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S1. COMPUTING THE TRANSVERSAL

As Eq. (12) in the main text makes clear, the transversal T is the set of translations gi that tile

C with N copies of D. To obtain a connected cluster of given size N , we proceed as in Ref. [1],

searching for group elements gi of increasing word length L in the generators γj of Γ, where L is

defined as the smallest possible number of generators appearing in the product expressing gi. The

set of (inequivalent) words of given L in Γ, at least for small L, can be obtained by brute-force

computational enumeration and elimination of redundancies using the PSU(1, 1) representation

of the γj [1]. For L up to 3, we have verified that the number of inequivalent words thus obtained

matches the growth function of Γ, which can be computed directly in GAP (i.e., the number of

distinct elements of smallest word length L). The unique word of length 0 is the identity e = g1,

which we canonically take to be the first element of T . The 8 words of length 1 are the four

generators γj and their inverses γ−1
j , which when acting on D, produce 8 octagons adjacent to the

8 sides of D. The 56 words of length 2 form an inequivalent subset of the 64 possible products of

two words of length 1. As the computational results presented in this work are limited to clusters

of size N 6 Nmax = 25, we can choose to limit our search to connected clusters for which words

of length 3 and longer do not appear in the transversal. Though smaller than the total number

of possible PBC clusters of a given size N , our results indicate that such clusters can be found at

every N 6 Nmax, which is sufficient to illustrate our ideas. To summarize, the transversal for a

cluster of size Nmax takes the form:

T = {e, γ1, . . . , γ4, γ
−1
1 , . . . , γ−1

4 , g9, . . . , gNmax}, (S1)

where g9, . . . , gNmax are length-2 words. For a cluster of size 10 6 N 6 Nmax, only N − 9 words of

length 2 are kept. For a cluster of size 2 6 N 6 9, only N − 1 words of length 1 are kept. Finally,

there is only one cluster of size N = 1, C = D, corresponding to ΓPBC = Γ.

S2. CLUSTERS OF PRIME ORDER

The number NSGp of normal subgroups of prime index N = p obeys a simple relation, Eq. (13)

in the main text:

NSGp =
pr − 1

p− 1
= 1 + p+ . . .+ pr−1, (S2)

where r = 4. As Fig. 3 in the main text illustrates (compare blue circles and green line), this

relation does not hold for nonprime values of N .

Relation (S2) can be derived as follows. A normal subgroup ΓPBC / Γ of prime index p is the

kernel of the quotient homomorphism f : Γ→ Γ/ΓPBC, where Γ/ΓPBC is a finite group of order p.

Since p is prime, Γ/ΓPBC is isomorphic to the cyclic group Zp, the additive group of integers mod

p. Now f is surjective, thus the number of normal subgroups of prime index p corresponds to the
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number of distinct surjective homomorphisms f : Γ → Zp. More precisely, two such maps that

differ by composition with an automorphism of Zp have the same kernel, thus we need to divide

this number by the number p− 1 of automorphisms of Zp. Since Zp is abelian, f factors through

the abelianization Γ → Γ/[Γ,Γ] ∼= Zr of Γ, where r = 2g = 4 for the Bolza lattice. There are pr

homomorphisms from Zr to Zp, obtained by assigning one of the p elements of Zp to each of the r

linearly independent generators of Zr. For p prime, this homomorphism is surjective unless each

generator is mapped to the identity in Zp. Thus there are pr − 1 surjective homomorphisms f . As

said before, Zp has p − 1 automorphisms. Thus the number of distinct normal subgroups of Γ is

(pr − 1)/(p− 1).

An interesting physical consequence of this analysis is that PBC clusters with a prime number

p of unit cells are necessarily abelian, with a residual translation group isomorphic to Zp. Since

by Euclid’s theorem, prime numbers form an infinite sequence, this produces an infinite sequence

of “prime PBC clusters” for which U(1) hyperbolic band theory holds exactly.

S3. TRANSLATION MATRICES

We now show that the translation matrices, Eq. (26) in the main text, form a faithful repre-

sentation of Γ/ΓPBC and commute with the hopping matrix H. Using the group multiplication

law [2] in Γ/ΓPBC, i.e., [g][g′] = [gg′], it is easily checked that Eq. (26) forms a representation of

this group,

(
U([gk])U([gk′ ])

)
i`

=
∑

j

Uij([gk])Uj`([gk′ ])

=
∑

j

δ[gi],[gkgj ]δ[gj ],[gk′g`]

= δ[gi],[gkgk′g`]

= Ui`([gkgk′ ]), (S3)

for any two [gk], [gk′ ] ∈ Γ/ΓPBC. As pointed out in Nonabelian clusters: a nonabelian Bloch

theorem in the main text, those matrices form the regular representation of Γ/ΓPBC. The regular

representation is a faithful representation.

Finally, translation symmetry on the finite cluster is the statement that the translation operators

T[gk] commute with HPBC for all [gk] ∈ Γ/ΓPBC. For this to hold, the translation matrices U([gk])

must commute with the hopping matrix H. Noting that Eq. (26) is a permutation matrix, and



4
11

!
-10 0 10

;
(!

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

!
-10 0 10

;
(!

)

0

0.05

0.1

0.15

0.2

0.25

!
-10 0 10

;
(!

)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16(a) (b) (c)

FIG. 5. Density of states histograms (blue) for abelian PBC
clusters of size (a) N = 6, (b) N = 12, and (c) N = 24,
compared with the exact density of states of a tight-binding
model with unit nearest-neighbor amplitude on an infinite
four-dimensional hypercubic lattice (red).

group is the trivial group with a single (identity) ele-
ment. The commutator subgroup is also the smallest nor-
mal subgroup of Γ such that the factor group is abelian;
equivalently, the quotient Γ/N with N a normal sub-
group of Γ is abelian if and only if Γ(1) ⊆ N . Thus for
all abelian clusters encountered so far, one must have
Γ(1) ⊆ ΓPBC. Choosing ΓPBC = Γ(1) corresponds in fact
to the compactification of an infinite subset of the orig-
inal {8, 8} tessellation, and the space Y∞ = H/Γ(1) is
the largest possible abelian cover of the Bolza surface
X = H/Γ. It is an abelian cover with infinitely many
sheets, which we will call the maximal abelian cover of X.
Geometrically, it is a Riemann surface of infinite genus.

The (infinite) group of residual translations on the
maximal abelian cover Y∞ is the quotient Γ/Γ(1), known
as the abelianization of Γ. By the Hurewicz theo-
rem [43], Γ/Γ(1) is isomorphic to the first homology group
H1(X,Z), which is abelian. For the {8, 8} lattice, we have
H1(X,Z) ∼= Z4; more generally, for the {4g, 4g} lattice,
we have H1(X,Z) ∼= Z2g. In physical terms, the maximal
abelian cover is a subset of the original hyperbolic lattice
that behaves as an infinite Euclidean lattice in 2g dimen-
sions. As for finite abelian clusters, the U(1) automor-
phic Bloch theorem holds exactly for the maximal abelian
cover, but the hyperbolic momenta k now form a contin-
uous set mapping the entire Jacobian Jac(Σg) ∼= T 2g.
For the {8, 8} lattice, the DOS in this case is given by
Eq. (36) exactly.

IV. NONABELIAN CLUSTERS: A
NONABELIAN BLOCH THEOREM

Having discussed abelian clusters, for which the U(1)
automorphic Bloch condition (6) becomes a rigorous
Bloch theorem (31), we next turn to nonabelian clusters,
for which the residual translation group Γ/ΓPBC is a non-
abelian finite group of order N . One still obtains a ho-
momorphism (20), but the permutation matrices U([gk])
do not mutually commute. However, they still commute
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FIG. 6. Fraction Nab/N of eigenstates obeying the abelian
Bloch theorem (31) relative to all eigenstates, for nonabelian
PBC clusters of size N ∈ {12, 16, 18, 20, 21, 24}.

with the hopping matrix H, thus we expect that eigen-
states ψ(zi) of H will form degenerate multiplets trans-
forming according to irreps of Γ/ΓPBC:

ψ(λ)
ν (g−1

k (zi)) =

rλ∑

µ=1

ψ(λ)
µ (zi)D

(λ)
µν ([gk]), [gk] ∈ Γ/ΓPBC.

(43)

Here ψ
(λ)
µ , µ = 1, . . . , rλ are the rλ degenerate states

belonging to irrep λ of Γ/ΓPBC, rλ is the dimension of
that irrep, and D(λ) ∈ U(rλ) are the unitary represen-
tation matrices. Equation (43) is the third key result
of this work: namely that eigenstates of translationally
invariant hopping Hamiltonians on finite hyperbolic lat-
tices with PBC obey a nonabelian Bloch theorem. For
one-dimensional irreps such as the trivial representation,
which is always present for any group, one has rλ = 1
and Eq. (43) reduces to the abelian Bloch theorem (31),
with χ(λ) = D(λ). For Γ/ΓPBC nonabelian, there will
also be irreps with rλ > 1, subject to the constraint that∑N
λ=1 r

2
λ = N where N < N is the number of conju-

gacy classes of Γ/ΓPBC (and thus also the number of
irreps) [66]. For an abelian group, each element is in its
own conjugacy class, thus N = N .

While the appearance of higher-dimensional irreps in
the spectrum of H is generally expected, one could con-
template the possibility that the multiplicity aλ of such
an irrep λ, i.e., the number of times that a multiplet
belonging to λ appears in the spectrum, is in fact zero.
However, we can easily show that all irreps must nec-
essarily appear in the spectrum by recognizing that the
translation matrices U form what is known as the reg-
ular representation of Γ/ΓPBC. The regular representa-
tion of a group of order N is the one derived from the
defining representation of SN under the homomorphism
of that group into SN implied by Cayley’s theorem [re-
call Eq. (20)]. The regular representation is always re-
ducible, and can be block-diagonalized by a suitable uni-

FIG. S1. Density of states histograms (blue) for abelian PBC clusters of size (a) N = 6, (b) N = 12, and

(c) N = 24, compared with the exact density of states of a tight-binding model with unit nearest-neighbor

amplitude on an infinite four-dimensional hypercubic lattice (red).

thus orthogonal, we have
(
U−1([gk])HU([gk])

)
im

=
∑

j`

Uji([gk])Hj`U`m([gk])

= −
∑

α

∑

j`

δ[gj ],[gkgi]δ[g`],[gjγα]δ[g`],[gkgm]

= −
∑

α

δ[gkgm],[gkgiγα], (S4)

using the explicit form Eq. (24). The summand is nonzero if and only if [gkgm] = [gkgiγα], that is,

if

ΓPBCgkgm = ΓPBCgkgiγα. (S5)

Multiplying on the left by g−1
k and using the normality of ΓPBC in Γ, we have ΓPBCgm = ΓPBCgiγα,

and thus
(
U−1([gk])HU([gk])

)
im

= −
∑

α

δ[gm],[giγα] = Him. (S6)

S4. DENSITY-OF-STATES HISTOGRAMS AND FRACTION OF ABELIAN STATES

1. Abelian clusters

To get a sense of how well Jac(Σ2) is sampled upon increasing the PBC cluster size N , we plot

in Fig. S1 density-of-states (DOS) histograms for three different cluster sizes. Here we present
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FIG. S2. Fraction Nab/N of eigenstates obeying the abelian Bloch theorem [Eq. (27)] relative to all

eigenstates, for nonabelian PBC clusters of size N ∈ {12, 16, 18, 20, 21, 24}.

histogram data averaged over all possible abelian clusters of a given size, to reduce finite-size

effects. The finite-size histogram data can be compared with the expected DOS for an infinite

abelian cluster, i.e., for the spectrum (30) in the main text but with k ∈ Jac(Σ2) a continuous

variable. This corresponds to the DOS for a tight-binding model with unit nearest-neighbor

hopping amplitude on the four-dimensional hypercubic lattice:

ρ4D(ω) =

∫

Jac(Σ2)

d4k

(2π)4
δ(ω − E(k)). (S7)

This can be expressed in terms of the DOS for a nearest-neighbor tight-binding model on the

simple cubic lattice,

ρ4D(ω) =

∫ π

−π

dk4

2π
ρ3D(ω + 2 cos k4), (S8)

which can be computed analytically:

ρ3D(ω) = − 1

π
Im

[
1

ω + iη
P

(
6

ω + iη

)]
, (S9)

where η is a positive infinitesimal, and we define [3]:

P (y) =

√
1− 3

4
x1

1− x1

(
2

π

)2

K(k2
+)K(k2

−), (S10)

k2
± =

1

2
± 1

4
x2

√
4− x2 −

1

4
(2− x2)

√
1− x2, (S11)

x2 =
x1

x1 − 1
, (S12)

x1 =
1

2
+

1

6
y2 − 1

2

√
(1− y2)

(
1− 1

9
y2

)
, (S13)



6
12

tary transformation P ,

PU([gk])P−1 =
N⊕

λ=1

rλD
(λ)([gk]), (44)

i.e., decomposed into a direct sum of irreps λ, where
the multiplicity is equal to the dimension rλ of irrep
λ [66]. For an abelian group, we recover Eq. (32):
all irreps are one-dimensional, and the regular rep-
resentation U can be fully diagonalized. By Schur’s
lemma, the matrix PHP−1, which commutes with the
PU([gk])P−1 by assumption, must necessarily be diago-
nal, with a number rλ of rλ-fold degenerate energy eigen-

values E
(λ)
1 , . . . , E

(λ)
rλ . Since

∑N
λ=1 r

2
λ = N from the gen-

eral dimensionality theorem used earlier, this accounts
for the entire spectrum. Thus provided irreps with rλ > 1
exist, as they do for Γ/ΓPBC nonabelian, rλ-fold degen-
erate multiplets obeying the nonabelian Bloch theorem
(43) necessarily appear rλ times in the spectrum of non-
abelian PBC clusters. For simplicity, we will refer to
eigenstates obeying the U(1) automorphic Bloch theo-
rem (31) as abelian states, and to eigenstates obeying
the Bloch theorem (43) with rλ > 1 as nonabelian states.

For a given nonabelian cluster, the fraction Nab/N
of abelian states among all eigenstates can be deter-
mined from the number N1D of one-dimensional irreps of
Γ/ΓPBC, which can be computed using representation-
theoretic routines in GAP. Indeed, since each one-
dimensional irrep occurs only once in the direct-sum de-
composition (44), we have Nab = N1D. In Fig. 6, we
plot for each cluster size N ∈ {12, 16, 18, 20, 21, 24} the
distinct values of Nab/N found across all possible non-
abelian clusters of size N . As the cluster size increases,
the minimum value of Nab/N appears to decrease (al-
beit monotonically), which suggests higher-dimensional
representations play an increasingly important role for
larger clusters. However, for the largest system size con-
sidered, nonabelian clusters can nonetheless still be found
for which up to 50% of the spectrum consists of abelian
states. Interestingly, the averaged DOS histograms for
nonabelian clusters (Fig. 7) are qualitatively not too
dissimilar from those for abelian clusters (Fig. 5), de-
spite the presence of a substantial fraction of nonabelian
states.

The observations above, combined with the fact that
nonabelian clusters only appear at certain values of N ,
lead us to conjecture that nonabelian clusters are those
that exhibit a higher degree of symmetry than their
abelian counterparts. In exact diagonalization studies
of quantum Hamiltonians on ordinary Euclidean lattices,
certain high-symmetry points in the Brillouin zone will
be excluded by an anisotropic choice of cluster geom-
etry. Likewise here, the relative fraction of abelian to
nonabelian “Brillouin zones” appearing in the spectrum
can be tuned by changing the geometry of the cluster, to
the point of completely excluding nonabelian representa-
tions for certain system sizes.
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FIG. 7. Density of states histograms for nonabelian PBC
clusters of size (a) N = 12, (b) N = 16, (c) N = 18, (d)
N = 20, (e) N = 21, and (f) N = 24.

A. Irrep decomposition of the finite-size spectrum:
an explicit example

Beyond computing the relative fraction of abelian vs
nonabelian states in the spectrum of a given cluster, we
now show with an explicit example how the finite-size
spectrum may be fully characterized in terms of the ir-
reps of Γ/ΓPBC. We choose a specific nonabelian clus-
ter of size N = 24, and explicitly calculate in GAP
the (irreducible) character table of its associated transla-
tion group Γ/ΓPBC (Table I). The number of conjugacy
classes/irreps is found to be N = 12. The first row of
Table I denotes the label C = 1, . . . ,N of the conjugacy
class, and the second, the number nC of group elements
in each class. One can check explicitly that the char-
acters χ(λ) = trD(λ) of the irreps λ = 1, . . . ,N , which
depend only on the class C, satisfy the properties of row
orthogonality,

N∑

C=1

nCχ
(λ)(C)∗χ(λ′)(C) = Nδλλ′ , (45)

and column orthogonality,

N∑

λ=1

χ(λ)(C)∗χ(λ)(C ′) =
N

nC
δCC′ , (46)

where N = 24 is the order of the group [66]. The
first column of the table corresponds to the dimension

FIG. S3. Density of states histograms for nonabelian PBC clusters of size (a) N = 12, (b) N = 16, (c)

N = 18, (d) N = 20, (e) N = 21, and (f) N = 24.

and K(m) is the complete elliptic integral of the first kind:

K(m) =

∫ π/2

0

dθ√
1−m sin2 θ

. (S14)

The remaining integral over k4 in Eq. (S8) can be performed numerically. It is clear from Eqs. (30)

and (S7) that the DOS vanishes for ω outside the interval [−8, 8]. We see from Fig. S1 that as N

increases, the finite-size DOS histograms approximate the exact DOS increasingly well.

2. Nonabelian clusters

For a given nonabelian cluster, the fraction Nab/N of abelian states among all eigenstates

can be determined from the number N1D of one-dimensional irreps of Γ/ΓPBC, which can be

computed using representation-theoretic routines in GAP. Indeed, since each one-dimensional irrep
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occurs only once in the direct-sum decomposition (32) in the main text, we have Nab = N1D. In

Fig. S2, we plot for each cluster size N ∈ {12, 16, 18, 20, 21, 24} the distinct values of Nab/N

found across all possible nonabelian clusters of size N . As the cluster size increases, the minimum

value of Nab/N appears to decrease, which suggests higher-dimensional representations play an

increasingly important role for larger clusters. However, for the largest system size considered,

nonabelian clusters can nonetheless still be found for which up to 50% of the spectrum consists of

abelian states. Interestingly, the averaged DOS histograms for nonabelian clusters (Fig. S3) are

qualitatively not too dissimilar from those for abelian clusters (Fig. S1), despite the presence of a

substantial fraction of nonabelian states. The reason for this unexpected similarity is not presently

understood and deserves further investigation.

The observations above, combined with the fact that nonabelian clusters only appear at cer-

tain values of N , lead us to conjecture that nonabelian clusters are those that exhibit a higher

degree of symmetry than their abelian counterparts. In exact diagonalization studies of quantum

Hamiltonians on ordinary Euclidean lattices, certain high-symmetry points in the Brillouin zone

will be excluded by an anisotropic choice of cluster geometry. Likewise here, the relative fraction

of abelian to nonabelian “Brillouin zones” appearing in the spectrum can be tuned by changing

the geometry of the cluster, to the point of completely excluding nonabelian representations for

certain system sizes.

S5. IRREP DECOMPOSITION FOR A NONABELIAN CLUSTER

For the chosen nonabelian PBC cluster of size N = 24, the irreducible character table of the

finite group Γ/ΓPBC of order 24, computed by GAP, is shown in Table S1. The number of conjugacy

classes/irreps is found to be N = 12. The first row of Table S1 denotes the label C = 1, . . . ,N
of the conjugacy class, and the second, the number nC of group elements in each class. One can

check explicitly that the characters χ(λ) = trD(λ) of the irreps λ = 1, . . . ,N , which depend only

on the class C, satisfy the properties of row orthogonality,

N∑

C=1

nCχ
(λ)(C)∗χ(λ′)(C) = Nδλλ′ , (S15)

and column orthogonality,

N∑

λ=1

χ(λ)(C)∗χ(λ)(C ′) =
N

nC
δCC′ , (S16)

where N = 24 is the order of the group [4]. The first column of the table corresponds to the

dimension rλ = χ(λ)(e) of irrep λ; thus this group has 8 one-dimensional irreps λ = 1, . . . , 8 and 4

two-dimensional irreps λ = 9, . . . , 12.
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C 1 2 3 4 5 6 7 8 9 10 11 12

nC 1 1 1 1 2 2 2 2 3 3 3 3

D(1) 1 1 1 1 1 1 1 1 1 1 1 1

D(2) 1 1 1 1 1 1 1 1 −1 −1 −1 −1

D(3) 1 −1 a −a 1 −1 a −a c −c −1/c 1/c

D(4) 1 −1 a −a 1 −1 a −a −c c 1/c −1/c

D(5) 1 −1 −a a 1 −1 −a a −1/c 1/c c −c
D(6) 1 −1 −a a 1 −1 −a a 1/c −1/c −c c

D(7) 1 1 −1 −1 1 1 −1 −1 a a −a −a
D(8) 1 1 −1 −1 1 1 −1 −1 −a −a a a

D(9) 2 2 −2 −2 −1 −1 1 1 0 0 0 0

D(10) 2 2 2 2 −1 −1 −1 −1 0 0 0 0

D(11) 2 −2 b −b −1 1 −a a 0 0 0 0

D(12) 2 −2 −b b −1 1 a −a 0 0 0 0

TABLE S1. Character table of Γ/ΓPBC for the N = 24 nonabelian cluster considered in Irrep decompo-

sition of the finite-size spectrum: an explicit example. Here a = −i, b = −2i, and c = e−iπ/4. C denotes

the conjugacy class, nC the number of group elements in each class, and D(λ) the 12 irreps labeled by

λ = 1, . . . , 12.

To determine to which irrep each Bloch eigenstate of the cluster belongs, we construct projector

matrices [4],

Π(λ) =
rλ
N

∑

[gk]∈Γ/ΓPBC

χ(λ)([gk])
∗U([gk]), (S17)

which obey Π(λ)Π(λ′) = δλλ′Π
(λ) and project an arbitrary state ψ(zi) onto irrep λ. Since the

Π(λ) are linear combinations of translation matrices U , they commute with H and can thus be

simultaneously diagonalized with it. Finally, we note that the eigenvalues of Π(λ) can only be 1

or 0, and that an eigenstate of H can have a Π(λ)-eigenvalue of 1 for only a single Π(λ). Such an

eigenstate ψ
(λ)
µ thus necessarily belongs to irrep λ of Γ/ΓPBC.

S6. GEOMETRY OF HIGHER-RANK MODULI SPACES

In this section, we provide further information on the geometry of the rank-r moduli spaces for

general r. While a positively-curved SU(r) fibre is a feature of these moduli spaces in general—in

algebro-geometric language, M(Σg, SU(r)) is Fano, as opposed to tori which are Calabi–Yau—

we also caution that the g = r = 2 example is rather unusual in that (a) the moduli space

happens to be globally smooth and (b) the geometry of the moduli space is known in an exact
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way. If we let M(Σg, U(r), d) denote the moduli space of semistable rank-r holomorphic vector

bundles with first Chern class c1(V ) = d, then it is worth noting that the moduli space is only

guaranteed to be smooth when r and d are coprime [5]. In the coprime case, it is impossible to

achieve equality in the stability inequality, and so the potentially singular points disappear from

the moduli space. In our case of M(Σg, U(r)) = M(Σg, U(r), 0), this coprimality never occurs

and we do have bundles for which equality is achieved, which makes the global smoothness of

M(Σ2, U(2)) somewhat surprising. In terms of π1(Σg)-representations, coprimality of r and d

means that we may construct a compact character variety from irreps alone; however, the nonzero

first Chern class must be incorporated and manifests as a twist by a nontrivial root of unity in the

defining relation of the character variety. For our purposes, we will restrict to the d = 0 case, in

which case we have the ordinary character variety as the rank-r component of the space of crystal

momenta.

Physically, one can still prescribe meaning to M(Σg, U(r)) as a space of higher-dimensional

fluxes, but the (co)homologies of the M(Σg, U(r))—in particular the relations that intertwine

cycles—are far more involved now than that of Jac(Σg). We note, however, that there is a natural

map M(Σg, U(r)) → Jac(Σg) obtained by V 7→ det(V ), where det(V ) is the line bundle whose

transition functions are the determinants of those of V . In other words, there is an algebraic

projection of higher-dimensional fluxes onto the magnetic fluxes in the abelian Brillouin zone.

S7. EXPERIMENTAL PROPOSAL

In this last section, we provide further details of the proposal outlined in Summary and outlook

to realize hyperbolic abelian/nonabelian Bloch states in CQED and/or electric circuit network

experiments. Figure 9 in the main text is reproduced in enlarged format as Fig. S4; close-ups of

the boundary octagons A, B, C (green) are given in Fig. S5.

To engineer PBC that are consistent with the normal subgroup structure discussed in the main

text, the 88 boundary sites must be wired together in particular ways. In Tables S2 and S3, we list

the 74 distinct bonds between boundary sites i and j > i that must be established to engineer (a

particular choice of) abelian and nonabelian PBC, respectively. This information is also included

in the SI files Dataset 1 and Dataset 2, respectively, where the first (second) column corresponds to

the value of i (j). The hopping strength (capacitive coupling) must be the same for those boundary

bonds as for the intra-cluster bonds (red nearest-neighbor bonds in Figs. S4 and S5) in order to

preserve Fuchsian translation symmetry and the automorphic Bloch theorem. With either abelian

or nonabelian PBC, both bulk and boundary sites are connected to 3 nearest neighbors (as can be

checked from Tables S2-S3), again consistent with translation symmetry on the {8, 3} lattice.



10

1

2
4

5

3

16

18
17

29
30

31
32

33

34

35
36

37
38

39

40

41

42
43 44 45 46

47

48

49

50 51
52

53
54

55

56

57
58

71

70
69

72

73

74

75
76

77
78

79

80

81

82

83848586

87

88

A

C

B

FIG. S4. Proposed realization of abelian/nonabelian Bloch states using CQED or electric circuit imple-

mentations (enlarged version of Fig. 9 in the main text). A cluster of 192 sites (red vertices) of the {8, 3}
lattice corresponds to N = 12 Bolza unit cells (blue octagons) with 16 sites each. Close-ups of the A, B,

C boundary octagons (green) are given in Fig. S5. The 88 boundary sites can be wired together in two

different ways to achieve either abelian PBC (Table S2) or nonabelian PBC (Table S3).
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FIG. S5. Close-ups of the A, B, C boundary octagons in Fig. S4.
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i j i j i j i j

1 36 14 86 29 68 44 71,76

2 30,35 15 67 30 85 45 70

3 29,52 16 66 31 79,84 49 76

4 46,51 17 62 32 78 50 70,75

5 21,45 18 61 33 63 51 69

6 20 21 58 34 62 52 86

7 59 22 57,74 36 84 53 61,85

8 58,75 23 73,82 37 78,83 54 60

9 47,74 24 40,81 38 72,77 64 80

10 46,55 25 39,48 39 71 65 79,88

11 19,54 26 47,56 41 64 66 87

12 18,35 27 55 42 63,83

13 34,87 28 69 43 77,82

TABLE S2. List of connections among boundary sites i and j of {8, 3} cluster of Fig. S4 to engineer

abelian PBC (data also included in Dataset 1).

i j i j i j i j

1 43 14 86 28 69 45 79,84

2 30,42 15 23 29 68 46 61,78

3 29,38 16 22 30 78 47 60

4 37,53 18 63 31 77,86 49 76

5 52,65 19 62 32 85 50 75,84

6 64 20 80 34 64 51 71,83

7 59 21 58,79 35 63,83 52 70

8 58,75 22 57 36 77,82 54 62

9 40,74 23 82 37 76 55 61

10 18,39 24 54,81 38 72 65 88

11 17,56 25 48,53 39 71 66 74,87

12 42,55 26 34,47 43 70 67 73

13 41,87 27 33 44 69,85

TABLE S3. List of connections among boundary sites i and j of {8, 3} cluster of Fig. S4 to engineer

nonabelian PBC (data also included in Dataset 2).
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