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1 NEUTRAL MODEL

Here, we review the neutral BDI model in which there is no heterogeneity in either proliferation or
immigration rates, π(α, r) = δ(α − ᾱ)δ(r − r̄). Upon inserting this expression for π(α, r) in Eq. 8, we
find that the clone abundance ck follows a negative binomial distribution (?):
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r̄

+ `
)
. (S1)

We can also express ck/C, the clone abundance distribution normalized by the mean richness C in the
body, as

ck
C

=
ck∑
`≥1 c`

(S2)

where C =
∑

`=1 c` = Q(1 − (1 − r̄/µ∗)ᾱ/r̄) is Cs in Eq. 12 with η = 1. Using ᾱ ≈ 1.6 × 10−8/day,
r̄ ∼ 5× 10−4/day, and µ∗ ≈ 6.4× 10−4, we find ᾱ/r̄ � r̄/µ∗ ∼ O(1). The ᾱ/r̄ � 1 regime allows us to
approximate ck/C as a log-series distribution with parameter r̄/µ∗. To mathematically show this, consider
a random variable X that follows a negative binomial distribution of parameters ᾱ/r̄ and r̄/µ∗
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Note that the probability mass function of X above is also given by ck/Q as can be seen from Eq. S1, the
clone abundance distribution for all possible Q clones, which includes c0, the number of all clones that are
not represented in the organism. To find the clone abundance distribution ck/C, for all the C clones present
in the organism, we must exclude the case k = 0 by marginalizing the distribution of X over all X > 0:

P [X = k|X > 0] =
P [X = k]∑
`≥1 P [X = `]

=
ck/Q∑
`≥1 c`/Q

=
ck
C
. (S4)

What remains is to show that the distribution in Eq. S4 converges to a log-series distribution of parameter
r̄/µ∗ when ᾱ/r̄ → 0. Consider the moment generating function of X|X > 0 given by
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Since the moment generating function of a negative binomial distribution E
[
eξX
]

is known, and since
P [X > 0] = 1− P [X = 0] (see Eq. S3), we can write
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E
[
eξX |X > 0

]
=

(
1−r̄/µ∗

1−eξ r̄/µ∗
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For any x > 0, the limit ᾱ/r̄ → 0 yields xᾱ/r̄ = 1 + (ᾱ/r̄) log x+ o (ᾱ/r̄). If we apply this result to Eq. S6
for E
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, we find
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which we recognize as the moment generating function of a log series distribution of parameter r̄/µ∗. Thus,
we finally have
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2 EXPLICIT FORMS USING DIFFERENT IMMIGRATION AND PROLIFERATION
RATE DISTRIBUTIONS

In the following, we propose four simplifying expressions for the heterogeneity-averaged clone counts
csk(ᾱ, µ

∗, w, η) derived from Eq. 18.

Clone-independent Neutral model: π(α, r) = δ(α− ᾱ)δ(r − r̄)

First, consider the simplest case where all naive T cells carry the same immigration and proliferation
rates ᾱ and r̄, respectively, and define π(α, r) = δ(α− ᾱ)δ(r − r̄). This case corresponds to w → 0 and
r → r̄ = 1/2 in the πr(r|w) box distribution in Eq. 13. The self-consistent condition for µ∗ and ᾱ/r̄
become

r̄

µ∗
→ λ

λ+ 2ᾱ
,

ᾱ

r̄
→ 2ᾱ, (S8)

and the clone count given in Eq. 11 can be explicitly simplified to

csk(ᾱ, λ, η) ≡ Q
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)2ᾱ k−1∏
`=0
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The total sampled clone count is then
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Cs(ᾱ, λ, η) =
∞∑
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Fixed immigration rate, distributed proliferation: π(α, r) = δ(α− ᾱ)πr(r)

Next, consider a common immigration rate ᾱ for all T cell clones and a box distribution πr(r|w) of full
width w = 1. Eq. 14 yields µ∗ = (1− e−λ/ᾱ)−1, so that the averaged clone counts from Eq. 11 are now
explicitly

csk(ᾱ, λ, η) ≡ Q
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The total sampled clone count can also be explicitly expressed as the integral over Cs(ᾱ, r, λ|η) from
Eq. 12:
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Clone-specific immigration, fixed proliferation rate: π(α, r) = πα(α|ᾱ)δ(r − r̄)

Finally, we consider the case whereby all proliferation occurs at a fixed rate r̄ and α is distributed
according to Eq. 17, as determined from our OLGA sequence-drawing analysis. Using the same rate
dimensionalization as before (Eqs. S8), we find explicitly
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where αj depends implicitly on ᾱ through Eq. 16. Similarly, the total sampled clone count can be explicitly
expressed as

Cs(ᾱ, λ, η) = Q
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3 SMALL AVERAGE IMMIGRATION RATE

Here, we show that if the support of πα(α) is sufficiently small, the exponential term in Eq. 11 ( · )α/r ∼ 1,
and the product term ∼ (α/r)(k − 1)!. While α is summed or integrated over, for reasonable distributions
πα(α), the lowest few rates contribute the most and the average of a function over πα(α) can be replaced
by its value evaluated at the small average value ᾱ. Even though for r is integrated over (0, 1) for w = 1,
and the region near 0+ would lead to a large α/r, the contribution from csk(α, r, λ, η) is also small near
r = 0. We have numerically checked that for all cases of ᾱ� 1/2, csk can be approximated by
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Figure S1. Positively and negatively correlated π(α, r). (a) For r̄/2 ≤ r ≤ 2r̄, we consider π(α, r)
distributions with positively and negatively correlated α and r (Eqs. S18). (b) Mean sampled clone
counts corresponding to positively and negatively correlated π(α, r) show negligible differences. (c) “Line
integrals” of the positively and negatively correlated distributions π(α, r) in the uv/(1 − v)-u diagram.
Clones counts predicted by such π(α, r) follow log-series distributions, similar to those of a neutral model.
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∗, η) ≈ αQ
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Thus, for general w, f s
k in Eq. 19 can be approximated by

f s
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where λ ≡ N∗/Q and µ∗ is given by
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Since only ᾱ appears in Eqs. S16 and S17, the irrelevance of the shape of πα(α) is apparent. We have
explicitly shown that for small ᾱ � 1/2, the approximations in Eqs. S15 and S16 are quantitatively
accurate. These simpler forms expedite our numerical analysis and fitting to data using Eq. 20.

4 CORRELATED IMMIGRATION AND PROLIFERATION RATES

Hitherto, we have considered independent immigration and proliferation, and assumed a factorisable rate
distribution π(α, r) = πα(α)πr(r). However, immigration and proliferation rates may be correlated for
certain clones. For example, a frequent realization of V(D)J recombination may also result in a TCR that is
more likely to be activated for proliferation. In this case, α would be positively correlated with r. In Fig. S1
we use dimensional rates and consider the effect of correlated π(α, r). For r̄/2 ≤ r ≤ 2r̄, we considered
normalized, positively/negatively correlated box distributions as shown in Fig S1(a):

Positively correlated : π(α, r) =
1

r̄
δ
(
α− ᾱ

r̄
r
)
,

Negatively correlated : π(α, r) =
1

r̄
δ
(
α− ᾱ

(
2− r

r̄

))
. (S18)
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Figure S2. Clustered immigration in a neutral model. Comparison of clone abundances for a q = 1 and
q = 5 models. The difference between the two predicted mean clone counts arise for k . q. Even after
sampling, clone counts predicted under clustered immigration (q > 1) yields a more slowly decreasing csk
for small k . q.

Within our mean field model, these positively and negatively correlated distributions π(α, r) result in very
similar expected clone abundance distributions ck (Fig S1(b)). This insensitivity to correlations between
immigration and proliferation can be qualitatively understood by considering the “line integral” over
dominant paths of π(α, r) in the uv/(1− v) = α/(µ∗ − r) vs. u = α/r diagram, as shown in Fig. S1(c).
Both line integrals remain in the log-series distribution regime, indicating that the clone abundance
distributions are qualitatively similar to those predicted by a model with proliferation heterogeneity alone.

5 MEAN CLONE COUNTS FOR CLUSTERED IMMIGRATION

We explore how clustered emigration from the thymus affects the mean clone count ck. Suppose that q cells
of the same clone (TCR nucleotide or amino acid sequence) are simultaneously exported by the thymus.
The equation for the mean clone count ck becomes

dck
dt

=
∑
q

αq
[
ck−q − ck

]
+ r [(k − 1)ck−1 − kck] + µ(N) [(k + 1)ck+1 − kck] . (S19)

This equation does not admit a simple analytic solution so we numerically solved the equation assuming
αq = α51(q, 5) and Q = 1011. Fig. S2 compares the shapes of ck for single cell immigration (q = 1) and
simultaneous multicell immigration q = 5. In general, for q > 1, ck, and ultimately csk and f s

k are flatter
up to k ≈ q, making the clone counts more sharply kink downwards near q. Thus, as can be seen from
Fig. 9(a,b), we can reasonably conclude that some level of paired immigration would provide even better
fits to the data at appropriately small values of λ, especially for the first few k-points.
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