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Supplementary Methods 
0. Introduction 
We developed a Bayesian inference framework for hypothesis-driven analysis of cell lineage trees. 
This inference scheme tests different hypotheses to infer underlying pathways of diversification in 
single-cell-derived populations. For a given model hypothesis, it uses lineage (family) trees 
obtained from live-cell imaging experiments to infer the model parameters. We used this 
framework to test various hypotheses about the existence of subsets with distinct inter-division time 
statistics in T cell family trees expanded in vitro and the corresponding diversification pathways. 
The scheme presented here is specifically designed for bright-field microscopy imaging data where 
no direct phenotypic measurements are available. However, it can be generalized to analyze live-
cell imaging with phenotypic marker expression data. In the following, we describe different 
components of our computational analysis. In Sections 1 and 2, we outline our Bayesian inference 
scheme and Bayesian model comparison. In Section 3, we discuss the details of different model 
hypotheses we tested for analyzing T cell family trees. Section 4 briefly outlines the statistical 
features of the data that we aim to capture with mathematical modeling. Finally, Section 5 describes 
the simulation studies that were used to examine how well mathematical models recapitulated the 
statistical properties of the data.  
1. Bayesian model inference scheme for the analysis of live-cell imaging data 
Our Bayesian framework utilizes a Markov Chain Monte Carlo (MCMC) scheme with latent 
variables (Wilkinson, 2009; Wilkinson, 2011) tailored to tree-structured data, incorporating 
familial relationships of individual cells within a family tree. This framework takes family trees 
obtained via live-cell imaging, as well as a model hypothesis, as input and returns the posterior 
distribution of model parameters as output. It enables model comparison and hypothesis testing 
through the approximation of model evidences and corresponding Bayes factors. Different steps of 
our inference scheme are described in the following. 
1.1. Input data. Family trees generated by The Tracking Tool (Hilsenbeck et al., 2016) from live-
cell imaging experiments form the input data of the inference scheme (see Materials and Methods 
of the main text). This data encodes two types of information for every cell in a family tree: 1) the 
lifetime of that cell, and 2) the index of the cell within the family tree which yields familial 
relationships. Dataset 𝐷 consists of the lifetimes of individual cells across different trees:  
   

𝐷 = {�̃�𝑖𝑚|𝑖 = 1,… , 𝑛tree,𝑚 = 1,… , 𝑛cell𝑖} (1.1) 
 

where 𝑛tree is the total number of trees and 𝑛cell𝑖 is the total number of cells in tree 𝑖 and �̃�𝑖𝑚 is the 
lifetime of cell 𝑚 in tree 𝑖. If cell 𝑚  has divided in the course of the experiment, �̃�𝑖𝑚 denotes its 
inter-division time; otherwise, it represents the time until which this cell had not divided indicating 
�̃�𝑖𝑚 as a lower bound for the inter-division time. We assume that the interdivision times are log-
normally distributed independent random variables. We further assume a minimum cell-cycle 
length 𝜏 to exclude un-physiologically short inter-division times. To enable robust numerical 
calculations, we first subtract the threshold 𝜏 and then log-transform the data in 𝐷 to arrive at  
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𝒚 = {𝑡𝑖𝑚|𝑖 = 1,… , 𝑛tree,𝑚 = 1,… , 𝑛cell𝑖},    with 𝑡𝑖𝑚 = log (�̃�𝑖𝑚 − 𝜏) (1.2) 
 

The dataset 𝒚 is then used to infer the model structure and parameters. 
1.2. Input model hypothesis. The inference scheme relies on a model hypothesis for the 
computational analysis of the data. This model hypothesis represents assumptions about the 
existence of distinct subsets in the population and the diversification pathways connecting these 
subsets. We used our inference scheme to analyze family trees in the absence of surface marker 
expression measurements. Therefore, no subsets defined based on marker combinations were 
considered in this study. Instead, subsets of cells which possess distinct inter-division time statistics 
were considered. However, if direct phenotypic measurements are available, they can be readily 
incorporated into the model hypothesis and the inference scheme.  
In Section 3, we provide a detailed description of model topologies considered in this study. In all 
of the hypotheses, we assume that the inter-division times of cells belonging to a specific subset 
follow a log-normal distribution with specific but unknown mean and coefficient of variation. Other 
distribution assumptions can easily replace the lognormal assumption, and can be handled in the 
inference scheme the same way. Each model hypothesis is characterized by a set of unknown model 
parameters 𝜽 such as the mean and coefficient of variation of the inter-division time distributions 
as well as the transition probabilities between different subsets. Furthermore, the subset that is 
assigned to a cell is modeled as a latent variable due to the unavailability of direct observation. 
1.3. Bayesian Inference scheme. We use a Markov Chain Monte Carlo (MCMC) approach to 
generate samples from the posterior distribution of the model parameters 𝜽 given the data 𝒚. For 
all parameters, we assume uniform prior distributions with specified upper and lower bounds. 
Different steps of the iterative sampling scheme are described in the following sections, and a 
pseudo-code is given in Algorithm 1.   
1.3.1. MCMC sampling for models with latent variables. As mentioned earlier, the underlying 
subset that a cell in the family tree belongs to, is not directly observed and therefore needs to be 
modeled as a latent variable. For a model with latent variables, we have the following factorization 
    

𝜋(𝜽, 𝒙, 𝒚) = 𝜋(𝜽)𝜋(𝒙|𝜽)𝜋(𝒚|𝒙, 𝜽) (1.3) 
 
where, 𝜽 is the vector of model parameters, 𝒙 is the vector of latent variables  and 𝒚 is the data. 
Here, 𝒙 and 𝒚 are respectively the assigned subsets and the lifetimes of individual cells. Since we 
are only interested in the posterior distribution of the model parameters 𝜋(𝜽|𝒚), we can use an 
arbitrary proposal 𝑞(𝜽, 𝜽∗), to target this posterior using the following acceptance ratio:  
      

𝐴 =
𝜋(𝜽∗) 𝜋(𝒚|𝜽∗) 𝑞(𝜽∗, 𝜽) 
𝜋(𝜽) 𝜋(𝒚|𝜽) 𝑞(𝜽, 𝜽∗)  

 
(1.4) 

 
In order to calculate the marginal likelihood of the data given the parameters 𝜋(𝒚|𝜽), we must 
integrate out the latent variables:         

𝜋(𝒚|𝜽) =  ∫ 𝜋(𝒚|𝒙, 𝜽) 𝜋(𝒙|𝜽) 𝑑𝒙
𝑿

 
 

(1.5) 
 
Due to the intractability of the analytical calculation of this integral, we aim to use a Monte Carlo 
approximation of it       

�̂�(𝒚|𝜽) =
1
𝑛𝑥
 ∑𝜋(𝒚|𝒙𝑘, 𝜽)
𝑛𝑥

𝑘=1

 
 

(1.6) 
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It can be shown that since this is an unbiased estimator of the likelihood, if we plug this 
approximation into the acceptance ratio (Eq. 1.4), we will exactly target the posterior distribution 
𝜋(𝜽|𝒚) (Wilkinson, 2011):  

𝐴 =
𝜋(𝜽∗)  �̂�(𝒚|𝜽∗) 𝑞(𝜽∗, 𝜽)
𝜋(𝜽)  �̂�(𝒚|𝜽) 𝑞(𝜽, 𝜽∗)  

(1.7) 
 

Here, �̂�(𝒚|𝜽) denotes our unbiased estimate of the marginal likelihood 𝜋(𝒚|𝜽) obtained by the 
Monte Carlo integration above. We assume symmetric prior and proposal distributions, which 
cancels out the terms 𝜋(𝜽∗) 𝑞(𝜽∗, 𝜽) and 𝜋(𝜽) 𝑞(𝜽, 𝜽∗) in the numerator and denominator of Eq. 
(1.7), resulting in the acceptance ratio        
     

𝐴 =
�̂�(𝒚|𝜽∗)
�̂�(𝒚|𝜽)  

(1.8) 

 
We propose parameter sets according to the proposal 𝑞(𝜽, 𝜽∗), and based on the acceptance ratio 
Eq. 1.8, obtain samples from the posterior distribution 𝜋(𝜽|𝒚). In the study of T cell family trees, 
we used random walk and Gaussian proposals. 
1.3.2. Unbiased estimates of the likelihood �̂�(𝒚|𝜽∗). We use the following Monte Carlo 
approximation based on the latent variable samples to obtain an unbiased estimate of the likelihood:
         

�̂�(𝒚|𝜽) =
1
𝑛𝑥
 ∑𝜋(𝒚|𝒙𝑘, 𝜽)
𝑛𝑥

𝑘=1

 
   

(1.9) 

 
Since our data is comprised of several lineage trees, which are independent from each other, the 
data likelihood 𝜋(𝒚|𝜽) can be written as    

𝜋(𝒚|𝜽) =  ∏𝜋(𝒚𝑖|𝜽)
𝑛tree

𝑖=1

 
   

(1.10) 

 
where 𝒚𝑖 is the data belonging to the 𝑖th lineage tree and 𝜋(𝒚𝑖|𝜽) is its likelihood. Moreover, the 
latent variables of every tree, i.e. the subsets of cells within that tree, are independent from other 
trees. Thus, we can apply the Monte Carlo approximation on every tree individually and reconstruct 
an unbiased estimate of the overall likelihood based on individual tree likelihoods. In this way we 
have     

�̂�(𝒚|𝜽) =  ∏�̂�(𝒚𝑖|𝜽)
𝑛tree

𝑖=1

 
   

(1.11) 

 
where �̂�(𝒚𝑖|𝜽) is the unbiased estimate of the likelihood of the 𝑖th tree. For numerical properties, 
it is favorable to work with the log-likelihood. Taking the log-transformation of Eq. 1.11, we obtain 
the following for the log-likelihood: 

𝐽(𝜽) = log (�̂�(𝒚|𝜽)) = ∑ log(�̂�(𝒚𝑖|𝜽)).
𝑛tree

𝑖=1

 
 

(1.12) 

 
We next need to sample latent variables in every tree to calculate the log-likelihoods log(�̂�(𝒚𝑖|𝜽)).  
1.3.3. Two-step sampling of the latent variables. To construct an unbiased estimate of the 
likelihood of a tree given the parameters, �̂�(𝒚𝑖|𝜽), we generate several samples of the latent 
variables, for each of which the likelihood can be directly evaluated. The number of possible 
configurations for latent variables increases exponentially with the number of cells. To increase the 
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efficiency and the acceptance ratio of our sampling scheme, we divide each tree into nine “subtrees” 
(Fig. S28). We perform sample generation and likelihood approximation for these subtrees in a 
modular fashion. The first subtree, denoted as 𝑇0, includes all cells belonging to generations 1, 2 
and 3. The remaining subtrees, denoted as 𝑇1, 𝑇2,… , 𝑇8, are subtrees descending from the eight 
third-generation cells: 𝑇1 includes all cells descending from cell 𝑐1, 𝑇2 includes all cells descending 
from cell 𝑐2 and so forth (Fig. S28). In this way, cells 𝑐1, 𝑐2,… , 𝑐8, which themselves belong to 𝑇0, 
form the founder cells for subtrees 𝑇1, 𝑇2, … , 𝑇8. The dependency between these subtrees is taken 
into account in the generation of the latent variable samples. Therefore, this modular division of 
the tree does not result in any loss of information and ensures that the likelihood of the whole tree 
is calculated at once. Subtree 𝑇0—comprising of three cell divisions—is generally smaller than 
subtrees 𝑇1, 𝑇2,… , 𝑇8 which can comprise of arbitrarily many cell divisions (in our data up to six 
divisions). Thus, there are considerably fewer possible configurations for 𝑇0 than for  𝑇1, 𝑇2,… , 𝑇8. 
To exploit this property for more efficient sampling, we propose a two-step sampling strategy: 1) 
first a set of latent samples for 𝑇0 is generated and 2) based on each single sample, a second set of 
latent samples for 𝑇1, 𝑇2,… , 𝑇8 is generated. In this way, the configuration of subtrees 𝑇1, 𝑇2,… , 𝑇8 
is sampled more often than 𝑇0, increasing the chance of generating high-likelihood samples and 
thereby increasing the acceptance ratio of the sampling approach. This division of the tree is further 
encouraged by our data: in the T cell family trees, we observed an initial burst phase of semi-
concordant cell divisions (corresponding to 𝑇0), which is followed by more variable division speeds 
in the subsequent divisions (corresponding to 𝑇1, 𝑇2,… , 𝑇8) (see the main text). This 
correspondence facilitates using different parameters for describing the first division phase (𝑇0) 
and the subsequent division phase (𝑇1, 𝑇2,… , 𝑇8), and lets us tune the adequate number of latent 
samples in each phase separately. 
In the first step, we generate 𝑛𝑠1 samples of latent variables for all cells in subtree 𝑇0. We denote 
the set of latent variables for  𝑇0 by 𝒙𝑘0:       

𝒙𝑘0 = {𝑥𝑘
0,𝑚|𝑚 = 1,… , 𝑛𝑇0}    for   𝑘 =  1,… , 𝑛𝑠1 (1.13) 

 
 
where 𝑛𝑇0  is the number of cells in subtree 𝑇0. As explained in Section 3, we use a branching 
process framework (Harris, 1963) to randomly simulate latent variables 𝑥𝑘

0,𝑚 according to the 
assumed model topology and its parameters. In this way, the latent variable of every cell is only 
dependent on the latent variable of its mother cell. Therefore, the configuration of subtree 𝑇0, 𝒙𝑘0 , 
is independent from the configuration of subtrees  𝑇1, 𝑇2,… , 𝑇8. On the contrary, the latent states of 
𝑇1, 𝑇2,… , 𝑇8 depend on the their corresponding founder cells 𝑐1, 𝑐2,… , 𝑐8.  
In the second step, for each latent sample of 𝑐1, 𝑐2, … , 𝑐8, we generate 𝑛𝑠2 latent samples for 
subtrees 𝑇1, 𝑇2,… , 𝑇8. We denote the latent states of subtree 𝑇𝑗 by 𝒙𝑘,𝑙

𝑗 :    

𝒙𝑘,𝑙
𝑗 = {𝑥𝑘,𝑙

𝑗,𝑚|𝑚 = 1,… , 𝑛𝑇𝑗}     for   𝑘 =  1,… , 𝑛𝑠1,    𝑙 = 1,… , 𝑛𝑠2,    𝑗 = 1,… , 8 (1.14) 

 
where 𝑛𝑇𝑗 is the number of cells in subtree 𝑇𝑗. Each latent sample 𝒙𝑘,𝑙

𝑗  for subtree 𝑇𝑗 depends on 
the latent sample 𝒙𝑘0  of subtree 𝑇0 through the state of the founder cells 𝑐1, 𝑐2, … , 𝑐8. Since the 
lifetimes of individual cells are assumed to be independent random variables, the only dependence 
between subtrees is through topological dependence of latent variables. Thus, once latent variables 
are sampled, the data of different subtrees are independent from each other. For a given latent 
variable sample 𝒙∗, the likelihood of the whole tree can be written as 

𝜋(𝒚|𝒙∗, 𝜽) =∏𝜋(𝒚𝑗 |𝒙∗, 𝜽)
8

𝑗=0

 
 

(1.15) 
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For the simplicity of notation, we have dropped the index of tree in this section and use 𝒚 to denote 
the data belonging to a given tree. 𝒚𝑗  represents the data corresponding to subtree 𝑇𝑗. We then use 
the following Monte Carlo approximation to integrate out the two-layer latent variable samples and 
estimate the tree likelihood given the parameters: 

�̂�(𝒚|𝜽) =
1
𝑛𝑠1

 ∑ �̂�(𝒚|𝒙𝑘0 , 𝜽)
𝑛𝑠1

𝑘=1

=  
1
𝑛𝑠1

 ∑(𝜋(𝒚0|𝒙𝑘0 , 𝜽)  ∏�̂�(𝒚𝑗|𝒙𝑘0, 𝜽)
8

𝑗=1

)
𝑛𝑠1

𝑘=1

=   
1
𝑛𝑠1

 ∑(𝜋(𝒚0|𝒙𝑘0, 𝜽)  ∏
1
𝑛𝑠2

 ∑𝜋(𝒚𝑗|𝒙𝑘,𝑙
𝑗 , 𝜽)

𝑛𝑠2

𝑙=1

8

𝑗=1

)
𝑛𝑠1

𝑘=1

 

 
 
 
 
 

(1.16) 
 

As we need log(�̂�(𝒚|𝜽)) for the calculation of overall data log-likelihood in Eq. 1.12, we take the 
logarithm of the equation above. For better readability, we drop the dependence on 𝜽 in the rest of 
the equations in this section, however it is implied that all the data likelihoods are conditioned on 
the parameter set 𝜽: 

log(�̂�(𝒚))  = log (
1
𝑛𝑠1

) +  log(∑(𝜋(𝒚0|𝒙𝑘0)  ∏
1
𝑛𝑠2

 ∑𝜋(𝒚𝑗|𝒙𝑘,𝑙
𝑗 )

𝑛𝑠2

𝑙=1

8

𝑗=1

)
𝑛𝑠1

𝑘=1

)  
 
 

(1.17) 
 

The logarithm cannot be pushed inside the sum in the second term of Eq. 1.17; therefore, we use 
the following numerical trick to robustly calculate this term based on the individual subtree log-
likelihoods. More details about this robust numerical evaluation can be found in (Loos, 2016; Loos 
et al., 2016). We define 𝑞𝑘 as the logarithm of the summand in the second term of Eq. 1.17 :  

𝑞𝑘 =  log(𝜋(𝒚0|𝒙𝑘0)  ∏
1
𝑛𝑠2

 ∑𝜋(𝒚𝑗|𝒙𝑘,𝑙
𝑗 )

𝑛𝑠2

𝑙=1

8

𝑗=1

)  
 
 

(1.18) 
 

𝑞∗ denotes the maximum of 𝑞𝑘: 
𝑞∗ =  argmax

𝑘
𝑞𝑘   (1.19) 

 
The second term in Eq. 1.17 can then be evaluated via 

log (∑(𝜋(𝒚0|𝒙𝑘0)  ∏
1
𝑛𝑠2

 ∑𝜋(𝒚𝑗|𝒙𝑘,𝑙
𝑗 )

𝑛𝑠2

𝑙=1

8

𝑗=1

)
𝑛𝑠1

𝑘=1

)  = log(∑𝑒(𝑞𝑘− 𝑞∗)
𝑛𝑠1

𝑘=1

)  + log(𝑞∗) 
 
 

(1.20) 
 

Inserting 1.20 into 1.17, we obtain the following for the log-likelihood of a tree: 

log(�̂�(𝒚))  = log (
1
𝑛𝑠1

) +  log(∑𝑒(𝑞𝑘− 𝑞∗)
𝑛𝑠1

𝑘=1

)  + log(𝑞∗)  
 
 

(1.21) 
 

According to Eq. 1.18, 𝑞𝑘 is given as 

𝑞𝑘 =  log (𝜋(𝒚0|𝒙𝑘0)) +  8 log (
1
𝑛𝑠2

) +∑log (∑𝜋(𝒚𝑗|𝒙𝑘,𝑙
𝑗 )

𝑛𝑠2

𝑙=1

)
8

𝑗=1

  

 

 
 

(1.22) 
 

To calculate the summands of the last term in Eq. 1.22, we use the same numerical trick as above. 
We define 𝑝𝑙

𝑗 as 
𝑝𝑙
𝑗 =  log (𝜋(𝒚𝑗|𝒙𝑘,𝑙

𝑗 ))   
(1.23) 
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and denote the maximum of 𝑝𝑙
𝑗 as 𝑝∗,𝑗: 
𝑝∗,𝑗 =  argmax

𝑙
𝑝𝑙
𝑗   (1.24) 

 
We then evaluate the logarithm of the summation in Eq. 1.22 as: 

log(∑𝜋(𝒚𝑗|𝒙𝑘,𝑙
𝑗 )

𝑛𝑠2

𝑙=1

) = log (∑𝑒(𝑝𝑙
𝑗− 𝑝∗,𝑗)

𝑛𝑠2

𝑙=1

)  + log(𝑝∗,𝑗) 
 
 

(1.25) 
 

Inserting Eq. 1.25 into Eq. 1.22, we obtain 

𝑞𝑘 =  log (𝜋(𝒚0|𝒙𝑘0)) +  8 log (
1
𝑛𝑠2

) +∑(log(∑𝑒(𝑝𝑙
𝑗− 𝑝∗,𝑗)

𝑛𝑠2

𝑙=1

)  + log(𝑝∗,𝑗))
8

𝑗=1

  

 

 
 

(1.26) 
 

To evaluate the log-likelihood for a given tree based on Equations 1.21, 1.23 and 1.26, we finally 
need to calculate log (𝜋(𝒚0|𝒙𝑘0)) and log (𝜋(𝒚𝑗|𝒙𝑘,𝑙

𝑗 )). For every latent sample 𝒙𝑘0 , we calculate 
the log-likelihood of subtree 𝑇0 by: 

𝐽𝑘0 =   log (𝜋(𝒚0 |𝒙𝑘0)) =  ∑ log (𝜋(𝑡𝑚0 |𝑥𝑘
0,𝑚 )) =  ∑ 𝐽𝑘

0,𝑚

𝑛𝑇0

𝑚=1

𝑛𝑇0

𝑚=1

  

 

 
 

(1.27) 
 

Similarly, for each latent sample 𝒙𝑘,𝑙
𝑗  dependent on 𝒙𝑘0 , we calculate the log-likelihood of subtree 

𝑇𝑗 by: 

𝐽𝑘,𝑙
𝑗 =   log (𝜋(𝒚𝑗 |𝒙𝑘,𝑙

𝑗 )) =  ∑ log (𝜋(𝑡𝑚
𝑗 |𝑥𝑘,𝑙

𝑗,𝑚 )) =  ∑ 𝐽𝑘,𝑙
𝑗,𝑚

𝑛𝑇𝑗

𝑚=1

𝑛𝑇𝑗

𝑚=1

  

 

 
 

(1.28) 
 

The likelihood of individual cell lifetimes 𝜋(𝑡𝑚0 |𝑥𝑘
0,𝑚 ) and 𝜋(𝑡𝑚

𝑗 |𝑥𝑘,𝑙
𝑗,𝑚 ) are determined based on 

the model hypothesis. The likelihoods for the models tested in this study are described in Section 
3. 
1.4. Output. This inference scheme returns samples from the posterior distribution of parameters 
𝜋(𝜽|𝒚) as output. It also provides the corresponding likelihood value for every sampled parameter 
set. The latter is used for the calculation of model evidence and model comparison. 
 
 
2. Bayesian model comparison.  
To compare the ability of different model hypotheses for explaining the lineage tree data, we 
perform Bayesian model comparison based on Bayes factors. We use the Posterior Harmonic Mean 
estimator (Vyshemirsky et al., 2007) to approximate the likelihood of the data given a model 
hypothesis 𝑀:  

𝜋(𝒚|𝑀) ≈ (
1
𝑁 ∑

1
𝜋(𝒚|𝑀, 𝜽(𝑖))

𝑁

𝑖=1

)

−1

,        𝜽(𝑖) ~ 𝜋(𝜽|𝒚,𝑀) 
 

 
(2.1) 

 
where 𝜽(𝑖) are samples from the parameter posterior and 𝜋(𝒚|𝑀, 𝜽(𝑖)) are the corresponding 
likelihoods. We approximate the Bayes factor comparing model 𝑀1 to model 𝑀2 using the model 
evidences:   

𝐵12 =
𝜋(𝒚|𝑀1)
𝜋(𝒚|𝑀2)

 
 

(2.2) 
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To quantify the uncertainty of these approximation, we drew 10,000 sets of samples from the 
parameter posterior distribution of every model. This yielded a distribution for the approximated 
model evidences and Bayes factors. 
 
Algorithm 1: Bayesian inference scheme for tree-structured data 

 
 
 
1 
2 

3 

4 

5 
6 

7 

8 

9 

10 

 

11 

 
 
 
12 
13 
14 
 
 
15 

 
 
 

 

 

16 

 
 

Data:  A set of single cell lifetimes  𝒚 = {𝑡𝑖𝑚|𝑖 = 1, … , 𝑛tree,𝑚 = 1,… , 𝑛cell𝑖} from 𝑛tree lineage 
trees each having 𝑛cell𝑖 cells; a model hypothesis; parameter prior 𝜋(𝜽); number of iterations 𝑁 
Results:  A set of samples {𝜽(𝑛)} 𝑛=1 𝑁 from the posterior distribution of parameters 𝜋(𝜽|𝒚) 
Initialization; 
Sample a set of parameter values from the prior: 𝜽(0) ~ 𝜋(𝜽); 
Calculate the log-likelihood of the data given the initial parameter set: 𝐽(0) = log (�̂�(𝒚|𝜽(0))) 
Initialize the chain of sampled parameter values and the corresponding log-likelihood values: 
𝜽chain ≔ [𝜽(0)],   𝐽chain ≔ [ 𝐽(0) ]; 
Iterate over the parameter samples; 
for 𝑛 = 1…𝑁 do 
  Generate a proposed set of parameter values 𝜽∗ using the transition kernel (proposal 

distribution) 𝑞(𝜽(𝑛−1), 𝜽∗): 𝜽∗ ~  𝑞(𝜽(𝑛−1), 𝜽∗) = 𝑓(𝜽∗|𝜽(𝑛−1)). 
for 𝑖 = 1…𝑛tree do  

  for 𝑘 = 1…𝑛𝑠1 do 
  Simulate a sample of latent variables of all cells in subtree 𝑇0, according to the 

model topology and proposed parameters:  
𝒙𝑘0 = {𝑥𝑘

0,𝑚|𝑚 = 1, … , 𝑛𝑇0} 
Calculate the log-likelihood of  subtree 𝑇0 given 𝒙𝑘0  and the  proposed parameter 
values 𝜽∗: 

𝐽𝑘0 =   log (𝜋(𝒚𝑖0|𝒙𝑘0, 𝜽∗)) =  ∑ log (𝜋(𝑡𝑚0 |𝑥𝑘
0,𝑚 , 𝜽∗)) =  ∑ 𝐽𝑘

0,𝑚

𝑛𝑇0

𝑚=1

𝑛𝑇0

𝑚=1

 

for 𝑙 = 1…𝑛𝑠2 do 

  for 𝑗 = 1…8 do 
  Simulate a sample of latent variables of all cells in subtree 𝑇𝑗, according to 

the model topology and proposed parameters:  
𝒙𝑘,𝑙
𝑗 = {𝑥𝑘,𝑙

𝑗,𝑚|𝑚 = 1,… , 𝑛𝑇𝑗} 

Calculate the log-likelihood of  subtree 𝑇𝑗 given 𝒙𝑘,𝑙
𝑗  and the  proposed 

parameter values 𝜽∗:  
 

  
 
𝑝𝑙
𝑗 = 𝐽𝑘,𝑙

𝑗 =   log (𝜋(𝒚𝑖
𝑗|𝒙𝑘,𝑙

𝑗 , 𝜽∗)) 

= ∑ log (𝜋(𝑡𝑚
𝑗 |𝑥𝑘,𝑙

𝑗,𝑚,𝜽∗ )) =  ∑ 𝐽𝑘,𝑙
𝑗,𝑚

𝑛𝑇𝑗

𝑚=1

𝑛𝑇𝑗

𝑚=1
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3. Model specifications and corresponding likelihoods.  
For analyzing the T cell lineage trees, we considered several model hypotheses about the 
diversification of single-cell-derived T cell populations into distinct subsets. We characterized 
different subsets with their distinct division speeds and modeled them as latent variables in our 
approach. We used a branching process framework (Harris, 1963) to model this diversification: we 
assumed that upon every cell division, each of the two daughter cells can (independently) either 
adopt the subset of the mother cell, or change into a different subset according to the model 
topology. Each of these choices can occur with probabilities that are part of the model parameters. 
In the following, we first define these model hypotheses, and then describe the simulation of latent 
variables and likelihood calculation for them. 
 
3.1. Model hypotheses tested in this study. A schematic of the following models is shown in 
Figure 2C and 2J of the main text: 
 
1. Model #1. We assume that no diversification occurs during the expansion of the T cell families 

and therefore the whole cell population follows the same inter-division time statistics. This 
“homogeneous” subset is denoted by 𝐻. The only model parameters are the mean and the CV 

17 

 

 

18 

 
 
19 

 

20 
21 
22 
23 
 
 

24 

 
Calculate the log-likelihood of tree 𝑖 given the latent variable given 𝒙𝑘0  and the  
proposed parameter values 𝜽∗: 

𝑞𝑘 =  𝐽𝑘0 +  8 log (
1
𝑛𝑠2

) +∑(log(∑𝑒(𝑝𝑙
𝑗− 𝑝∗,𝑗)

𝑛𝑠2

𝑙=1

)  + log(𝑝∗,𝑗))
8

𝑗=1

 

Calculate the log-likelihood of tree 𝑖 given the  proposed parameter values 𝜽∗: 

𝐽𝑖 = log(�̂�(𝒚𝑖|𝜽∗))  = log (
1
𝑛𝑠1

) +  log(∑ 𝑒(𝑞𝑘− 𝑞∗)
𝑛𝑠1

𝑘=1

)  + log(𝑞∗) 

Calculate the overall data log-likelihood given the proposed parameter values 𝜽∗:  

𝐽∗ = �̂�(𝒚|𝜽∗) =  exp(∑ 𝐽𝑖

𝑛tree

𝑖=1

) 

Evaluate the acceptance probability of the proposed parameter values  𝜽∗:  

𝛼(𝜽(𝑛−1), 𝜽∗) =  min {1, �̂�(𝒚|𝜽∗)
�̂�(𝒚|𝜽(𝑛−1))

} = min {1, 𝐽∗

𝐽(𝑛−1)
}. 

If uniform random variable 𝑟 ∼ 𝑈(0,1) <  𝛼(𝜽(𝑛−1), 𝜽∗) then 
  Accept the proposed parameter values and add to the chain: 𝜽(𝑛) = 𝜽∗, 𝐽(𝑛) = 𝐽∗. 
else 
  Reject the proposed parameter values and keep the previous parameter values: 

𝜽(𝑛) = 𝜽(𝑛−1), 𝐽(𝑛) = 𝐽(𝑛−1). 
 

 
Construct a sample of parameters from the posterior distribution and the corresponding log-
likelihoods: {(𝜽(𝑛)|𝒚); 𝐽(𝑛)} 𝑛=1 𝑁 . 
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of the inter-division time distribution: 𝜽 = {𝜇𝐻, CV𝐻}. Since all cells belong to one subset, there 
are no latent variables in this model.  
 

2. Model #2. This model assumes that after an initial phase of semi-concordant divisions, the cells 
differentiate into another subset with different inter-division time statistics. The subset in the 
early expansion phase is referred to as Early-Activated (𝐸𝐴) and the subsequent subset is 
denoted by 𝐻. Upon every division of 𝐸𝐴 cells, each of the daughter cells can either stay in the 
𝐸𝐴 subset with a certain probability or differentiate into 𝐻 otherwise. The model allows 
differentiation probabilities to vary between the phase 1 (subtree 𝑇0 in Fig. S28) and phase 2 
(subtrees 𝑇1, 𝑇2,… , 𝑇8 in Fig. S28) of expansion; see Model #3 for the justification of this 
variation. The model parameters are the mean and CV of the inter-division time distribution of 
the subsets 𝐸𝐴 and 𝐻 ( 𝜇𝐸𝐴, CV𝐸𝐴, 𝜇𝐻, CV𝐻), and the probability of remaining in subset 𝐸𝐴 in 
the two expansion phases (𝑝EA,1, 𝑝EA,2): 𝜽 = {𝑝EA,1, 𝑝EA,2, 𝜇𝐸𝐴, CV𝐸𝐴, 𝜇𝐻, CV𝐻 }. The latent 
variable (i.e. subset) for a cell 𝑚 in model #2 can have two values: 𝑥𝑚 ∈  {𝐸𝐴, 𝐻}. 
 

3. Model #3. Similar to model #2, this model assumes an initial phase of semi-concordant 
divisions (subset 𝐸𝐴). However, model #3 assumes a bifurcating pathway of diversification 
where the cells can differentiate out of 𝐸𝐴 subset into two distinct subsets of fast and slowly 
dividing cells (subsets 𝐹 and 𝑆 respectively). This differentiation can happen at every 𝐸𝐴 cell 
division with specific probabilities for staying in the 𝐸𝐴 subset or differentiating into 𝐹 or 𝑆. 
In our T cell trees, the first few divisions are considerably less variable than the subsequent 
divisions (see the main text). To mimic this aspect, model #3 allows the differentiation 
probabilities to vary between the two expansion phases: the probability of differentiating from 
𝐸𝐴 into 𝑆 or 𝐹 in phase 2 (subtrees 𝑇1, 𝑇2,… , 𝑇8) is constrained to be higher than 90%, while 
it is unconstrained in phase 1 (subtree 𝑇0). The ratio between the differentiation probabilities 
into 𝑆 and 𝐹 subsets (ratioSlow =

differentiation probabilities into 𝑆
differentiation probabilities into 𝐹

) is set to be the same in the 

two phases. To directly capture the distinction between the 𝐹 and 𝑆 subsets, the difference 
between their mean inter-division times is modeled as a parameter. The model parameters are 
the mean and CV of the inter-division time distribution of the EA and F subsets ( 𝜇𝐸𝐴, CV𝐸𝐴, 
𝜇𝐹, CV𝐹), the difference in the mean inter-division time of subset 𝑆 w.r.t. subset 𝐹, and the CV 
of its inter-division time distribution (𝑑𝜇𝑆 =  𝜇𝑆 − 𝜇𝐹, CV𝑆), the probability of cells remaining 
in the 𝐸𝐴 subset in the two expansion phases (𝑝EA,1, 𝑝EA,2) and the ratio between the 
differentiation probabilities into 𝑆 and 𝐹 subsets (ratioSlow): 𝜽 =
{𝑝EA,1, 𝑝EA,2, ratioSlow, 𝜇𝐸𝐴, CV𝐸𝐴, 𝜇𝐹, CV𝐹,  𝑑𝜇𝑆, CV𝑆}. The latent variable (i.e. subset) for a cell 
𝑚 in this model can have three values: 𝑥𝑚 ∈  {𝐸𝐴, 𝑆, 𝐹}. 
 

4. Mixture model. This model assumes three subsets as in model #3. Initially cells belong to the 
𝐸𝐴 subset; upon every division, each daughter cell can stay in the 𝐸𝐴 subset with a certain 
probability or change into a Mixture type (𝑀) otherwise. The latter represents a mixture of two 
distinct subsets of fast and slowly dividing cells (subsets 𝐹 and 𝑆 respectively). Like model #3, 
different differentiation probabilities for the two expansion phases are assumed. The subset of 
𝑀 cells is not certainly known; instead, it is assumed that they belong to subset S with 
probability ratioSlow and to subset F with probability 1 − ratioSlow. The model parameters are 
the mean and CV of the inter-division time distribution of the EA and F subsets ( 𝜇𝐸𝐴, CV𝐸𝐴, 
𝜇𝐹, CV𝐹), the difference in the mean inter-division time of subset 𝑆 w.r.t. subset 𝐹, and the CV 
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of its inter-division time distribution (𝑑𝜇𝑆, CV𝑆), the probability of cells remaining in the 𝐸𝐴 
subset in the two expansion phases (𝑝EA,1, 𝑝EA,2) and the probability that the cells in the mixture 

type possess subset 𝑆 (ratioSlow): 𝜽 = {𝑝EA,1, 𝑝EA,2, ratioSlow, 𝜇𝐸𝐴, CV𝐸𝐴, 𝜇𝐹, CV𝐹,  𝑑𝜇𝑆, CV𝑆}. 
The latent variable (i.e. type) for a cell 𝑚 can have two values: 𝑥𝑚 ∈  {𝐸𝐴,𝑀}.  
 
We emphasize that this “mixture model” does not intend to model an actual topology for the 
diversification of T cells. Rather, it provides a mathematical model alternative in which the 
same number of subsets and parameters as in model #3 is assumed. We compare this model 
against model #3 to test whether the superior performance of model #3 over models #1 and #2 
is merely due to its additional flexibility, or whether the topological pathway encoded in model 
#3 is indeed essential. 
 

5. Model #4. This model assumes the same diversification pathway as in model #3 and adds 
additional variability between different family trees (interfamily variation). It assumes that the 
mean inter-division time of subset 𝐹 is distributed across different trees according to a log-
normal distribution with unknown mean and coefficient of variation (𝜇𝐹, CṼ𝐹):       

𝜇𝐹 ~ log 𝑁 (𝜇𝐹, CṼ𝐹) (3.1) 
 

It further assumes that the difference between the mean inter-division time of different subsets 
is constant in all trees. This implies that if subset 𝐹 in a tree is slower than the average, then 
subsets 𝐸𝐴 and 𝑆 are also slower with the same distance to the average. In this way, all subset-
specific mean inter-division times—for subsets 𝐸𝐴, 𝐹 and 𝑆—are log-normally distributed 
across different trees. The model parameters are the mean and CV for the log-normal 
distribution of 𝜇𝐹 (𝜇𝐹, CṼ𝐹), the differences in the mean inter-division time between the subsets 
(𝑑𝜇𝐸𝐴 =  𝜇𝐸𝐴 − 𝜇𝐹, 𝑑𝜇𝑆 =  𝜇𝑆 − 𝜇𝐹), the subset-specific CVs of the inter-division time 
distribution (CV𝐸𝐴, CV𝐹, CV𝑆), and the differentiation probabilities as in model #3:  
𝜽 = {𝑝EA,1, 𝑝EA,2, ratioSlow, 𝜇𝐹, CṼ𝐹, CV𝐹, 𝑑𝜇𝐸𝐴, CV𝐸𝐴, 𝑑𝜇𝑆, CV𝑆}. The latent variable (i.e. 
subset) for a cell 𝑚 in model #4 can have three values: 𝑥𝑚 ∈  {𝐸𝐴, 𝑆, 𝐹}.  
 

6. Model #1 with mother-daughter correlation. This model assumes that no diversification occurs 
during the expansion of the T cell families and therefore the whole cell population follows the 
same inter-division time statistics described by a single log-normal distribution. This 
“homogeneous” subset is denoted by 𝐻. However, it further assumes that the interdivision of 
mother and daughter cells are correlated. Specifically, if we denote the log-transformed inter-
division time of the mother cell as 𝑡𝑚 and the log-transformed inter-division time of the 

daughter cell as 𝑡𝑑 , then the pair [
𝑡𝑚
𝑡𝑑
] is distributed according to the bivariate normal 

distribution 𝑁 ([
𝜇𝐻
𝜇𝐻] , [

𝜎𝐻2 𝜌𝑚,𝑑 𝜎𝐻2 
𝜌𝑚,𝑑 𝜎𝐻2 𝜎𝐻2

]). 𝜇𝐻 and 𝜎𝐻2 are the mean and variance of the 

inter-division time distribution of all cells, and 𝜌𝑚,𝑑 is the correlation coefficient between the 
inter-division time of mother and daughter cells. The model parameters are: 𝜽 =
{𝜇𝐻, CV𝐻, 𝜌𝑚,𝑑} with CV𝐻 being the coefficient of variation of the inter-division time 
distribution. Since all cells belong to one subset, there are no latent variables in this model.  
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7. Model #3 + ΔCD62L+/−. This model is the same as model #3, except that the difference in the 
mean inter-division time of subset 𝑆 w.r.t. subset 𝐹 (𝑑𝜇𝑆 =  𝜇𝑆 − 𝜇𝐹) is not a model parameter. 
Instead, 𝑑𝜇𝑆 is set to the difference between the mean inter-division time of CD62L+and 
CD62L− cells in the experimental data. The model parameters are, therefore, the parameters of 
model #3 excluding 𝑑𝜇𝑆: 𝜽 = {𝑝EA,1, 𝑝EA,2, ratioSlow, 𝜇𝐸𝐴, CV𝐸𝐴, 𝜇𝐹, CV𝐹, CV𝑆}. The latent 
variable (i.e. subset) for a cell 𝑚 in this model can have three values: 𝑥𝑚 ∈  {𝐸𝐴, 𝑆, 𝐹}. 

3.2. Simulation of the latent variables. To calculate the likelihood of the data we need to simulate 
samples from the latent variables (Section 1.3.3). In model #1 all cells belong to the same subset 
and therefore no latent variables exist. For the rest of the models, we use the model topology and 
parameters to simulate the subsets of cells along a family tree. We assign the first founder cell of 
the tree to the Early-Activated subset as this subset is the starting point of all the considered 
pathways. We move along the family tree and upon every cell division randomly assign the subset 
of the daughter cells. Given the simulated subset of the mother cell, the possible subsets for each 
daughter cell are determined based on the model topology. The probability of a daughter cell to 
adopt any of these possible subsets is given by the model parameters (i.e. the differentiation 
probabilities). In this way, the tree structure and mother-daughter relationships are taken into 
account in simulating the latent variables. 
For example in model #3, if a mother cell belongs to subset 𝐸𝐴 in the first expansion phase, each 
daughter cell is independently assigned to subset 𝐸𝐴 with probability 𝑝𝐸𝐴,1, subset S with 
probability ratioSlow(1 − 𝑝𝐸𝐴,1) and subset 𝐹 with probability (1 − ratioSlow)(1 − 𝑝𝐸𝐴,1). 
However, if the mother cell belongs to either of the 𝑆 and 𝐹 subsets, both daughter cells directly 
inherit the subset of the mother cell.  

3.3. Calculation of the likelihood for models #1-4. We need to calculate the likelihood of every 
cell given the latent variables and model parameters to obtain the overall data likelihood (see 
Equations 1.27 and 1.28 in Section 1.3.3). We assume that the inter-division of cells are log-
normally distributed with subset-specific mean and coefficient of variation. If we denote the latent 
variable corresponding to cell 𝑚 by 𝑥𝑚, describing the subset to which cell 𝑚 belongs, the log-
transformed inter-division time of cell 𝑚 is distributed according to the normal distribution 
𝑁 (𝜇𝑥𝑚, CV𝑥𝑚); 𝜇𝑥𝑚 and CV𝑥𝑚 are determined by the model parameters. The likelihood of the 
lifetime of cell 𝑚, 𝑡𝑚, is then 

{
  
 

  
 𝜋(𝑡𝑚|𝜇𝑥𝑚, CV𝑥𝑚) =

1
𝜇𝑥𝑚 CV𝑥𝑚 √2𝜋

 𝑒
− 12 (

𝑡𝑚 − 𝜇𝑥𝑚
 𝜇𝑥𝑚  CV𝑥𝑚

)
2

,                    if cell 𝑚 divided 
in the course of the experiment    

𝜋(𝑡𝑚|𝜇𝑥𝑚, CV𝑥𝑚) =  1 − ∫
1

𝜇𝑥𝑚  CV𝑥𝑚 √2𝜋 
 𝑒
− 12 (

𝑠 − 𝜇𝑥𝑚
 𝜇𝑥𝑚  CV𝑥𝑚

)
2

𝑑𝑠,       

𝑡𝑚

0

if cell 𝑚 did not divide
in the course of the experiment    

 

(3.2) 

According to Eq. 3.2, if a cell has divided, its lifetime represents its inter-division time and therefore 
the PDF of the normal distribution 𝑁 (𝜇𝑥𝑚, CV𝑥𝑚) is used to calculate its likelihood. But if a cell 
has not divided in the course of the experiment, its lifetime only provides a lower-bound for its 
inter-division time and therefore, the CDF of the corresponding normal distribution is used. 
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3.4. Calculation of the likelihood for model #1 with mother-daughter correlation. In this 
model, the inter-division times of individual cells are not independent, but every cell’s division 
time depends on the division time of its mother. If we denote the log-transformed inter-division 
time of a mother cell and its daughter cell respectively by 𝑡𝑚 and 𝑡𝑑 , then the likelihood of the pair 

[
𝑡𝑚
𝑡𝑑
] is described by a bivariate normal distribution 𝑁 ([

𝜇
𝜇] , [

𝜎2 𝜌𝑚,𝑑 𝜎2  
𝜌𝑚,𝑑 𝜎2 𝜎2

]). The overall 

data likelihood is calculated as the product of the conditional likelihoods 𝜋(𝑡𝑑|𝑡𝑚) over all cells in 
the tree. For every cell, this conditional probability is calculated according to the above-mentioned 
bivariate distribution. 

  
3.5. Calculation of the likelihood for the mixture model. In the mixture model, the subset of cells 
in the mixture type (𝑀) is not directly known; instead, it is assumed that they could belong to subset 
𝑆 with probability ratioSlow and to subset 𝐹 with probability 1 − ratioSlow. Therefore Eq. 3.2, that 
assumes the subset of cells is known given the latent variables, cannot be used for likelihood 
calculation. Instead, we use the following equation for cells of type 𝑀 based on the likelihood for 
a mixture model (Pyne et al., 2009): 

{
 
 
 
 
 
 

 
 
 
 
 
 𝜋(𝑡𝑚) = ratioSlow

1
𝜇𝑆 CV𝑆 √2𝜋

 𝑒− 
1
2 (
𝑡𝑚 − 𝜇𝑆
 𝜇𝑆  CV𝑆

)
2

   +                                                                                               

(1 − ratioSlow) 
1

𝜇𝐹 CV𝐹 √2𝜋
 𝑒− 

1
2 (
𝑡𝑚 − 𝜇𝐹
 𝜇𝐹  CV𝐹

)
2

,                                              if cell 𝑚 divided 
in the course of the experiment

  
  

𝜋(𝑡𝑚) =  ratioSlow  (1 − ∫
1

𝜇𝑆  CV𝑆 √2𝜋 
 𝑒− 

1
2 (

𝑠 − 𝜇𝑆
 𝜇𝑆  CV𝑆

)
2

𝑑𝑠

𝑡𝑚

0

)  +                                                                      

(1 − ratioSlow) (1 −∫
1

𝜇𝐹  CV𝐹 √2𝜋 
 𝑒− 

1
2 (

𝑠 − 𝜇𝐹
 𝜇𝐹  CV𝐹

)
2

𝑑𝑠

𝑡𝑚

0

),                   if cell 𝑚 did not divide
in the course of the experiment 

    

 

(3.3) 
Equation 3.3 describes the likelihood of the lifetime of a cell as the weighted sum of the likelihoods 
if it belonged to subsets 𝑆 and 𝐹 respectively. For cells in the 𝐸𝐴 subset, Eq. 3.2 is used to calculate 
their likelihood. 
 
3.6. Inference results for different models. We split our data into eight groups of five trees and 
performed parameter inference and model comparison on all eight data groups. The inferred 
parameter posteriors, model evidences and Bayes factors for every data group are shown in Figures 
S4, S6, S7, S12, S13 and S17-20. For better comparability, we reported base-10 logarithm of model 
evidences and Bayes factors. In addition to the group-wise metrics, we calculated average model 
evidences and Bayes factors from the results of all data groups together. The average log10-model 
evidence was calculated as 1

8
 ∑ 𝑀𝐸𝑖8

𝑖=1 , where 𝑀𝐸𝑖 is the median of the log10-model evidence 

calculated in data group 𝑖. The average log10-Bayes factor was calculated as 1
8
 ∑ 𝐵𝐹𝑖8

𝑖=1 , where 
𝐵𝐹𝑖 is the median of the log10-Bayes factor calculated in data group 𝑖. The average model 
evidences and Bayes factors are shown in Figures 2D, 2L, S3 and S5. 
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4. Statistical features of the experimental data.  
 
4.1. Contribution of intrafamily and interfamily variability in the overall variation of inter-
division times. We calculated the total variance of the inter-division times and the contribution of 
intrafamily and interfamily sources in the experimental data. Intrafamily variance was calculated 
as the weighted mean of the variances of inter-division times within different families:  
   

Intrafamily variance =
∑ 𝑛cell𝑖 𝜎𝑖

2𝑛tree
𝑖=1

∑ 𝑛cell𝑖
𝑛tree
𝑖=1

    
 

(4.1) 

 
where 𝑛cell𝑖 and 𝜎𝑖2 are respectively the number of cells and the variance of inter-division times in 
the 𝑖th tree. Interfamily variance was calculated as the weighted variance of the family mean inter-
division times:  

Interfamily variance =
∑ 𝑛cell𝑖 (𝜇𝑖 − 𝜇

∗)𝑛tree
𝑖=1

2

∑ 𝑛cell𝑖
𝑛tree
𝑖=1 − 1

  ,     𝜇∗ =   
∑ 𝑛cell𝑖 𝜇𝑖 
𝑛tree
𝑖=1

∑ 𝑛cell𝑖
𝑛tree
𝑖=1

 
 

(4.2) 

 
where 𝜇𝑖 is the mean inter-division time in the 𝑖th tree, and 𝜇∗ is the weighted mean of 𝜇𝑖 for 𝑖 =
1, … , 𝑛tree. These variance terms for the experimental data are shown in Figure 1G.  
 
4.2. Percentage of the trees whose four branches have significantly distinct inter-division 
times. For every tree in the experimental data, we compared the inter-division time distribution of 
the four branches of the tree as depicted in Figure 1I. We performed one-way ANOVA to test 
whether the four branches have different mean inter-division times. We then estimated positive 
false discovery rates (pFDR) for multiple hypothesis testing based on the Benjamini and Hochberg 
method (Benjamini and Hochberg, 1995) across all trees. We selected the trees that had a pFDR 
smaller than 0.05 as trees whose four branches have significantly distinct inter-division times. 
These selected trees are highlighted in Figure 1J. 
 
 
5. Simulation studies for model validation.  
To inspect how well the studied models were matching to the experimental data—beyond measures 
provided by model evidence and Bayes factors—we performed the following simulation studies. 
We examined how well the simulated data based on different models captured the statistical 
features of the experimental data. 
 
5.1. Overall distribution of the inter-division times. We simulated 10,000 family trees based on 
the model topologies #3 and #4, and the inferred posterior distribution for the corresponding model 
parameters. We obtained the distribution of the inter-division times of all cells regardless of their 
subset from all simulated trees together; we compared this against the distribution of inter-division 
times in the experimental data. We further obtained the distribution of inter-division times of cells 
in the subsets 𝐸𝐴, 𝑆 and 𝐹 in the simulated data for illustration purposes. The results are shown in 
Figures S8 and S14 for model #3 and model #4 respectively. 
 
5.2. Contribution of intrafamily and interfamily variability in the overall variation of inter-
division times. We simulated 500 datasets of each 44 trees based on model topologies #3 and #4, 
and the inferred posterior distribution for the corresponding model parameters. For each dataset, 
we calculated the total variance of the inter-division times and the contribution of intrafamily and 
interfamily sources. Intrafamily variance was calculated as the weighted mean of the variances of 
inter-division times within different families:        
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Intrafamily variance =
∑ �̂�𝑖 �̂�𝑖244
𝑖=1
∑ �̂�𝑖44
𝑖=1

    
 

(5.1) 
 
where �̂�𝑖 and �̂�𝑖2 are respectively the number of cells and the variance of inter-division times in the 
𝑖th simulated tree. Interfamily variance was calculated as the weighted variance of the family mean 
inter-division times:    

Interfamily variance =
∑ �̂�𝑖 (�̂�𝑖 − �̅�)44
𝑖=1

2

∑ �̂�𝑖44
𝑖=1 − 1

  ,     �̅� =   
∑ �̂�𝑖 �̂�𝑖 44
𝑖=1
∑ �̂�𝑖44
𝑖=1

 
 

(5.2) 
 

 
where �̂�𝑖 is the mean inter-division time in the 𝑖th simulated tree, and �̅� is the weighted mean of �̂�𝑖 
for 𝑖 = 1, … ,44. We then obtained the 90%-confidence interval for the total variance, intrafamily 
variance and interfamily variance in the 500 simulated datasets. We examined whether these 
confidence intervals contained the corresponding variance terms calculated for the experimental 
data. The results for the simulations based on model #3 and model #4 are shown in Figures S9 and 
S15 respectively. 
 
5.3. Percentage of the trees whose four branches have significantly distinct inter-division 
times. We used the same simulated data as in Section 5.2. For every tree in a simulated dataset, we 
compared the inter-division time distribution of the four branches of the tree as depicted in Figure 
1I. We performed one-way ANOVA to test whether the four branches have different mean inter-
division times. We then estimated positive false discovery rates (pFDR) for multiple hypothesis 
testing based on the Benjamini and Hochberg method (Benjamini and Hochberg, 1995) across all 
44 trees in the dataset. We selected the trees that had a pFDR smaller than 0.05 as trees whose four 
branches have significantly distinct inter-division times, and in every dataset calculated the 
percentage of these selected trees. We then obtained the distribution of this percentage across the 
500 simulated datasets and examined whether this distribution contained the percentage calculated 
from the experimental data. The results for the simulations based on models #3 and #4 are shown 
in Figures S10 and S16 respectively. 
 
5.4. Simulation of T Cell family responses to mimic an in vivo response. We simulated 500 
single-cell-derived T cell families according to model #4 up to day 7 post infection to mimic the 
peak of in vivo T cell responses. The model parameters were set to the median of the parameter 
posteriors obtained from fitting model #4 to the continuous stimulation data (Fig. S13, group 7). 
Since the activation and recruitment of cells into the in vivo T cell response does not occur as 
concerted as upon in vitro stimulation, we modeled the distribution of first cell division times as in 
Gerlach et al. (2013, Fig. S7). We then compared the statistics of the simulated responses at the 
peak of expansion to those of the in vivo data in Buchholz et al. (2013). Of note: Buchholz et al. 
(2013) constitutes a very similar experimental model as Gerlach et al. (2013). We assumed that the 
“Slow” cells in the simulated data correspond to the CMp cells in the in vivo data. 
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SI Figure Legends: 
 
Figure S1: 
IL-2 levels are stable throughout the experiment. Cells were activated for 24 h. Subsequently, 
0, 1, 10 or 100 cells were transferred into wells with 25 U/mL IL-2 and cultured for further three 
days. IL-2 in the supernatant was detected by ELISA. As a control, culture medium without cells 
was measured, containing no or 25 U/mL freshly added IL-2. One-way ANOVA and Dunnett’s 
multiple comparison test: **** p<0.0001. 
 
Figure S2:  
Comparison of division speeds in the two branches emerging after the first cell division. (A) 
Analogue to Figure 1I: A representative family tree was divided into two branches (red and green) 
after the first cell division. (B) Inter-division time of cells in the two branches starting from the first 
generation are color-coded for all trees in Figure 1F. In 15 out of 43 trees (~35%, tress highlighted 
in gray), inter-division times differed significantly between the two branches. For every tree, a p-
value was calculated based on one-way ANOVA. We then estimated positive false discovery rates 
(pFDR) for multiple hypothesis testing based on these p-values, and used a cutoff of pFDR<0.05 
for significance. 

 
Figure S3: 

Model comparison summary from the results of all data groups. The model evidences for 
models #1, #2, #3, #4 (Fig. 2 C and J), the mixture model and model #1 with mother-daughter 
correlation are shown. These evidences indicate the following hierarchy where model #4 explains 
the data best and model #1 is least matching to the data: model #4 > model #3 > mixture model > 
model #1 with mother-daughter correlation > model #2 > model #1. The circles show the mean of 
model evidences of eight data groups (Supplementary Methods). The error bars show the standard 
error of the mean. 

 

Figure S4: 

Model comparison results in individual groups. The model evidences for models #1, #2, #3, #4 
(respectively M 1, M2, M 3, M 4), the mixture model (Mix. M), and the model including mother-
daughter correlation (M 1 + corr.)  for the eight data groups. The boxplots show the distribution of 
the model evidences calculated based on 10000 bootstrapped samples of parameter posteriors 
(Supplementary Methods). 

 

Figure S5: 

Bayes factors summary from the results of all data groups. (A) The log10-Bayes factor of model 
#4 (Fig. 2J) compared to models #1, #2, #3 (Fig. 2C), the mixture model and model #1 with mother-
daughter correlation is shown. The circles show the mean of log10-Bayes factors calculated in the 
eight data groups. The error bars show the standard error of the mean. The dashed grey line shows 
the cutoff value for “strong evidence” (log10-Bayes factor = 1) and the dashed black line shows 
the cutoff value for “decisive evidence” (log10-Bayes factor = 2) for model #4. (B) Same as (A) 
where the log10-Bayes factors are calculated for model #3 compared to models #2 and #1, the 
mixture model and the model #1 with mother-daughter correlation. 
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Figure S6: 

Bayes factors in individual groups with respect to model #3. The log10-Bayes factor of model 
#3 (Fig. 2C) compared to models #1, #2 (M 1 and M 2 respectively), the mixture model (Mix. M) 
and the model including mother-daughter correlation (M 1 + corr.) for the eight data groups. The 
boxplots show the distribution of the log10-Bayes factors calculated based on 10000 bootstrapped 
samples of parameter posteriors (Supplementary Methods). The dashed grey line shows the cutoff 
value for “strong evidence” (log10-Bayes factor = 1) and the dashed black line shows the cutoff 
value for “decisive evidence” (log10-Bayes factor = 2) for model #3. 

 

Figure S7: 

Inferred parameter values for model #3 in the eight data groups. The circles and the error bars 
respectively show the median and the 95% credible intervals of the parameter posterior 
distributions. 

 

Figure S8: 

The distribution of inter-division times in simulated data based on model #3. The distribution 
of inter-division times in 10000 simulated trees based on model #3 compared to that of the 
experimental data (grey) for the eight data groups. In every group, the parameter posteriors inferred 
in that group are used for simulating the trees. The red histogram shows the overall distribution in 
the simulated data, while the black, blue and green histograms show the distribution of “Early-
activated”, “Fast-dividing” and “Slow-dividing” subsets respectively. 

 

Figure S9: 

Variance of inter-division times in the simulated data based on model #3. Total variance of the 
inter-division times and the contribution of intrafamily and interfamily sources as observed in the 
experimental data (grey bars) and the simulated data (red boxes) for the eight data groups. The 
simulated data consists of 500 datasets of each 44 trees simulated based on model #3 and the 
parameter posteriors of every data group. Intrafamily variance is calculated as the weighted mean 
of the variances of inter-division times within different families. Interfamily variance is calculated 
as the weighted variance of the family mean inter-division times (Supplementary Methods).  

 

Figure S10: 

Percentage of trees with significantly distinct branches in the simulated data based on model 
#3. Percentage of the trees whose four branches (as in Fig. 1I) have significantly distinct inter-
division times is shown. The grey line shows the experimental data and the red histogram shows 
the distribution of this percentage in the simulated data for the eight data groups. The simulated 
data consists of 500 datasets of each 44 trees simulated based on model #3 and the parameter 
posteriors of every data group. (Supplementary Methods).  

 

Figure S11: 
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Variation of subset-specific mean inter-division times between different families. Inferred 
distribution of subset-specific mean inter-division times based on model #4 for the eight data 
groups. The black, blue and green curves show the distribution for the “Early-activated”, “Fast-
dividing” and “Slow-dividing” subsets respectively. 

 

Figure S12: 

Bayes factors in individual groups with respect to model #4. The log10-Bayes factor of model 
#4 (Fig. 2J) compared to models #1, #2, #3 (respectively M 1, M2, M 3), the mixture model (Mix. 
M) and the model including mother-daughter correlation (M 1 + corr.) for the eight data groups. 
The boxplots show the distribution of the log10-Bayes factors calculated based on 10000 
bootstrapped samples of parameter posteriors (Supplementary Methods). The dashed grey line 
shows the cutoff value for “strong evidence” (log10-Bayes factor = 1) and the dashed black line 
shows the cutoff value for “decisive evidence” (log10-Bayes factor = 2) for model #4. 

 

Figure S13: 

Inferred parameter values for model #4 in the eight data groups. The circles and the error bars 
respectively show the median and the 95% credible intervals of the parameter posterior 
distributions. 

 

Figure S14: 

The distribution of inter-division times in simulated data based on model #4. The distribution 
of inter-division times in 10000 simulated trees based on model #4 compared to that of the 
experimental data (grey) for the eight data groups. In every group, the parameter posteriors inferred 
in that group are used for simulating the trees. The red histogram shows the overall distribution in 
the simulated data, while the black, blue and green histograms show the distribution of “Early-
activated”, “Fast-dividing” and “Slow-dividing” subsets respectively. 

 

Figure S15:  

Variance of inter-division times in the simulated data based on model #4. Total variance of the 
inter-division times and the contribution of intrafamily and interfamily sources as observed in the 
experimental data (grey bars) and the simulated data (red boxes) for the eight data groups. The 
simulated data consists of 500 datasets of each 44 trees simulated based on model #4 and the 
parameter posteriors of every data group. Intrafamily variance is calculated as the weighted mean 
of the variances of inter-division times within different families. Interfamily variance is calculated 
as the weighted variance of the family mean inter-division times (Supplementary Methods). 

 

Figure S16: 

Percentage of trees with significantly distinct branches in the simulated data based on model 
#4. Percentage of the trees whose four branches (as in Fig. 1I) have significantly distinct inter-
division times is shown. The grey line shows the experimental data and the red histogram shows 
the distribution of this percentage in the simulated data for the eight data groups. The simulated 
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data consists of 500 datasets of each 44 trees simulated based on model #4 and the parameter 
posteriors of every data group. (Supplementary Methods). 

 

Figure S17: 

Inferred parameter values for model #1 in the eight data groups. The circles and the error bars 
respectively show the median and the 95% credible intervals of the parameter posterior 
distributions. 

 

Figure S18: 

Inferred parameter values for model #2 in the eight data groups. The circles and the error bars 
respectively show the median and the 95% credible intervals of the parameter posterior 
distributions. 

 

Figure S19: 

Inferred parameter values for the mixture model in the eight data groups. The circles and the 
error bars respectively show the median and the 95% credible intervals of the parameter posterior 
distributions. 

 

Figure S20: 

Inferred parameter values for model #1 with mother-daughter correlation in the eight data 
groups. The circles and the error bars respectively show the median and the 95% credible intervals 
of the parameter posterior distributions. 

 

Figure S21: 

Simulated in vivo response based on the in vitro model. Model #4 is used to generate simulated 
single-cell-derived responses at day 7 post infection. We used the median of the parameter 
posteriors obtained from fitting model #4 to the continuous stimulation data to simulate 500 family 
trees (Supplementary Methods). The statistics of these simulated data are compared to those of the 
in vivo data from (Buchholz et al. 2013). (A) The family sizes for the simulated data. The mean, 
median and CV of the family sizes are shown for the model (black) and the in vivo data (orange). 
(B) The correlation of the family sizes and the percentage of “Slow” cells for the simulated data. 
The Spearman’s rank correlation coefficient is shown for the model (black) and the in vivo data 
(orange). The CD62L+ cells from the in vivo data are considered equivalent to the simulated “Slow” 
cells.  

 

Figure S22: 

Model comparison results for the “brief” and “brief + IL12” groups. The model evidences for 
models #1, #2, #3, and #4 are shown. The boxplots show the distribution of the model evidences 
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calculated based on 10000 bootstrapped samples of parameter posteriors (Supplementary 
Methods). 

 

Figure S23: 

Bayes factors in the “brief” and “brief + IL12” groups. The log10-Bayes factor of model #4 
compared to models #1, #2 and #3 is shown. The boxplots show the distribution of the log10-Bayes 
factors calculated based on 10000 bootstrapped samples of parameter posteriors (Supplementary 
Methods). The dashed grey lines show the cutoff value for “strong evidence” (log10-Bayes factor 
= 1) and the dashed black lines show the cutoff value for “decisive evidence” (log10-Bayes factor 
= 2) for model #4.  

 

Figure S24: 

Impact of antibodies on proliferation in vitro. 100 naïve T cells were sorted per well (anti-
CD3/CD28 coated). Anti-CD62L or anti-CD25 antibodies were added to the culture medium 1:100, 
1:1000 or 1:10 000 diluted. After 5 days the cell number per well was measured using flow 
cytometry. Of note: For live cell imaging dilutions of 1:10 000 and 1:20 000 were used for anti-
CD62L and anti-CD25, respectively. 

 

Figure S25: 

CD25 is enriched in distinct branches and correlates with division speed. Cells were stimulated 
with anti-CD3/CD28 and imaged in the presence of anti-CD25-APC. (A) A representative tree and 
its heattree plot as in Fig. 3F. Two very distinct (in terms of their CD25 expression) branches (A 
and B) and the mother cell from which these branches were derived are marked. (B) The inter-
division times of all cells in (A) are plotted against their CD25 expression levels. (C) The cells in 
the marked branches from (A). Blue numbers (1-4) indicate the number of cell divisions starting 
from the division of the common mother cell. The inter-division times of these cells are compared 
within their respective generation (1-4, blue) between branch A and branch B (D). Numbers with 
x indicate the factor between the mean inter-division times of the cells in branches A and B. 
Student’s t-test: ****: p<0.0001. 

 

Figure S26: 

Duration of the initial TCR stimulus influences CD62L phenotype and division activity. (A) 
Scheme of the experimental setup. Briefly, naïve CD8+ T cells were isolated and labeled with CTV 
before transfer to wells coated with anti-CD3/CD28 and containing 25U/mL IL-2. After 6h, 12h, 
18h or 24h cells were transferred to new wells containing only anti-CD28, IL-2 and IL-12. (B) 
Overlaid histograms showing the CTV-profiles of cells stimulated for the indicated time frames at 
day 3 after activation. (C) Bar graph showing the percentage of cells in each CTV-division peak 
for the indicated time frames. The ANOVA-test was used to assess the statistical significance 
between the different stimulation conditions: ns: p-value > 0.05, *: p-value ≤ 0.05, **: p-value ≤ 
0.01, ***: p-value ≤ 0.001, ****: p-value ≤ 0.0001. (D) Representative pseudo-color plots 
showing the CTV/CD62L profile of T cells for each stimulation condition. (E) Corresponding bar 
graph showing the percentage of CD62L negative cells. The ANOVA-test was used to assess the 
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statistical significance between the different stimulation conditions: *: p-value ≤ 0.05, **: p-value 
≤ 0.01. 

 

Figure S27: 

Model comparison on the “brief” and “brief + IL12” groups with and without incorporating 
information from CD62L expression. Akaike Information Criterion (AIC), Bayesian Information 
Criterion (BIC), and log10-Bayes factors are shown for model #3 and model #3 + ΔCD62L+/– in 
the three data groups under the “brief” and “brief+IL12” stimulation conditions. Model #3 + 
ΔCD62L+/– sets the difference in the mean inter-division time of “Slow” and “Fast” subsets to the 
difference between the mean inter-division of CD62L+ and CD62L– cells (Supplementary 
Methods). The AIC and BIC show support for model #3 + ΔCD62L+/- compared to model #3. 

 

Figure S28: 

Modular division of a family tree for efficient sampling of latent variables. A family tree is 
divided into nine “subtrees”. The first subtree (𝑇0) includes all cells belonging to generations 
1, 2 and 3. The remaining subtrees (𝑇1, 𝑇2,… , 𝑇8) are subtrees descending from the eight 
third-generation cells: 𝑇1 includes all cells descending from cell 𝑐1, 𝑇2 includes all cells 
descending from cell 𝑐2 and so forth. 
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SI Movie Legends: 

Movie S1: 

A single naïve OT-I cell was sorted on anti-CD3/CD28 (as in Fig. 1) and imaged for approximately 
four days. The numbers in the upper right corner indicate the time after start of the experiment (d 
– hh:mm:ss). The white circles or dots on the cells are virtual markers that were set manually to 
track the cells. 

 

Movie S2: 

A single activated OT-I cell was sorted into a “macrowell” without anti-CD3 coating and was 
imaged for approximately four days. Under these conditions, the T cells distributed over the 
complete well. 

 

Movie S3: 

A single naïve OT-I cell was sorted on anti-CD3/CD28 (as in Fig. 1) and imaged for approximately 
four days. The numbers in the upper right corner indicate the time after start of the experiment (d 
– hh:mm:ss). Every cell is marked with a colored tracing line to visualize the movement of the 
cells. 

 

Movie S4: 

A single naïve OT-I cell was sorted on anti-CD3/CD28 (as in Fig. 1) and imaged for approximately 
five days in the presence of anti-CD25-APC. The numbers in the upper right corner indicate the 
time after start of the experiment (d – hh:mm:ss). The bright dots on the cells are virtual markers 
that were set manually to track the cells. The bright field image is shown on the left side. The 
corresponding APC signal is shown on the right side. To reduce bleaching and phototoxicity, the 
APC channel was not acquired as often as the bright field. Thus, the APC channel does not always 
update together with the bright field image. 
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