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1 NEUTRAL MODEL

Here, we review the neutral BDI model in which there is no heterogeneity in either proliferation or
immigration rates, w(«, ) = (o — @)d(r — 7). Upon inserting this expression for 7(«, r) in Eq. 8, we
find that the clone abundance c;, follows a negative binomial distribution (?):
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We can also express ¢ /C, the clone abundance distribution normalized by the mean richness C' in the
body, as
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where C' = 3", ¢, = Q(1 — (1 — 7/u*)%/7) is C* in Eq.with n = 1. Using @ ~ 1.6 x 10~8/day,
7~ 5x 107*/day, and p* =~ 6.4 x 10™4, we find a /7 < 7/u* ~ O(1). The a/F < 1 regime allows us to
approximate ¢ /C as a log-series distribution with parameter 7/ ;*. To mathematically show this, consider
a random variable X that follows a negative binomial distribution of parameters & /7 and 7 /u*
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Note that the probability mass function of X above is also given by ¢ /(@ as can be seen from Eq. the
clone abundance distribution for all possible () clones, which includes ¢y, the number of all clones that are
not represented in the organism. To find the clone abundance distribution ¢, /C), for all the C' clones present
in the organism, we must exclude the case £ = 0 by marginalizing the distribution of X over all X > 0:
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What remains is to show that the distribution in Eq.[S4]converges to a log-series distribution of parameter
7/p* when &/7 — 0. Consider the moment generating function of X|X > 0 given by
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Since the moment generating function of a negative binomial distribution E [efX ] is known, and since
P[X > 0] =1—P[X = 0] (see Eq.[S3), we can write
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For any x > 0, the limit &/7 — 0 yields 2®/™ = 1+ (&/F) log & + o (&/F). If we apply this result to Eq.
for E [egX\X > O] , we find
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which we recognize as the moment generating function of a log series distribution of parameter 7/4*. Thus,
we finally have
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2 EXPLICIT FORMS USING DIFFERENT IMMIGRATION AND PROLIFERATION
RATE DISTRIBUTIONS

In the following, we propose four simplifying expressions for the heterogeneity-averaged clone counts
(@, p*,w, n) derived from Eq.

Clone-independent Neutral model: 7(a,r) = (o — &)d(r — 7)

First, consider the simplest case where all naive T cells carry the same immigration and proliferation
rates @ and 7, respectively, and define 7(«, ) = (o — &)d(r — 7). This case corresponds to w — 0 and
r — 7 = 1/2 in the 7, (r|w) box distribution in Eq. |13 The self-consistent condition for x* and a/7
become

= 5 2a, (S8)

and the clone count given in Eq. [IT|can be explicitly simplified to
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The total sampled clone count is then
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Fixed immigration rate, distributed proliferation: =(a,r) = §(a — &)=, (7)

Next, consider a common immigration rate & for all T cell clones and a box distribution 7, (r|w) of full
width w = 1. Eq. [14]yields p* = (1 — e @)~1 5o that the averaged clone counts from Eq. [11|are now
explicitly
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The total sampled clone count can also be explicitly expressed as the integral over C®(a, r, A\|n) from

Eq.[12}
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Clone-specific immigration, fixed proliferation rate: 7 (a, r) = 7, (a|&)d(r — 7)

Finally, we consider the case whereby all proliferation occurs at a fixed rate i and « is distributed
according to Eq. as determined from our OLGA sequence-drawing analysis. Using the same rate
dimensionalization as before (Egs. [S8), we find explicitly
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where «; depends implicitly on & through Eq. @ Similarly, the total sampled clone count can be explicitly
expressed as
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3 SMALL AVERAGE IMMIGRATION RATE

Here, we show that if the support of 7, () is sufficiently small, the exponential term in Eq.|11|( - )a/ "~
and the product term ~ (a/r)(k — 1)!. While « is summed or integrated over, for reasonable distributions
7o (), the lowest few rates contribute the most and the average of a function over 7, () can be replaced
by its value evaluated at the small average value &. Even though for r is integrated over (0, 1) for w = 1,
and the region near 0" would lead to a large «/r, the contribution from ¢ (e, 7, A, 7)) is also small near
r = 0. We have numerically checked that for all cases of & < 1/2, ¢} can be approximated by
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Figure S1. Positively and negatively correlated 7(«, 7). (a) For 7/2 < r < 27, we consider 7(c, )
distributions with positively and negatively correlated o and r (Egs. [SI8)). (b) Mean sampled clone
counts corresponding to positively and negatively correlated 7(«v, ) show negligible differences. (c) “Line
integrals” of the positively and negatively correlated distributions 7(«a, 7) in the uv /(1 — v)-u diagram.
Clones counts predicted by such 7(a, ) follow log-series distributions, similar to those of a neutral model.
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Thus, for general w, f} in Eq.|19|can be approximated by
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where A = N*/Q and p* is given by
1, wy,w/a_ (1 _w
+

,LL* _ (2 2)6 (2 2)' (817)

erw/a _q

Since only & appears in Egs. and S17| the irrelevance of the shape of 7, («) is apparent. We have
explicitly shown that for small @ < 1/2, the approximations in Egs. and are quantitatively
accurate. These simpler forms expedite our numerical analysis and fitting to data using Eq.[20]

4 CORRELATED IMMIGRATION AND PROLIFERATION RATES

Hitherto, we have considered independent immigration and proliferation, and assumed a factorisable rate
distribution 7(a, ) = 7, () (r). However, immigration and proliferation rates may be correlated for
certain clones. For example, a frequent realization of V(D)J recombination may also result in a TCR that is
more likely to be activated for proliferation. In this case, v would be positively correlated with . In Fig. [ST|
we use dimensional rates and consider the effect of correlated 7 (v, r). For 7/2 < r < 27, we considered
normalized, positively/negatively correlated box distributions as shown in Fig[ST|(a):
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Figure S2. Clustered immigration in a neutral model. Comparison of clone abundances for a ¢ = 1 and
g = 5 models. The difference between the two predicted mean clone counts arise for & < g. Even after
sampling, clone counts predicted under clustered immigration (¢ > 1) yields a more slowly decreasing cj,

for small k& < q.

Within our mean field model, these positively and negatively correlated distributions 7(cv, r) result in very
similar expected clone abundance distributions cj, (Fig[SI[(b)). This insensitivity to correlations between
immigration and proliferation can be qualitatively understood by considering the “line integral” over
dominant paths of 7 (a, ) in the uv/(1 — v) = a/ (u* — r) vs. u = o/r diagram, as shown in Fig. [ST|c).
Both line integrals remain in the log-series distribution regime, indicating that the clone abundance
distributions are qualitatively similar to those predicted by a model with proliferation heterogeneity alone.

5 MEAN CLONE COUNTS FOR CLUSTERED IMMIGRATION

We explore how clustered emigration from the thymus affects the mean clone count c;. Suppose that g cells
of the same clone (TCR nucleotide or amino acid sequence) are simultaneously exported by the thymus.
The equation for the mean clone count ¢, becomes
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This equation does not admit a simple analytic solution so we numerically solved the equation assuming
ag = as1(g,5) and Q = 10! Fig. compares the shapes of ¢;, for single cell immigration (¢ = 1) and
simultaneous multicell immigration ¢ = 5. In general, for ¢ > 1, ¢, and ultimately 02 and f,i are flatter
up to k£ =~ ¢, making the clone counts more sharply kink downwards near ¢. Thus, as can be seen from
Fig.[(a,b), we can reasonably conclude that some level of paired immigration would provide even better
fits to the data at appropriately small values of A, especially for the first few k-points.
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