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Supplementary Text 

1. The ideal energy-flow distribution of perfect anomalous reflection 
In a general situation, when a normal incident TM wave ሺ𝐸௜ ,𝐻௜ሻ impinges the metasurface, 

there are three channels ሺ𝐸௥ିଵ,𝐻௥ିଵ,𝐸௥଴,𝐻௥଴,𝐸௥ାଵ,𝐻௥ାଵሻ  scattering the incident wave due to the 
periodicity as shown in Fig. S1A. Then, the electric and magnetic field of total field at z = 0 plane 
can be written as: 
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where ሺ𝑟ିଵሻଶ𝑐𝑜𝑠𝜃௥ ൅ ሺ𝑟଴ሻଶ ൅ ሺ𝑟ାଵሻଶ𝑐𝑜𝑠𝜃௥ ൌ 1 satisfys energy conservation. G is the reciprocal 
lattice vector, and equals to k0sinθr.  

According to the electric and magnetic field, we can obtain the actual energy-flow distribution 

by 𝑆௣௭ ൌ
ଵ

ଶ
𝑅𝑒൫𝐸௧௢௧௔௟,௫𝐻௧௢௧௔௟,௬

∗ ൯. The actual energy-flow distribution can be written as: 
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The distribution of imperfect anomalous reflection Equation S2 is in form of  

     1 1 2 2cos cos 2a a a a aS x A Gx A Gx     .                                (S3) 

The distribution is composed of first-order and second-order oscillations. The second-order 
oscillation comes from the interference between -1st and +1st channels, and the first-order 
oscillation is originated from the interference between the 0th and ±1st channels. When the -1st- and 
0th-order light are suppressed well like Fig. S1B, that is perfect anomalous reflection, the r0 and r-

1 are zero. We can get the energy-flow distribution of perfect anomalous reflection. It can be 

obtained directly by Equation S2 that 𝑆௣௭ ൌ
ଵ

ଶ
𝑦଴𝐸௜

ଶ𝑟ାଵ𝑐𝑜𝑠ሺ𝐺𝑥 ൅ 𝜑ାଵሻሺ1െ 𝑐𝑜𝑠𝜃௥ሻ. From energy 

conservation, the r+1 equals to 1 ඥ𝑐𝑜𝑠𝜃௥⁄ . So the energy-flow distribution of perfect anomalous 
reflection is 
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which is represented by 

   cosS x A Gx   .                                                 (S5) 

In order to realize perfect anomalous reflection, the metasurfaces need to minimize the second-
order oscillation and modulate the first-order oscillation to match the required energy-flow 
distribution. 

However, it’s worth pointing out that Equation S4 is only a necessary condition for perfect 
anomalous reflection, but not a sufficient and necessary condition. In other words, the premise for 
the realization of perfect anomalous reflection is to make the energy-flow distribution meet 



 
 

 

Equation S4, but energy-flow distribution in accordance with Equation S4 cannot necessarily 
achieves perfect anomalous reflection. For example, when r-1 = 0, the Equation S4 is simplified as 
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For the convenience of derivation, let φ0 = 0, and Equation S6 is further simplified as 
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Let Equation S4 and Equation S7 equal, then 
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Substitute (r0)2 + (r+1)2cosθr = 1 into Equation S8, then 

     2 2 20 0 01 1 cos cos 1 cosr r rr r r          
.                       (S9) 

Equation S9 is a quartic equation for the 0th-order reflection coefficient r0. For any θr, the equation 
has a solution r0 = 0, which is corresponding to perfect anomalous reflection. In addition, there are 
the other positive real solutions for the equation, which is corresponding to imperfect anomalous 
reflection. To sum up, the necessary condition to achieve perfect anomalous reflection is to make 
the energy-flow distribution meet Equation S4. 

 

Fig. S1. The comparisons of imperfect and perfect anomalous reflection. (A) The energy-flow 
distribution of imperfect anomalous reflection is composed of first-order and second-order 
oscillations. (B) The energy-flow distribution of perfect anomalous reflection is composed of first-
order oscillation. 

 
  



 
 

 

2. The lateral energy transfer in structure 
A metasurface needs to modulate the energy-flow distribution in line with the simplified form 

to realize perfect anomalous reflection. Because the system has no active or lossy elements, we 
can get the relationship of energy-flow distribution around the metasurface: 
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According to the energy conservation, where Spz and Spx are the z and x components of the Poynting 
vector. In a system without transmission loss, the Spz in the bottom of metasurface (z = -z0) is zero. 
Therefore, the relationship of energy-flow distribution is simplified as: 
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The relationship tells us that it is an effective way utilizing lateral energy transfer Spx to modulate 
the actual energy-flow distribution Spz precisely to realize the nonlocal requirements. 

When impinges metasurfaces, the incident wave would be scattered into the spacer via 
propagating waves and also coupled into Bloch waves inside the top-layer metasurface. As shown 
in Fig. S2, the propagating waves are reflected by the bottom boundary. The high-order 
propagating waves are evanescent waves or weak enough to neglect. The electric fields of 
propagating waves are denoted by 𝑐ିଵ

േ , 𝑐଴
േ and 𝑐ାଵ

േ . The downward and upward propagating waves 
at the top of spacer are connected by the response of the bottom boundary and phase accumulation 
in spacer. That is 𝑐଴

ା ൌ 𝑐଴
ି𝑟଴𝑒௝஍బ  and 𝑐േଵ

ା ൌ 𝑐േଵ
ି 𝑟ଵ𝑒௝஍భ , where Φ଴ ൌ 2𝑘଴,௭

௦ ℎ௦ ൅ 𝜙଴  and Φଵ ൌ
2𝑘േଵ,௭

௦ ℎ௦ ൅ 𝜙ଵ . The hs is the thickness of spacer. Because hs can’t control Φ଴  and Φଵ 
independently, we will mainly discuss the ability of phase responses ϕ0 and ϕ1. Then, the field 
distributions in spacer are given by: 
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The lateral energy transfer at the top of spacer can be obtained by combining these formulas, 
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where: 
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𝜈ଷ ൅ 𝜈ହ has no contribution to 𝑆௣௫,௭ୀି௛
௉ ሺ𝑥ሻ. From what has been discussed above, 
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Similarly, the lateral energy transfer at other height in spacer can be obtained. The overall effect 
of lateral energy transfer in spacer can be given by: 
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The 𝑆௣௭,௭ୀି௭బ
௉  is zero for no transmission in the system. Then, the 𝑆௣௭,௭ୀି௛

௉  can be obtained by: 
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where: 

   
   

   
 

0 1

0 1

1 1

0 0

1 1

* *
1 2 0 0 1 1 1

*
3 4 0 0 1 1 1 1

2 * 2
5 6 1 1 1 1 1 1

2 2
7 0 0 0 0

2

8 1 1 1

1 1

1 1 cos

2cos 1 Re

1

1

j j jGx jGx

j j jGx jGx

j j j Gx

j j

j j

s s c r e r e c e c e

s s c r e r e c e c e

s s r e r e r c c e

s c r e r e r

s c r e r e r





      
 

      
 

     
 

  

  


    

    

    

   

    
 1 1

2
1 1

2 2
9 1 1 1 1 1

cos

1 cosj js c r e r e r



  
   

.             (S18) 

When r0 and r1 are 1, the 𝑠ହ ൅ 𝑠଺, 𝑠଻, 𝑠଼ and 𝑠ଽ are imaginary number. Therefore, the lateral energy 
transfer in spacer can be simplified as 
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On the one hand, propagating waves in the spacer generate a cosine-form lateral energy transfer 
SP when the amplitudes of propagating waves are 1. On the other hand, the phase responses ϕ0 and 
ϕ1 of the bottom boundary have a direct regulation on SP. 

In the metasurfaces region, the incident light is coupled into Bloch waves by the structure. As 
shown in reference (42-44), the field distributions in the metasurfaces are given by: 
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m is the order of Bloch waves. The 𝑆௠ሺ𝑧ሻ, 𝑓௠ሺ𝑧ሻ and 𝑈௠ሺ𝑧ሻ include the downward and upward 
waves. The lateral energy transfer in the metasurfaces can be obtained as that in the spacer. 
However, the amplitudes of downward Bloch modes and upward Bloch modes are not same. 
Further, the amplitudes of high order Bloch modes are small. Then, the lateral energy transfer of 
Bloch waves is composed of first-order and second-order cosine functions because the high-order 
Bloch waves cancel each other. The results can also be understood in other respects that the actual 
energy-flow distribution Sa comes from the combined action of lateral energy transfers of 
propagating wave SP and Bloch wave SB, so the high-order Bloch waves cancel each other to 
produce the form of SB. Besides, at the bottom of metasurfaces, according to boundary conditions, 



 
 

 

the tangential components of electric and magnetic field are continuous. The field distribution in 
spacer can control the field in metasurfaces indirectly. In this way, the phase responses ϕ0 and ϕ1 
of bottom boundary have an indirect influence on SB. 

 

Fig. S2. Schematic diagram of Propagating waves and Bloch waves. 

  



 
 

 

3. The influence of phase response ϕ0 and ϕ1 on lateral energy transfer 
For the lateral energy transfer SP, the amplitude 𝐴ଵ

௉ and phase shift 𝜏ଵ
௉ determine the shape of 

function. As for the lateral energy transfer SB, the amplitude and phase shift of each order together 
determine the form of lateral energy transfer. Fig. S3 shows how phase responses ϕ0 and ϕ1 affect 
the amplitudes and phase shifts of SP and SB. It can be seen that the amplitude 𝐴ଵ

௉ can be regulated 
in a large range and the phase shift 𝜏ଵ

௉ is covering 0~2π, which indicates the strong ability of phase 
response ϕ0 and ϕ1 on lateral energy transfer SP. Similarly, the amplitudes 𝐴ଵ

஻, 𝐴ଶ
஻ and phase shifts 

𝜏ଵ
஻, 𝜏ଶ

஻ of lateral energy transfer SB can also be regulated in a large range. The coefficients of lateral 
energy transfer SP and SB are calculated by a simplified model mentioned in the last section. It is 
not perfectly accurate but reflects the primary physical images. 

 

Fig. S3. The influence of ϕ0 and ϕ1 on parameters of lateral energy transfer. 

 
 
  



 
 

 

4. The design process for multilayer 
The multilayer films are designed to modulate the propagating waves according to the 

requirements from the perfect anomalous reflection. Therefore, the first step is to determine the 
condition of propagating waves. The multilayer is homogeneous in x direction, so only 0th- and 
1st-order propagating waves need to be considered. In the case of 40º perfect anomalous reflection, 
the incident angles of 0th- and 1st-order propagating waves are 0º and 25.9º. The amplitude and 
phase response of 0th-order propagating wave are 1 and 173º; amplitude and phase response of 1st-
order propagating wave are 1 and 170º. The multilayer has to satisfy the amplitude and phase 
response simultaneously. The traditional periodic Bragg mirror in Fig. S4A can offer near 100% 
reflectance only with proper proportion of high and low refractive index materials, as shown in 
Fig. S4B. In the region with high reflectance, the phase responses ϕ0 and ϕ1 are associated as the 
thickness changes, shown in main text. Generally speaking, periodic Bragg mirror with high 
reflectance is consisting of high- and low-refractive-index materials whose thicknesses are quarter 
wavelength optical thickness, that are 𝜆 4𝑛௛௜௚௛⁄  and 𝜆 4𝑛௟௢௪⁄ . When the relationship between 
refractive index and thickness is broken, the reflectance would drop rapidly. By changing the 
refractive index (materials), the different Bragg mirror can be realized, but the phase combination 
of ϕ0 and ϕ1 is still associated under the condition of high reflectance. Hence, we use an aperiodic 
multilayer film as shown in Fig. 2G in the main text to realize arbitrary phase combination. We 
use a quarter-wave stack design high-reflection film to guarantee the amplitude requirement, and 
change the thicknesses of four outermost layers to guarantee the phase requirement. The aperiodic 
multilayer films are composed of a periodic Bragg mirror ((HL)7H) and four phase layers (DCBA), 
where H is 109 nm and L is 263 nm. The Fig. S4C-F give the phase combination realized by 
aperiodic multilayer films with different phase layers. The phase control ability of the aperiodic 
multilayer films becomes stronger with the increase of phase layers. Hence, four phase layers are 
adopted to guarantee arbitrary phase combination of ϕ0 and ϕ1. Due to the good ability controlling 
the amplitude and phase of electromagnetic waves, there are a variety of multilayer satisfying the 
requirement. Fig. S4G-I shows the thickness of each layer and the spectra. As for 75º perfect 
anomalous reflection, the incident angles of 0th- and 1st-order propagating waves are 0º and 40.9º. 
The amplitude and phase response of 0th-order propagating waves are 1 and 170º; amplitude and 
phase response of 1st-order propagating waves are 1 and 149º. The multilayers satisfying the 
requirement are also listed in Fig. S4J-L.  



 
 

 

 

Fig. S4. The multilayer films satisfying the requirement of phase response. (A) The schematic 
diagram of periodic Bragg mirror. (B) The periodic Bragg mirror can offer near 100% reflectance 
only with proper proportion of high and low refractive index materials. In the region with high 
reflectance, the phase responses ϕ0 and ϕ1 are associated as the thickness changes, as shown in 
main text. In order to realize arbitrary phase combination, we propose to use aperiodic multilayer 
films as shown in Fig. 2G in the main text. (C)-(F) The phase combination realized by aperiodic 



 
 

 

multilayer films with different phase layers. Four phase layers are adopted to guarantee arbitrary 
phase combination of ϕ0 and ϕ1. The thicknesses of four outermost layers of every case are listed 
as followed, for 40º, (G): 263nm, 161 nm, 294 nm, 92 nm; (H): 263nm, 112nm, 265nm, 112nm; 
(I): 260nm, 160nm, 224nm, 106nm; for 75º, (J): 262nm, 184 nm, 280 nm, 77 nm; (K): 259nm, 
168 nm, 240 nm, 95 nm; (L): 263nm, 124 nm, 269 nm, 99 nm; There are a lot of multilayers that 
can realize perfect anomalous reflection. The multilayers in (H) and (L) are fabricated in main text. 

Table S1. The parameters of two samples in main text (unit: nm). 

Thickness of Bragg mirror ((HL)7H) 

Si SiO2 Si SiO2 Si SiO2 Si SiO2 Si SiO2 Si SiO2 Si SiO2 Si 

109 263 109 263 109 263 109 263 109 263 109 263 109 263 109 

 D C B A ds H x1 x2 x3 x4 x5 x6 

Materials SiO2 Si SiO2 Si SiO2 Si Si Si Si Si Si Si 

40º sample 263 112 265 112 280 500 71 161 201 217 236 356 

75º sample 263 124 269 99 372 315 174 64 264 370 N/A N/A 

  



 
 

 

5. 75º perfect anomalous reflection 
When the anomalous reflection angle is enlarged from 40° to 75°, the requirement of 

nonlocality becomes higher as shown in Equation S4 and Fig. S5A. In addition, as shown in Fig. 
S5B and mentioned in reference (32), as the anomalous reflection angle becomes large, the phase 
deviates from the linear gradient. Hence, using gradient grating is not the best choice to realize 
perfect anomalous reflection with a large bending angle. Fig. S5C shows the anomalous reflection 
efficiency versus phase responses while four Si gradient gratings whose width from small to large 
were selected. The efficiency can be improved significantly by changing the phase response ϕ0 and 
ϕ1 of propagating waves, but the highest efficiency is about 93%. To achieve perfect anomalous 
reflection, the width of a unit grating is also selected as a parameter for scanning. Fig. S5D shows 
the result when the first grating and phase responses are scanning parameters. Fig. S5E shows the 
result when the second grating and phase responses are scanning parameters. Fig. S5F shows the 
result when the third grating and phase responses are scanning parameters. Fig. S5G shows the 
result when the fourth grating and phase responses are scanning parameters. All the results indicate 
that the anomalous reflection efficiency can be controlled in a wide range at will and reach a 99% 
efficiency. 



 
 

 

 

Fig. S5. Analysis of 75º perfect anomalous reflection. (A) The amplitudes r(x) and (B) reflection 
phases φr(x) for perfect anomalous reflection at small and big angle. (C) The anomalous reflection 
efficiency versus phase responses while four Si gradient gratings whose width from small to large 
were selected. The scanning results when (D) First (E) Second (F) Third and (G) Fourth grating 
are scanning parameters. The perfect anomalous reflection is marked by blue pentagram. 

  



 
 

 

6. The complicated functionality realized by Q3D-SWSs 
Using our methodology and structure, it is possible to realize more complicated energy-flow 

distribution and functionality. Fig. S6 shows the structure of two-dimensional metasurfaces. We 
demonstrate a polarization-independent perfect anomalous reflection and a polarization-dependent 
mirror in main text. The detailed parameters are shown in Table S2. On the one hand, the 
rectangular metasurface is polarization-dependent and has completely different scattering 
coefficients for TE and TM polarization. On the other hand, the multilayer films are polarization-
independent under normal incidence and polarization-dependent under oblique incidence. 
Therefore, the multilayer films offer a same ϕ0 and a different ϕ1 for TE and TM polarization as 
shown in Fig. S6. By optimizing the combination of polarization-dependent response, the 
polarization-independent and polarization-dependent mirrors can be obtained. If some approach is 
adopted to break the polarization insensitivity of ϕ0, then the polarization properties of Q3D-SWSs 
will be further developed. 

 

Fig. S6. The schematic diagram and spectra of multilayer films in the two-dimensional 
metasurfaces. 

Table S2. The parameters of metasurfaces (unit: nm) for polarization-independent perfect 
anomalous reflection (Fa) and polarization-dependent mirror (Fb). 

 H x1 x2 x3 x4 y1 y2 y3 y4 ds d1 d2 d3 d4 

Fa 499 272 40 149 218 271 271 271 271 801 239 475 484 263 

Fb 625 282 106 319 281 239 285 285 285 541 525 207 195 263 

  



 
 

 

7. The comparison of our work and published articles 
Fig. S7 shows the comparisons of our work and published work (24, 30, 37, 45-47) at optical 

frequency. The theoretical limit is corresponding to the local design philosophy, i.e. generalized 
Snell’s law. No matter for small or big angle anomalous reflection, we have obtained the highest 
anomalous reflection efficiency both in design and experiment, demonstrating the validity of our 
proposed design methodology and structure. 

 

Fig. S7. The comparisons of our work and published work. 

 
  



 
 

 

8. The details about experimental measurement 
To obtain the absolute efficiencies of the anomalous-reflection samples, the incident light has 

to be characterized first. Therefore, we measure the reflection spectra of two high-reflection 
mirrors in the 40°- and 75° anomalous-reflection samples by Cary 5000 from Agilent as shown in 
Fig. S8A. This is a standard test (48, 49) and the obtained results fit well with the calculated spectra. 
In the measurements by Cary 5000, the monochromatic light is evenly divided into two light paths 
before it hits the sample surface. One is the test light path, and the other is the reference light path. 
The sample is put into the test light path and an Al-mirror is put into the reference light path during 
measurements. The detector receives the test light and reference light at the same time, so as to 
obtain the spectral information of the sample. Later, angle-resolved spectrum system in micro-
region (ARM) from Ideaoptics Inc. as shown in Fig. S8B is employed to verify the spectral 
property of the 40° anomalous reflection sample. It's worth noting that the high-reflection mirror 
was tested first to normalize the incident light. The ARM system possess a 180 μm beam spot size 
which can be further zoomed out. Hence, a 40° anomalous reflection sample with an area of 600 
μm square was fabricated to carry out the measurement. The ARM system realizes angle resolution 
by focusing the reflective beam in the Fourier plane of the lens. The reflective beam spots at 
different positions in the focal plane represent different reflection angles. Therefore, the maximum 
reflection angle that the system can test is limited by the numerical aperture of the lens. The 75° 
anomalous reflection sample was not measurable using the ARM system because it equipped with 
a microscope objective whose numerical aperture is 0.87 only guarantees a collection angle of 60°. 
So, the angle-resolved spectrum system in macro-region (R1) from Ideaoptics China is employed 
to characterize the 75° anomalous reflection sample. This is a device with a spot size of 1 mm, that 
realizes angle resolution by mechanical rotating of the receiver. In the actual test, the high reflector 
mirror was used to normalize the incident light and then a 75° anomalous reflection sample with 
an area of 2 mm square was fabricated to carry out the measurement. 

 

Fig. S8. The experimental spectra and configuration. (A) The experimental spectra of 40º- and 
75º-high reflector mirror. (B) The angle-resolved spectrum system in micro-region (ARM) and the 
angle-resolved spectrum system in macro-region (R1) from Ideaoptics Inc.  
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