Strains/plasmids	Characteristics	Reference
Strains		
EC233/93	Sat-producing EAEC used as positive control for Sat production detection	Vieira et al. (2020)
FBC114	Sat-producing DAEC used as positive control for Sat production detection	Taddei et al. (2003)
<i>Shigella flexneri</i> M90T	SepA producing strain used as negative control for Sat production detection	Benjelloun-Touimi; Sansonetti; Parsot, (1995)
CFT073	UPEC prototype strain used as positive control for murine sepsis model validation	Mobley et al. (1990)
DH5a	K-12 <i>E. coli</i> used as pCF3 and pCF4 host and as death control in serum resistance assays	Stratagene
MG1655	K-12 <i>E. coli</i> used as pCF3 and pCF4 host and negative control for murine sepsis model validation	Jensen (1993)
S17λpir	Conjugative K-12 lysogenized for the <i>pir</i> gene, which permits replication of R6K plasmid replicons. Used as pCF2 host and donor strain in <i>sat</i> mutagenesis.	Simon; Proefer; Pühler (1983)
Plasmids		
pGEM-T Easy	LacZ cloning vector (Apr)	Promega
pJP5603	R6K suicide plasmid (Kn ^r)	Penfold; Pemberton (1992)
pettac	pet22b+ derivative plasmid with tac promoter	Serre et al. (2008)

Supplementary table 1 – Bacterial strains used in this study.

References

Benjelloun-Touimi Z, Sansonetti PJ, Parsot C. SepA, the major extracellular protein of *Shigella flexneri*: autonomous secretion and involvement in tissue invasion. Mol Microbiol. 1995;17(1):123–135.

Jensen KF. The *Escherichia coli* K-12 "wild types" W3110 and MG1655 have an *rph* frameshift mutation that leads to pyrimidine starvation due to low *pyrE* expression levels. J Bacteriol. 1993;175(11):3401–3407.

Mobley HLT, Green DM, Trifillis AL, Johnson DE, Chippendale GR, et al. Pyelonephritogenic *Escherichia coli* and killing of cultured human renal proximal tubular epithelial cells: role of hemolysin in some strains. Infect Immun. 1990;58(5):1281–1289, 1990.

Penfold RJ, Pemberton JM. An improved suicide vector for construction of chromosomal insertion mutations in bacteria. Gene. 1992;118(1):145–146, 1992.

Serre K, Mohr E, Toellner KM, Cunningham AF, Granjeaud S, Bird R, et al. Molecular differences between the divergent responses of ovalbumin-specific CD4 T cells to alumprecipitated ovalbumin compared to ovalbumin expressed by *Salmonella*. Mol Immun. 2008;45(13):3558–3566.

Simon R, Proefer U, Pühler A. A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Bio/Technology, 1983;1:784–791, 1983.

Taddei CR, Moreno ACR, Fernandes Filho A, Montemor LPG, Martinez MB. Prevalence of secreted autotransporter toxin gene among diffusely adhering *Escherichia coli* isolated from stools of children. FEMS Microbiol Lett. 2003;227:249–253.

Vieira PCG, Espinoza-Culupú AO, Nepomuceno R, Alves MR, Lebrun I, Elias WP, et al. Secreted autotransporter toxin (Sat) induces cell damage during enteroaggregative *Escherichia coli* infection. PLoS One. 2020;15(2):1–23.