
Supplementary Materials for
The effect of renewable energy incorporation on power grid stability 

and resilience

Oliver Smith*, Oliver Cattell, Etienne Farcot, Reuben D. O’Dea, Keith I. Hopcraft

*Corresponding author. Email: oliver.smith@nottingham.ac.uk

Published 2 March 2022, Sci. Adv. 8, eabj6734 (2022)
DOI: 10.1126/sciadv.abj6734

This PDF file includes:

Supplementary text
Equations S1 to S19
Figs. S1 to S12
References



Power grid model

Swing equation derivation
We model power networks using the swing equation: a second order oscillator model that cap-
tures transient dynamics. Each node on the network may be a generator or consumer, with pos-
itive or negative net power output respectively. The swing equation is long established in the
electrical engineering literature as an accurate model of power grid dynamics. Full derivations
of the model, together with stability analyses are available (28, 29). This section summarises the
swing equation’s derivation and defines the various parameters used in the main paper. Further
details on the stability analysis of the elementary two-node case are also included.

To begin the derivation, we note that each node i in the network is modelled as a rotating
machine with phase angle

φi(t) = Ωt+ θi(t), (S1)



where Ω is the grid’s reference frequency, typically 2π × 50 Hz or 2π × 60 Hz, and θ is the
machine’s phase difference. Classically, these nodes are either conventional generators with
spinning inertia, or power consumers (often referred to as loads). These loads may be mod-
elled as constant impedances, but it is also common to model the consumers/loads as a type of
rotating machine themselves (15) with negative power demand. This is the approach adopted
in this work since it preserves the structure of the underlying network. Generators may also
be direct-current sources such as photovoltaic (PV) panels. These generator’s control systems
can emulate the inertial properties of conventional generator (42), allowing the use of the swing
equation.

Power must be conserved at each node a power grid; thus, the dissipative P diss
i and inertial

P iner
i power must balance the machine’s mechanical power Pmech

i and the power P elec
i being

transmitted to and from the rest of the network. The inertial and dissipative terms are given by

P iner
i =

1

2
Ji

d

dt

(
dφi

dt

)2

(S2)

and

P diss
i = Di

(
dφi

dt

)2

, (S3)

where Ji is the moment of inertia and Di is a damping coefficient. Assuming the impedances
of the grid’s connections are largely reactive, and that the voltage across the network is approx-
imately constant at V0, then the transmitted electrical power is given by

P elec
i =

n∑
j=1

V 2
0 Bijsin(θi − θj), (S4)

where Bij is the electrical susceptance of edge ij. Substituting Eq. (S1) into (S2) and (S3),
and assuming |θ̇i| � Ω, allows the power balance equation at each node to be written in the
compact form

d2θi
dt2

+ γi
dθi
dt

= Pi −
n∑

j=1

Kijsin (θi − θj) . (S5)

This is the standard form of the swing equation, where the parameter γi is a damping term

γi =
2Di

Ji
(S6)

with units of s−1. The coupling term is

Kij =
V 2
0 Bij

JiΩ
(S7)



and has units of s−2. If node i is not adjacent to node j, then Kij = 0. The power term Pi also
has units of s−2 and is given by

Pi =
Pmech
i −DiΩ

2

JiΩ
. (S8)

Pi will be positive if i is a net generator, and negative if it is a net consumer. We assume for
simplicity that the coupling, inertial, and damping terms are constant across the network so that
γi = γ ∀i. This allows Eq. (S5) to be written as

d2θi
dt2

+ γ
dθi
dt

= Pi − κ
n∑

j=1

Aijsin (θi − θj) , (S9)

where A is the adjacency matrix of the power network and κ is the network’s coupling capacity:

κ =
V 2
0 B

JΩ
. (S10)

Eq. (S9) is the form of the swing equation employed throughout the main paper.
During normal operation, all machines are synchronised to the grid frequency Ω. This

occurs when

Pi − κ
n∑

j=1

Aijsin (θi − θj) = 0 (S11)

for all nodes i, which represents a steady state of Eq. (S5). Stable steady states are found by
numerically integrating equation (S5).

During the operation of a power grid, some drift away from the reference frequency is
tolerated. Any significant drift should be detected and trigger a shut-down to protect grid assets.
For instance, the UK National Grid monitors grid frequency and rate of change of frequency
(RoCoF), typically allowing RoCoF of 0.1 to 1 Hz/s (41). Following typical values used by the
National Grid, we monitor the steady states of Eq. (S5) and remove any node i from the network
if θ̇i > 1 Hz or if the RoCoF θ̈i > 1 Hz/s.



Linear stability
The elementary example of a two-node network will now be used to demonstrate the fundamen-
tal dynamical properties of the swing equation. The network consists of a generator with power
output P and a consumer with output −P . Let the generator and consumer be labelled nodes 1
and 2 respectively. The system is given by

d2θ1
dt2

+ γ
dθ1
dt

= P − κ sin (θ1 − θ2) (S12)

d2θ2
dt2

+ γ
dθ2
dt

= −P − κ sin (θ2 − θ1) (S13)

Subtracting Eq. (S13) from (S12) and defining the variable ∆θ = θ1 − θ2 allows the system to
be written compactly as two first order ODEs:

d

dt
(∆θ) = ω, (S14)

dω

dt
= 2P − γω − 2κ sin(∆θ). (S15)

There are two fixed points: (∆θ∗, ω∗)1 = (arcsin(P/κ), 0) and (∆θ∗, ω∗)2 = (π−arcsin(P/κ), 0).
These two solutions are plotted as a function of P/κ in Fig. S1(A). They annihilate in a saddle
node bifurcation at κc = P . The Jacobian evaluated at either of the two fixed points is

J =

(
0 1
x −γ

)
, (S16)

where x = −2
√
κ2 − P 2 at (∆θ∗, ω∗)1 and x = 2

√
κ2 − P 2 at (∆θ∗, ω∗)2. Both the trace and

the determinant of the Jacobian are therefore negative at (∆θ∗, ω∗)2 for all parameter values,
indicating a saddle point. (∆θ∗, ω∗)1 may be either a stable node, a stable degenerate node or a
stable spiral depending on parameter choices. In particular, it will be a stable spiral for the range
0 < γ2 < 8

√
κ2 − P 2, which typically encompasses the realistic lightly damped scenario of

γ < 1. Both the saddle point and the stable spiral can be seen in the phase portrait in Fig. S1(B).
Note that the numerator of the coupling parameter, as defined in eq.(S10), is V 2

0 B. This is
a quantity of power in units of Watts. By plugging in values of voltage and susceptance, this
can be used to give the value of the critical coupling in Watts. Let us use V0 = 240 V for the
grid voltage. By the low resistance assumption, the susceptance is B = 1/XL where XL is the
inductive reactance. This is given by XL = 2πfL where f = 50 Hz is the grid frequency and
L is the line inductance. Using a conservative estimate of L = 10 mH, the scaled coupling is
V 2
0 B = 18.3 kW. This means the 2 node case above could handle a power of up to 18.3 kW

before de-synchronisation. Lower inductances will give a higher kW limit.
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Figure S1: Dynamics of the two-node system. A Bifurcation diagram for the swing equation
posed on a two-node network comprising one generator with output P and one consumer with
output −P linked by a single edge with coupling strength κ. ∆θ is the phase difference of
the two nodes. The stable fixed point at ∆θ = arcsin(P/κ) and the saddle point at ∆θ =
π − arcsin(P/κ) annihilate at the critical coupling κc = P . B Phase portrait of the system,
showing the spiral and saddle for parameter values P = 0.5, κ = 1 and γ = 1.



Cascade duration
This section provides further examples showing how cascade duration in seconds depends upon
system parameters. Fig. S2 shows cascade durations as a function of normalised edge capacity
α/α∗ for various different system parameter values. Recall that α∗ is the maximum flow volume
in the network. The figure demonstrates that across the range of realistic parameter values of κ
and γ, and across a range of network sizes n and randomness q, the durations follow a similar
profile with respect to α/α∗. For low values of edge capacity, where cascades are typically
catastrophic, the cascades have a very short duration. This duration increases as α, and hence
survivability, increases. The durations peak at the critical value αc/α∗. This peak value typically
sits in the 20s to 30s range, although it can be much higher in the very low damping γ and low
coupling κ regimes as well as in the case of networks being completely regular lattices (q = 0).
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Figure S2: Cascade duration as a function of normalised edge capacity. Each line in each
plot shows the mean cascade duration T in seconds as a function of normalised edge capacity
α/α∗ for ensembles of 500 networks. Error bars are omitted for visual clarity. In all cases, 20%
of nodes are generators and 80% are consumers. A shows durations for a range of network sizes
n, where γ = κ = 1 and q = 0.1. B shows durations for a range of damping γ, where n = 50
and q = 0.1. C shows durations for a range of coupling κ, where n = 50 and γ = 1. D shows
durations for increasing topological randomness q, where n = 50 and κ = γ = 1.

Fig. S2 demonstrates that short durations are associated with small values of edge capacity
α, and hence low cascade survivability. Longer durations are associated with less damaging
cascades, which occur at higher values of α. This can can be seen more clearly by plotting
individual values of S against T , for specific values of α. Such scatter plots are shown in
Fig. S3. Each of the four panels shows S plotted against T for four different values of α in the



same ensemble of 500 networks with q = 0.1. In all cases, 20% of nodes are generators and
80% are consumers. Fig. S3A shows S versus T for α/α∗ = 0.75, which is beneath the critical
value αc and corresponds to a situation where most cascades result in a low value of mean
surviving edges S and mean duration T . This is confirmed in Fig. S3A, which shows most
of the cascades are tightly clustered in the bottom-left of the plot. These cascades completely
destroy the networks, giving values of S ≈ 0 and very short durations T . However, it is also
clear that there is another cluster of less severe cascades, whose durations are longer. The result
is that the durations are in fact bi-modal, as shown by the adjoining histogram in Fig. S3A. This
same trend is also clear in Fig. S3B, which shows the case for α/α∗ = 1. This is still beneath
the critical value. The second cluster has now grown and encompasses most of the cascades.
Panel S3C shows the situation at the critical point αc/α∗. Here, a third cluster has emerged at
the top centre-left which now contains the vast majority of the cases. This can be seen as the
very small, bright yellow blob. These are the cascades which cause little damage, and whose
durations are roughly the same as the second cluster of intermediately damaging cascades. For
α greater than αc, as shown in Fig. S3D, the only cluster of any significance remaining is that
of the cascades causing little damage, which emerged in panel C. In summary, a short duration
is associated with catastrophic cascades, while cascades that cause little impact have a longer
and approximately constant duration.
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Figure S3: Fraction of edges surviving cascades against cascade duration. Each panel is
a scatter plot of the duration T of a cascade against the fraction S of surviving edges, for an
ensemble of 500 random networks with configuration, where 20% of nodes are generators and
remainder are consumers. Each panel has a different value of edge capacity α. The values of
α for panels A to D are, respectively, 0.75, 1, 1.21, and 2. The colours of the scatter points
encode the density of points; the brighter the denser. Adjoining each axis are histograms giving
a picture of the distribution of each variable



Cascade resilience
This section presents further results of cascade resilience ρ as a function of node type compo-
sition. Figure S4 shows results for networks with n = 100 and common degree k = 4 for four
different values of q. As q increases, the regions of high ρ, indicating low resilience, broaden
from the edges. However, in all cases, the most resilient configuration, indicated by low ρ,
are located in the bottom-centre of the simplex and correspond to networks with commensu-
rate numbers of consumers and generators and few passive nodes. Figure S5 shows the case
for smaller networks with n = 50 nodes. The trends in resilience with respect to consumer-
generator proportions are the same as those for larger networks, although the values of ρ are
slightly reduced.
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Figure S4: Resilience as a function of consumer-generator numbers for networks with 100
nodes. Panels A to D show ρ projected onto the node configuration simplex for Watts-Strogatz
networks with topological randomness parameter q = 0, 0.2, 0.4 and 1, respectively. Simplexes
A to D therefore represent increasing structural randomness from regular lattices to Poisson
networks. All networks have n = 100 and common degreeK = 4. Each pixel shows ρ obtained
from an ensemble average over 100 network realisations where source and sink locations are
allocated randomly. ρ is computed using the algorithm outlined in the main paper.
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Figure S5: Resilience as a function of consumer-generator numbers for networks with
50 nodes. A and B show ρ projected onto the node configuration simplex for Watts-Strogatz
networks with topological randomness parameter q = 0 and q = 0.2, respectively. All networks
have n = 100 and common degree K = 4. Each pixel shows ρ obtained from an ensemble
average over 100 network realisations where source and sink locations are allocated randomly.



Seasonal and diurnal variation in micro-grid dynamics
UK household power consumption and PV generation data (28, 29) are used to construct models
of micro-grids. Their dynamics can be simulated for different seasons of the year and for differ-
ent levels of photovoltaic (PV) uptake. Using a projection method, the numbers of generators
and consumers operating concurrently at a given point in time on the grid can be converted into
a point on a triangular phase-plane, or simplex. In particular, the micro-grids are modelled as
networks whose n nodes are households with power demand and output specified by the data.
The power output Pi(t) in kW of a node i at time t is gi(t)− ci(t), where gi(t) and ci(t) are the
node’s generation and output, respectively. The network then has a power vector P ∈ Rn, with
components corresponding to the power outputs of the nodes. From this, three dimensionless
consumer-generator coordinates are computed as follows. The generator density is defined as

η+ :=
1

nmax(P)

∑
x∈P+

x, (S17)

where P+ is the vector containing only the positive elements of P. Consumer density is likewise
defined as

η− :=
1

nmin(P)

∑
x∈P−

x, (S18)

where P− contains the negative components of P. Finally, the passivity of the network is

ηp := 1− η+ − η−. (S19)

These three numbers (η+, η−, ηp) allow a micro-grid’s composition of net consumers and gen-
erators to be represented as a point on the triangular simplex, as demonstrated in Fig. S6. For
instance, if the micro-grid is dominated by consumers, with only one node acting as a generator,
then it will be located on the right hand edge of the simplex. If the micro-grid instead has an
equal number of effective consumers and generators, then it will be located along the vertical
centre line of the simplex. As time progresses in the micro-grid and the numbers of effective
consumers and generators change, the grid will sweep a trajectory through the simplex. Exam-
ples of such trajectories, captured over the course of a week, are shown in Fig. S6. Each simplex
in the Figure shows trajectories for 50 different realisations of a micro-grid with n = 50 nodes,
where the time-series for each node has been drawn uniformly at random. Each of the trajecto-
ries within the ensembles can be seen in pale red, while the ensemble mean is indicated by the
thick red line. The different simplexes in Fig. S6 each show cases for different seasons of the
year and different levels of household PV uptake. The Figure demonstrates that, on average,
the micro-grid trajectories travel further and spend longer on the left-hand side of the simplex
as the level of PV uptake increases and as the seasons tend towards summer.

The robustness properties of the micro-grids are characterised by the critical coupling κc
required for synchronous operation, and the critical edge capacity αc required to survive a cas-
cading failure. These quantities vary as the proportions of consumers and generators in the grids



change. Thus, the diurnal trajectories of the grids through the simplex result in daily variations
in robustness. To gauge these variations in robustness, the quantities κc and ρ = αc/α∗, where
α∗ is the minimum edge capacity required for a network to function normally, are computed
for networks of fixed size n with varying numbers of generators and consumers. These com-
putations utilise the reduced dimensional model of power grid dynamics given in Eq. S5. This
allows the construction of simplexes containing values of κc and ρ for all possible consumer-
generator compositions of a network with fixed size. The quantities κc and ρ are dimensionless.
To evaluate the robustness of the fully dimensional models, whose node powers profiles are in
kW, their (η+, η−, ηp) locations on the simplex computed from Eqs. (S17-S19) are scaled up by
a factor of n to give their locations on the ρ and κc simplexes from which (κc, ρ) are sampled.

Fig. S7 shows the variation in κc over the course of a week for an ensemble of micro-grids
with q = 0 and 100% PV uptake in both the summer and the winter. Recall that low values of
κc effectively mean the grid can synchronise more readily. The lowest values of κc are in the
centres of the simplexes, corresponding to points in time where there are roughly equal numbers
of consumers and generators operating concurrently. The Figure shows that in the winter there
are daily dips in κc as the micro-grids move into the robust central region of the space. In the
summer however, these daily dips are reduced to brief twice-daily spikes, since the grids spend
much less time in the centre. This is due to the increased PV production causing grids to spend
midday dominated by production. Figure S8 shows equivalent results for random networks with
q = 1. The same daily trends occur here as in the q = 0 case, although the κc values are in
general lower, reflecting the higher synchronisability of more random networks.

Figures S9 and S10 show the locations of randomly triggered cascading failures occurring
in micro-grids with different levels of PV uptake and at different times of the year. The Figures
show that in the winter, the values of αc required to survive a cascade are typically low and are
associated with failures occurring higher up in the simplex, where the grids are dominated by
mostly passive nodes. In the summer, for high PV uptake, the values of αc are much larger. This
is due to the increased PV activity driving the grids further down the simplex as they become
dominated by generation. Figure S11 shows that these results broadly hold for the case of more
random networks with q = 1.

Figure S12 shows trajectories for ensembles of micro-grids at various levels of PV uptake
during the winter and the summer, where each house is equipped with a battery. The figure
demonstrates that batteries, in all cases, are unable to manipulate trajectories into the resilient
bottom-centre region of the simplex.
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Figure S6: Weekly micro-grid trajectories. Each panel shows trajectories through the
consumer-generator simplex space for ensembles of 50 micro-grids each with n = 50 houses
over the course of a week. The quantities η+, η−, ηp ∈ [0, 1] are the consumer, generator and
passive node densities, respectively. Light red lines are the trajectories of individual ensemble
members, and the this red line is the ensemble mean trajectory. The left column of simplexes –
A, C, E and F – are for the case of 50% PV uptake in the winter, spring, summer, and autumn
respectively. The right hand column shows the corresponding case for 100% PV uptake.
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Figure S7: Variations in critical coupling for regular lattices. A and B show the ensemble
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have a lattice like structure. C and D show the corresponding weekly variation in κc in winter
and summer respectively.
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Figure S8: Variations in critical coupling for Poisson networks. A and B show the ensemble
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in the winter and summer respectively with 100% PV uptake, with q = 1. C and D show the
corresponding weekly variation in κc in winter and summer respectively.
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Figure S9: Impact of PV uptake on resilience during winter. A and B show the locations
of randomly triggered cascading failures occurring during the winter for micro-grids with 50%
and 100% PV uptake respectively. ρ is the resilience measure giving the amount of capacity αc

required to survive a cascade relative to the capacity required for normal operation. Histograms
C and D show the corresponding values of αc for the 50% and 100% cases.
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Figure S10: Impact of PV uptake on resilience during summer. A and B show the locations
of randomly triggered cascading failures occurring during the summer for micro-grids with 50%
and 100% PV uptake respectively. ρ is the resilience measure giving the amount of capacity αc

required to survive a cascade relative to the capacity required for normal operation. Histograms
C and D show the corresponding values of αc for the 50% and 100% cases.



A

ρ̄

0.88

1.52

0 30 0 30
0

0.25

0

0.25

αc (kW) αc (kW)

P (αc) P (αc)

consumers

ge
ne

ra
to

s passives
consumers

ge
ne

ra
to

s passives

B

C D

Figure S11: Impact of PV uptake on resilience during summer for highly random net-
works. A and B show the locations of randomly triggered cascading failures occurring during
the summer for micro-grids with 50% and 100% PV uptake respectively. In both cases, q = 1
for all networks. ρ is the resilience measure giving the amount of capacity αc required to survive
a cascade relative to the capacity required for normal operation. Histograms C and D show the
corresponding values of αc for the 50% and 100% cases.
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Figure S12: Weekly trajectories through the node configuration simplex for battery
equipped micro-grids. All networks have n = 50 nodes. Each panel shows the weekly mean
trajectory of an ensemble of 50 micro-grids where every house with PV is equipped with a bat-
tery. Panels A and B show the case for 50% and 100% PV uptake, respectively, in the winter.
Panels C and D show the case for 50% and 100% PV uptake, respectively, in the summer.
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