Supporting Information

The leucine-rich repeat domains of BK channel auxiliary γ subunits regulate their expression, trafficking, and channel-modulation functions

Guanxing Chen¹, Qin Li¹, Jiusheng Yan^{1,2}

¹Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA ²Neuroscience and Biochemistry and Cell Biology, The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, Texas, USA

Correspondence and requests for materials should be addressed to J.Y. (jyan1@mdanderson.org).

	Boltzmann fit parameters			
Expression	V _{1/2} (mV)	Z	n	
BKα alone	167.7±2.3	1.24±0.05	11	
$+\gamma 1$	22.5±2.7	1.68 ± 0.07	10	
+ γ2	61.4±3.0	1.22 ± 0.07	9	
$+\gamma 3$	115.0±1.7	1.36 ± 0.05	6	
$+\gamma 1$ + tunicamycin	21.8±4.9 (27%) ^{a,b}	1.53 ± 0.13^{b}	11	
	154.0±3.4 (73%)	1.16±0.09		
+ γ1 (N147Q)	18.8±5.8 (32%) ^b	1.53 ± 0.14^{b}	11	
	159.8±5.1 (68%)	$0.90{\pm}0.07$		
+ γ1 (N147Q) overexpression	10.0±5.4 (79%)	1.57±0.16	8	
$+\gamma 2$ + tunicamycin	169.2±6.3 ^b	1.25 ± 0.09^{b}	7	
+ γ2 (N112Q)	58.4±1.5 (79%)	1.30 ± 0.08	9	
	167 (21%) ^b	1.16 ± 0.24^{b}		
+ γ2 (N148Q)	50.7±3.5 (45%)	1.30±0.12	6	
	155.0±4.2 (55%)	0.95±0.12		
+ γ2 (N211Q)	75±21 (49%)	1.10±0.13	8	
	150±34 (51%)	1.08 ± 0.87		
+ γ2 (N112/148Q)	87±33 (23%) ^b	$1.00{\pm}0.29^{b}$	6	
	157±11 (77%)	1.00±0.23		
+ γ2 (N112/211Q)	74±23 (23%) ^b	1.06 ± 0.28^{b}	12	
	150±8 (77%)	$1.00{\pm}0.15$		
+ γ2 (N148/211Q)	48±5 (69%)	1.27±0.14	7	
	150±14 (31%) ^b	$0.96{\pm}0.50^{\rm b}$		
+ γ2 (N112/148/211Q)	162.4±4.3	1.31±0.04	7	
+ $\gamma 2(N112/148/211Q)$ overexpression	58.6±5.7 (36%)	1.18 ± 0.02	7	
	160±4 (64%)	$1.00{\pm}0.08$		
$+\gamma 3$ + tunicamycin	160.12±7.38	1.45 ± 0.08	5	

Table S1 Boltzmann-fit parameters of the voltage-dependent BK channel activation in the presence of auxiliary γ subunit wild-types and mutants.

$+\gamma 3(N82Q)$	167.2±2.1	1.21 ± 0.04	6
$+\gamma 3(N111Q)$	168.4±3.3	1.26 ± 0.07	4
$+\gamma 3(N137Q)$	149.7±3.8	1.07 ± 0.04	5
$+\gamma 3(N82/111Q)$	172.7±2.1	1.40 ± 0.08	6
$+\gamma 3(N82/137Q)$	155.3±3.8	1.65 ± 0.22	5
$+\gamma 3(N82Q)$ overexpression	148.6±7.1	1.42 ± 0.09	9
$+\gamma 3(N111Q)$ overexpression	149.2±5.2	1.24 ± 0.04	8
$+\gamma 3(N82Q/N111Q)$ overexpression	127.0±1.4	1.68 ± 0.07	3
$+\gamma 1(\gamma 3 LRRD-N82Q)$	179.3±0.7	1.13±0.02	4
$+\gamma 1(\gamma 3 LRRD-N137Q)$	26.0±1.7	1.16±0.15	3
$+\gamma 1(\gamma 3 LRRD-N82Q/N111Q)$	173.0±2.5	1.31±0.15	4
$+\gamma 1(\gamma 3 LRRD-N111Q/N137Q)$	147.3±7.5	1.14 ± 0.02	4

n values are the number of recorded excised inside-out patches from different HEK-293 cells.

^a The indicated percentage in parentheses here and elsewhere refers to the portion of the channels' subpopulation that was obtained from a double Boltzmann function fit.

^b Because of the difficulty in obtaining reliable parameter values from a double Boltzmann function fit for the minor portion (e.g., \leq 35%), the estimated values of the V_{1/2} and errors provided here are considered less reliable and used for references only.

+ γ1						
	Double-Boltz	Double-Boltzmann (Fig. 3B)				
V _{1/2} (mV)	171	31				
z (e)	1.04	1.23	n			
Fraction	1	0	11			
	0.85	0.15	1			
	0.72	0.28	1			
	0.65	0.35	1			
	0.45	0.55	1			
	0.34	0.66	1			
	0.21	0.79	1			
	0.14	0.86	1			
	0	1	10			
			1			

Table S2 Double- or triple-Boltzmann global fit parameters of the voltage-dependent BK channel activation in the presence of auxiliary γ subunit wild-types and chimeric constructs.

+ $\beta 1_{(2-155)}$ - $\gamma 1_{(258-298)}$						
	Double-Boltzmann (Fig. 3C, middle panel)		Triple-Boltzmann (Fig. 3C, right panel)			
V _{1/2} (mV)	97	24	166	78	14	
z (e)	0.81	1.05	1.23	0.94	1.17	n
Fraction			1	0	0	11
	1	0	0.28	0.70	0.02	5
	0.87	0.13	0.12	0.87	0.01	5
	0.61	0.39	0.01	0.80	0.19	3
	0.37	0.63	0.01	0.53	0.46	3
	0	1	0	0.15	0.85	4

+ $FAPa2-\gamma 1_{(258-334)}$						
	Double-l	Boltzmann	Ті	Triple-Boltzmann		
	(Fig. 3D, middle panel)		(Fig. 3D, right panel)			
V _{1/2} (mV)	135	40	168	99	29	
z (e)	0.92	1.20	1.24	1.33	1.52	n
Fraction			0.98	0.02	0	11
(each fit)	1	0	0.60	0.40	0	5
	0.74	0.26	0.40	0.39	0.21	5
	0.61	0.39	0.14	0.69	0.17	1
	0.37	0.63	0.14	0.38	0.48	1
	0.26	0.74	0.09	0.32	0.59	1
	0.12	0.88	0	0.31	0.69	1
	0	1	0	0.12	0.88	1

Figure S1. Protein sequence alignment and domain/region assignment. Potential *N*-glycosylation sites of Asn residues are shown in red. Cysteine residues that are involved in the formation of disulfide bridges are shown in bold. Hydrophobic residues of Leu, Ile, Val, Phe, Tyr, and Trp are grouped together.

