Supplementary information

A biophysical account of multiplication by a single neuron

In the format provided by the authors and unedited

Supplementary information

Supplementary equations

Here, we examine under which conditions a passive membrane can give rise to multiplication-like signal amplification. To extract the nonlinearity, we compare the response to two coincident inputs with the sum of the responses to each individual input presented in temporal isolation ('linear expectation'). We consider the simple case of an electrical equivalent circuit of a passive isopotential neuron that receives two excitatory input signals x and y, which control the excitatory conductances g_{exc1} and g_{exc2} , respectively (Extended Data Fig. 5b). The neuron's membrane potential V_m at steady state is given by

$$
V_m = \frac{E_{exc} (g_{exc1} + g_{exc2}) + E_{leak} g_{leak}}{g_{exc1} + g_{exc2} + g_{leak}};
$$

where E_{exc} and E_{leak} are the reversal potentials of excitatory and leak currents, respectively, and g_{leak} is the leak conductance. In the absence of input signals (i.e. when $x = y = 0$), the neuron's resting potential $V_{rest} = E_{leak}$.

If we express the membrane potential response ΔV as the difference between V_m and V_{rest} and all conductances relative to g_{leak} , then the membrane potential response to two coincident excitatory inputs is

$$
\Delta V = \frac{E_{exc}(g_{exc1} + g_{exc2}) + E_{leak}}{g_{exc1} + g_{exc2} + 1} - V_{rest}.
$$

For $g_{\text{exc1}} = x$, $g_{\text{exc2}} = y$, and $V_{\text{rest}} = E_{\text{leak}} = 0$ the response to the combined inputs can be written as

$$
\Delta V_{1,2} = E_{exc} \frac{x+y}{x+y+1}.
$$

The individual responses ΔV_1 and ΔV_2 to each input presented in isolation are

$$
\Delta V_1 = E_{exc} \frac{x}{x+1}
$$
 and
$$
\Delta V_2 = E_{exc} \frac{y}{y+1}
$$
.

Now we show that, for two excitatory inputs, $\Delta V_{1,2}$ is always smaller than the linear expectation $\Delta V_1 + \Delta V_2$:

$$
E_{exc}\frac{x+y}{x+y+1}
$$

Factoring out E_{exc} , we obtain

$$
\frac{x+y}{x+y+1} < \frac{x}{x+1} + \frac{y}{y+1} \, .
$$

The left expression can be broken into two components:

$$
\frac{x}{x+y+1} + \frac{y}{x+y+1} < \frac{x}{x+1} + \frac{y}{y+1} \, .
$$

If follows that, for positive non-zero values of x and y ,

$$
\frac{x}{x+y+1} < \frac{x}{x+1} \text{ and } \frac{y}{x+y+1} < \frac{y}{y+1}.
$$

If $a < c$ and $b < d$, then $a + b < c + d$. Therefore, the response of a passive neuron to two coincident excitatory inputs $\Delta V_{1,2}$ is always sublinear; i.e. smaller than the linear expectation $\Delta V_1 + \Delta V_2$ (Extended Data Fig. 5b).

Next, we consider the pairing of an excitatory with an inhibitory input (Extended Data Fig. 5c). This neuron's steady-state membrane potential is

$$
V_m = \frac{E_{exc}g_{exc}+E_{inh}g_{inh}+E_{leak}g_{leak}}{g_{exc}+g_{inh}+g_{leak}}.
$$

As before, we let $g_{exc} = x$, but the inhibitory conductance g_{inh} follows $1 - y$, meaning that it decreases with increasing signal y (just like Mi9 neurons hyperpolarize with increasing light intensity). Again, we express the membrane potential response ΔV as the difference between V_m and V_{rest} and all conductances relative to g_{leak} :

$$
V_m = \frac{E_{exc} x + E_{inh} (1 - y) + E_{leak}}{x + (1 - y) + 1}
$$
 and

$$
\Delta V = V_m - V_{rest}
$$
.

All reversal potentials are expressed as the difference to E_{leak} , which we set to zero (E_{leak} = 0). Note that, unlike before, the neuron's membrane potential at rest (i.e. when $x = y = 0$) is now $V_{rest} = E_{inh}/2$. The response to the combined inputs is

$$
\Delta V_{1,2} = \frac{E_{exc} x + E_{inh} (1 - y)}{x - y + 2} - \frac{E_{inh}}{2};
$$

which can be written as

$$
\Delta V_{1,2} = \frac{x (2E_{exc} - E_{inh}) - yE_{inh}}{2(2 + x - y)}.
$$

The individual responses are

$$
\Delta V_1 = \frac{x(2E_{exc} - E_{inh})}{2(2+x)}
$$
 and $\Delta V_2 = \frac{-yE_{inh}}{2(2-y)}$.

In the following, we show under which conditions, $\Delta V_{1,2}$ is larger than the linear expectation $\Delta V_1 + \Delta V_2$:

$$
\frac{x(2E_{exc} - E_{inh}) - yE_{inh}}{2(2 + x - y)} > \frac{x(2E_{exc} - E_{inh})}{2(2 + x)} - \frac{yE_{inh}}{2(2 - y)}.
$$

This simplifies to

$$
\frac{x(2E_{exc} - E_{inh}) - yE_{inh}}{2 + x - y} > \frac{x(2E_{exc} - E_{inh})}{2 + x} - \frac{yE_{inh}}{2 - y}.
$$

Put over a common denominator, it can be written as

$$
(x(2E_{exc} - E_{inh}) - yE_{inh})(2 + x)(2 - y) > x(2E_{exc} - E_{inh})(2 + x - y)(2 - y) - yE_{inh}(2 + x - y)(2 + x).
$$

Expansion leads to

$$
x(2E_{exc} - E_{inh})(2 + x)(2 - y) - yE_{inh}(2 + x)(2 - y) >
$$

$$
x(2E_{exc} - E_{inh})(2 + x)(2 - y) - xy(2E_{exc} - E_{inh})(2 - y) - yE_{inh}(2 - y)(2 + x) - xyE_{inh}(2 + x).
$$

Subtraction of the blue and the red expressions on both sides yields

$$
0 > -xy(2E_{exc} - E_{inh})(2 - y) - xyE_{inh}(2 + x).
$$

Division by $(-xy)$ reverses the inequality sign:

$$
(2E_{exc} - E_{inh})(2 - y) + E_{inh}(2 + x) > 0.
$$

This simplifies to

$$
2E_{exc}(2-y) + E_{inh}(y + x) > 0;
$$

or

$$
E_{exc} > -E_{inh} \frac{x+y}{2(2-y)}.
$$

Note that E_{exc} and E_{inh} are expressed as the difference to E_{leak} . For $0 \le x \le 1$ and $0 \le y \le 1$ (i.e. positive conductances smaller or equal to g_{leak}) and $|E_{exc}| > |E_{inh}|$, the above inequality always holds. In the extreme case of $x = y = 1$ the coincidence of an excitatory input with the release from an inhibitory one gives rise to a supralinearity as long as E_{inh} is closer to E_{leak} than E_{exc} (Extended Data Fig. 5d). Other values of x and y yield supralinear responses over much wider ranges of E_{exc} and E_{inh} (Extended Data Fig. 5e).

Supplementary Table 1. Statistical analyses of Figs. 2, 5.

Supplementary Table 2. Statistical analyses of Extended Data Fig. 10.

