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S1. COMPARISON OF DIFFERENT INITIAL STATES AND ABSENCE OF DISORDER

Here we show the results for a Neel state, in addition to Fig. 2 in the main text. Moreover, we study both a fully
polarized and a random-bit state for vanishing Ising-even disorder in the driving Hamiltonian. The decay of the Neel
state matches that of a polarized or random initial state very closely in the presence of disorder, indicating MBL.
Without disorder the random initial state depolarizes significantly faster than any of these. This becomes even more
apparent after applying the error mitigation where the inconsistent oscillations at late times typically indicate that
the unmitigated signal is too weak and the result of the mitigation scheme become error dominated. A fully polarized
chain without disorder in the driving Hamiltonian seems to decay signifantly faster compared to the disordered system
as well. The difference becomes more apparent after the error mitigation. However, it seems to be more stable than
the random bit string, indicating that special initial states can exhibit prethermal dynamics that mimics DTC even
in the absence of MBL.
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FIG. S1. DTC stability of special states and translation invariant chains. a Averaged spin-spin auto-correlators
across time with measurement error mitigation (see Methods) applied to the raw data. b same but with additional correction
of overall decay due to noise. c and d show corresponding frequency spectra.



S2. LOCAL SPIN OBSERVABLES

Here we show the site resolved Fourier spectrum (absolute value) of oscillations in ⟨Z(t)⟩ for different values of
ε. This equivalent to looking at ⟨Z(0)Z(t)⟩ since the difference in sign does not affect the absolute values of the
individual Fourier spectra. The pronounced peak at half the driving frequency ωD at low ε indicate the DTC phase.
Fig.S2 a with ε = 0.02 is supposedly well inside the DTC phase but clearly shows that there is a finite variance in the
amplitude of the subharmonic frequency response. This is due to the fact that only a finite fraction of each spins
Z-component is conserved and this fraction varies accross the chain due to the quenched disorder. Well within the
thermal phase none of the spins are oscillating at late times and hence the frequency response is almost completely
flat, see Fig.S2 c. Thus the associated variance vanishes as well. In the vicinity of the phase transition the excess
variance compared to the case of small ε becomes very apparent in the site resolved spectrum, Fig.S2 b.
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FIG. S2. Site resolved spin observables a Overlay of Fourier spectra of each qubit for ε = 0.02. b and c show the same for
ε = 0.08 and ε = 0.4 respectively.



S3. SITE RESOLVED DTC ACROSS ENTIRE CHAIN

Here we show the site resolved oscillations after applying full error mitigation but without removing any qubits
based on the filter criteria presented in the Methods section. It is clear that the increasing signal towards late times
on some qubits (here qubits 20, 21, 22, 24, 30) is an artefact of the mitigation scheme and typically avoided when
filtering out qubits based on particularly high error rates. It also seems that many of the qubits that thermalize
rapidly and completely (here qubits 11, 25, 27, 42, 45) are typically removed by our scheme, indicating that this is
due to significantly higher error rates.
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FIG. S3. Site resolved DTC including all qubits. Fully error mitigated data obtained for ε = 0.05 on imb brooklyn.



S4. PROCESS TOMOGRAPHY

In the following we present the results for process tomography performed on a single Floquet time step on three
qubits. Process tomography consists of preparing the quantum register in a variety of different initial states, executing
the quantum circuit in question, and then measuring the output state with respect to different bases. From the shot
statistics one extracts an estimate of the quantum map associated with this process, which may differ from the ideal
unitary due to error contributions.

In particular one can define the post-gate error generator for the map, L = log(G ∗H−1), where G is the process
matrix for the estimate and H is the process matrix for the ideal gate. This describes all Markovian errors as if they
occurred after the gate. The error generator decomposes like a Lindbladian into coherent Hamiltonian terms and
dissipative terms. The Hamiltonian generators are the relevant part for us, since they constitute additional effective
terms in the Floquet unitary that are systematic and not included in the original model. Since the data for each time
step in our simulation is averaged over many shots, it is affected by exactly these systematic terms.

Table S1 shows the coefficients of the dominant Pauli terms in the effective “post-gate Hamiltonian” Hadd, i.e., our
unitary U gets modified to exp(−iHadd) ∗U . In particular, we observe the local and random Z rotations, mentioned
in the main text, as well as significant weight-two interactions (i.e., terms such as ZiXj), thus substantiating our
claim that the effective model is interacting. To be specific, Hadd contains all the terms listed in Table S1, i.e.,
Hadd = 0.118X3 + 0.085Y3 + 0.126Z3 + 0.023X2 + . . ., where we dropped the remaining nine terms.

Pauli operator coefficient

IIX 0.118

IIY 0.085

IIZ 0.126

IXI 0.023

IYI 0.012

IZI 0.033

IZX 0.038

IZY 0.033

XII 0.024

IXI 0.023

YZI 0.023

ZII 0.037

ZYI 0.017

TABLE S1. Dominant Pauli operators contributing to the effective additional unitary. Terms and coefficients were
derived via process tomography on three qubits. For instance, “IIX” is a short notation for the term I1I2X3. Besides non-trivial
spin-spin interactions, longitudinal fields (IIZ, IZI, ZII) are present with amplitudes 0.126, 0.033 and 0.037, respectively.

We emphasize that extracting the Pauli operators and their amplitudes from the quantum computer data is per-
formed on a classical computer, preventing us from extracting the same information for all 57 qubits. This is, however,
not necessary: the results of our process tomography on three qubits are expected and appear to be consistent with
previous analysis of IBM’s qubits [44, 45]. Our findings outlined in Table S1 are thus representative for the 57 qubit
circuits in the main text.
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