i i i i i i i i i i	
Cardiovascular disease			0.306
No	134672	⊢ ∎-1	
Yes	96345	H E H	
White race			0.029
No	74643	⊢ ∎-1	
Yes	156374	H	
Black race			0.006
No	178663	÷=+	
Yes	52354	→	
Latino ethnicity			0.06
No	208138	-	
Yes	22879	H	
Prior CRP high			0.875
No	34292	⊢≢⊸≀ │	
Yes	27601	⊢∎⊣	

762x1005mm (72 x 72 DPI)

STROBE Statement—Checklist of items that should be included in reports of cohort studies

	Item No	Recommendation	Pag No
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the	
		abstract	
		(b) Provide in the abstract an informative and balanced summary of what was	1
		done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4
Objectives	3	State specific objectives, including any prespecified hypotheses	4
Methods			
Study design	4	Present key elements of study design early in the paper	4
Setting	5	Describe the setting, locations, and relevant dates, including periods of	5
0		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of	5
		participants. Describe methods of follow-up	
		(b) For matched studies, give matching criteria and number of exposed and	
		unexposed	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and	6
		effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	6
measurement		assessment (measurement). Describe comparability of assessment methods if	
		there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	6
Study size	10	Explain how the study size was arrived at	5
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,	6
		describe which groupings were chosen and why	
Statistical methods	12	(a) Describe all statistical methods, including those used to control for	
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	6
		(c) Explain how missing data were addressed	
		(d) If applicable, explain how loss to follow-up was addressed	
		(<u>e</u>) Describe any sensitivity analyses	
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	7
i ui tioipuilto	15	eligible, examined for eligibility, confirmed eligible, included in the study,	
		completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social)	7
Descriptive dutu	17	and information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	
		(c) Summarise follow-up time (eg, average and total amount)	
		(c) Summarise follow up time (cg, average and total amount)	-

Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	
		(<i>c</i>) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	Ť
Other informatio	on		
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	Τ

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.

BMJ Open

Associations of statin use with 30-day adverse outcomes among 4,801,406 U.S. Veterans with and without SARS-CoV-2: An observational cohort study

Article Type: Date Submitted by the Author: Complete List of Authors:	bmjopen-2021-058363.R1 Original research 22-Dec-2021 Wander, Pandora; VA Puget Sound Health Care System Seattle Division; University of Washington, Department of Medicine
Date Submitted by the Author: Complete List of Authors:	22-Dec-2021 Wander, Pandora; VA Puget Sound Health Care System Seattle Division;
Author: Complete List of Authors:	Wander, Pandora; VA Puget Sound Health Care System Seattle Division;
	Lowy, Elliott; Veterans Affairs Puget Sound Health Care System; University of Washington, Department of Health Systems and Population Health Beste, Lauren A.; Veterans Affairs Puget Sound Health Care System; University of Washington, Department of Medicine Tulloch-Palomino, Luis; Veterans Affairs Puget Sound Health Care System; University of Washington, Department of Medicine Korpak, Anna; Veterans Affairs Puget Sound Health Care System Peterson, Alexander; Veterans Affairs Puget Sound Health Care System Kahn, Steven E.; University of Washington Danaei, Goodarz; Harvard School of Public Health, Department of Global Health and Population Boyko, Edward J.; Veterans Affairs Puget Sound Health Care System, Seattle Epidemiologic Research and Information Center
Primary Subject Heading :	Public health
Secondary Subject Heading:	Epidemiology, Infectious diseases, General practice / Family practice
Keywords:	COVID-19, Epidemiology < TROPICAL MEDICINE, INTERNAL MEDICINE

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

Associations of statin use with 30-day adverse outcomes among 4,801,406 U.S. Veterans with and without SARS-CoV-2: An observational cohort study Authors: Pandora L Wander, MD, MS^{a,b}; Elliott Lowy, PhD^{a,c}; Lauren A Beste, MD, MSc^{a,b}; Luis Tulloch-Palomino, MD^{a,b}; Anna Korpak, PhD^a; Alexander C Peterson, MSc^a; Steven E Kahn, MB, ChB^{a,b}; Goodarz Danaei, MD, ScD^d; Edward J Boyko, MD, MPH^{a,b} Affiliations: ^aVeterans Affairs Puget Sound Health Care System, Seattle, WA ^bDepartment of Medicine, University of Washington, Seattle, WA ^cDepartment of Health Systems and Population Health, University of Washington, Seattle, WA ^dDepartments of Global Health and Population, Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA Correspondence to: Pandora L. Wander VA Puget Sound Healthcare System 1660 S. Columbian Way, S-111-MED Seattle, WA 98108 lwander@u.washington.edu ORCID: 0000-0003-3671-1464 Running title: Statin use and 30-day outcomes in SAR-CoV-2 Word count (not including title, abstract, acknowledgment, references, tables, and figure legends): 2,900

BMJ Open

ABSTRACT

Objective: To estimate associations of statin use with hospitalization, intensive care unit (ICU) admission, and mortality at 30 days among individuals with and without a positive test for SARS-CoV-2

Design: Retrospective cohort study

Setting: U.S. Veterans Health Administration (VHA)

Participants: All Veterans receiving VHA health care with \geq 1 positive nasal swab for SARS-CoV-2 between March 1, 2020 and March 10, 2021 (cases; n=231,154) and a comparator group of controls comprising all Veterans who did not have a positive nasal swab for SARS-CoV-2 but who did have \geq 1 clinical lab test performed during the same time period (n=4,570,252).

Main outcomes: Associations of (1) Any statin use, (2) use of specific statins, or (3) low-/moderate- vs. highintensity statin use at the time of positive nasal swab for SARS-CoV-2 (cases) or result of clinical lab test (controls) assessed from pharmacy records with hospitalization, ICU admission, and death at 30 days. We also examined whether associations differed between individuals with and without a positive test for SARS-CoV-2.

Results: Among individuals who tested positive for SARS-CoV-2, statin use was associated with lower odds of death at 30 days (OR 0.81 [95%CI 0.77–0.85]) but not with hospitalization or ICU admission. Associations were similar comparing use of each specific statin to no statin. Compared to low-/moderate-intensity statin use, high-intensity statin use was not associated with lower odds of ICU admission or death. Over the same time period, associations of statin use with 30-day outcomes were significantly stronger among individuals without a positive test for SARS-CoV-2: hospitalization OR 0.79 (95%CI 0.77–0.80), ICU admission OR 0.86 (95%CI 0.81–0.90), and death 0.60 (95%CI 0.58–0.62), p for interaction all <0.001.

Conclusions: Associations of statin use with lower adverse 30-day outcomes are weaker among individuals who tested positive for SARS-CoV-2 compared to individuals without a positive test, indicating that statins do not exert SARS-CoV-2–specific effects.

Strengths and limitations of this study

- Large, well characterized national (U.S.) sample
- First study to formally assess and compare statin effects seen in SARS-CoV-2 infection using a negative control
- Observational design cannot exclude the possibility of residual confounding
 - Did not capture hospitalizations or diagnoses occurring outside VHA

Funding Source: VA Clinical Science Research & Development COVID19-8990-19

BMJ Open

INTRODUCTION

New cases of COVID-19/SARS-CoV-2 infection continue to occur at high rates in the United States and worldwide with few treatments available to decrease mortality. Statin use at the time of COVID-19 diagnosis has been associated with a lower risk of short-term mortality in observational studies¹ and systematic reviews². Based on these early findings and their demonstrated effects on inflammation, oxidative stress, and immune responses, statins have been proposed as a low-cost, accessible, and effective treatment for COVID-19³. However, an inverse association of statin use with mortality is not uniformly seen across observational studies of persons with COVID-19^{4 5}. Further, preliminary findings from a randomized placebo-controlled trial of patients admitted to the ICU did not show a protective effect of atorvastatin 20 mg/day on 30-day mortality after COVID-19 diagnosis, among patients not taking statins prior to admission⁶. These paradoxical findings may reflect the presence of residual confounding in observational studies. In addition, effects of statins on mortality after COVID-19 may differ across populations, for example, among individuals with or without cardiovascular disease (CVD), or specific to certain statins but not all medications in this class. Therefore, observational studies with comprehensive strategies to examine potential bias from unmeasured confounding—such as the use of negative control populations²—are needed to improve estimates of the potential causal effect of statin use at diagnosis on mortality after COVID-19.

To address these gaps, we used national data from the Veterans Health Administration (VHA) to quantify the independent association of statin use at diagnosis with adverse outcomes from COVID-19 at 30 days, including hospitalization, intensive-care unit (ICU) admission, and mortality. We used the following strategies to mitigate or estimate bias: 1) directed-acyclic graphs to guide the choice of potential confounders; 2) comparison of associations among SARS-CoV-2 infected individuals (n=231,154) with associations among an uninfected comparator sample (n=4,570,252); and 3) a dose-response analysis comparing low- or moderate-intensity statin use to high-intensity use. In additional analyses, we investigated associations of individual statins with 30-day outcomes after COVID-19 and evaluated the magnitude of the statin-mortality association in strata of sex, age, race, BMI, clinical comorbidities, and C-reactive protein (CRP) level prior to diagnosis.

METHODS

Study setting and population

The Veterans Health Administration (VHA)—the largest integrated healthcare system in the United States provides care to more than 7 million Veterans at 170 medical centers and 1,074 outpatient sites⁷. We used data from the Corporate Data Warehouse (CDW), a data repository derived from VHA's integrated electronic medical record, including a COVID-19 Shared Data Resource, which contains analytic variables for all enrollees tested for SARS-CoV-2⁸. The study was approved by the institutional review board at VA Puget Sound Health Care System. The requirement for informed consent was waived.

Patient and public involvement

Patients or the public were not involved in the design, or conduct, or reporting, or dissemination plans of our research

Selection of the SARS-CoV-2–positive cohort

We identified all enrollees with one or more positive nasal swabs for SARS-CoV-2 between March 1, 2020, and March 10, 2021. The index date was defined as the date the first positive test was performed. Most tests were performed in VA laboratories using US Food and Drug Administration (FDA)–approved RealTime (Abbott Laboratories) or Xpert-Xpress (Cepheid) SARS-CoV-2 assays. A small number were sent to outside laboratories.

Selection of the SARS-CoV-2–negative cohort

Individuals without a positive nasal swab for SARS-CoV-2 and with any clinical lab test available in the medical record between March 1, 2020, and March 31, 2021, were chosen as a comparison group. A negative nasal swab for SARS-CoV-2 was not required for inclusion. Participants without a positive nasal swab for SARS-CoV-2 was not required for inclusion. Participants without a positive nasal swab for SARS-CoV-2 were assigned an index month during the study period for which they had a lab result, and a random index date during the index month which was used as the start of follow-up.

Exposure

BMJ Open

Current statin use was defined as receipt of a statin prescription with a fill date prior to the index date and a quantity prescribed that would extend past the index date. Statin intensity was defined as low, moderate, or high using definitions from the American Heart Association/American College of Cardiology guidelines on management of cholesterol⁹ and was calculated based on the specific statin and dosage prescribed. Prescribing data were available for the following specific statins: Atorvastatin, fluvastatin, lovastatin, pitavastatin, pravastatin, rosuvastatin, simvastatin. We defined prior statin use as receipt of a statin prescription with a fill date that included the time period six months prior to the index date.

Covariates

We collected data on age, sex, race/ethnicity, VHA facility location, and urban, rural, or highly rural residence using a validated classification scheme that has been previously described¹⁰. Body mass index (BMI) was defined as weight in kg divided by (height in meters)². Smoking status was classified as current, former, or never based on VHA health factors data. If no smoking code was entered, the participant was classified as never smoked. At-risk drinking was defined using a score \geq 3 for men and \geq 4 for women on the Alcohol Use Disorders Identification Test consumption questions (AUDIT-C)¹¹. Comorbidities (hypertension (HTN), CVD, and heart failure) were identified using ICD-9-CM and -10 codes entered after October 1, 1999, the date when VHA began using a universal electronic health record¹². We defined chronic kidney disease (CKD) by categories of estimated glomerular filtration rate¹³ using the most recent creatinine at least 3 days, but not more than 1 year, before the index date. For individuals with data available on CRP at least 14 days but not more than six months before the index date (n=27,630), we dichotomized CRP values as normal or elevated based on cut points provided for each assay at the testing site because a variety of assays for these biomarkers are used across the VA system.

Outcomes

In both groups, we collected data on 30-day hospitalizations, ICU admissions, and deaths occurring through March 10, 2021. Deaths were verified by official sources including VHA Patient Treatment File, the Beneficiary Identification Records Locator Subsystem (BIRLS), and VA/CMS Medicare Vital Status File; Social Security Administration (SSA) Death Master File; death certificates, and VHA National Cemetery Administration¹⁴.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Statistical analyses

We summarized baseline characteristics for SARS-CoV-2 infected and uninfected participants, stratified by statin use at the index date. We used multiple imputation with 10 sets of imputations for analyses that included BMI or CKD due to approximately 20% missing values for each of these variables. We used DAGitty¹⁵ to generate a directed acyclic graph (DAG) to assist in variable selection. We fit separate logistic regression models for individuals with and without a positive swab for SARS-CoV-2, testing the association of statin use at index date with occurrence of hospitalization, ICU admission, and death, adjusting for the minimal sufficient covariate set to estimate the total effect of statin use according to our DAG (statin use \geq six months prior to diagnosis, sex, age, race/ethnicity, BMI, tobacco use, facility location, index month, urban/rural status, eGFR, and history of diabetes, hypertension, cardiovascular disease, heart failure, and alcohol use disorder) separately. Index month was included as a precision variable. Facility location was included because both patterns of statin use and COVID-19 outcomes are expected to differ by region in the US. In combined models, we tested for the presence of multiplicative first-order interactions to determine whether the association between statins and odds of hospitalization, ICU admission, and death at 30 days differed between persons with and without a positive swab for SARS-CoV-2. We also controlled for prior statin use to approximate a comparison of incident users and non-users. In a sensitivity analysis, we examined associations of statin use at diagnosis with occurrence of hospitalization, ICU admission, and death in models that were not adjusted for statin use six months prior to diagnosis.

Among individuals with a positive swab for SARS-CoV-2, we fit logistic regression models examining associations of specific statins compared to no statin use with outcomes adjusted for sex, age, race/ethnicity, BMI, tobacco use, facility location, urban/rural status, eGFR, and history of diabetes, hypertension, cardiovascular disease, heart failure, and alcohol use disorder, as well as models comparing low-intensity to moderate- or high-intensity statin use. We evaluated the magnitude of the statin-mortality association in strata of sex, age, race, BMI, clinical comorbidities, and prior CRP concentration and tested for first-order multiplicative interactions by using interaction terms in combined models.

 BMJ Open

Role of the funding source

The analysis was funded by VA Clinical Science Research & Development, which had no role in its design, conduct, analysis, or reporting.

RESULTS

SARS-CoV-2 infected participants were 60.9 years old (±16.5) on average, and 10% percent (n= 23,974) were female. Thirty percent (69,263) had an active statin prescription at enrollment. During the 30 days after diagnosis, 14% (32,490) of SARS-CoV-2 infected participants were hospitalized, 3% (6,140) were admitted to the ICU, and 5% (12,111) died. SARS-COV-2 uninfected participants were 61.6 years old (±16.7) on average, and 13% (577,718) were female. Thirty percent (1,389,364) had an active statin prescription at enrollment. During the 30 days after the index date, 2% (91,604) were hospitalized, 0.2% (9,298) were admitted to the ICU, and 0.4% died (n=19,298). Statin users were more likely to be of white race/ethnicity, have BMI of 30 kg/m2 or greater, be former smokers, and reside in a rural zip code regardless of SARS-CoV-2 test result. Not surprisingly, statin users were receiving hi potency therapy among participants testing positive for SARS-CoV-2 (**Table 1**).

Among SARS-COV-2 positive individuals, statin use was associated with lower odds of death at 30 days (OR 0.81 [95%CI 0.77–0.85]), but not with hospitalization or ICU admission. Adjustment for receipt of statin six months prior to baseline attenuated the magnitude of the association of statin use at diagnosis with all outcomes (**Fig. 1, Table 2b**) Associations with outcomes were similar for individual statins (**Table 3**). Compared to low-/moderate-intensity, high-intensity statin use was associated with higher odds of hospitalization (1.06 [95%CI 1.01–1.10]) but not with ICU admission or death (**Table 4**). Associations of statin use with hospitalization differed across strata of sex, age, race (Black vs. non-Black), and eGFR (e.g., OR for hospitalization in Black participants 0.98 [95%CI 0.92–1.03], OR for hospitalization in non-Black participants 0.92 [95%CI 0.89–0.95], p for interaction = 0.022). Associations of statin use with ICU admission in Latinx participants 0.77 [95%CI 0.62–0.95], OR for ICU admissioni in non-Latinx participants 0.94 [95%CI 0.89–1.00], p for interaction

= 0.044). Associations of statin use with mortality differed across strata of age, race/ethnicity (white vs. nonwhite and Black vs. non-Black), and BMI (e.g., OR for mortality in Black participants 0.83 [95%CI 0.76–0.92], OR for mortality in non-Black participants 0.77 [95%CI 0.74–0.81], p for interaction = 0.006). Associations did not differ across strata of prevalent diabetes, hypertension, or CVD (**Supplementary Fig. 1–3**).

Compared to persons with SARS-CoV-2 infection, OR for all three outcomes were significantly lower in persons without SARS-CoV-2 infection, as reflected by p<0.001 for the interaction term of SARS-CoV-2*statin use in all three models. Among SARS-COV-2 negative individuals, statin use was associated with lower odds of hospitalization (OR 0.79 [95%Cl 0.77–0.80]), ICU admission (OR 0.86 [95%Cl 0.81–0.90]), and death at 30 days (OR 0.60 [95%Cl 0.58–0.62]). (Table 2a).

DISCUSSION

In this cohort of U.S. Veterans with (n=231,154) and without (n=4,570,252) a positive respiratory swab for SARS-CoV-2, statin use was independently associated with lower odds of death at 30 days compared to no statin use, but this association over a similar time period was significantly stronger among Veterans without a positive respiratory swab for SARS-CoV-2. Among individuals with and without a positive respiratory swab for SARS-CoV-2, adjusting for prior statin use attenuated the association of statin use with all outcomes; however, in every case the magnitude of the association remained substantially greater among individuals without a diagnosis of COVID-19. Associations were similar for specific statins, and receipt of high-potency statin was not associated with lower odds of any outcome compared to moderate and low potency, except for a small difference in the odds of hospitalization. Associations were not significantly different in strata of prevalent diabetes, hypertension, or cardiovascular disease. Furthermore, the lack of a gradient of effect with statin potency also does not support a potential causal benefit of statin use. Taken together, these results suggest that while statin use is associated with lower mortality among individuals with a positive swab for SARS-CoV-2, the benefit is actually smaller for than it is for those without evidence of SARS-CoV-2 infection and does not support a possible anti-COVID effect of statin treatment. It is important to note, however, that the current study does not demonstrate a harmful effect of statin use among individuals with COVID-19, only that statins may not exert a SARS-CoV-2-specific protective effect and/or that positive findings in previous observational studies For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

may be due to residual confounding. Current findings therefore do not support statin cessation among individuals with COVID-19.

Use of negative controls is an important technique to detect confounding or other sources of bias in epidemiological studies¹⁶ that has gone underutilized in the era of COVID-19 research. An instructive example is the association of pneumonia or influenza vaccination with all-cause mortality seen in elderly individuals despite rigorous control for confounding by factors related to overall health status¹⁷. Using negative controls, Jackson et al. examined the association of vaccination with a negative control outcome: mortality prior to influenza season¹⁸. They found a stronger association with mortality during the period prior to influenza season compared to during or after, a biologically implausible result that was attributed by the authors to preferential receipt of vaccines by healthy individuals. This source of bias is now recognized in studies of this topic¹⁹. While the use of a negative control outcome is not precisely analogous to the methods used in the current study, the example can inform interpretation of the current findings.

Several recent systematic reviews and meta-analyses have examined the association of prior statin use with short-term outcomes after COVID-19² ²⁰⁻²⁵. Many of these reported an inverse association of statin use at diagnosis with mortality. For example, statin use was associated with a lower hazard of death (HR 0.72 [95%CI 0.69–0.75]) in a large population-based study of English patients with diabetes independent of age and co-morbid CVD²⁶. In a recent nationwide U.S. study of hospitalized individuals (n=10,541), outpatient statin, either alone or with blood pressure-lowering medications, was associated with lower odds of in-hospital death (OR 0.59 [95%CI 0.50–0.69]). The magnitude of the association of statin use at diagnosis with mortality reported in these and other analyses is quite similar to the OR in the current report among individuals with COVID-19 in models that were not adjusted for prior statin use (OR for death at 30 days 0.78 [95% CI 0.75–0.82]), likely reflecting similar strategies for confounder adjustment. The lower COVID-19 mortality risk among statin users, however, is not a universal finding. In fact, among French hospitalized patients with diabetes, statin use at diagnosis was associated with higher odds of death at 28 days (OR 1.46 [95% CI 1.08–1.95])²⁷. Reasons for these disparate findings are unclear but may be due in part to differences in timing, as early in the pandemic, treatments such as dexamethasone and remdesivir were not widely used. Consistent with this, in the French

cohort mortality was about 21% at 28 days, considerably higher than our overall 30-day mortality rate of about 7%. No prior study to our knowledge has examined outcomes following statin use comparing SARS-CoV-2 infected and uninfected statin users.

We noted several differences in outcomes associated with statin use by certain characteristics such as sex, age, and race (Supplementary Fig. 1-3). As our main analysis did not show evidence of a lower risk of outcomes associated with statin use confined to COVID-19 infected participants, these interactions likely reflect associations independent of presence of this infection and therefore reflecting effect modification between statin use, stratum variables, and outcomes of interest.

Our study has several strengths, most importantly a large, well characterized national sample. To our knowledge, this is the largest observational study of prior statin use and adverse outcomes from SARS-CoV-2 in the United States (n=4,801,406) as well as the first to formally assess and compare statin effects seen in SARS-CoV-2 infection using a negative control (non-infected statin users). Second, we used several methods designed to mitigate or quantify bias due to unmeasured confounding. We: 1) constructed a DAG to estimate the minimal sufficient adjustment set to estimate the total effect of statin use on 30-day outcomes; 2) compared associations in SARS-CoV-2 infected individuals and an uninfected comparator sample; and 3) conducted dose-response analyses using statin potency to reflect dose. In addition, most VHA enrollees receive medical care and medications without cost, which likely decreases the contribution of unmeasured financial factors to differences in the quality of care received and most importantly to receipt of statin medications. Our results should be considered within the context of several limitations. The VHA population is generally older, with lower income and socioeconomic status²⁸ than the U.S. population as a whole, and our findings may not be generalizable to non-VHA populations. Additionally, the proportion of women was low (13%); however, although women comprised only a small proportion of the sample, the number of female participants (n=601,765) is adequate for robust statistical inference. We were also unable to capture hospitalizations or some outpatient prescriptions that occurred outside VHA. This is an important source of potential bias should propensity to seek outside care be associated with likelihood of receiving a statin, although VHA users are asked to provide notification within 72 hours of an outside hospital admission, and when possible are

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 13 of 29

BMJ Open

transferred to a VHA facility, which would then be captured in the VHA electronic health record. Given the timing of this study, we were unable to evaluate mediating or moderating effects of vaccination use due to very limited vaccination coverage of our population by the index date. No data were available on prescription adherence; however, statin discontinuation rates have previously shown to be low in VHA patients relative to discontinuation of other lipid-lowering medications²⁹. The comparison of all-cause mortality is in our opinion the best outcome by which to assess whether statin use benefitted patients with versus without SARS-CoV-2 infection. The comparison of admission to hospital or ICU is of less value given that the reasons for hospitalization likely differed greatly by presence of infection, but, nevertheless, are of value in demonstrating that no apparent benefit is seen that might not be reflected in overall mortality. Finally, not all individuals in the comparator group were tested for SARS-CoV-2, so we were unable to exclude the possibility that some SARS-CoV-2-positive participants with asymptomatic or mild disease were misclassified as SARS-CoV-2-negative. We elected to include individuals without SARS-CoV-2 tests because individuals with indications for SARS-CoV-2 testing may represent a particular (and sicker) population than the general group of VA enrollees as a whole. Further, based on the current results, inclusion of individuals with undiagnosed COVID-19 in the SARS-CoV-2-negative comparator group would be expected to attenuate observed differences in the associations of statin use with adverse outcomes between the SARS-CoV-2 infected and negative comparator groups. It is unlikely that exclusion of participants with undiagnosed COVID-19 from the comparator group would have resulted in a reduction in the observed negative association between statin use and mortality, as this would have required an opposite association to be present between undiagnosed COVID-19 infection and mortality, a possibility for which there is little reason or evidence to support.

CONCLUSIONS

In conclusion, statin use is associated with lower odds of 30-day mortality both among U.S. Veterans with or without a positive respiratory swab for SARS-CoV-2 indicating that statins may not exert COVID-19-specific beneficial effects.

FUNDING. The work was funded by VA Clinical Science Research & Development COVID19-8990-19

COMPETING INTERESTS. There are no relevant conflicts of interest to disclose.

DATA AVAILABILITY. Access to VA electronic health records data is limited to researchers with active, VA appointments and an IRB-approved protocol.

CONTRIBUTORSHIP. PLW conceived the project, designed the overall research plan, and wrote the first draft of the manuscript. EL analyzed the data and reviewed/edited the manuscript, LB contributed to the conception of the work and reviewed/edited the manuscript, LTP contributed to the conception of the work and reviewed/edited the manuscript, AK contributed to design/interpretation of the analyses and reviewed/edited the manuscript, AP contributed to the design/interpretation of the analyses and reviewed/edited the manuscript. SEK contributed to the conception of the work and reviewed/edited the manuscript. GD contributed to the design/interpretation of the analyses and reviewed/edited the project, designed the overall research plan, and reviewed/edited the manuscript.

LICENCE. The Corresponding Author has the right to grant on behalf of all authors and does grant on behalf of all authors, <u>a worldwide licence</u> to the Publishers and its licensees in perpetuity, in all forms, formats and media (whether known now or created in the future), to i) publish, reproduce, distribute, display and store the Contribution, ii) translate the Contribution into other languages, create adaptations, reprints, include within collections and create summaries, extracts and/or, abstracts of the Contribution, iii) create any other derivative work(s) based on the Contribution, iv) to exploit all subsidiary rights in the Contribution, v) the inclusion of electronic links from the Contribution to third party material where-ever it may be located; and, vi) licence any third party to do any or all of the above.

ETHICS STATEMENT. The study was approved by the institutional review board at VA Puget Sound Health Care System, Seattle, WA, USA (#01897). The requirement for informed consent was waived.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

REFERENCES

2 3 4	 Daniels LB, Ren J, Kumar K, et al. Relation of prior statin and anti-hypertensive use to severity of disease among patients hospitalized with COVID-19: Findings from the American Heart Association's COVID- 19 Cardiovascular Disease Registry. <i>PloS one</i> 2021;16(7):e0254635. doi:
5	10.1371/journal.pone.0254635 [published Online First: 2021/07/16]
6	2. Pal R, Banerjee M, Yadav U, et al. Statin use and clinical outcomes in patients with COVID-19: An updated
7	systematic review and meta-analysis. <i>Postgraduate medical journal</i> 2021 doi: 10.1136/postgradmedj-
8	2020-139172 [published Online First: 2021/02/06]
9	3. Castiglione V, Chiriaco M, Emdin M, et al. Statin therapy in COVID-19 infection. <i>Eur Heart J Cardiovasc</i>
10 11	Pharmacother 2020;6(4):258-59. doi: 10.1093/ehjcvp/pvaa042 [published Online First: 2020/04/30]
12	4. Butt JH, Gerds TA, Schou M, et al. Association between statin use and outcomes in patients with
12	coronavirus disease 2019 (COVID-19): a nationwide cohort study. <i>BMJ Open</i> 2020;10(12):e044421.
14	doi: 10.1136/bmjopen-2020-044421 [published Online First: 2020/12/06]
15	5. Yetmar ZA, Challener DW, Tleyjeh IM, et al. Association Between Chronic Statin Use and 30-Day Mortality
16	in Hospitalized Patients With COVID-19. Mayo Clin Proc Innov Qual Outcomes 2021;5(2):442-46. doi:
17	10.1016/j.mayocpigo.2021.02.002 [published Online First: 2021/03/23]
18	6. Rubin R. Could Statins Do More Than Lower Cholesterol in Patients With COVID-19? JAMA : the journal of
19	the American Medical Association 2021 doi: 10.1001/jama.2021.8201 [published Online First:
20	2021/06/04]
21	7. U.S. Department of Veterans Affairs: VHA [Available from: https://www.va.gov/health/ accessed 9/28/2020
22	2020.
23	8. CDW COVID-19 Shared Data Resource (intranet-only resource) [Available from:
24	https://vhacdwdwhweb100.vha.med.va.gov/phenotype/index.php/COVID-19:Shared Data Resource
25	accessed 9/28/2020 2020.
26	9. Grundy SM, Stone NJ, Bailey AL, et al. 2018
27	AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the
28	Management of Blood Cholesterol: A Report of the American College of Cardiology/American Heart
29 30	Association Task Force on Clinical Practice Guidelines. <i>Circulation</i> 2019;139(25):e1082-e143. doi:
30 31	10.1161/CIR.000000000000625 [published Online First: 2018/12/28]
32	10. West AN, Lee RE, Shambaugh-Miller MD, et al. Defining "rural" for veterans' health care planning. The
33	Journal of rural health : official journal of the American Rural Health Association and the National Rural
34	Health Care Association 2010;26(4):301-9. doi: 10.1111/j.1748-0361.2010.00298.x [published Online
35	First: 2010/10/30]
36	11. Bush K, Kivlahan DR, McDonell MB, et al. The AUDIT alcohol consumption questions (AUDIT-C): an
37	effective brief screening test for problem drinking. Ambulatory Care Quality Improvement Project
38	(ACQUIP). Alcohol Use Disorders Identification Test. Archives of internal medicine 1998;158(16):1789-
39	95. doi: 10.1001/archinte.158.16.1789 [published Online First: 1998/09/17]
40	12. Quan H, Sundararajan V, Halfon P, et al. Coding algorithms for defining comorbidities in ICD-9-CM and
41	ICD-10 administrative data. <i>Medical care</i> 2005;43(11):1130-9. doi:
42	10.1097/01.mlr.0000182534.19832.83 [published Online First: 2005/10/15]
43	13. Young BA, Katz R, Boulware LE, et al. Risk Factors for Rapid Kidney Function Decline Among African
44	Americans: The Jackson Heart Study (JHS). American journal of kidney diseases : the official journal of
45 46	the National Kidney Foundation 2016;68(2):229-39. doi: 10.1053/j.ajkd.2016.02.046 [published Online
46 47	First: 2016/04/14]
47 48	14. Sohn MW, Arnold N, Maynard C, et al. Accuracy and completeness of mortality data in the Department of
49	Veterans Affairs. Popul Health Metr 2006;4:2. doi: 10.1186/1478-7954-4-2 [published Online First:
50	2006/04/12]
51	15. Textor J, van der Zander B, Gilthorpe MS, et al. Robust causal inference using directed acyclic graphs: the
52	R package 'dagitty'. International journal of epidemiology 2016;45(6):1887-94. doi: 10.1093/ije/dyw341
53	[published Online First: 2017/01/17]
54	16. Lipsitch M, Tchetgen Tchetgen E, Cohen T. Negative controls: a tool for detecting confounding and bias in
55	observational studies. Epidemiology 2010;21(3):383-8. doi: 10.1097/EDE.0b013e3181d61eeb
56	[published Online First: 2010/03/26]
57	
58	
59	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
60	For peer review only - http://binjopen.binj.com/site/about/guidelines.xhtml

17. Rivetti D, Jefferson T, Thomas R, et al. Vaccines for preventing influenza in the elderly. Cochrane 1 Database Syst Rev 2006(3):CD004876. doi: 10.1002/14651858.CD004876.pub2 [published Online 2 First: 2006/07/21] 3 18. Jackson LA, Jackson ML, Nelson JC, et al. Evidence of bias in estimates of influenza vaccine effectiveness 4 in seniors. International journal of epidemiology 2006;35(2):337-44. doi: 10.1093/ije/dyi274 [published 5 Online First: 2005/12/221 6 19. Levett-Jones T. Vaccines for preventing influenza in the elderly: A Cochrane review summary. International 7 journal of nursing studies 2020;109:103372. doi: 10.1016/j.ijnurstu.2019.06.003 [published Online First: 8 2019/06/23] 9 20. Hariyanto TI, Kurniawan A. Statin and outcomes of coronavirus disease 2019 (COVID-19): A systematic 10 review, meta-analysis, and meta-regression. Nutrition, metabolism, and cardiovascular diseases : 11 NMCD 2021;31(6):1662-70. doi: 10.1016/j.numecd.2021.02.020 [published Online First: 2021/04/12] 12 21. Permana H, Huang I, Purwiga A, et al. In-hospital use of statins is associated with a reduced risk of 13 mortality in coronavirus-2019 (COVID-19): systematic review and meta-analysis. Pharmacol Rep 14 15 2021;73(3):769-80. doi: 10.1007/s43440-021-00233-3 [published Online First: 2021/02/21] 22. Hariyanto TI, Kurniawan A. Statin therapy did not improve the in-hospital outcome of coronavirus disease 16 17 2019 (COVID-19) infection. *Diabetes Metab Syndr* 2020;14(6):1613-15. doi: 10.1016/j.dsx.2020.08.023 18 [published Online First: 2020/09/04] 19 23. Wu KS, Lin PC, Chen YS, et al. The use of statins was associated with reduced COVID-19 mortality: a 20 systematic review and meta-analysis. Annals of medicine 2021;53(1):874-84. doi: 21 10.1080/07853890.2021.1933165 [published Online First: 2021/06/08] 22 24. Vahedian-Azimi A, Mohammadi SM, Heidari Beni F, et al. Improved COVID-19 ICU admission and 23 mortality outcomes following treatment with statins: a systematic review and meta-analysis. Arch Med 24 Sci 2021;17(3):579-95. doi: 10.5114/aoms/132950 [published Online First: 2021/05/25] 25 25. Onorato D, Pucci M, Carpene G, et al. Protective Effects of Statins Administration in European and North 26 American Patients Infected with COVID-19: A Meta-Analysis. Semin Thromb Hemost 2021:47(4):392-27 99. doi: 10.1055/s-0040-1722307 [published Online First: 2021/01/23] 28 26. Holman N, Knighton P, Kar P, et al. Risk factors for COVID-19-related mortality in people with type 1 and 29 type 2 diabetes in England: a population-based cohort study. Lancet Diabetes Endocrinol 30 2020;8(10):823-33. doi: 10.1016/S2213-8587(20)30271-0 [published Online First: 2020/08/18] 31 27. Cariou B, Goronflot T, Rimbert A, et al. Routine use of statins and increased mortality related to COVID-19 32 in inpatients with type 2 diabetes: Results from the CORONADO study. Diabetes & metabolism 2020 33 doi: 10.1016/j.diabet.2020.10.001 [published Online First: 2020/10/23] 34 35 28. Kondo K, Low A, Everson T, et al. Health Disparities in Veterans: A Map of the Evidence. Medical care 36 2017;55 Suppl 9 Suppl 2:S9-S15. doi: 10.1097/MLR.0000000000000756 [published Online First: 37 2017/08/151 38 29. Hiatt JG, Shamsie SG, Schectman G. Discontinuation rates of cholesterol-lowering medications: 39 implications for primary care. The American journal of managed care 1999;5(4):437-44. [published 40 Online First: 1999/07/01] 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

	Overa	all	No positive	respirat Co	ory swab for V-2	SARS-	≥1 posit	ive respi SARS-0	ratory sw CoV-2	ab for
	n=4,801	,406	No stat prescrip	-	Active st prescrip		No sta prescri		Active prescr	
			n=3,180,	888	n=1,389,	364	n=161,	891	n=69	,263
Age, years	61.6	±16.7	58.3	±17.7	69.3	±10.8	57.8	±17.5	68.0	±11.4
Age category, years										
19-39	661,777	14%	613,885	19%	15,272	1%	31,645	20%	975	1%
40-49	482,871	10%	402,201	13%	54,467	4%	22,718	14%	3,485	5%
50-59	728,340	15%	516,328	16%	172,006	12%	29,099	18%	10,907	16%
60-69	993,105	21%	600,530	19%	346,361	25%	28,785	18%	17,429	25%
70-79	1,408,065	29%	735,949	23%	610,855	44%	33,303	21%	27,958	40%
80+	525,548	11%	311,010	10%	189,825	14%	16,204	10%	8,509	12%
Sex at birth, female	601,692	13%	509,443	16%	68,275	5%	20,598	13%	3,376	5%
Race/ethnicity	001,002	1070	000,110	1070	00,210	070	20,000	1070	0,010	070
White	3,335,105	69%	2,122,989	67%	1,055,742	76%	106,448	66%	49,926	72%
Black	860,829	18%	582,091	18%	226,384	16%	38,080	24%	14,274	21%
Hispanic	333,593	7%	230,848	7%	79,866	6%	17,770	11%	5,109	7%
Other	542,562	11%	430,377	14%	94,575	7%	13,410	8%	4,200	6%
Body-mass index, kg/m ²	30.2	±6.09	29.8	±6.04	30.8	±6.06	30.9	±6.35	31.9	±6.26
Body-mass index, kg/m ²	00.2	10.00	20.0	10.04	00.0	10.00	00.0	10.00	01.0	±0.20
<18.5	28,116	1%	20,717	1%	6,230	1%	951	1%	218	0%
18.5-24.9	553,988	17%	379,204	20%	152,657	14%	16,249	15%	5,878	11%
25-29.9	1,107,238	35%	687,781	36%	367,799	34%	34,949	32%	16,709	30%
30-34.9	869,628	27%	507,893	26%	313,277	29%	30,944	29%	17,514	32%
35-39.9	399,754	13%	224,651	12%	149,833	29 <i>%</i> 14%	15,734	29 <i>%</i> 15%	9,536	17%
≥ 40	208,950	7%	113,491	6%	80,708	8%	9,077	8%	5,674	10%
Active statin prescription six months prior to enrollment	1,375,009	29%	259,070	8%	1,046,850	75%		11%		
	1,747,387		1,338,452	42%			17,020 62,782	39%	52,069 17,713	75%
Never		36%			328,440	24%				26%
Former	1,729,275	36%	984,318	31%	651,438	47%	58,321	36%	35,198	51%
Current	1,323,044	28%	857,133	27%	408,908	29%	40,651	25%	16,352	24%
Urban/rural/highly rural ZIP code	57.047	4.0/	24.044	4.0/	20,020	10/	1 200	10/	050	4.0/
Highly rural	57,047	1%	34,211	1%	20,620	1%	1,360	1%	856	1%
Rural	1,561,076	33%	975,607	31%	518,394	37%	43,690	27%	23,385	34%
Urban	3,172,176	66%	2,163,063	68%	847,474	61%	116,643	72%	44,996	65%
Unknown	9,407	0%	7,022	0%	2,298	0%	61	0%	26	0%
Estimated glomerular filtration rate, ml/min/1.73 m ²										
≥ 90	938,310	27%	654,399	31%	235,893	20%	36,230	32%	11,788	19%
60-89	1,718,393	49%	1,034,287	49%	599,357	50%	54,598	48%	30,151	48%
45-59	520,635	15%	268,392	13%	226,556	19%	13,799	12%	11,888	19%
30-44	212,116	6%	100,776	5%	100,175	8%	5,626	5%	5,539	9%
15-29	58,464	2%	27,223	1%	27,527	2%	1,906	2%	1,808	3%
<15 or dialysis	25,765	1%	12,803	1%	10,449	1%	1,503	1%	1,010	2%

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Table 1 CONTINUED. Characteristics of VHA Veterans with and without a positive respiratory swab for SARS-CoV-2 (March 1, 2020–March 10, 2021), stratified by presence of active statin proscription at oprollment

I	an active statin prescription at enrollment										
2	Diabetes	1,482,197	31%	679,909	21%	716,920	52%	44,364	27%	41,004	59%
3	Hypertension	2,874,378	60%	1,551,529	49%	1,176,398	85%	86,382	53%	60,069	87%
4	Cardiovascular disease	1,749,197	36%	857,912	27%	794,940	57%	53,635	33%	42,710	62%
5	Heart failure	352,710	7%	144,971	5%	183,128	13%	12,388	8%	12,223	18%
6	Alcohol use disorder	909,010	19%	629,005	20%	238,333	17%	31,212	19%	10,460	15%
7	Statin prescribed										
8	None	3,341,657	70%	3,179,903	100%	0	0%	161,754	100%	0	0%
9	Atorvastatin	872,981	18%			829,795	60%			43,186	62%
10	Fluvastatin	364	<1%			348	0%			16	0%
11	Lovastatin	15,375	<1%			14,751	1%			624	1%
12	Pitavastatin	801	<1%			748	<1%			53	<1%
13	Pravastatin	123,779	3%			118,039	8%			5,740	8%
14	Rosuvastatin	173,943	4%			165,066	12%			8,877	13%
15	Simvastatin	270,806	6%			260,039	19%			10,767	16%
16	High-potency statin (vs. low- or moderate-potency)*	616,824	42%	0	<1%	585,224	42%	0	<1%	31,600	46%
17	Mean hsCRP in the prior six months, mg/L**	17.3	±136	16.4	±151	18.2	±120	19.9	±49.6	21.0	±52.9
18	hsCRP in the prior six months ≥2 mg/L**	390,796	41%	217,408	40%	145,787	42%	17,407	44%	10,194	45%
	Mean hsCRP at or after the index date, mg/L***	29.3	±54.1	22.2	±46.6	25.6	±50.8	57.8	±70.8	65.2	±71.1
19 20	hsCRP at or after the index date ≤2 mg/L***	125,178	52%	61,501	46%	34,630	49%	18,260	75%	10,787	79%
20			Ουτ	COMES							
21 22	Hospital admission within 30 days	124,094	3%	61,651	2%	29,953	2%	20,280	13%	12,210	18%
	ICU admission within 30 days	15,438	<1%	5,710	<1%	3,588	<1%	3,754	2%	2,386	3%
23	Death w/in 30 days	31,409	1%	13,074	<1%	6,224	<1%	7,815	5%	4,296	6%
24	Data are presented as mean + standard deviation (SD) for continuous	variables and n	(%) for cate	enorical variables							

Data are presented as mean ± standard deviation (SD) for continuous variables and n (%) for categorical variables

p-values for global differences in participant characteristics across categories of COVID diagnosis and prior statin use all <0.001

* based on estimated % LDL-c reduction

** up to 14 days prior to index date (Overall n=958,343)

*** Overall n=224,930

		No positive swab, n=4,568,689													≥1	positive	swab,	n=231,0)17			
	Hos	spital ad	Imission	I	CU adn	nission			Dea	th		Hos	pital ad	missior		ICU a	Imissi	on		Deat	th	
	OR	9	5%CI	OR	1	95%CI		OR	ę	95%C	I	OR	ę	95%CI	C	R	95%(CI	OR	,	95%CI	
Active statin prescription at enrollment	0.79	0.77	— 0.80	0.98	0.95	— 1	1.01	0.86	0.81		0.90	0.94	0.88	— 1.)1 0.	60 0.5	в —	0.62	0.81	0.77	_	0.8
Statin prescription six months prior to enrollment	0.91	0.89	— 0.93	0.93	0.90	— C	0.96	0.88	0.83	—	0.93	0.97	0.91	— 1.	04 0.	93 0.9) <u> </u>	0.97	0.94	0.89	_	0.9
Sex at birth, female	0.73	0.71	— 0.75	0.75	0.71	— C	0.79	0.73	0.67		0.80	0.74	0.65	— 0.	84 0.	63 0.5	в —	0.69	0.56	0.50	_	0.6
Age category, years																						
19-39	1.16	1.12	— 1.19	0.61	0.57	— C	0.65	0.61	0.54	_	0.69	0.60	0.51	— 0.	1 0.	26 0.2	2 —	0.30	0.15	0.11	_	0.2
																						-

5			pital a					110010							pital a		-								
4		OR		95%C	1	OR		95%C	I	OR	ç	95%C	l I	OR	9	95%C	<u> </u>	OR		95%C	I	OR	ć	95%CI	J
5	Active statin prescription at enrollment	0.79	0.77	_	0.80	0.98	0.95	_	1.01	0.86	0.81	_	0.90	0.94	0.88	_	1.01	0.60	0.58	_	0.62	0.81	0.77	_	0.85
6	Statin prescription six months prior to enrollment	0.91	0.89	_	0.93	0.93	0.90	_	0.96	0.88	0.83	_	0.93	0.97	0.91		1.04	0.93	0.90	_	0.97	0.94	0.89	_	0.99
7	Sex at birth, female	0.73	0.71	_	0.75	0.75	0.71	_	0.79	0.73	0.67	_	0.80	0.74	0.65	_	0.84	0.63	0.58	_	0.69	0.56	0.50	_	0.64
	Age category, years		-				-							_											
8	19-39	1.16	1.12	_	1.19	0.61	0.57	_	0.65	0.61	0.54		0.69	0.60	0.51	_	0.71	0.26	0.22	_	0.30	0.15	0.11	_	0.21
9	40-49	0.97	0.94	_	1.01	0.75	0.70	_	0.80	0.81	0.73	_	0.91	0.68	0.59	_	0.79	0.46	0.40	_	0.54	0.38	0.30	_	0.48
10	50-59	ref	ref		ref	ref	ref		ref	ref	ref		ref	ref	ref		ref	ref	ref		ref	ref	ref		ref
11	60-69	1.01	0.99	_	1.03	1.29	1.23	_	1.34	1.16	1.08	_	1.25	1.32	1.21		1.46	1.95	1.81	_	2.10	2.86	2.55	_	3.20
12	70-79	0.81	0.79	_	0.83	1.43	1.37	_	1.49	1.00	0.92	_	1.08	1.49	1.36		1.64	2.60	2.41	_	2.79	5.93	5.32	_	6.61
13	≥80	0.96	0.93	_	0.99	1.81	1.71		1.91	0.95	0.87		1.04	1.62	1.45		1.82	5.06	4.68	_	5.46	13.86	12.37	_	15.53
14	White (vs not white)	1.21	1.14	_	1.28	0.88	0.81	_	0.97	1.23	1.02	_	1.49	0.74	0.61	_	0.91	1.10	0.95	_	1.27	0.87	0.74	_	1.04
15	Black vs(not Black)	1.49	1.40	_	1.58	1.36	1.24	1	1.50	1.53	1.26		1.85	1.10	0.89		1.35	1.05	0.90	_	1.22	0.78	0.66	_	0.94
16	Hispanic (vs not Hispanic)	1.07	1.04	_	1.10	1.16	1.10		1.22	1.23	1.13	_	1.35	1.03	0.92		1.15	1.07	0.99	_	1.14	1.13	1.04	_	1.24
17	Body-mass index category, kg/m ²																								
18	<18.5	1.35	1.29	_	1.42	1.14	1.01	_	1.29	1.51	1.31	_	1.73	1.35	1.06	_	1.72	2.48	2.33	_	2.65	1.81	1.59	_	2.07
19	18.5-24.9	ref	ref		ref	ref	ref		ref	ref	ref		ref	ref	ref		ref	ref	ref		ref	ref	ref		ref
	25-29.9	0.75	0.73	_	0.76	0.81	0.78	_	0.85	0.70	0.65		0.74	0.89	0.82		0.97	0.54	0.52	_	0.56	0.73	0.68	_	0.79
20	30-34.9	0.67	0.65	_	0.68	0.76	0.73	_	0.80	0.62	0.57	_	0.66	0.88	0.81	_	0.96	0.42	0.40	_	0.44	0.69	0.64	_	0.74
21	35-39.9	0.63	0.61	_	0.65	0.76	0.72	_	0.80	0.57	0.52		0.62	0.85	0.76		0.94	0.37	0.35	_	0.40	0.64	0.59	_	0.70
22	≥40	0.65	0.63	_	0.67	0.87	0.82	_	0.93	0.59	0.53	_	0.65	1.03	0.91		1.16	0.43	0.39	_	0.46	0.80	0.72	_	0.88
23	Tobacco use																								
24	Never	ref	ref		ref	ref	ref		ref	ref	ref		ref	ref	ref		ref	ref	ref		ref	ref	ref		ref
25	Former	1.25	1.23	_	1.28	1.11	1.08	_	1.15	1.12	1.06	_	1.19	1.10	1.02		1.17	1.09	1.04	_	1.13	1.18	1.12	_	1.24
26	Current	2.02	1.98	_	2.06	1.39	1.35	_	1.44	1.76	1.66	_	1.87	1.29	1.20		1.39	1.67	1.60	_	1.74	1.24	1.17	_	1.32
27	Urban/rural/highly rural residence																								
28	Highly rural	0.68	0.64	_	0.73	0.58	0.50	_	0.66	0.98	0.82	_	1.18	0.74	0.54	_	1.00	0.92	0.81	_	1.05	1.16	0.98	_	1.38
29	Rural	0.74	0.73	_	0.75	0.70	0.68	_	0.72	0.74	0.70	_	0.78	0.88	0.82		0.93	0.89	0.87		0.92	1.03	0.99	_	1.08
30	Urban	ref	ref		ref	ref	ref		ref	ref	ref		ref	ref	ref		ref	ref	ref		ref	ref	ref		ref
31	Unknown	0.25	0.18	_	0.35	0.27	0.10	_	0.75	0.35	0.13	_	0.94	0.55	0.08		3.99	0.80	0.51		1.25	1.77	0.73	_	4.30
32	Diabetes	1.18	1.16	_	1.20	1.30	1.27	_	1.34	1.26	1.21	_	1.32	1.26	1.19	_	1.34	1.41	1.36	_	1.45	1.37	1.31	_	1.43
	Hypertension	1.22	1.19	_	1.24	1.30	1.25	_	1.35	1.30	1.22	_	1.39	1.29	1.19	_	1.41	1.09	1.04	_	1.14	0.96	0.90	_	1.02
33	Cardiovascular disease	2.04	2.01	_	2.08	1.84	1.79		1.90	2.69	2.55	_	2.84	2.08	1.95	_	2.23	1.88	1.81	_	1.95	1.24	1.18	_	1.30
34	Heart failure	2.13	2.09	_	2.16	1.64	1.59	_	1.70	2.34	2.22	_	2.46	1.53	1.43	_	1.63	2.51	2.42	_	2.59	1.31	1.25	_	1.38
35	Alcohol use disorder	1.12	1.10	_	1.14	0.75	0.72	_	0.78	1.03	0.97	_	1.09	0.86	0.79		0.93	0.78	0.75	_	0.82	0.68	0.64	_	0.73
36																									
37	Estimated glomerular filtration rate, ml/min/1.73 m ²																								
38	\geq 90	ref	ref		ref	ref	ref		ref	ref	ref		ref	ref	ref		ref	ref	ref		ref	ref	ref		ref
39	60-89	0.80	0.79		0.82	0.90	0.87	_	0.93	0.80	0.76		0.85	0.96	0.88		1.04	0.60	0.57	_	0.62	1.10	1.02	_	1.18
40	45-59	0.80	0.75	_	0.82	0.90	0.87	_	1.03	0.80	0.78	_	0.85	1.00	0.88	_	1.10	0.00	0.57	_	0.02	1.44	1.33	_	1.56
41	30-44	0.93	0.90	_	0.96	1.10	1.04		1.16	0.92	0.76	_	1.01	1.14	1.02	_	1.29	0.99	0.07	_	1.05	1.83	1.68	_	1.99
42	15-29	1.15	1.10	_	1.20	1.31	1.21	_	1.42	1.14	1.01	_	1.29	1.32	1.14	_	1.53	2.07	1.94	_	2.21	2.65	2.36	_	2.97
43	<15 or dialysis	1.60	1.52	_	1.69		1.33		1.60	1.77		_	2.00		1.29	_	1.77	3.07	2.85	_	3.32	2.03	2.30	_	2.85
	Models additionally adjusted for index month and acc												2.00	1.51	1.23		1.11	0.07	2.00		0.02	2.40	2.10		2.00

44 Models additionally adjusted for index month and geographic location by Veterans Integrated Service Network location
 45 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

- 45 46
- 47

Table 2b. Odds ratios from logistic regression models testing the association of active statin prescription at enrollment with adverse 30-day outcomes among VHA Veterans with and without a positive respiratory
swab for SARS-CoV-2, without adjustment for prior statin use

1 2					No	o positi	ve swa	b, n=4	4,568,6	89								≥1 pos	sitive sv	vab, i	n=231,0	17			
		Hos	spital a	dmiss	sion	IC	CU adm	issio	n		Dea	th		Hos	spital a	dmiss	sion	IC	CU adm	issio	n		Deat	h	
3		OR	ę	95%C	I	OR	ę	95%C	I	OR	9	95%C	1	OR	ę	95%C	:1	OR	ç	95%C	1	OR	9	95%CI	
4	Active statin prescription at enrollment	0.75	0.74	_	0.76	0.80	0.76	_	0.83	0.58	0.56	_	0.59	0.94	0.91	_	0.96	0.93	0.88	_	0.98	0.78	0.75	_	0.82
5	Sex at birth, female	0.73	0.71	_	0.75	0.73	0.67	—	0.81	0.63	0.58	_	0.69	0.75	0.71	_	0.79	0.74	0.65	_	0.84	0.57	0.50	_	0.65
6	Age category, years																								
7	19-39	1.16	1.13	_	1.20	0.61	0.54		0.69	0.26	0.22	_	0.30	0.61	0.58	_	0.66	0.60	0.51	_	0.71	0.15	0.11	_	0.21
8	40-49	0.98	0.95	_	1.01	0.82	0.73	_	0.92	0.47	0.40	_	0.54	0.75	0.71	_	0.80	0.68	0.59	_	0.79	0.38	0.30	_	0.48
9	50-59	ref	ref		ref	ref	ref		ref	ref	ref		ref	ref	ref		ref	ref	ref		ref	ref	ref		ref
10	60-69	1.01	0.98	_	1.03	1.16	1.08	_	1.25	1.95	1.81	_	2.10	1.28	1.23	_	1.34	1.32	1.21	_	1.45	2.86	2.55	_	3.20
11	70-79	0.81	0.79		0.83	0.99	0.92	_	1.07	2.59	2.41	—	2.78	1.43	1.36	_	1.49	1.49	1.36	_	1.64	5.92	5.31	_	6.60
12	≥80	0.96	0.93	_	0.99	0.95	0.87	_	1.04	5.06	4.68	_	5.46	1.81	1.71	_	1.91	1.62	1.45	_	1.82	13.86	12.37	_	15.53
13	White (vs not white)	1.20	1.14	_	1.28	1.23	1.02		1.49	1.10	0.95	_	1.27	0.88	0.81	_	0.97	0.75	0.61	_	0.91	0.87	0.74	_	1.04
	Black vs(not Black)	1.49	1.40	_	1.58	1.53	1.26		1.86	1.05	0.90	_	1.22	1.37	1.24	_	1.50	1.10	0.89	_	1.35	0.78	0.66	_	0.94
14	Hispanic (vs not Hispanic)	1.07	1.04	_	1.10	1.23	1.13	_	1.35	1.06	0.99	_	1.14	1.16	1.10	_	1.22	1.03	0.92	_	1.15	1.13	1.04	_	1.24
15	Body-mass index category, kg/m ²																								
16	<18.5	1.35	1.29	_	1.42	1.51	1.32	_	1.74	2.49	2.33	_	2.65	1.14	1.02	_	1.29	1.35	1.06	_	1.72	1.82	1.59	_	2.07
17	18.5-24.9	ref	ref		ref	ref	ref		ref	ref	ref		ref	ref	ref		ref	ref	ref		ref	ref	ref		ref
18	25-29.9	0.75	0.73	_	0.76	0.70	0.65	_	0.74	0.54	0.52		0.56	0.81	0.78	_	0.85	0.89	0.82	_	0.97	0.73	0.68	_	0.79
19	30-34.9	0.67	0.65	_	0.68	0.61	0.57	_	0.66	0.42	0.40		0.44	0.76	0.73	_	0.80	0.88	0.81	_	0.96	0.68	0.64	_	0.74
20	35-39.9	0.63	0.61	_	0.64	0.57	0.52	_	0.62	0.37	0.35		0.40	0.76	0.72	_	0.80	0.85	0.76	_	0.94	0.64	0.59	_	0.70
21	≥40	0.65	0.63	_	0.67	0.58	0.53	_	0.65	0.43	0.39	_	0.46	0.87	0.81	_	0.92	1.03	0.91	_	1.16	0.79	0.72	_	0.88
22	Tobacco use														JT										
23	Never	ref	ref		ref	ref	ref		ref	ref	ref		ref	ref	ref		ref	ref	ref		ref	ref	ref		ref
	Former	1.25	1.22	_	1.27	1.12	1.05	_	1.19	1.09	1.04	_	1.13	1.11	1.08	—	1.15	1.10	1.02	_	1.17	1.18	1.12	_	1.24
24	Current	2.02	1.98	_	2.05	1.76	1.66	_	1.87	1.66	1.60	_	1.74	1.39	1.35	-	1.44	1.29	1.20	_	1.39	1.24	1.17	_	1.32
25	Urban/rural/highly rural residence																		-						
26	Highly rural	0.68	0.64	_	0.73	0.98	0.82	_	1.18	0.92	0.81	_	1.05	0.57	0.50	_	0.66	0.74	0.54	_	1.00	1.16	0.98	_	1.38
27	Rural	0.74	0.73	_	0.75	0.74	0.70	_	0.78	0.89	0.86	_	0.92	0.70	0.68	_	0.72	0.87	0.82	-	0.93	1.03	0.99	_	1.08
28	Urban	ref	ref		ref	ref	ref		ref	ref	ref		ref	ref	ref		ref	ref	ref		ref	ref	ref		ref
29	Unknown	0.25	0.18	_	0.35	0.35	0.13	_	0.94	0.80	0.51	_	1.25	0.27	0.10	_	0.74	0.55	0.08	—	3.98	1.75	0.72	_	4.27
30	Diabetes	1.17	1.15	_	1.19	1.25	1.20	_	1.31	1.40	1.36	_	1.45	1.30	1.26	_	1.33	1.26	1.19	_	1.33	1.36	1.30	_	1.42
31	Hypertension	1.21	1.19	_	1.24	1.29	1.21	_	1.38	1.09	1.04	_	1.13	1.30	1.25	_	1.35	1.29	1.18	_	1.41	0.96	0.90	_	1.02
32	Cardiovascular disease	2.03	2.00	_	2.07	2.67	2.53	_	2.82	1.87	1.80	_	1.94	1.84	1.78	_	1.89	2.08	1.94	_	2.23	1.24	1.18	_	1.30
	Heart failure	2.12	2.08	_	2.16	2.33	2.21	_	2.45	2.50	2.41	_	2.59	1.64	1.59	_	1.70	1.53	1.43	_	1.63	1.31	1.25	_	1.38
33	Alcohol use disorder	1.12	1.10	_	1.14	1.03	0.97	_	1.09	0.78	0.75	_	0.82	0.75	0.73	_	0.78	0.86	0.79	_	0.93	0.68	0.64	_	0.73
34	Estimated along and a filtration acts																								
35	Estimated glomerular filtration rate, ml/min/1.73 m ²																								
36	≥ 90	ref	ref		ref	ref	ref		ref	ref	ref		ref	ref	ref		ref	ref	ref		ref	ref	ref		ref
37	2 90 60-89	0.80	0.79	_	0.82	0.80	0.75	_	0.85	0.60	0.57	_	0.62	0.90	0.86		0.93	0.96	0.88		1.04	1.09	1.02		1.18
38	45-59	0.80	0.79	_	0.86	0.80	0.75	_	0.85	0.00	0.57	_	0.02	0.90	0.80		1.03	1.00	0.88	_	1.04	1.09	1.33		1.10
39	30-44	0.04	0.01	_	0.86	0.84	0.78	_	1.01	0.71	0.07	_	1.05	1.10	1.04	_	1.16	1.14	1.02	_	1.29	1.44	1.68		1.99
40	15-29	1.14	1.09	_	1.20	1.14	1.01		1.29	2.07	1.94	_	2.21	1.31	1.04	_	1.42	1.32	1.14	_	1.53	2.65	2.36	_	2.97
41	<15 or dialysis	1.60	1.52	_	1.69	1.14	1.56	_	2.01	3.08	2.85	_	3.32	1.46	1.21	_	1.60	1.52	1.14	_	1.55	2.05	2.30	_	2.97
41	- 10 01 uldiyolo	1.00	1.52	_	1.09	1.77	1.50	_	2.01	5.00	2.00	_	5.52	1.40	1.55	_	1.00	1.51	1.29		1.77	2.40	2.10	_	2.00

Models additionally adjusted for index month and geographic location by Veterans Integrated Service Network location

BMJ Open

 Table 3. Odds ratios from logistic regression models testing the association of specific statins compared to no statin with adverse 30-day outcomes among VHA

 Veterans with a positive respiratory swab for SARS-CoV-2, n=231,017

		Hosp	ital a	dmissi	on		IC	U adr	nission			I	Death	<u>ا</u>	
	OR	ç	95% C		p value	OR		95% (CI	p value	OR	95	5% CI		p value
No statin	ref					ref					ref				
Atorvastatin	0.98	0.95	—	1.01	0.136	0.96	0.90	—	1.02	0.194	0.80	0.76	—	0.84	<0.001
Fluvastatin	1.47	0.45	_	4.82	0.524	1.79	0.23	_	13.80	0.577	0.55	0.07		4.43	0.575
_ovastatin	0.73	0.57	_	0.93	0.012	0.48	0.26	_	0.90	0.022	0.64	0.45	_	0.91	0.013
Pitavastatin	0.45	0.16	_	1.26	0.128	0.66	0.09	_	4.80	0.679	0.82	0.25		2.68	0.738
Pravastatin	0.93	0.86	_	1.00	0.045	0.94	0.81	_	1.10	0.443	0.78	0.70		0.87	< 0.00
Rosuvastatin	0.81	0.76	_	0.86	<0.001	0.82	0.72	_	0.93	0.002	0.72	0.65	_	0.79	< 0.00
Simvastatin	0.91	0.86	_	0.97	0.001	0.91	0.80	—	1.02	0.107	0.77	0.71		0.84	< 0.00
Sex at birth, female	0.75	0.71	_	0.80	<0.001	0.74	0.65	_	0.84	<0.001	0.57	0.50	_	0.65	<0.00
Age category, years															
19-39	0.61	0.58	_	0.66	<0.001	0.60	0.51	_	0.71	<0.001	0.15	0.11	_	0.21	<0.001
40-49	0.75	0.71		0.80	<0.001	0.68	0.59	_	0.79	<0.001	0.38	0.30	_	0.48	<0.001
50-59	ref					ref					ref				
60-69	1.28	1.23	_	1.34	<0.001	1.32	1.21	_	1.45	<0.001	2.85	2.55	_	3.20	<0.00
70-79	1.43	1.36		1.49	<0.001	1.49	1.36	_	1.64	<0.001	5.92	5.31		6.60	< 0.00
≥80	1.81	1.71		1.91	<0.001	1.62	1.45	_	1.82	<0.001	13.86			15.54	< 0.00
White (vs. not white)	0.88	0.81		0.97	0.007	0.75	0.61		0.91	0.004	0.88			1.04	0.12
Black (vs. not Black)	1.36	1.24		1.50	<0.001	1.10	0.89		1.35	0.390	0.78	0.66		0.94	0.007
lispanic (vs. not Hispanic)	1.16	1.10		1.22	<0.001	1.03	0.92	_	1.15	0.633	1.13	1.04		1.24	0.00
Body-mass index category, kg/m ²															
:18.5	1.15	1.02	_	1.29	0.025	1.35	1.06		1.73	0.015	1.82	1.59		2.08	< 0.00
8.5-24.9	ref					ref					ref				
25-29.9	0.81	0.78	_	0.85	<0.001	0.89	0.82	_	0.97	0.006	0.73	0.68		0.79	< 0.00
30-34.9	0.76	0.73		0.80	<0.001	0.88	0.81	_	0.97	0.006	0.68			0.74	< 0.00
35-39.9	0.76	0.72	_	0.80	<0.001	0.85	0.76	_	0.94	0.002	0.64			0.70	< 0.00
≥40	0.87	0.81	_	0.92	<0.001	1.03	0.91	_	1.16	0.675	0.79			0.88	<0.001
Tobacco use															
Never	ref														
Former	1.11	1.08		1.15	<0.001	1.10	1.02	_	1.17	0.010	1.18	1.12		1.24	<0.001
Current	1.39	1.35		1.44	<0.001	1.29	1.20		1.39	<0.001	1.24			1.32	< 0.00
Urban/rural/highly rural residence															
Highly rural	0.57	0.50		0.66	<0.001	0.74	0.54	_	1.00	0.051	1.16	0.97		1.38	0.096
Rural	0.70	0.68	_	0.72	<0.001	0.88	0.82	_	0.93	<0.001	1.04		_	1.08	0.14
Urban	ref					ref					ref				
Unknown	0.27	0.10	_	0.74	0.011	0.55	0.08	_	3.96	0.549	1.75	0.72		4.25	0.22
Diabetes	1.29	1.26	_	1.33	< 0.001	1.26	1.19	_	1.33	< 0.001	1.36		_	1.42	< 0.00
Hypertension	1.30	1.25		1.35	< 0.001	1.29	1.18	_	1.41	< 0.001	0.96		_	1.02	0.14
Cardiovascular disease	1.84	1.78	_	1.89	< 0.001	2.08	1.94		2.23	< 0.001	1.24		_	1.30	< 0.00
Heart failure	1.64	1.58		1.69	< 0.001	1.53	1.43		1.63	< 0.001	1.31		_	1.38	< 0.00
Alcohol use disorder	0.75				<0.001	0.86	0.79		0.93	<0.001	0.69		_	0.73	<0.001
										auidelines		0.01		0.10	0.00

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Table 3 CONTINUED. Odds ratios from logistic regression models testing the association of individual statins compared to no statin with adverse 30-day outcomes among VHA Veterans with a positive respiratory swab for SARS-CoV-2, n=231,017

among vin veterano war a positive respiratory	0			• =, · · ·										
Estimated glomerular filtration rate, ml/min/1.73 m ²														
≥ 90	ref					ref					ref			
60-89	0.90	0.87	—	0.93	<0.001	0.96	0.88	—	1.04	0.273	1.10	1.02 —	1.18	0.018
45-59	0.99	0.94	—	1.03	0.519	1.00	0.91	—	1.10	0.941	1.44	1.33 —	1.56	<0.001
30-44	1.10	1.04	—	1.16	0.001	1.15	1.02	—	1.29	0.024	1.83	1.68 —	1.99	<0.001
15-29	1.31	1.21	—	1.42	<0.001	1.32	1.14	—	1.53	<0.001	2.65	2.36 —	2.97	<0.001
<15 or dialysis	1.45	1.32	—	1.59	<0.001	1.51	1.29	—	1.77	<0.001	2.48	2.16 —	2.84	<0.001

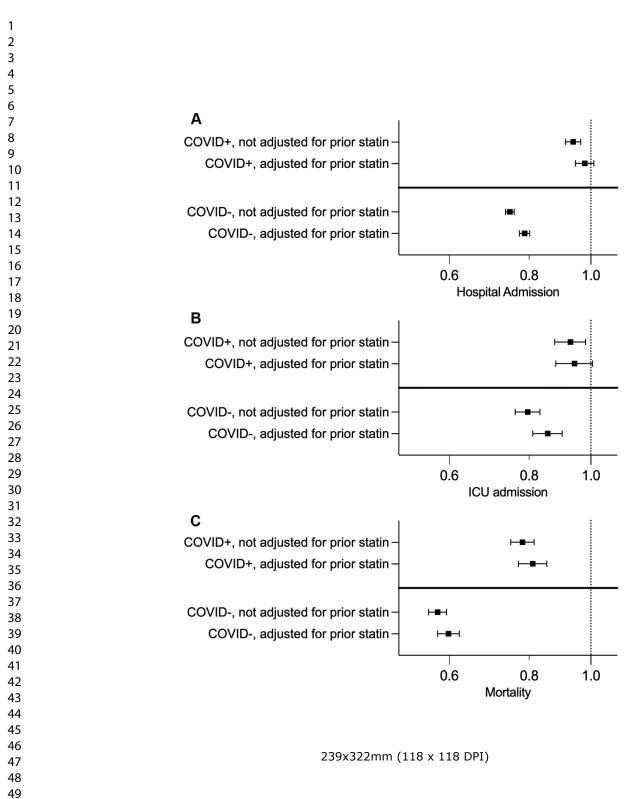
Models additionally adjusted for month of diagnosis and geographic location by Veterans Integrated Service Network location; not adjusted for the presence of an active statin prescription six months prior to enrollment

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Table 4. Odds ratios from logistic regression models testing the association of low- or moderate-	vs. high-potency active statin prescription at enrollment with adverse 30-day
outcomes among VHA Veterans with a positive respiratory swab for SARS-CoV-2, n=69,263	

		Hospi	tal ac	dmissio	n		IC	U adm	nission				Dea	ath	
	OR	9	5% C	I	p value	OR	9	95% C	;	p value	OR		95% (p value
High-potency statin	1.06	1.01	_	1.10	0.011	1.05	0.96	_	1.15	0.258	0.97	0.91	_	1.04	0.40
Sex at birth, female	0.89	0.80	—	1.00	0.041	0.95	0.75	—	1.19	0.634	0.52	0.40	_	0.68	<0.00
ge category, years															
9-39	0.82	0.63	—	1.06	0.123	0.46	0.22	_	0.98	0.045	0.10	0.01	_	0.73	0.02
0-49	0.74	0.64	—	0.86	<0.001	0.55	0.38	_	0.79	0.001	0.45	0.27	_	0.75	0.0
0-59	ref					ref					ref				
60-69	1.30	1.20	—	1.40	<0.001	1.24	1.06	_	1.45	0.009	2.45	2.02	_	2.96	<0.0
70-79	1.47	1.36	—	1.58	<0.001	1.47	1.25	_	1.72	<0.001	4.42	3.67	—	5.32	<0.0
:80	1.95	1.78	—	2.15	<0.001	1.69	1.40	_	2.04	<0.001	9.54	7.84	_	11.60	<0.0
Vhite (vs not white)	0.81	0.69	_	0.96	0.012	0.75	0.52	_	1.08	0.118	0.85	0.64	_	1.11	0.2
Black vs(not Black)	1.31	1.10	—	1.55	0.002	1.12	0.77	_	1.63	0.545	0.80	0.60	—	1.06	0.1
Hispanic (vs not Hispanic)	1.12	1.02	—	1.22	0.013	0.91	0.75	_	1.10	0.330	1.20	1.04	—	1.38	0.0
Body-mass index category, kg/m ²		5													
<18.5	1.04	0.79	_	1.38	0.766	1.19	0.71	_	1.98	0.511	1.45	1.02	—	2.05	0.0
18.5-24.9	ref					ref					ref				
25-29.9	0.81	0.75	<u> </u>	0.86	<0.001	0.89	0.77	_	1.02	0.095	0.78	0.70	_	0.87	<0.0
30-34.9	0.78	0.73	_	0.84	<0.001	0.92	0.80	_	1.07	0.272	0.78	0.70	_	0.87	<0.0
35-39.9	0.78	0.71	_	0.85	<0.001	0.90	0.76	_	1.06	0.188	0.75	0.67	_	0.85	<0.0
≥40	0.86	0.77	—	0.95	0.002	1.08	0.89	_	1.30	0.452	0.91	0.78	_	1.06	0.2
Tobacco use															
Never	ref					ref					ref				
Former	1.18	1.12	—	1.25	<0.001	1.16	1.03	_	1.30	0.013	1.29	1.18	_	1.40	<0.0
Current	1.36	1.28	—	1.44	<0.001	1.36	1.19	_	1.55	<0.001	1.21	1.09	_	1.34	<0.0
Urban/rural/highly rural residence															
Highly rural	0.59	0.47	—	0.73	<0.001	0.93	0.61	_	1.42	0.728	1.40	1.08	—	1.82	0.0
Rural	0.68	0.65	—	0.72	<0.001	0.87	0.79	_	0.96	0.006	1.05	0.97	_	1.12	0.2
Urban	ref					ref					ref				
Unknown	0.17	0.02	—	1.26	0.083	1.69	0.22	_	12.83	0.612	1.41	0.31	_	6.48	0.6
Diabetes	1.29	1.23	—	1.35	<0.001	1.16	1.05	—	1.27	0.003	1.31	1.22	_	1.41	<0.0
Hypertension	1.28	1.18	—	1.39	<0.001	1.38	1.14	_	1.67	0.001	0.98	0.85	_	1.11	0.7
Cardiovascular disease	1.71	1.62	—	1.80	<0.001	1.96	1.75	_	2.21	<0.001	1.25	1.14	_	1.36	<0.0
Heart failure	1.68	1.60	—	1.77	<0.001	1.58	1.44	_	1.74	<0.001	1.33	1.23	_	1.43	<0.0
Alcohol use disorder	0.66	0.62	_	0.71	<0.001	0.81	0.71	_	0.94	0.004	0.69	0.61	_	0.77	<0.0
Estimated glomerular filtration rate, ml/min/1.73 m ²															
≥ 90	ref					ref					ref				
60-89	0.98	0.92		1.05	0.625	1.05	0.91	_	1.20	0.538	1.14	1.01	_	1.29	0.0
45-59	1.08	1.00	_	1.16	0.050	1.05	0.90	_	1.24	0.530	1.58	1.37	_	1.82	<0.0
30-44	1.21	1.10	_	1.32	< 0.001	1.20	1.00	_	1.44	0.055	2.00	1.72	_	2.33	<0.0
15-29	1.53	1.35	_	1.72	< 0.001	1.37	1.09	_	1.72	0.007	3.19	2.69	_	3.78	<0.0
<15 or dialysis	1.64	1.42	_	1.90	< 0.001	1.95	1.52		2.50	< 0.001	3.01	2.44		3.73	<0.0

Models additionally adjusted for month of diagnosis and geographic location by Veterans Integrated Service Network location; not adjusted for the presence of an active statin prescription six months prior to enrollment


For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

45 46 47

Figure Legend

Fig. 1. ORs and 95% confidence intervals for associations of statin use at study enrollment with A) hospitalization, B) ICU admission, and C) death unths p., . sex, age, race/ethn. .uar disease, heart failure, and au. at 30 days before and after adjustment for statin use six months prior to diagnosis among VHA Veterans with and without a positive respiratory swab for SARS-CoV-2. All analyses are adjusted for sex, age, race/ethnicity, BMI, tobacco use, facility location, urban/rural status, eGFR, and history of diabetes, hypertension, cardiovascular disease, heart failure, and alcohol use disorder.

BMJ Open

1	
2	
_	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	

57 58 59

60

Subgroup	No. of participants	OR (95% CI)	P for interaction
All participants	231017		
Sex at birth			0.001
Male	207043		
Female	23974	_	
Age group			0.018
<40	32620		
40-49	26203		
50-59	40006	- -	
60-69	46214	HEH	
70-79	61261	HEH	
80+	24713	i i i i i i i i i i i i i i i i i i i	
Body-mass index category, kg/m²			0.468
<18.5	1169 H		
18.5-24.9	22127	+■-1	
25-29.9	51658	HEH	
30-34.9	48458	. ⊢ ∎-(
35-39.9	25270	⊢∎∔	
≥ 40	14751	⊢ ∎	
Estimated glomerular filtration rate, ml/min/1.73 m ²			< 0.0001
≥ 90	48018	Hint I	
60-89	84749	HEH	
45-59	25687	⊢ ∎-1	
30-44	11165	:	
15-29	3714		ł
<15 or dialysis	2513	⊢ ∎ −1	
Diabetes			0.412
No	145649	HEH	
Yes	85368	-	
Hypertension			0.838
No	84566	⊢ ∎-1	
Yes	146451		
Cardiovascular disease			0.171
No	134672	HEH	
Yes	96345		
White race			0.069
No	74643	HEH	
Yes	156374		
Black race			0.022
No	178663		
Yes	52354	HEH	
Latino ethnicity			0.324
No	208138		
Yes	22879	⊢ ∎	
Prior CRP high			0.455
No	34292	⊢ ∎-1	
Yes	27601	⊢∎⊣	
	0.50	0 0.75 1.0 statin use Favors no pri	1.25

293x387mm (236 x 236 DPI)

1	
2	2
3	
4	-
5	,
6	•
7	,
8	}
9)
1	0
1	1
1	2
	3
	4
1	5
	6
	7
	8
1	9

Subgroup	No. of participants	OR (95% CI)	P for interact
All participants	231017	H	
Sex at birth			0.024
Male	207043	HEH	
Female	23974	· •	>
Age group			0.397
<40	32620 •		
40-49	26203	← ■	
50-59	40006	i	
60-69	46214		
70-79	61261	⊢∎ -1	
80+	24713	: 	
Body-mass index category, kg/m ²			0.984
<18.5	1169 🔹		>
18.5-24.9	22127		
25-29.9	51658		
30-34.9	48458		
35-39.9	25270		
≥ 40	14751		
Estimated glomerular filtration rate, ml/min/1.73 m ²	14751		0.066
≥ 90	48018		0.066
60-89	84749		
45-59	25687		
30-44	11165		
15-29	3714		
<15 or dialysis	2513		•
Diabetes			0.166
No	145649	-■+1	
Yes	85368	HEH	
Hypertension			0.329
No	84566	⊢ : ■	
Yes	146451	H	
Cardiovascular disease			0.99
No	134672	∎	
Yes	96345	F ≣ -1	
White race			0.968
No	74643	⊢∎⊣	
Yes	156374	⊢∎⊣	
Black race			0.352
No	178663	⊢∎⊣	
Yes	52354	⊢∎⊣	
Latino ethnicity			0.044
No	208138	H	
Yes	22879		
Prior CRP high			0.987
No	34292	∊∊⋼	
Yes	27601	⊢ ∎∔₁	
	,Г		7

293x387mm (236 x 236 DPI)

No. of participants

Subgroup

OR (95% CI)

P for interaction

1	
2	
2	
4	
5	
6	
7	
, 8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30 31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54 55	
55 56	
57 50	

58 59

60

231017		0.991
207043	.	0.001
20014		< 0.0001
32620		<0.0001
24713		-0.0001
1100		<0.0001
	⊨∎-1	
	i ⊢∎ -1	
14751	⊢	
		0.223
	⊢	
	⊢ ∎-+	
25687	H-8-1	
11165		
3714	· - ● 1	
2513	H = 1	
		0.539
145649	H	
85368	(B H	
		0.6
84566	i	
146451	1	
		0.306
134672	⊢ ∎-4	
96345	н <mark>а</mark> н	
		0.029
74643	i-∎-i	
156374	i i i i i i i i i i i i i i i i i i i	
		0.006
178663	i n i	
52354	j − ∎−i	
		0.06
208138		
22879		
-		0.875
34292		
	÷∎	
21001	r	
← Favor	rs prior statin use Favors no prior	statin use \rightarrow
	11165 3714 2513 145649 85368 84566 146451 134672 96345 74643 156374 178663 52354 208138 22879 34292 27601	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

293x387mm (236 x 236 DPI)

STROBE Statement—Checklist of items that should be included in reports of cohort studies

	Item No	Recommendation	Pag No
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the	
		abstract	
		(b) Provide in the abstract an informative and balanced summary of what was	1
		done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being	4
		reported	
Objectives	3	State specific objectives, including any prespecified hypotheses	4
Methods			
Study design	4	Present key elements of study design early in the paper	4
Setting	5	Describe the setting, locations, and relevant dates, including periods of	5
		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of	5
		participants. Describe methods of follow-up	
		(b) For matched studies, give matching criteria and number of exposed and	
		unexposed	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and	6
		effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	6
measurement		assessment (measurement). Describe comparability of assessment methods if	
		there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	6
Study size	10	Explain how the study size was arrived at	5
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,	6
		describe which groupings were chosen and why	
Statistical methods	12	(a) Describe all statistical methods, including those used to control for	
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	6
		(c) Explain how missing data were addressed	
		(d) If applicable, explain how loss to follow-up was addressed	
		(<u>e</u>) Describe any sensitivity analyses	
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	7
		eligible, examined for eligibility, confirmed eligible, included in the study,	
		completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social)	7
-		and information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	
		(c) Summarise follow-up time (eg, average and total amount)	
			7

Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their	8
		precision (eg, 95% confidence interval). Make clear which confounders were adjusted for	
		and why they were included	
		(b) Report category boundaries when continuous variables were categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a	
		meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and sensitivity	8
		analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	8
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision.	10
		Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	9
		multiplicity of analyses, results from similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	10
Other informati	on		
Funding	22	Give the source of funding and the role of the funders for the present study and, if	3
		applicable, for the original study on which the present article is based	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Associations of statin use with 30-day adverse outcomes among 4,801,406 U.S. Veterans with and without SARS-CoV-2: An observational cohort study

Journal:	BMJ Open		
Manuscript ID	bmjopen-2021-058363.R2		
Article Type:	Original research		
Date Submitted by the Author:	20-Jan-2022		
Complete List of Authors:	Wander, Pandora; VA Puget Sound Health Care System Seattle Division; University of Washington, Department of Medicine Lowy, Elliott; Veterans Affairs Puget Sound Health Care System; University of Washington, Department of Health Systems and Population Health Beste, Lauren A.; Veterans Affairs Puget Sound Health Care System; University of Washington, Department of Medicine Tulloch-Palomino, Luis; Veterans Affairs Puget Sound Health Care System; University of Washington, Department of Medicine Korpak, Anna; Veterans Affairs Puget Sound Health Care System Peterson, Alexander; Veterans Affairs Puget Sound Health Care System Kahn, Steven E.; University of Washington Danaei, Goodarz; Harvard School of Public Health, Department of Global Health and Population Boyko, Edward J.; Veterans Affairs Puget Sound Health Care System, Seattle Epidemiologic Research and Information Center		
Primary Subject Heading :	Public health		
Secondary Subject Heading:	Epidemiology, Infectious diseases, General practice / Family practice		
Keywords:	COVID-19, Epidemiology < TROPICAL MEDICINE, INTERNAL MEDICINE		
Note: The following files were submitted by the author for peer review, but cannot be converted to PDF. You must view these files (e.g. movies) online.			
app fig 1. forest_adm_7-20-21.jpf			

app fig 1. forest_adm_7-20-21.jpf app fig 2. forest_icu_7-20-21.jpf app fig 3. forest_mort_7-20-21.jpf

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Associations of statin use with 30-day adverse outcomes among 4,801,406 US Veterans with and without SARS-CoV-2: an observational cohort study Authors: Pandora L Wander, MD, MS^{a,b}; Elliott Lowy, PhD^{a,c}; Lauren A Beste, MD, MSc^{a,b}; Luis Tulloch-Palomino, MD^{a,b}; Anna Korpak, PhD^a; Alexander C Peterson, MSc^a; Steven E Kahn, MB, ChB^{a,b}; Goodarz Danaei, MD, ScD^d; Edward J Boyko, MD, MPH^{a,b} Affiliations: ^aVeterans Affairs Puget Sound Health Care System, Seattle, WA ^bDepartment of Medicine, University of Washington, Seattle, WA ^cDepartment of Health Systems and Population Health, University of Washington, Seattle, WA ^dDepartments of Global Health and Population, Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA Correspondence to: Pandora L. Wander VA Puget Sound Healthcare System 1660 S. Columbian Way, S-111-MED Seattle, WA 98108 lwander@u.washington.edu ORCID: 0000-0003-3671-1464 Running title: Statin use and 30-day outcomes in SAR-CoV-2 Word count (not including title, abstract, acknowledgment, references, tables, and figure legends): 2,900 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

ABSTRACT

Objective: To estimate associations of statin use with hospitalization, intensive care unit (ICU) admission, and mortality at 30 days among individuals with and without a positive test for SARS-CoV-2.

Design: Retrospective cohort study.

Setting: U.S. Veterans Health Administration (VHA).

Participants: All Veterans receiving VHA health care with \geq 1 positive nasal swab for SARS-CoV-2 between March 1, 2020 and March 10, 2021 (cases; n=231,154) and a comparator group of controls comprising all Veterans who did not have a positive nasal swab for SARS-CoV-2 but who did have \geq 1 clinical lab test performed during the same time period (n=4,570,252).

Main outcomes: Associations of (1) Any statin use, (2) use of specific statins, or (3) low-/moderate- vs. highintensity statin use at the time of positive nasal swab for SARS-CoV-2 (cases) or result of clinical lab test (controls) assessed from pharmacy records with hospitalization, ICU admission, and death at 30 days. We also examined whether associations differed between individuals with and without a positive test for SARS-CoV-2. **Results:** Among individuals who tested positive for SARS-CoV-2, statin use was associated with lower odds of death at 30 days (OR 0.81 [95%CI 0.77–0.85]) but not with hospitalization or ICU admission. Associations were similar comparing use of each specific statin to no statin. Compared to low-/moderate-intensity statin use, high-intensity statin use was not associated with lower odds of ICU admission or death. Over the same period, associations of statin use with 30-day outcomes were significantly stronger among individuals without a positive test for SARS-CoV-2: hospitalization OR 0.79 (95%CI 0.77–0.80), ICU admission OR 0.86 (95%CI 0.81–0.90), and death 0.60 (95%CI 0.58–0.62; p for interaction all <0.001).

Conclusions: Associations of statin use with lower adverse 30-day outcomes are weaker among individuals who tested positive for SARS-CoV-2 compared to individuals without a positive test, indicating that statins do not exert SARS-CoV-2-specific effects.

Strengths and limitations of this study

Large, well characterized national (U.S.) sample.

 First study to formally assess and compare statin effects seen in SARS-CoV-2 infection using a negative control.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

- Observational design cannot exclude the possibility of residual confounding.

- Did not capture hospitalizations or diagnoses occurring outside Veterans Health Administration.

tor peer terien only

BMJ Open

INTRODUCTION

New cases of COVID-19/SARS-CoV-2 infection continue to occur at high rates in the United States and worldwide with few treatments available to decrease mortality. Statin use at the time of COVID-19 diagnosis has been associated with a lower risk of short-term mortality in observational studies¹ and systematic reviews². Based on these early findings and their demonstrated effects on inflammation, oxidative stress, and immune responses, statins have been proposed as a low-cost, accessible, and effective treatment for COVID-19³. However, an inverse association of statin use with mortality is not uniformly seen across observational studies of persons with COVID-19^{4 5}. Further, preliminary findings from a randomized placebo-controlled trial of patients admitted to the ICU did not show a protective effect of atorvastatin 20 mg/day on 30-day mortality after COVID-19 diagnosis, among patients not taking statins prior to admission⁶. These paradoxical findings may reflect the presence of residual confounding in observational studies. In addition, effects of statins on mortality after COVID-19 may differ across populations, for example, among individuals with or without cardiovascular disease (CVD), or specific to certain statins but not all medications in this class. Therefore, observational studies with comprehensive strategies to examine potential bias from unmeasured confounding—such as the use of negative control populations²—are needed to improve estimates of the potential causal effect of statin use at diagnosis on mortality after COVID-19.

To address these gaps, we used national data from the Veterans Health Administration (VHA) to quantify the independent association of statin use at diagnosis with adverse outcomes from COVID-19 at 30 days, including hospitalization, intensive-care unit (ICU) admission, and mortality. We used the following strategies to mitigate or estimate bias: 1) directed-acyclic graphs to guide the choice of potential confounders; 2) comparison of associations among SARS-CoV-2 infected individuals (n=231,154) with associations among an uninfected comparator sample (n=4,570,252); and 3) a dose-response analysis comparing low- or moderate-intensity statin use to high-intensity use. In additional analyses, we investigated associations of individual statins with 30-day outcomes after COVID-19 and evaluated the magnitude of the statin-mortality association in strata of sex, age, race, BMI, clinical comorbidities, and C-reactive protein (CRP) level prior to diagnosis.

METHODS

Study setting and population

The Veterans Health Administration (VHA)—the largest integrated healthcare system in the United States provides care to more than 7 million Veterans at 170 medical centers and 1,074 outpatient sites⁷. We used data from the Corporate Data Warehouse (CDW), a data repository derived from VHA's integrated electronic medical record, including a COVID-19 Shared Data Resource, which contains analytic variables for all enrollees tested for SARS-CoV-2⁸. The study was approved by the institutional review board at VA Puget Sound Health Care System. The requirement for informed consent was waived.

Selection of the SARS-CoV-2-positive cohort

We identified all enrollees with one or more positive nasal swabs for SARS-CoV-2 between March 1, 2020, and March 10, 2021. The index date was defined as the date the first positive test was performed. Most tests were performed in VA laboratories using US Food and Drug Administration (FDA)–approved RealTime (Abbott Laboratories) or Xpert-Xpress (Cepheid) SARS-CoV-2 assays. A small number were sent to outside laboratories.

Selection of the SARS-CoV-2-negative cohort

Individuals without a positive nasal swab for SARS-CoV-2 and with any clinical lab test available in the medical record between March 1, 2020, and March 31, 2021, were chosen as a comparison group. A negative nasal swab for SARS-CoV-2 was not required for inclusion. Participants without a positive nasal swab for SARS-CoV-2 was not required for inclusion. Participants without a positive nasal swab for SARS-CoV-2 were assigned an index month during the study period for which they had a lab result, and a random index date during the index month which was used as the start of follow-up.

Exposure

Current statin use was defined as receipt of a statin prescription with a fill date prior to the index date and a quantity prescribed that would extend past the index date. Statin intensity was defined as low, moderate, or high using definitions from the American Heart Association/American College of Cardiology guidelines on management of cholesterol⁹ and was calculated based on the specific statin and dosage prescribed. Prescribing data were available for the following specific statins: Atorvastatin, fluvastatin, lovastatin,

BMJ Open

pitavastatin, pravastatin, rosuvastatin, simvastatin. We defined prior statin use as receipt of a statin prescription with a fill date that included the time period six months prior to the index date.

Covariates

We collected data on age, sex, race/ethnicity, VHA facility location, and urban, rural, or highly rural residence using a validated classification scheme that has been previously described¹⁰. Body mass index (BMI) was defined as weight in kg divided by (height in meters)². Smoking status was classified as current, former, or never based on VHA health factors data. If no smoking code was entered, the participant was classified as never smoked. At-risk drinking was defined using a score \geq 3 for men and \geq 4 for women on the Alcohol Use Disorders Identification Test consumption questions (AUDIT-C)¹¹. Comorbidities (hypertension (HTN), CVD, and heart failure) were identified using ICD-9-CM and -10 codes entered after October 1, 1999, the date when VHA began using a universal electronic health record¹². We defined chronic kidney disease (CKD) by categories of estimated glomerular filtration rate¹³ using the most recent creatinine at least 3 days, but not more than 1 year, before the index date. For individuals with data available on CRP at least 14 days but not more than six months before the index date (n=27,630), we dichotomized CRP values as normal or elevated based on cut points provided for each assay at the testing site because a variety of assays for these biomarkers are used across the VA system.

Outcomes

In both groups, we collected data on 30-day hospitalizations, ICU admissions, and deaths occurring through March 10, 2021. Deaths were verified by official sources including VHA Patient Treatment File, the Beneficiary Identification Records Locator Subsystem (BIRLS), and VA/CMS Medicare Vital Status File; Social Security Administration (SSA) Death Master File; death certificates, and VHA National Cemetery Administration¹⁴.

Statistical analyses

We summarized baseline characteristics for SARS-CoV-2 infected and uninfected participants, stratified by statin use at the index date. We used multiple imputation with 10 sets of imputations for analyses that included BMI or CKD due to approximately 20% missing values for each of these variables. We used DAGitty¹⁵ to

generate a directed acyclic graph (DAG) to assist in variable selection. We fit separate logistic regression models for individuals with and without a positive swab for SARS-CoV-2, testing the association of statin use at index date with occurrence of hospitalization, ICU admission, and death, adjusting for the minimal sufficient covariate set to estimate the total effect of statin use according to our DAG (statin use ≥ six months prior to diagnosis, sex, age, race/ethnicity, BMI, tobacco use, facility location, index month, urban/rural status, eGFR, and history of diabetes, hypertension, cardiovascular disease, heart failure, and alcohol use disorder) separately. Index month was included as a precision variable. Facility location was included because both patterns of statin use and COVID-19 outcomes are expected to differ by region in the US. In combined models, we tested for the presence of multiplicative first-order interactions to determine whether the association between statins and odds of hospitalization, ICU admission, and death at 30 days differed between persons with and without a positive swab for SARS-CoV-2. We also controlled for prior statin use to approximate a comparison of incident users and non-users. In a sensitivity analysis, we examined associations of statin use at diagnosis with occurrence of hospitalization, ICU admission, and death in models that were not adjusted for statin use six months prior to diagnosis.

Among individuals with a positive swab for SARS-CoV-2, we fit logistic regression models examining associations of specific statins compared to no statin use with outcomes adjusted for sex, age, race/ethnicity, BMI, tobacco use, facility location, urban/rural status, eGFR, and history of diabetes, hypertension, cardiovascular disease, heart failure, and alcohol use disorder, as well as models comparing low-intensity to moderate- or high-intensity statin use. We evaluated the magnitude of the statin-mortality association in strata of sex, age, race, BMI, clinical comorbidities, and prior CRP concentration and tested for first-order multiplicative interactions by using interaction terms in combined models.

Patient and public involvement

Patients or the public were not involved in the design, or conduct, or reporting, or dissemination plans of our research.

RESULTS

BMJ Open

SARS-CoV-2 infected participants were 60.9 years old (±16.5) on average, and 10% percent (n= 23,974) were female. Thirty percent (69,263) had an active statin prescription at enrollment. During the 30 days after diagnosis, 14% (32,490) of SARS-CoV-2 infected participants were hospitalized, 3% (6,140) were admitted to the ICU, and 5% (12,111) died. SARS-COV-2 uninfected participants were 61.6 years old (±16.7) on average, and 13% (577,718) were female. Thirty percent (1,389,364) had an active statin prescription at enrollment. During the 30 days after the index date, 2% (91,604) were hospitalized, 0.2% (9,298) were admitted to the ICU, and 0.4% died (n=19,298). Statin users were more likely to be of white race/ethnicity, have BMI of 30 kg/m2 or greater, be former smokers, and reside in a rural zip code regardless of SARS-CoV-2 test result. Not surprisingly, statin users were receiving hi potency therapy among participants testing positive for SARS-CoV-2 (**Table 1**).

Among SARS-COV-2 positive individuals, statin use was associated with lower odds of death at 30 days (OR 0.81 [95%CI 0.77–0.85]), but not with hospitalization or ICU admission. Adjustment for receipt of statin six months prior to baseline attenuated the magnitude of the association of statin use at diagnosis with all outcomes (**Fig. 1, Tables 2a and 2b**) Associations with outcomes were similar for individual statins (**Table 3**). Compared to low-/moderate-intensity, high-intensity statin use was associated with higher odds of hospitalization (1.06 [95%CI 1.01–1.10]) but not with ICU admission or death (**Table 4**). Associations of statin use with hospitalization differed across strata of sex, age, race (Black vs. non-Black), and eGFR (e.g., OR for hospitalization in Black participants 0.98 [95%CI 0.92–1.03], OR for hospitalization in non-Black participants 0.92 [95%CI 0.89–0.95], p for interaction = 0.022). Associations of statin use with ICU admission differed across strata of sex and ethnicity (Latinx vs. not Latinx) (e.g., OR for ICU admission in Latinx participants 0.77 [95%CI 0.62–0.95], OR for ICU admissioni in non-Latinx participants 0.94 [95%CI 0.89–1.00], p for interaction = 0.044). Associations of statin use with mortality differed across strata of age, race/ethnicity (white vs. non-white and Black vs. non-Black), and BMI (e.g., OR for mortality in Black participants 0.83 [95%CI 0.76–0.92], OR for mortality in non-Black participants 0.77 [95%CI 0.74–0.81], p for interaction = 0.006). Associations did not differ across strata of prevalent diabetes, hypertension, or CVD (**Supplementary Fig. 1–3**).

Compared to persons with SARS-CoV-2 infection, OR for all three outcomes were significantly lower in persons without SARS-CoV-2 infection, as reflected by p<0.001 for the interaction term of SARS-CoV-2*statin use in all three models. Among SARS-COV-2 negative individuals, statin use was associated with lower odds of hospitalization (OR 0.79 [95%CI 0.77–0.80]), ICU admission (OR 0.86 [95%CI 0.81–0.90]), and death at 30 days (OR 0.60 [95%CI 0.58–0.62]). (Table 2a).

DISCUSSION

In this cohort of U.S. Veterans with (n=231,154) and without (n=4.570,252) a positive respiratory swab for SARS-CoV-2, statin use was independently associated with lower odds of death at 30 days compared to no statin use, but this association over a similar time period was significantly stronger among Veterans without a positive respiratory swab for SARS-CoV-2. Among individuals with and without a positive respiratory swab for SARS-CoV-2, adjusting for prior statin use attenuated the association of statin use with all outcomes; however, in every case the magnitude of the association remained substantially greater among individuals without a diagnosis of COVID-19. Associations were similar for specific statins, and receipt of high-potency statin was not associated with lower odds of any outcome compared to moderate and low potency, except for a small difference in the odds of hospitalization. Associations were not significantly different in strata of prevalent diabetes, hypertension, or cardiovascular disease. Furthermore, the lack of a gradient of effect with statin potency also does not support a potential causal benefit of statin use. Taken together, these results suggest that while statin use is associated with lower mortality among individuals with a positive swab for SARS-CoV-2, the benefit is actually smaller for than it is for those without evidence of SARS-CoV-2 infection and does not support a possible anti-COVID effect of statin treatment. It is important to note, however, that the current study does not demonstrate a harmful effect of statin use among individuals with COVID-19, only that statins may not exert a SARS-CoV-2-specific protective effect and/or that positive findings in previous observational studies may be due to residual confounding. Current findings therefore do not support statin cessation among individuals with COVID-19.

Use of negative controls is an important technique to detect confounding or other sources of bias in epidemiological studies¹⁶ that has gone underutilized in the era of COVID-19 research. An instructive example For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

is the association of pneumonia or influenza vaccination with all-cause mortality seen in elderly individuals despite rigorous control for confounding by factors related to overall health status¹⁷. Using negative controls, Jackson et al. examined the association of vaccination with a negative control outcome: mortality prior to influenza season¹⁸. They found a stronger association with mortality during the period prior to influenza season compared to during or after, a biologically implausible result that was attributed by the authors to preferential receipt of vaccines by healthy individuals. This source of bias is now recognized in studies of this topic¹⁹. While the use of a negative control outcome is not precisely analogous to the methods used in the current study, the example can inform interpretation of the current findings.

Several recent systematic reviews and meta-analyses have examined the association of prior statin use with short-term outcomes after COVID-19² 20-25. Many of these reported an inverse association of statin use at diagnosis with mortality. For example, statin use was associated with a lower hazard of death (HR 0.72 [95%CI 0.69–0.75]) in a large population-based study of English patients with diabetes independent of age and comorbid CVD²⁶. In a recent nationwide U.S. study of hospitalized individuals (n=10,541), outpatient statin, either alone or with blood pressure-lowering medications, was associated with lower odds of in-hospital death (OR 0.59 [95%CI 0.50–0.69]). The magnitude of the association of statin use at diagnosis with mortality reported in these and other analyses is guite similar to the OR in the current report among individuals with COVID-19 in models that were not adjusted for prior statin use (OR for death at 30 days 0.78 [95% CI 0.75–0.82]), likely reflecting similar strategies for confounder adjustment. The lower COVID-19 mortality risk among statin users, however, is not a universal finding. In fact, among French hospitalized patients with diabetes, statin use at diagnosis was associated with higher odds of death at 28 days (OR 1.46 [95% CI 1.08–1.95])²⁷. Reasons for these disparate findings are unclear but may be due in part to differences in timing, as early in the pandemic, treatments such as dexamethasone and remdesivir were not widely used. Consistent with this, in the French cohort mortality was about 21% at 28 days, considerably higher than our overall 30-day mortality rate of about 7%. No prior study to our knowledge has examined outcomes following statin use comparing SARS-CoV-2 infected and uninfected statin users.

We did not examine in-hospital statin continuation in the current analysis—a guestion which remains unaddressed—but instead focused on the association between statin use prior to COVID diagnosis and outcomes, where use of this medication would not have been confounded by the onset of COVID. Methodological issues (most importantly residual confounding by indication and heterogeneity of the populations studied) limit the conclusions that can be drawn from earlier observational studies of statin continuation at hospitalization. Masana et al. examined associations of statin use with in-hospital mortality in a cohort of hospitalized Spanish patients with a positive test for SARS-CoV-2²⁸ comparing statin non-users, users who continued statins during hospitalization, and users who stopped statins during hospitalization. Overall, 25.7% of non-users died, while 19.8% of continued users died, and 17.4% of stoppers died. In that analysis, matching was used to account for differences in pre-admission characteristics; however, the authors were not able to account for characteristics (e.g., severity of COVID-19 illness, perceived prognosis, goals of care, etc.) that might impact the decision to stop statin therapy at the time of admission. In a meta-analysis, Permana et al. examined associations of pre-admission statin use and in-hospital statin use among patients hospitalized after a positive test for SARS-CoV-2²¹, which is a related question. In-hospital but not pre-admission statin use was associated with a lower risk of mortality; however, these pre-admission and in-hospital study populations differed in characteristics such as age and sex that are strongly associated with adverse COVID-19 outcomes, limiting direct comparisons between the groups. Given the many possible determinants of statin cessation or continuation following the diagnosis of COVID-19 potentially related to adverse outcomes that would be difficult to extract from medical records (electronic or otherwise), the question of whether to cease or initiate statins following COVID diagnosis will be best determined by a clinical trial.

We noted several differences in outcomes associated with statin use by certain characteristics such as sex, age, and race (Supplementary Fig. 1-3). As our main analysis did not show evidence of a lower risk of outcomes associated with statin use confined to COVID-19 infected participants, these interactions likely reflect associations independent of presence of this infection and therefore reflecting effect modification between statin use, stratum variables, and outcomes of interest.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 13 of 27

BMJ Open

Our study has several strengths, most importantly a large, well characterized national sample. To our knowledge, this is the largest observational study of prior statin use and adverse outcomes from SARS-CoV-2 in the United States (n=4,801,406) as well as the first to formally assess and compare statin effects seen in SARS-CoV-2 infection using a negative control (non-infected statin users). Second, we used several methods designed to mitigate or quantify bias due to unmeasured confounding. We: 1) constructed a DAG to estimate the minimal sufficient adjustment set to estimate the total effect of statin use on 30-day outcomes; 2) compared associations in SARS-CoV-2 infected individuals and an uninfected comparator sample; and 3) conducted dose-response analyses using statin potency to reflect dose. In addition, most VHA enrollees receive medical care and medications without cost, which likely decreases the contribution of unmeasured financial factors to differences in the quality of care received and most importantly to receipt of statin medications. Our results should be considered within the context of several limitations. The VHA population is generally older, with lower income and socioeconomic status²⁹ than the U.S. population as a whole, and our findings may not be generalizable to non-VHA populations. Additionally, the proportion of women was low (13%); however, although women comprised only a small proportion of the sample, the number of female participants (n=601,765) is adequate for robust statistical inference. We were also unable to capture hospitalizations or some outpatient prescriptions that occurred outside VHA. This is an important source of potential bias should propensity to seek outside care be associated with likelihood of receiving a statin, although VHA users are asked to provide notification within 72 hours of an outside hospital admission, and when possible are transferred to a VHA facility, which would then be captured in the VHA electronic health record. Given the timing of this study, we were unable to evaluate mediating or moderating effects of vaccination use due to very limited vaccination coverage of our population by the index date. No data were available on prescription adherence; however, statin discontinuation rates have previously shown to be low in VHA patients relative to discontinuation of other lipid-lowering medications³⁰. The comparison of all-cause mortality is in our opinion the best outcome by which to assess whether statin use benefitted patients with versus without SARS-CoV-2 infection. The comparison of admission to hospital or ICU is of less value given that the reasons for hospitalization likely differed greatly by presence of infection, but, nevertheless, are of value in demonstrating that no apparent benefit is seen that might not be reflected in overall mortality. Finally, not all individuals in the comparator group were tested for SARS-CoV-2, so we were unable to exclude the possibility that some SARS-

CoV-2–positive participants with asymptomatic or mild disease were misclassified as SARS-CoV-2–negative. We elected to include individuals without SARS-CoV-2 tests because individuals with indications for SARS-CoV-2 testing may represent a particular (and sicker) population than the general group of VA enrollees as a whole. Further, based on the current results, inclusion of individuals with undiagnosed COVID-19 in the SARS-CoV-2–negative comparator group would be expected to attenuate observed differences in the associations of statin use with adverse outcomes between the SARS-CoV-2 infected and negative comparator groups. It is unlikely that exclusion of participants with undiagnosed COVID-19 from the comparator group would have resulted in a reduction in the observed negative association between statin use and mortality, as this would have required an opposite association to be present between undiagnosed COVID-19 infection and mortality, a possibility for which there is little reason or evidence to support.

CONCLUSIONS

In conclusion, statin use is associated with lower odds of 30-day mortality both among U.S. Veterans with or without a positive respiratory swab for SARS-CoV-2 indicating that statins may not exert COVID-19-specific beneficial effects.

FUNDING. The work was funded by VA Clinical Science Research & Development (COVID19-8990-19). The funder had no role in the study design, conduct, analysis, or reporting.

COMPETING INTERESTS. There are no relevant conflicts of interest to disclose.

DATA AVAILABILITY STATEMENT. Access to VA electronic health records data is limited to researchers with active, VA appointments and an IRB-approved protocol.

CONTRIBUTORSHIP. PLW conceived the project, designed the overall research plan, and wrote the first draft of the manuscript. EL analyzed the data and reviewed/edited the manuscript, LB contributed to the conception of the work and reviewed/edited the manuscript, LTP contributed to the conception of the work and reviewed/edited the manuscript, AK contributed to design/interpretation of the analyses and reviewed/edited

BMJ Open

the manuscript, AP contributed to the design/interpretation of the analyses and reviewed/edited the manuscript. SEK contributed to the conception of the work and reviewed/edited the manuscript. GD contributed to the design/interpretation of the analyses and reviewed/edited the manuscript. EJB conceived the project, designed the overall research plan, and reviewed/edited the manuscript.

LICENCE. The Corresponding Author has the right to grant on behalf of all authors and does grant on behalf of all authors, <u>a worldwide licence</u> to the Publishers and its licensees in perpetuity, in all forms, formats and media (whether known now or created in the future), to i) publish, reproduce, distribute, display and store the Contribution, ii) translate the Contribution into other languages, create adaptations, reprints, include within collections and create summaries, extracts and/or, abstracts of the Contribution, iii) create any other derivative work(s) based on the Contribution, iv) to exploit all subsidiary rights in the Contribution, v) the inclusion of electronic links from the Contribution to third party material where-ever it may be located; and, vi) licence any third party to do any or all of the above.

ETHICS STATEMENT. The study was approved by the institutional review board at VA Puget Sound Health Care System, Seattle, WA, USA (#01897). The requirement for informed consent was waived.

REFERENCES

- Daniels LB, Ren J, Kumar K, et al. Relation of prior statin and anti-hypertensive use to severity of disease among patients hospitalized with COVID-19: Findings from the American Heart Association's COVID-19 Cardiovascular Disease Registry. *PloS one* 2021;16(7):e0254635. doi: 10.1371/journal.pone.0254635 [published Online First: 2021/07/16]
- Pal R, Banerjee M, Yadav U, et al. Statin use and clinical outcomes in patients with COVID-19: An updated systematic review and meta-analysis. *Postgraduate medical journal* 2021 doi: 10.1136/postgradmedj-2020-139172 [published Online First: 2021/02/06]
- 3. Castiglione V, Chiriaco M, Emdin M, et al. Statin therapy in COVID-19 infection. *Eur Heart J Cardiovasc Pharmacother* 2020;6(4):258-59. doi: 10.1093/ehjcvp/pvaa042 [published Online First: 2020/04/30]
- 4. Butt JH, Gerds TA, Schou M, et al. Association between statin use and outcomes in patients with
 coronavirus disease 2019 (COVID-19): a nationwide cohort study. *BMJ Open* 2020;10(12):e044421.
 doi: 10.1136/bmjopen-2020-044421 [published Online First: 2020/12/06]
- 5. Yetmar ZA, Challener DW, Tleyjeh IM, et al. Association Between Chronic Statin Use and 30-Day Mortality in Hospitalized Patients With COVID-19. *Mayo Clin Proc Innov Qual Outcomes* 2021;5(2):442-46. doi: 10.1016/j.mayocpiqo.2021.02.002 [published Online First: 2021/03/23]
- 6. Rubin R. Could Statins Do More Than Lower Cholesterol in Patients With COVID-19? JAMA : the journal of the American Medical Association 2021 doi: 10.1001/jama.2021.8201 [published Online First: 2021/06/04]

1	 U.S. Department of Veterans Affairs: VHA [Available from: <u>https://www.va.gov/health/</u> accessed 9/28/2020 2020.
2	8. CDW COVID-19 Shared Data Resource (intranet-only resource) [Available from:
3	https://vhacdwdwhweb100.vha.med.va.gov/phenotype/index.php/COVID-19:Shared Data Resource
4	accessed 9/28/2020 2020.
5	9. Grundy SM, Stone NJ, Bailey AL, et al. 2018
6	AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the
7	Management of Blood Cholesterol: A Report of the American College of Cardiology/American Heart
8	Association Task Force on Clinical Practice Guidelines. <i>Circulation</i> 2019;139(25):e1082-e143. doi:
9	10.1161/CIR.0000000000000625 [published Online First: 2018/12/28]
10 11	10. West AN, Lee RE, Shambaugh-Miller MD, et al. Defining "rural" for veterans' health care planning. The
12	Journal of rural health : official journal of the American Rural Health Association and the National Rural
13	Health Care Association 2010;26(4):301-9. doi: 10.1111/j.1748-0361.2010.00298.x [published Online
14	First: 2010/10/30]
15	11. Bush K, Kivlahan DR, McDonell MB, et al. The AUDIT alcohol consumption questions (AUDIT-C): an
16	effective brief screening test for problem drinking. Ambulatory Care Quality Improvement Project
17	(ACQUIP). Alcohol Use Disorders Identification Test. Archives of internal medicine 1998;158(16):1789-
18	95. doi: 10.1001/archinte.158.16.1789 [published Online First: 1998/09/17]
19	12. Quan H, Sundararajan V, Halfon P, et al. Coding algorithms for defining comorbidities in ICD-9-CM and
20	ICD-10 administrative data. <i>Medical care</i> 2005;43(11):1130-9. doi:
21	10.1097/01.mlr.0000182534.19832.83 [published Online First: 2005/10/15]
22	13. Young BA, Katz R, Boulware LE, et al. Risk Factors for Rapid Kidney Function Decline Among African
23	Americans: The Jackson Heart Study (JHS). American journal of kidney diseases : the official journal of
24	the National Kidney Foundation 2016;68(2):229-39. doi: 10.1053/j.ajkd.2016.02.046 [published Online
25	First: 2016/04/14]
26 27	14. Sohn MW, Arnold N, Maynard C, et al. Accuracy and completeness of mortality data in the Department of
27	Veterans Affairs. Popul Health Metr 2006;4:2. doi: 10.1186/1478-7954-4-2 [published Online First:
29	2006/04/12]
30	15. Textor J, van der Zander B, Gilthorpe MS, et al. Robust causal inference using directed acyclic graphs: the
31	R package 'dagitty'. International journal of epidemiology 2016;45(6):1887-94. doi: 10.1093/ije/dyw341
32	[published Online First: 2017/01/17]
33	16. Lipsitch M, Tchetgen Tchetgen E, Cohen T. Negative controls: a tool for detecting confounding and bias in
34	observational studies. <i>Epidemiology</i> 2010;21(3):383-8. doi: 10.1097/EDE.0b013e3181d61eeb
35	[published Online First: 2010/03/26]
36	17. Rivetti D, Jefferson T, Thomas R, et al. Vaccines for preventing influenza in the elderly. Cochrane
37	Database Syst Rev 2006(3):CD004876. doi: 10.1002/14651858.CD004876.pub2 [published Online
38 39	First: 2006/07/21]
40	18. Jackson LA, Jackson ML, Nelson JC, et al. Evidence of bias in estimates of influenza vaccine effectiveness
41	in seniors. International journal of epidemiology 2006;35(2):337-44. doi: 10.1093/ije/dyi274 [published
42	Online First: 2005/12/22]
43	19. Levett-Jones T. Vaccines for preventing influenza in the elderly: A Cochrane review summary. International
44	<i>journal of nursing studies</i> 2020;109:103372. doi: 10.1016/j.ijnurstu.2019.06.003 [published Online First: 2019/06/23]
45	20. Hariyanto TI, Kurniawan A. Statin and outcomes of coronavirus disease 2019 (COVID-19): A systematic
46	review, meta-analysis, and meta-regression. Nutrition, metabolism, and cardiovascular diseases :
47	<i>NMCD</i> 2021;31(6):1662-70. doi: 10.1016/j.numecd.2021.02.020 [published Online First: 2021/04/12]
48	21. Permana H, Huang I, Purwiga A, et al. In-hospital use of statins is associated with a reduced risk of
49 50	mortality in coronavirus-2019 (COVID-19): systematic review and meta-analysis. <i>Pharmacol Rep</i>
51	2021;73(3):769-80. doi: 10.1007/s43440-021-00233-3 [published Online First: 2021/02/21]
52	22. Hariyanto TI, Kurniawan A. Statin therapy did not improve the in-hospital outcome of coronavirus disease
53	2019 (COVID-19) infection. <i>Diabetes Metab Syndr</i> 2020;14(6):1613-15. doi: 10.1016/j.dsx.2020.08.023
54	[published Online First: 2020/09/04]
55	23. Wu KS, Lin PC, Chen YS, et al. The use of statins was associated with reduced COVID-19 mortality: a
56	systematic review and meta-analysis. Annals of medicine 2021;53(1):874-84. doi:
57	10.1080/07853890.2021.1933165 [published Online First: 2021/06/08]
58	
59 60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
60	For peer review only integration generation, ster about, guidelines, and in

60

BMJ Open

	24.	Vahedian-Azimi A, Mohammadi SM, Heidari Beni F, et al. Improved COVID-19 ICU admission and
1		mortality outcomes following treatment with statins: a systematic review and meta-analysis. Arch Med
2		Sci 2021;17(3):579-95. doi: 10.5114/aoms/132950 [published Online First: 2021/05/25]
3	25.	Onorato D, Pucci M, Carpene G, et al. Protective Effects of Statins Administration in European and North
4		American Patients Infected with COVID-19: A Meta-Analysis. Semin Thromb Hemost 2021;47(4):392-
5		99. doi: 10.1055/s-0040-1722307 [published Online First: 2021/01/23]
6	26	Holman N, Knighton P, Kar P, et al. Risk factors for COVID-19-related mortality in people with type 1 and
7	20.	type 2 diabetes in England: a population-based cohort study. Lancet Diabetes Endocrinol
8		2020;8(10):823-33. doi: 10.1016/S2213-8587(20)30271-0 [published Online First: 2020/08/18]
9	27	Cariou B, Goronflot T, Rimbert A, et al. Routine use of statins and increased mortality related to COVID-19
10	21.	
11		in inpatients with type 2 diabetes: Results from the CORONADO study. <i>Diabetes & metabolism</i> 2020
12	20	doi: 10.1016/j.diabet.2020.10.001 [published Online First: 2020/10/23]
13	20.	Masana L, Correig E, Rodriguez-Borjabad C, et al. EFFECT oF STATIN THERAPY oN SARS-CoV-2
14 15		INFECTION-RELATED. <i>Eur Heart J Cardiovasc Pharmacother</i> 2020 doi: 10.1093/ehjcvp/pvaa128
15	20	[published Online First: 2020/11/03]
16 17	29.	Kondo K, Low A, Everson T, et al. Health Disparities in Veterans: A Map of the Evidence. <i>Medical care</i>
17		2017;55 Suppl 9 Suppl 2:S9-S15. doi: 10.1097/MLR.0000000000000756 [published Online First:
18 19	~ ~	2017/08/15]
20	30.	Hiatt JG, Shamsie SG, Schectman G. Discontinuation rates of cholesterol-lowering medications:
20		implications for primary care. The American journal of managed care 1999;5(4):437-44. [published
22		Online First: 1999/07/01]
23		
24		
25		
26		
27		
28		
29		
30		Online First: 1999/07/01]
31		
32		
33		
34 35		
35 36		
37		
38		
39		
40		
41		
42		
43		
44		
45		
46		
47		
48		
49 50		
50 51		
51 52		
52 53		
55 54		
55		
56		
57		
58		

Table 1. Characteristics of VHA Veterans with and without a positive respiratory swab for SARS-CoV-2 (March 1, 2020–March 10, 2021), stratified by presence of an active statin prescription at enrollment

	Overa	ll	No positive	respirat Co	ory swab for V-2	SARS-	≥1 positi	ve respi SARS-0	ratory swa CoV-2	ab for
	n=4,801	,406	No stat prescrip	tion	Active st prescript	tion	No sta prescrij	otion	Active prescri	iption
			n=3,180,	888	n=1,389,	364	n=161,		n=69,	,263
Age, years	61.6	±16.7	58.3	±17.7	69.3	±10.8	57.8	±17.5	68.0	±11.4
Age category, years										
19-39	661,777	14%	613,885	19%	15,272	1%	31,645	20%	975	1%
40-49	482,871	10%	402,201	13%	54,467	4%	22,718	14%	3,485	5%
50-59	728,340	15%	516,328	16%	172,006	12%	29,099	18%	10,907	16%
60-69	993,105	21%	600,530	19%	346,361	25%	28,785	18%	17,429	25%
70-79	1,408,065	29%	735,949	23%	610,855	44%	33,303	21%	27,958	40%
80+	525,548	11%	311,010	10%	189,825	14%	16,204	10%	8,509	12%
Sex at birth, female	601,692	13%	509,443	16%	68,275	5%	20,598	13%	3,376	5%
Race/ethnicity	,				-, -		,		,	
White	3,335,105	69%	2,122,989	67%	1,055,742	76%	106,448	66%	49,926	72%
Black	860,829	18%	582,091	18%	226,384	16%	38,080	24%	14,274	21%
Hispanic	333,593	7%	230,848	7%	79,866	6%	17,770	11%	5,109	7%
Other	542,562	11%	430,377	14%	94,575	7%	13,410	8%	4,200	6%
Body-mass index, kg/m ²	30.2	±6.09	29.8	±6.04	30.8	±6.06	30.9	±6.35	31.9	±6.26
Body-mass index category, kg/m ²										
<18.5	28,116	1%	20,717	1%	6,230	1%	951	1%	218	0%
18.5-24.9	553,988	17%	379,204	20%	152,657	14%	16,249	15%	5,878	11%
25-29.9	1,107,238	35%	687,781	36%	367,799	34%	34,949	32%	16.709	30%
30-34.9	869,628	27%	507,893	26%	313,277	29%	30,944	29%	17,514	32%
15-39.9	399,754	13%	224,651	12%	149,833	14%	15,734	15%	9,536	17%
≥ 40	208,950	7%	113,491	6%	80,708	8%	9,077	8%	5,674	10%
Active statin prescription six months prior to enrollment	1,375,009	29%	259,070	8%	1,046,850	75%	17,020	11%	52,069	75%
Never	1,747,387	36%	1,338,452	42%	328,440	24%	62,782	39%	17,713	26%
Former	1,729,275	36%	984,318	31%	651,438	47%	58,321	36%	35,198	51%
Current	1,323,044	28%	857,133	27%	408.908	29%	40,651	25%	16,352	24%
Urban/rural/highly rural ZIP code	1,020,044	2070	007,100	<u> </u>	100,000	2070	10,001	2070	10,002	<u>⊢</u> ∓70
Highly rural	57,047	1%	34,211	1%	20.620	1%	1,360	1%	856	1%
Rural	1.561.076	33%	975.607	31%	518.394	37%	43.690	27%	23.385	34%
Urban	3,172,176	66%	2,163,063	68%	847,474	61%	116,643	72%	44,996	65%
Unknown	9,407	0%	7,022	0%	2,298	0%	61	0%	,550 26	0%
Estimated glomerular filtration rate, ml/min/1.73 m ²	5,407	0 /0	1,022	0 /0	2,230	070	01	070	20	0 /0
	938,310	27%	654,399	31%	235,893	20%	36,230	32%	11,788	19%
60-89	1,718,393	49%	1,034,287	49%	235,893 599,357	20 % 50%	54,598	32 % 48%	30,151	48%
45-59	520,635	49% 15%	268,392	49% 13%	599,357 226,556	50% 19%	54,598 13,799	40% 12%	30, 151 11,888	40% 19%
30-44	212,116	15% 6%	100,776	13% 5%	226,556	19% 8%	5,626	12% 5%	5,539	19% 9%
30-44 15-29								5% 2%		
	58,464	2%	27,223	1%	27,527	2%	1,906		1,808	3%
<15 or dialysis	25,765	1%	12,803	1%	10,449	1%	1,503	1%	1,010	2%

Table 1 CONTINUED. Characteristics of VHA Veterans with and without a positive respiratory swab for SARS-CoV-2 (March 1, 2020–March 10, 2021), stratified by presence of
an active statin prescription at enrollment

Diabetes	1,482,197	31%	679,909	21%	716,920	52%	44,364	27%	41,004	59%
Hypertension	2,874,378	60%	1,551,529	49%	1,176,398	85%	86,382	53%	60,069	87%
Cardiovascular disease	1,749,197	36%	857,912	27%	794,940	57%	53,635	33%	42,710	62%
Heart failure	352,710	7%	144,971	5%	183,128	13%	12,388	8%	12,223	18%
Alcohol use disorder	909,010	19%	629,005	20%	238,333	17%	31,212	19%	10,460	15%
Statin prescribed										
lone	3,341,657	70%	3,179,903	100%	0	0%	161,754	100%	0	0%
torvastatin	872,981	18%			829,795	60%			43,186	62%
Fluvastatin	364	<1%			348	0%			16	0%
Lovastatin	15,375	<1%			14,751	1%			624	1%
Pitavastatin	801	<1%			748	<1%			53	<1%
Pravastatin	123,779	3%			118,039	8%			5,740	8%
Rosuvastatin	173,943	4%			165,066	12%			8,877	13%
Simvastatin	270,806	6%			260,039	19%			10,767	16%
High-potency statin (vs. low- or moderate-potency)*	616,824	42%	0	<1%	585,224	42%	0	<1%	31,600	46%
Mean hsCRP in the prior six months, mg/L**	17.3	±136	16.4	±151	18.2	±120	19.9	±49.6	21.0	±52.9
hsCRP in the prior six months ≥2 mg/L**	390,796	41%	217,408	40%	145,787	42%	17,407	44%	10,194	45%
Mean hsCRP at or after the index date, mg/L***	29.3	±54.1	22.2	±46.6	25.6	±50.8	57.8	±70.8	65.2	±71.1
hsCRP at or after the index date ≤2 mg/L***	125,178	52%	61,501	46%	34,630	49%	18,260	75%	10,787	79%
		OUT	COMES							
Hospital admission within 30 days	124,094	3%	61,651	2%	29,953	2%	20,280	13%	12,210	18%
ICU admission within 30 days	15,438	<1%	5,710	<1%	3,588	<1%	3,754	2%	2,386	3%
Death w/in 30 days	31,409	1%	13,074	<1%	6,224	<1%	7,815	5%	4,296	6%

Data are presented as mean ± standard deviation (SD) for continuous variables and n (%) for categorical variables

p-values for global differences in participant characteristics across categories of COVID diagnosis and prior statin use all <0.001

* based on estimated % LDL-c reduction

** up to 14 days prior to index date (Overall n=958,343)

*** Overall n=224,930

Table 2a. Odds ratios from logistic regression models testing the association of active statin prescription at enrollment with adverse 30-day outcomes among VHA Veterans with and without a positive respiratory swab for SARS-CoV-2, including adjustment for prior statin use

1	SARS-CoV-2, including adjustment for prior statin use				N	o positi	VA SW2	h n=/	1 568 6	89								>1 nos	sitive ev	wah	n=231,()17			
		Hos	spital a	dmies		•	CU adm				Dea	th		Hos	pital a	dmiee	ion	•	CU adm	,	,	,,,,	Deat	h	
3		OR	•	95%C		OR		95%C		OR		95%C	1	OR	•	95%C		OR		95%C		OR		95%CI	
4		-				-				_								-				-			
5	Active statin prescription at enrollment	0.79	0.77	—	0.80	0.98	0.95		1.01	0.86	0.81	_	0.90	0.94	0.88	_	1.01	0.60	0.58	_	0.62	0.81	0.77	_	0.85
6	Statin prescription six months prior to enrollment	0.91	0.89	_	0.93	0.93	0.90	_	0.96	0.88	0.83	_	0.93	0.97	0.91	_	1.04	0.93	0.90		0.97	0.94	0.89	_	0.99
7	Sex at birth, female	0.73	0.71	_	0.75	0.75	0.71	_	0.79	0.73	0.67	_	0.80	0.74	0.65	_	0.84	0.63	0.58	_	0.69	0.56	0.50	_	0.64
8	Age category, years										<u> </u>				<u> </u>		a = 4					o / -	~ · · ·		
9	19-39	1.16	1.12	—	1.19	0.61	0.57	—	0.65	0.61	0.54	—	0.69	0.60	0.51	—	0.71	0.26	0.22	_	0.30	0.15	0.11	—	0.21
10	40-49	0.97	0.94	—	1.01	0.75	0.70	_	0.80	0.81	0.73	_	0.91	0.68	0.59	—	0.79	0.46	0.40		0.54	0.38	0.30	_	0.48
11	50-59	ref	ref		ref	ref	ref		ref	ref	ref		ref	ref	ref		ref	ref	ref		ref	ref	ref		ref
12	60-69	1.01	0.99	—	1.03	1.29	1.23	—	1.34	1.16	1.08	_	1.25	1.32	1.21	—	1.46	1.95	1.81	_	2.10	2.86	2.55	—	3.20
13	70-79	0.81	0.79	—	0.83	1.43	1.37	—	1.49	1.00	0.92	_	1.08	1.49	1.36	—	1.64	2.60	2.41	_	2.79	5.93	5.32	_	6.61
14	>80	0.96	0.93	_	0.99	1.81	1.71	_	1.91	0.95	0.87	_	1.04	1.62	1.45	—	1.82	5.06	4.68	_	5.46	13.86	12.37	_	15.53
	White (vs not white)	1.21	1.14	—	1.28	0.88	0.81		0.97	1.23	1.02	_	1.49	0.74	0.61	_	0.91	1.10	0.95	_	1.27	0.87	0.74	_	1.04
15	Black vs(not Black)	1.49	1.40	—	1.58	1.36	1.24		1.50	1.53	1.26	_	1.85	1.10	0.89	_	1.35	1.05	0.90	_	1.22	0.78	0.66	—	0.94
16	Hispanic (vs not Hispanic)	1.07	1.04	_	1.10	1.16	1.10	—	1.22	1.23	1.13	_	1.35	1.03	0.92	_	1.15	1.07	0.99	_	1.14	1.13	1.04	_	1.24
17	Body-mass index category, kg/m ²																								
18	<18.5	1.35	1.29	—	1.42	1.14	1.01		1.29	1.51	1.31	—	1.73	1.35	1.06	—	1.72	2.48	2.33	_	2.65	1.81	1.59	—	2.07
19	18.5-24.9	ref	ref		ref	ref	ref		ref	ref	ref		ref	ref	ref		ref	ref	ref		ref	ref	ref		ref
20	25-29.9	0.75	0.73	—	0.76	0.81	0.78	—	0.85	0.70	0.65	_	0.74	0.89	0.82	_	0.97	0.54	0.52	_	0.56	0.73	0.68	_	0.79
21	30-34.9	0.67	0.65	—	0.68	0.76	0.73	—	0.80	0.62	0.57	_	0.66	0.88	0.81	—	0.96	0.42	0.40	_	0.44	0.69	0.64	—	0.74
22	35-39.9	0.63	0.61	_	0.65	0.76	0.72	_	0.80	0.57	0.52	_	0.62	0.85	0.76	—	0.94	0.37	0.35	_	0.40	0.64	0.59	—	0.70
23	≥40 	0.65	0.63	_	0.67	0.87	0.82	_	0.93	0.59	0.53	_	0.65	1.03	0.91	_	1.16	0.43	0.39	_	0.46	0.80	0.72	_	0.88
24	Tobacco use										,										,				
25	Never	ref	ref		ref	ref	ref		ref	ref	ref		ref	ref	ref		ref	ref	ref		ref	ref	ref		ref
26	Former	1.25	1.23	—	1.28	1.11	1.08		1.15	1.12	1.06	_	1.19	1.10	1.02		1.17	1.09	1.04	_	1.13	1.18	1.12	_	1.24
	Current	2.02	1.98	_	2.06	1.39	1.35	_	1.44	1.76	1.66	_	1.87	1.29	1.20	_	1.39	1.67	1.60	_	1.74	1.24	1.17		1.32
27	Urban/rural/highly rural residence	0.00			o - o	0 -0	0 -0		0.00		0.00		4.40	0 - 1	0 = 1		1 00	0.00	0.04		4.05	4.40			4.00
28	Highly rural	0.68	0.64	_	0.73	0.58	0.50	_	0.66	0.98	0.82	_	1.18	0.74	0.54	—	1.00	0.92	0.81	-	1.05	1.16	0.98		1.38
29	Rural	0.74	0.73	_	0.75	0.70	0.68	—	0.72	0.74	0.70	_	0.78	0.88	0.82	—	0.93	0.89	0.87	F	0.92	1.03	0.99		1.08
30	Urban	ref	ref		ref	ref	ref		ref	ref	ref		ref	ref	ref		ref	ref	ref		ref	ref	ref		ref
31	Unknown	0.25	0.18	_	0.35	0.27	0.10	_	0.75	0.35	0.13	_	0.94	0.55	0.08	_	3.99	0.80	0.51	_	1.25	1.77	0.73	_	4.30
32	Diabetes	1.18	1.16	—	1.20	1.30	1.27	_	1.34	1.26	1.21	_	1.32	1.26	1.19	—	1.34	1.41	1.36	_	1.45	1.37	1.31	_	1.43
33	Hypertension	1.22	1.19	_	1.24	1.30	1.25	—	1.35	1.30	1.22	_	1.39	1.29	1.19	—	1.41	1.09	1.04		1.14	0.96	0.90		1.02
34	Cardiovascular disease	2.04	2.01	—	2.08	1.84	1.79	—	1.90	2.69	2.55		2.84	2.08	1.95	—	2.23	1.88	1.81	—	1.95	1.24	1.18	_	1.30
35	Heart failure	2.13	2.09	_	2.16	1.64	1.59	—	1.70	2.34	2.22	—	2.46	1.53	1.43	—	1.63	2.51	2.42	_	2.59	1.31	1.25		1.38
36	Alcohol use disorder	1.12	1.10		1.14	0.75	0.72	_	0.78	1.03	0.97	_	1.09	0.86	0.79	_	0.93	0.78	0.75	_	0.82	0.68	0.64	_	0.73
37																									
38	Estimated glomerular filtration rate, ml/min/1.73 m ²																								
39	≥ 90	ref	ref		ref	ref	ref		ref	ref	ref		ref	ref	ref		ref	ref	ref		ref	ref	ref		ref
	60-89	0.80	0.79	—	0.82	0.90	0.87	—	0.93	0.80	0.76	—	0.85	0.96	0.88	—	1.04	0.60	0.57	—	0.62	1.10	1.02	—	1.18
40	45-59	0.84	0.81	—	0.86	0.99	0.94	—	1.03	0.84	0.78	—	0.91	1.00	0.91	—	1.10	0.71	0.67	—	0.74	1.44	1.33	—	1.56
41	30-44	0.93	0.90	—	0.96	1.10	1.04	—	1.16	0.92	0.84	—	1.01	1.14	1.02	—	1.29	0.99	0.93	—	1.05	1.83	1.68	—	1.99
42	15-29	1.15	1.10	—	1.20	1.31	1.21	—	1.42	1.14	1.01	—	1.29	1.32	1.14	—	1.53	2.07	1.94	—	2.21	2.65	2.36	—	2.97
43	<15 or dialysis	1.60		—	1.69		1.33		1.60	1.77	1.56	—	2.00	1.51	1.29	_	1.77	3.07	2.85	—	3.32	2.48	2.16	—	2.85

44 Models additionally adjusted for index month and geographic location by Veterans Integrated Service Network location

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

45 46 47

BMJ Open

Table 2b. Odds ratios from logistic regression models testing the association of active statin prescription at enrollment with adverse 30-day outcomes among VHA Veterans with and without a positive respiratory	!
swab for SARS-CoV-2, without adjustment for prior statin use	

-		1																							
		Hos	spital a	dmiss	sion	IC	CU adm	issio	n		Dea	th		Hos	pital ad	dmiss	sion	IC	CU adm	issio	n		Deat	h	
		OR	ę	95%C		OR	ç	95%C	l	OR	ç	95%C	1	OR	ç	95%C		OR	ę	95%CI	I	OR	9	95%C	I
	Active statin prescription at enrollment	0.75	0.74	_	0.76	0.80	0.76	_	0.83	0.58	0.56	_	0.59	0.94	0.91	_	0.96	0.93	0.88	_	0.98	0.78	0.75	_	0.82
	Sex at birth, female	0.73	0.71	_	0.75	0.73	0.67	_	0.81	0.63	0.58	_	0.69	0.75	0.71	_	0.79	0.74	0.65	—	0.84	0.57	0.50	_	0.65
	Age category, years																								
	19-39	1.16	1.13	—	1.20	0.61	0.54	—	0.69	0.26	0.22	—	0.30	0.61	0.58	—	0.66	0.60	0.51	—	0.71	0.15	0.11	—	0.21
	40-49	0.98	0.95	—	1.01	0.82	0.73	—	0.92	0.47	0.40	—	0.54	0.75	0.71	—	0.80	0.68	0.59	—	0.79	0.38	0.30	—	0.48
	50-59	ref	ref		ref	ref	ref		ref	ref	ref		ref	ref	ref		ref	ref	ref		ref	ref	ref		ref
0	60-69	1.01	0.98	—	1.03	1.16	1.08	—	1.25	1.95	1.81	—	2.10	1.28	1.23	—	1.34	1.32	1.21	—	1.45	2.86	2.55	—	3.20
1	70-79	0.81	0.79	—	0.83	0.99	0.92	—	1.07	2.59	2.41	—	2.78	1.43	1.36	—	1.49	1.49	1.36	—	1.64	5.92	5.31	—	6.60
2 🗋	≥80	0.96	0.93	—	0.99	0.95	0.87	-	1.04	5.06	4.68	—	5.46	1.81	1.71	—	1.91	1.62	1.45	—	1.82	13.86	12.37	—	15.53
	White (vs not white)	1.20	1.14	_	1.28	1.23	1.02		1.49	1.10	0.95	_	1.27	0.88	0.81	_	0.97	0.75	0.61	_	0.91	0.87	0.74	_	1.04
4	Black vs(not Black)	1.49	1.40	—	1.58	1.53	1.26	-	1.86	1.05	0.90	—	1.22	1.37	1.24	—	1.50	1.10	0.89	—	1.35	0.78	0.66	—	0.94
	Hispanic (vs not Hispanic)	1.07	1.04	—	1.10	1.23	1.13	—	1.35	1.06	0.99	—	1.14	1.16	1.10	—	1.22	1.03	0.92	—	1.15	1.13	1.04	—	1.24
5 -	Body-mass index category, kg/m ²																								
	<18.5	1.35	1.29	—	1.42	1.51	1.32	_	1.74	2.49	2.33	—	2.65	1.14	1.02	_	1.29	1.35	1.06	—	1.72	1.82	1.59	_	2.07
7	18.5-24.9	ref	ref		ref	ref	ref		ref	ref	ref		ref	ref	ref		ref	ref	ref		ref	ref	ref		ref
8	25-29.9	0.75	0.73	—	0.76	0.70	0.65	_	0.74	0.54	0.52		0.56	0.81	0.78	_	0.85	0.89	0.82	—	0.97	0.73	0.68	_	0.79
9	30-34.9	0.67	0.65	—	0.68	0.61	0.57	_	0.66	0.42	0.40		0.44	0.76	0.73	_	0.80	0.88	0.81	—	0.96	0.68	0.64	_	0.74
0	35-39.9	0.63	0.61	—	0.64	0.57	0.52	_	0.62	0.37	0.35		0.40	0.76	0.72	_	0.80	0.85	0.76	—	0.94	0.64	0.59	_	0.70
1	≥40	0.65	0.63	—	0.67	0.58	0.53	_	0.65	0.43	0.39	—	0.46	0.87	0.81	_	0.92	1.03	0.91	—	1.16	0.79	0.72	_	0.88
	Tobacco use														JT										
	Never	ref	ref		ref	ref	ref		ref	ref	ref		ref	ref	ref		ref	ref	ref		ref	ref	ref		ref
	Former	1.25	1.22	—	1.27	1.12	1.05	_	1.19	1.09	1.04	—	1.13	1.11	1.08	-	1.15	1.10	1.02	—	1.17	1.18	1.12	_	1.24
4	Current	2.02	1.98	—	2.05	1.76	1.66	—	1.87	1.66	1.60	—	1.74	1.39	1.35	-	1.44	1.29	1.20	—	1.39	1.24	1.17	—	1.32
5 -	Urban/rural/highly rural residence																								
	Highly rural	0.68	0.64	—	0.73	0.98	0.82	_	1.18	0.92	0.81	_	1.05	0.57	0.50	_	0.66	0.74	0.54	—	1.00	1.16	0.98	_	1.38
7	Rural	0.74	0.73	_	0.75	0.74	0.70	_	0.78	0.89	0.86	_	0.92	0.70	0.68	_	0.72	0.87	0.82	-	0.93	1.03	0.99	_	1.08
8	Urban	ref	ref		ref	ref	ref		ref	ref	ref		ref	ref	ref		ref	ref	ref		ref	ref	ref		ref
9	Unknown	0.25	0.18	_	0.35	0.35	0.13	_	0.94	0.80	0.51	_	1.25	0.27	0.10	_	0.74	0.55	0.08	_	3.98	1.75	0.72	_	4.27
0 [Diabetes	1.17	1.15	_	1.19	1.25	1.20	_	1.31	1.40	1.36	_	1.45	1.30	1.26	_	1.33	1.26	1.19	_	1.33	1.36	1.30	_	1.42
1	Hypertension	1.21	1.19	_	1.24	1.29	1.21	_	1.38	1.09	1.04	_	1.13	1.30	1.25	_	1.35	1.29	1.18	_	1.41	0.96	0.90	_	1.02
	Cardiovascular disease	2.03	2.00	_	2.07	2.67	2.53	_	2.82	1.87	1.80	_	1.94	1.84	1.78	_	1.89	2.08	1.94	_	2.23	1.24	1.18	_	1.30
3	Heart failure	2.12	2.08	_	2.16	2.33	2.21	_	2.45	2.50	2.41	_	2.59	1.64	1.59	_	1.70	1.53	1.43	_	1.63	1.31	1.25	_	1.38
	Alcohol use disorder	1.12	1.10	—	1.14	1.03	0.97	_	1.09	0.78	0.75	—	0.82	0.75	0.73	_	0.78	0.86	0.79	—	0.93	0.68	0.64	_	0.73
4 – 5 –	Estimated glomerular filtration rate,																								
	ml/min/1.73 m ²																								
	≥ 90	ref	ref		ref	ref	ref		ref	ref	ref		ref	ref	ref		ref	ref	ref		ref	ref	ref		ref
7	60-89	0.80	0.79	_	0.82	0.80	0.75	_	0.85	0.60	0.57	_	0.62	0.90	0.86	_	0.93	0.96	0.88	_	1.04	1.09	1.02	_	1.18
	45-59	0.84	0.81	_	0.86	0.84	0.78	_	0.91	0.71	0.67	_	0.74	0.98	0.94	_	1.03	1.00	0.91	_	1.09	1.44	1.33	_	1.56
9	30-44	0.93	0.90	_	0.96	0.92	0.84	—	1.01	0.99	0.93	_	1.05	1.10	1.04	—	1.16	1.14	1.02	_	1.29	1.83	1.68	—	1.99
		1			4 00		4 0 4		4 00	0.07	4.04		0.04	4 04	4 04		1 10	1 22	1 1 1		4 50	0.05	0.00	_	2.97
	15-29	1.14	1.09		1.20	1.14	1.01	—	1.29	2.07	1.94	_	2.21	1.31	1.21	_	1.42	1.32	1.14	_	1.53	2.65	2.36		2.51

Models additionally adjusted for index month and geographic location by Veterans Integrated Service Network location

 Table 3. Odds ratios from logistic regression models testing the association of specific statins compared to no statin with adverse 30-day outcomes among VHA

 Veterans with a positive respiratory swab for SARS-CoV-2, n=231,017

3 4	Veterans with a positive respiratory swab for SA				dmissi	on		IC	U adr	nission			Dea	th	
5		OR	g	95% C		p value	OR		95% (CI	p value	OR	95%	CI	p value
6	No statin	ref					ref					ref			
7	Atorvastatin	0.98	0.95		1.01	0.136	0.96	0.90		1.02	0.194	0.80	0.76 —	0.84	<0.001
8	Fluvastatin	1.47	0.45		4.82	0.524	1.79	0.23		13.80	0.577	0.55	0.07 —	4.43	0.575
9	Lovastatin	0.73	0.57	_	0.93	0.012	0.48	0.26	_	0.90	0.022	0.64	0.45 —	0.91	0.013
10	Pitavastatin	0.45	0.16		1.26	0.128	0.66	0.09		4.80	0.679	0.82	0.25 —	2.68	0.738
11	Pravastatin	0.93	0.86		1.00	0.045	0.94	0.81	_	1.10	0.443	0.78	0.70 —	0.87	< 0.001
12	Rosuvastatin	0.81	0.76	_	0.86	< 0.001	0.82	0.72	_	0.93	0.002	0.72	0.65 —	0.79	< 0.001
13	Simvastatin	0.91	0.86	_	0.97	0.001	0.91	0.80	_	1.02	0.107	0.77	0.71 —	0.84	< 0.001
14	Sex at birth, female	0.75		_	0.80	< 0.001	0.74	0.65		0.84	<0.001	0.57	0.50 —	0.65	< 0.001
15	Age category, years			1											
16	19-39	0.61	0.58		0.66	<0.001	0.60	0.51		0.71	<0.001	0.15	0.11 —	0.21	<0.001
17	40-49	0.75	0.71		0.80	< 0.001	0.68	0.59	_	0.79	<0.001	0.38	0.30 —	0.48	< 0.001
18	50-59	ref					ref					ref			
19	60-69	1.28	1.23	_	1.34	<0.001	1.32	1.21	_	1.45	<0.001	2.85	2.55 —	3.20	<0.001
20	70-79	1.43	1.36		1.49	< 0.001	1.49	1.36		1.64	<0.001	5.92	5.31 —	6.60	< 0.001
20	≥80	1.81	1.71	_	1.91	< 0.001	1.62	1.45		1.82	< 0.001	13.86	12.37 —	15.54	< 0.001
21	White (vs. not white)	0.88	0.81	_	0.97	0.007	0.75	0.61	_	0.91	0.004	0.88	0.74 —	1.04	0.121
22	Black (vs. not Black)	1.36	1.24	_	1.50	< 0.001	1.10	0.89		1.35	0.390	0.78	0.66 —	0.94	0.007
23 24	Hispanic (vs. not Hispanic)	1.16	1.10	_	1.22	<0.001	1.03	0.92	_	1.15	0.633	1.13	1.04 —	1.24	0.007
24 25	Body-mass index category, kg/m ²														
	<18.5	1.15	1.02		1.29	0.025	1.35	1.06		1.73	0.015	1.82	1.59 —	2.08	<0.001
26	18.5-24.9	ref					ref					ref			
27	25-29.9	0.81	0.78		0.85	<0.001	0.89	0.82		0.97	0.006	0.73	0.68 —	0.79	<0.001
28	30-34.9	0.76	0.73		0.80	<0.001	0.88	0.81		0.97	0.006	0.68	0.64 —	0.74	<0.001
29	35-39.9	0.76	0.72		0.80	<0.001	0.85	0.76		0.94	0.002	0.64	0.59 —	0.70	<0.001
30	≥40	0.87	0.81		0.92	<0.001	1.03	0.91		1.16	0.675	0.79	0.72 —	0.88	<0.001
31	Tobacco use														
32	Never	ref													
33	Former	1.11	1.08	_	1.15	<0.001	1.10	1.02	_	1.17	0.010	1.18	1.12 —	1.24	<0.001
34	Current	1.39	1.35	_	1.44	<0.001	1.29	1.20	_	1.39	<0.001	1.24	1.17 —	1.32	<0.001
35	Urban/rural/highly rural residence														
36	Highly rural	0.57	0.50	_	0.66	<0.001	0.74	0.54	_	1.00	0.051	1.16	0.97 —	1.38	0.096
37	Rural	0.70	0.68	_	0.72	<0.001	0.88	0.82	_	0.93	<0.001	1.04	0.99 —	1.08	0.140
38	Urban	ref					ref					ref			
39	Unknown	0.27	0.10	_	0.74	0.011	0.55	0.08	_	3.96	0.549	1.75	0.72 —	4.25	0.220
40	Diabetes	1.29	1.26	_	1.33	<0.001	1.26	1.19	_	1.33	<0.001	1.36	1.30 —	1.42	<0.001
41	Hypertension	1.30	1.25	_	1.35	<0.001	1.29	1.18	—	1.41	<0.001	0.96	0.90 —	1.02	0.149
42	Cardiovascular disease	1.84	1.78	_	1.89	<0.001	2.08	1.94	_	2.23	<0.001	1.24	1.18 —	1.30	<0.001
43	Heart failure	1.64	1.58	_	1.69	<0.001	1.53	1.43	_	1.63	<0.001	1.31	1.25 —	1.38	<0.001
44	Alcohol use disorder	0.75	0.73	_	0.78	<0.001	0.86	0.79	_	0.93	<0.001	0.69	0.64 —	0.73	<0.001
45		For		view					n/site		guidelines	.xhtml			
					-	. ,		-			-				

BMJ Open

Table 3 CONTINUED. O	ds ratios from logistic regression models testing the association of individual statins compared to no statin with adverse 30-day outcomes
	n a positive respiratory swab for SARS-CoV-2, n=231,017

ref					ref					ref				
0.90	0.87		0.93	<0.001	0.96	0.88	_	1.04	0.273	1.10	1.02	_	1.18	0.018
0.99	0.94		1.03	0.519	1.00	0.91	—	1.10	0.941	1.44	1.33	—	1.56	<0.001
1.10	1.04		1.16	0.001	1.15	1.02	_	1.29	0.024	1.83	1.68	_	1.99	<0.001
1.31	1.21		1.42	<0.001	1.32	1.14	—	1.53	<0.001	2.65	2.36	—	2.97	<0.001
1.45	1.32	_	1.59	<0.001	1.51	1.29	_	1.77	<0.001	2.48	2.16	_	2.84	<0.001
	0.90 0.99 1.10 1.31	0.90 0.87 0.99 0.94 1.10 1.04 1.31 1.21	0.90 0.87 — 0.99 0.94 — 1.10 1.04 — 1.31 1.21 —	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				

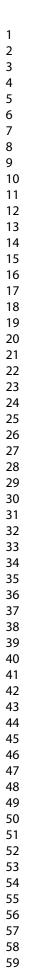
Models additionally adjusted for month of diagnosis and geographic location by Veterans Integrated Service Network location; not adjusted for the presence of an active statin prescription six months prior to enrollment " For beer review only

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Table 4. Odds ratios from logistic regression models testing the association of low- or moderate- vs. high-potency active statin prescription at enrollment with adverse 30-day outcomes among VHA Veterans with a positive respiratory swab for SARS-CoV-2, n=69.263

		Hospita	l adm	ission	1		IC	U adm	nission				Dea	ath	
	OR	95%	% CI		p value	OR	9	95% C		p value	OR		95% C		p valu
High-potency statin	1.06	1.01 -	- 1	.10	0.011	1.05	0.96		1.15	0.258	0.97	0.91		1.04	0.4
Sex at birth, female	0.89	0.80 -	- 1	.00	0.041	0.95	0.75	_	1.19	0.634	0.52	0.40	_	0.68	<0.0
Age category, years															
19-39	0.82	0.63 -	- 1	.06	0.123	0.46	0.22	—	0.98	0.045	0.10	0.01	—	0.73	0.0
40-49	0.74	0.64 -	- 0	0.86	<0.001	0.55	0.38	_	0.79	0.001	0.45	0.27	_	0.75	0.0
50-59	ref					ref					ref				
60-69	1.30	1.20 -	- 1	.40	<0.001	1.24	1.06	—	1.45	0.009	2.45	2.02	—	2.96	<0.
70-79	1.47	1.36 -	- 1	.58	<0.001	1.47	1.25	—	1.72	<0.001	4.42	3.67	—	5.32	<0.
≥80	1.95			2.15	<0.001	1.69	1.40	—	2.04	<0.001	9.54	7.84	—	11.60	<0.
White (vs not white)	0.81		- 0).96	0.012	0.75	0.52	—	1.08	0.118	0.85	0.64	—	1.11	0.
Black vs(not Black)	1.31	1.10 -	- 1	.55	0.002	1.12	0.77	—	1.63	0.545	0.80	0.60	—	1.06	0.
Hispanic (vs not Hispanic)	1.12	1.02 -	- 1	.22	0.013	0.91	0.75	—	1.10	0.330	1.20	1.04	—	1.38	0.
Body-mass index category, kg/m ²															
<18.5	1.04	0.79 -	- 1	.38	0.766	1.19	0.71	—	1.98	0.511	1.45	1.02	—	2.05	0.
18.5-24.9	ref					ref					ref				
25-29.9	0.81	0.75 -	- 0).86	<0.001	0.89	0.77	—	1.02	0.095	0.78	0.70	—	0.87	<0.
30-34.9	0.78	0.73 -	- 0	0.84	<0.001	0.92	0.80	—	1.07	0.272	0.78	0.70	—	0.87	<0.
35-39.9	0.78	••••	- 0).85	<0.001	0.90	0.76	—	1.06	0.188	0.75	0.67	—	0.85	<0.
≥40	0.86	0.77 -	- 0).95 🧹	0.002	1.08	0.89	_	1.30	0.452	0.91	0.78	_	1.06	0.
Tobacco use															
Never	ref					ref					ref				
Former	1.18		- 1	.25	<0.001	1.16	1.03	—	1.30	0.013	1.29	1.18	—	1.40	<0.
Current	1.36	1.28 -	- 1	.44	<0.001	1.36	1.19	_	1.55	<0.001	1.21	1.09	_	1.34	<0.
Urban/rural/highly rural residence															
Highly rural	0.59	0.47 -).73	<0.001	0.93	0.61	-	1.42	0.728	1.40	1.08	—	1.82	0.
Rural	0.68	0.65 -	- 0).72	<0.001	0.87	0.79	-	0.96	0.006	1.05	0.97	—	1.12	0.
Urban	ref					ref					ref				
Unknown	0.17			.26	0.083	1.69	0.22	—	12.83	0.612	1.41	0.31	—	6.48	0.
Diabetes	1.29			.35	<0.001	1.16	1.05	—	1.27	0.003	1.31	1.22	—	1.41	<0.
Hypertension	1.28			.39	<0.001	1.38	1.14	—	1.67	0.001	0.98	0.85	—	1.11	0.
Cardiovascular disease	1.71			.80	<0.001	1.96	1.75	—	2.21	<0.001	1.25	1.14	—	1.36	<0.
Heart failure	1.68		- 1	.77	<0.001	1.58	1.44	—	1.74	<0.001	1.33	1.23	—	1.43	<0.
Alcohol use disorder	0.66	0.62 -	- 0).71	<0.001	0.81	0.71	—	0.94	0.004	0.69	0.61	—	0.77	<0.
Estimated glomerular filtration rate, ml/min/1.73 m ²															
≥ 90	ref					ref					ref				
60-89	0.98	0.92 -	- 1	.05	0.625	1.05	0.91	_	1.20	0.538	1.14	1.01	_	1.29	0.
45-59	1.08			.16	0.050	1.05	0.90	—	1.24	0.530	1.58	1.37	—	1.82	<0.
30-44	1.21			.32	<0.001	1.20	1.00	—	1.44	0.055	2.00	1.72	—	2.33	<0.
15-29	1.53			.72	<0.001	1.37	1.09	—	1.72	0.007	3.19	2.69	—	3.78	<0.
<15 or dialysis	1.64	1.42 -	- 1	.90	<0.001	1.95	1.52		2.50	<0.001	3.01	2.44	_	3.73	<0.

Models additionally adjusted for month of diagnosis and geographic location by Veterans Integrated Service Network location; not adjusted for the presence of an active statin prescription six months prior to enrollment


For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

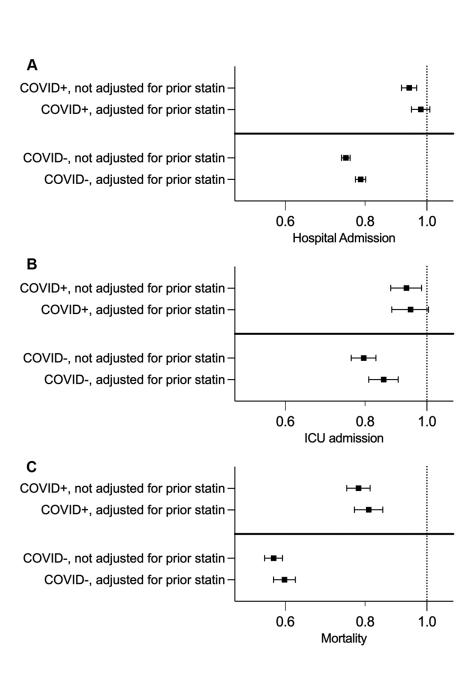

Figure Legend

Fig. 1. ORs and 95% confidence intervals for associations of statin use at study enrollment with A) hospitalization, B) ICU admission, and C) death unths pr. . sex, age, race/ethn. .uar disease, heart failure, and au. at 30 days before and after adjustment for statin use six months prior to diagnosis among VHA Veterans with and without a positive respiratory swab for SARS-CoV-2. All analyses are adjusted for sex, age, race/ethnicity, BMI, tobacco use, facility location, urban/rural status, eGFR, and history of diabetes, hypertension, cardiovascular disease, heart failure, and alcohol use disorder.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

60

239x322mm (118 x 118 DPI)

STROBE Statement—Checklist of items that should be included in reports of cohort studies

	Item No	Recommendation	Pag No
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the	
		abstract	
		(b) Provide in the abstract an informative and balanced summary of what was	1
		done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being	4
		reported	
Objectives	3	State specific objectives, including any prespecified hypotheses	4
Methods			
Study design	4	Present key elements of study design early in the paper	4
Setting	5	Describe the setting, locations, and relevant dates, including periods of	5
		recruitment, exposure, follow-up, and data collection	ļ
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of	5
		participants. Describe methods of follow-up	
		(b) For matched studies, give matching criteria and number of exposed and	
		unexposed	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and	6
		effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	6
measurement		assessment (measurement). Describe comparability of assessment methods if	
		there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	6
Study size	10	Explain how the study size was arrived at	5
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,	6
		describe which groupings were chosen and why	
Statistical methods	12	(a) Describe all statistical methods, including those used to control for	
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	6
		(c) Explain how missing data were addressed	
		(d) If applicable, explain how loss to follow-up was addressed	
		(<i>e</i>) Describe any sensitivity analyses	
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	7
		eligible, examined for eligibility, confirmed eligible, included in the study,	
		completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social)	7
		and information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	
		(c) Summarise follow-up time (eg, average and total amount)	
Outcome data	15*	Report numbers of outcome events or summary measures over time	7

Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their	
		precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	8
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision.	10
		Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	9
		multiplicity of analyses, results from similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	10
Other informati	on		·
Funding	22	Give the source of funding and the role of the funders for the present study and, if	3
-		applicable, for the original study on which the present article is based	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml