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Supplementary Text (SI Materials and Methods) 62 

We estimated the impacts of the 2007 U.S. Renewable Fuel Standard (RFS) on 63 
environmental outcomes by linking a series of empirical and explanatory models.  First, we 64 
estimated the effects of the RFS on the prices of corn, soybeans, and wheat.  We then simulated, 65 
using independent models, the responses of crop rotations and total cropland area to the 66 
changes in prices. Using those estimated changes, we quantified environmental outcomes, 67 
employing several models specific to nitrous oxide emissions, carbon emissions, nutrient losses, 68 
and water quality indicators.  We describe the methods developed for each model component 69 
below, followed by the approaches used to integrate the models and estimate uncertainty.  70 

Estimating effects on crop prices 71 

We assessed the effects of the RFS on U.S. corn, soybean, and wheat prices by 72 
comparing observed market prices to a counterfactual business-as-usual scenario (BAU) without 73 
the expanded 2007 RFS, where BAU ethanol production satisfies only the volume required by the 74 
initial 2005 Renewable Fuel Standard — equivalent to the amount needed to meet standards for 75 
reformulated gasoline under the 1990 Clean Air Act.  Our analysis therefore estimates the effects 76 
of the 2007 expansion of the RFS program above what would have otherwise likely occurred to 77 
meet demand for ethanol as an oxygenate.  Prior to 2007, ethanol use was driven by the 78 
oxygenate requirement, which mandated beginning in the 1990s that oxygenate additives be 79 
blended into gasoline in regions prone to poor air quality. At first, methyl tert-butyl ether (MTBE) 80 
was used as the oxygenate additive, but when it was found to pollute waterways, ethanol 81 
replaced it. The initial RFS in 2005 essentially translated the oxygenate requirement into a 82 
volume mandate. See the section in Carter et al. (2017) titled Incremental Effect of RFS2 on 83 
Ethanol Production for further details (1). 84 

Our approach closely follows that of Carter et al. to account for competing shocks in 85 
demand due to changes in inventory, weather, and external markets (1) and extends the work to 86 
estimate the impacts of the RFS on soybean and wheat prices. It also incorporates the policy as a 87 
persistent shock to agricultural markets rather than a transitory shock, whose price impacts are 88 
different. Specifically, we base our approach on the competitive rational storage model, which is 89 
the staple of the literature on the prices of storable commodities (2). Storage is a key feature of 90 
these markets because it allows prices to respond differently to a short-lived shock than to a long-91 
lived shock. If there is a one-year demand increase, then market participants can draw down 92 
inventory and mitigate the price impact; they can replenish inventories in later years. However, a 93 
permanent demand increase cannot be met by drawing down inventory. 94 

Carter et al. (2017) show in their Figure 3 and equations (9)-(11) the three fundamental 95 
equations of the storage model:  96 

(i) Inventory Supply, i.e., amount of grain this year’s market is willing to put into 97 
storage as a function of price. 98 

(ii) Inventory Demand, i.e., amount of stored grain next year’s market is expected to 99 
demand as a function of price. 100 

(iii) Supply of Storage, i.e., the price at which storage firms are willing to store as a 101 
function of inventory quantity. 102 
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The empirical model is a partially identified vector autoregression (VAR) that estimates 103 
these three fundamental equations. The model also includes a fourth variable (index of real 104 
economic activity) to account for the role of global commodity demand in driving price cycles (3). 105 

We follow Carter et al. by specifying the VAR using the following three assumptions to 106 
account for the endogeneity of prices and inventory (1).  First, shocks to the relevant commodity 107 
market (corn, soybeans, or wheat) do not affect real economic activity within the same year.  108 
Second, the marginal cost of grain storage does not depend on the commodity price.  Third, the 109 
short-run (within-year) elasticity of demand for the commodity is as estimated in Adjemian and 110 
Smith (2012)(4).  Carter et al. also show that replacing the third assumption with the following 111 
three assumptions has little effect on the estimates: (i) short-run elasticity of demand for current 112 
use exceeds −0.1 in absolute value; (ii) inventory-to-use ratio never exceeds 0.4, which is the 113 
sample maximum; and (iii) the elasticity of next year’s net supply is not less than the elasticity of 114 
current net supply.  These assumptions which we adopt as well are further described in Carter et 115 
al. in the subsection titled “VAR Model and Identification” (1). 116 

In a VAR, any data that do not fit the equations exactly contain an error, or shock.  These 117 
shocks represent shifts in the relevant curve. The RFS implies shocks to both inventory supply 118 
and demand; it constitutes both a reduction in inventory supply and an increase in inventory 119 
demand. If we were to set the inventory supply and demand shocks to zero, then we could solve 120 
the model for a counterfactual BAU price in the absence of any shocks to those equations.  121 

Instead, we define the counterfactual BAU scenario to include shocks to production for 122 
each commodity. For soybeans, we also allow shocks to soybean imports by China, as explained 123 
below. We incorporate these shocks as described in equation (27) of Carter et al. (2017). To 124 
measure these shocks, we use the difference between actual production and imports and the 125 
World Agricultural Supply and Demand Estimates (WASDE) that are made in May of each year. 126 
The May WASDE report is the first one released in each crop year.  127 

In the subsequent subsections, we describe our model input and background 128 
assumptions related to ethanol production volume and demand, crop production and demand, 129 
and our price model specification and estimation.  130 

Price model input – Estimated ethanol volumes  131 

Carter et al. (2017) estimate that the 2007 RFS increased mandated ethanol use by 5.5 132 
billion gallons (20.8 GL) per year (1). This is further illustrated by Fig. S7, which shows mandated 133 
and actual ethanol production since 2000 beside projections made by the United States 134 
Department of Agriculture (USDA) in February 2006 and February 2007. The difference between 135 
the 2005 and 2007 RFS mandates began at 3.6 bgal (13.6 GL) of ethanol in 2008. It rose to 4.4 136 
bgal (16.7 GL) in 2009 and averaged 5.4 bgal (20.4 GL) in 2010-12.  137 

In February 2006 the USDA projected that ethanol production would be quite similar to 138 
the 2005 standard. As noted earlier, this level would meet the oxygenate standard for 139 
reformulated gasoline under the Clean Air Act. However, a boom in ethanol production capacity 140 
occurred in 2006. By the end of that year, enough ethanol production capacity was under 141 
construction to more than double production. To reflect this building boom and the forthcoming 142 
RFS expansion, the USDA’s February 2007 projections jumped above its February 2006 143 
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projections. The anticipated increase in future corn demand from the ethanol industry incented 144 
corn producers to store corn to receive higher prices. For this reason, we measure the effect of 145 
the 2007 RFS on grain markets beginning in late 2006. 146 

The RFS also requires increased biodiesel use. Our approach to estimating the price 147 
effects captures any effects of biodiesel on crop prices.  However, we expect the effect of 148 
biodiesel on soybean prices to be small. Half of U.S. soybeans are exported whole. By weight, 149 
about 80% of each domestic bean becomes meal and the other 20% becomes oil. Of this oil, 150 
30% was used to make biodiesel in 2017, or about 3% of the weight of U.S. soybeans. Another 151 
reason we expect the effect of biodiesel on soybean prices to be small is that soybeans produce 152 
oil and meal in fixed proportions. An increase in demand for oil means the market gets more meal 153 
than it wanted, which lowers the price of meal thereby mitigating the effect on soybean prices. 154 

 155 

Price model input – Corn, soybean, and wheat production  156 

The RFS affected corn, soybean and wheat markets in two major ways. First, the 157 
mandated increase in ethanol production created additional demand for corn, since nearly all 158 
ethanol used in the U.S. is produced from corn. Second, increased demand for corn causes 159 
farmers to plant more corn, leaving less land available for other crops. This in turn reduced the 160 
supply of soybeans and wheat, causing these prices to increase as well.     161 

Production of corn, soybeans and wheat occupies about two-thirds of U.S. cropland. The 162 
top panel of Fig. S8 shows harvested area of these three crops since 1995. In the mid-90s, these 163 
crops occupied similar amounts of land. Since then, corn and soybean area has increased and 164 
wheat area has declined. Corn area increased by 24% in 2007 as the expansion in the RFS 165 
loomed. Much of this increase was in central Corn Belt states such as Iowa, Illinois and Indiana, 166 
where corn is typically rotated with soybeans (5). After some reversion towards the mean in 2008, 167 
corn area remained high and then trended upward. From 2001-05, average corn area was 1% 168 
below soybean area. From 2006-10, average corn area exceeded soybean area by 8%. Soybean 169 
area recovered in the later years in response to increased demand for exports to China. 170 

The bottom panel of Fig. S8 shows a steady increase in corn production, aside from the 171 
2012 drought, which affected corn production much more than soybeans or wheat. Soybeans 172 
produce fewer bushels per unit of area than corn and wheat, but soybean production increased 173 
steadily throughout the sample period; it increased from 2.2 billion bushels in 1995 to 4.4 billion 174 
bushels in 2017. Wheat has steadily become less prevalent. Between 1995 and 2017, wheat area 175 
declined by 38%. Wheat production declined 20% during the same period because increasing 176 
yields offset some of the area decline.  177 

 Figure S9 shows the rates of use for corn, soybeans, and wheat in the U.S. since 1995. 178 
For corn, the dominant change reflects the increase in ethanol use. About one-third of each corn 179 
kernel that enters an ethanol plant is recycled as dried distillers grains (DDG), which are used for 180 
animal feed and have a price similar to corn grain. The other two-thirds of the kernel — the starch 181 
— is converted to ethanol.  Fig. S9 displays these two components separately; the black area in 182 
the figure (denoted “ethanol”) is the net amount of corn used for ethanol. The amount of corn 183 
used directly for food is relatively constant over the period. With the exception of the 2012 184 
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drought year, the quantity exported is also relatively stable.  Note that the food category for corn 185 
and wheat also includes seed and industrial uses, and that these two categories are included in 186 
the residual category for soybeans.   187 

Soybean exports grew by a factor of 2.5 between 1995 and 2017. By 2017 half of all U.S. 188 
soybeans were exported. Much of this demand came from China, which consumed 22% of the 189 
world’s soybeans in 2017, up from 8% in 1995. This increase in demand for soybeans created 190 
upward pressure on soybean prices in addition to the pressure from the RFS.  191 

Almost all domestically consumed soybeans are crushed (processed into oil and meal) 192 
before use. Soybean meal is used predominantly as animal feed and oil is used for human 193 
consumption or to make biodiesel. By weight, about 80% of each bean becomes meal and the 194 
other 20% becomes oil.  Since most of the soybean becomes meal and half of soybeans are 195 
exported, the proportion of U.S. soybeans by weight that end up as oil is small, as illustrated in 196 
Fig. S9. Soybean oil prices typically run about double meal prices, so while biodiesel would be 197 
more prominent by dollar value rather than by weight, it remains a relatively minor source of 198 
income for soybean producers. 199 

Most wheat is either exported or used domestically for food, with a small amount 200 
employed as animal feed. The quantity used for food is relatively constant from year to year. This 201 
suggests that exports and animal feed demand are relatively more elastic and that it is these 202 
areas that adjust to accommodate fluctuations in production.  203 

 The price of corn increased by about 50% in fall 2006 and has remained at or above that 204 
level since (Fig. S10). In the first five years after the RFS signal hit the markets (Sept 2006 – Aug 205 
2011), corn prices were up 77%, soybean prices up 62%, and wheat prices up 62% relative to the 206 
last five pre-RFS years (Sept 2001–Aug 2006). 207 

To ascertain how much of these price increases can be attributed to the RFS, we 208 
estimated a model that controls for other factors including the business cycle, global commodity 209 
demand, and yield fluctuations. All prices spiked around the 2008 commodity boom for reasons 210 
related more to the business cycle and global commodity demand than to the RFS. Prices spiked 211 
again in 2010-12 as relatively poor yields, especially for corn, coincided with high demand for 212 
biofuels and for soybean exports to China. Prices came back from these peaks after the 2012 213 
drought. In summary, the three largest trends in the markets for corn, soybeans, and wheat after 214 
2006 were higher prices, increased corn use for ethanol, and increased soybean exports. 215 

Price model development and estimation 216 

We apply the method in Carter et al. (2017), which uses a partially identified structural 217 
vector autoregression model to estimate the effect of the RFS on corn prices (1). Here, we update 218 
the corn model with data through the 2016-17 crop year, and we also apply the model to 219 
soybeans and wheat.      220 

Our model incorporates the fact that the RFS is a persistent rather than transitory shock 221 
to agricultural markets. This distinction is important because persistent shocks have larger price 222 
effects than transitory shocks. The market can respond to a transitory shock, such as poor 223 
growing season weather, by drawing down inventory. This action mitigates the price effect. A 224 
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persistent shock, such as an increase in current and expected future demand, cannot be 225 
mitigated by drawing down inventory. To identify these two types of shocks, the model uses data 226 
on inventory levels and on the term structure of futures prices.  227 

Table S4 summarizes the data used to estimate the model. It includes global real 228 
economic activity, which has been shown to be an important driver of commodity prices (3). To 229 
represent global economic activity, we use the index developed by Kilian (2009) from dry-cargo 230 
shipping rates (1, 6). As Kilian emphasizes, “the proposed index is a direct measure of global 231 
economic activity which does not require exchange-rate weighting, which automatically 232 
aggregates real economic activity in all countries, and which already incorporates shifting country 233 
weights, changes in the composition of real output, and changes in the propensity to import 234 
industrial commodities for a given unit of real output” (pg. 1056)  (6). 235 

The timeline at the bottom of Table S4 shows when the variables are measured. We 236 
measure inventory (I) at the end of the crop year. The real economic activity index (X), the futures 237 
price (F), and the spot price (S) are all measured at the same point in the middle of the crop year, 238 
i.e., in March, which is after the previous crop has been harvested and before the new crop is 239 
planted. Winter wheat is the exception, as it is planted late in the fall of the previous year.  The 240 
arrow indicates that the futures price is the contract for delivery in November or December, which 241 
is after the next harvest.  242 

Following (1), we use the futures and spot prices to compute the convenience yield, 243 
which is essentially the spot price minus the futures price. In computing the convenience yield, we 244 
also adjust the spread for interest and warehousing costs as in equation (13) of (1). Convenience 245 
yield provides crucial information for identifying the differing effects of transitory and permanent 246 
shocks. For example, in response to poor growing season weather, the spot price increases and 247 
inventory decreases, but the futures price does not increase much because traders understand 248 
that supplies will be replenished by the new harvest before the futures contract delivers. In such 249 
cases, the convenience yield increases. In contrast, persistent shocks such as the RFS cannot be 250 
met by drawing down inventory, so spot and futures prices increase by similar amounts and the 251 
convenience yield does not increase. Observing both the spot and futures price allows them to be 252 
identified separately, whereas observing only one price for a commodity does not.  253 

Unlike corn and soybeans, which are relatively homogeneous, there are several classes 254 
of wheat produced in the United States. They vary according to where they are grown, the 255 
growing season, hardness, and protein content.  Hard red winter wheat (HRW) makes up 40-45% 256 
of production in a typical year. It is grown mostly in and around Kansas, and is planted in the fall 257 
for harvest in early summer. Hard red spring wheat (HRS) makes up about 25% of production in a 258 
typical year and is considered the highest quality class due to its high protein content. It is grown 259 
in the Northern Plains states, and is planted in the spring for harvest in late summer. Soft red 260 
winter wheat (SRW) provides about 20% of production and most of the rest is white wheat. 261 
Robust futures markets exist for HRW in Kansas City, HRS in Minneapolis, and SRW in Chicago. 262 
The SRW futures market has a long history and remains the most actively traded, even though it 263 
lags behind the other two in production. The HRW and HRS futures markets are newer and have 264 
reported viable prices only since the late 1970s.  In our analysis, we use SRW prices until March 265 
1976, after which we switch to HRW and HRS futures prices. The results are the same if we 266 
instead use a weighted average of the three prices after 1976. 267 
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Estimating the incremental effect of the RFS requires an estimate of ethanol use that 268 
would have occurred in the absence of the RFS. This business-as-usual amount depends on 269 
factors that are difficult to quantify, including the true value of ethanol to the fuel industry and the 270 
extent to which, by guaranteeing demand for ethanol, the RFS caused large capital investment in 271 
ethanol plants and fueling infrastructure.  Thus, rather than estimate the BAU ethanol quantity 272 
directly, we estimate the difference between the BAU and observed quantities.  For price 273 
estimates of each commodity, we follow (1) and fit the model using data prior to the 2006 crop 274 
year and use them to project business-as-usual (BAU) prices that would have occurred after 2006 275 
in the absence of the RFS.  276 

To assess the model fit, we compute the Corrected Akaike Information Criterion (AICC) 277 
and Bayesian Information Criterion (BIC), and we evaluate the impulse response functions for 278 
concordance with economic theory. We generate confidence intervals for the impulse response 279 
functions using a recursive-design wild bootstrap with 10,000 replications (7).  For each bootstrap 280 
draw, we estimate the identified parameter set and the range of impulse responses defined by 281 
that set. We keep only draws that satisfy our identification conditions. This exercise produces 282 
10,000 bootstrap draws for both the estimated lower and upper bounds of the identified set. For 283 
this component of the price impact analysis we set the lower limit of the confidence interval equal 284 
to the 0.05 quantile across draws of the estimated lower bound and the upper limit as the 0.95 285 
quantile across draws of the estimated upper bound. This interval, as reported in Figs. S13 and 286 
S16, covers the identified set with probability 0.90, because 90 percent of the estimated 287 
parameter sets lie entirely inside it.  288 

We estimate business-as-usual prices by simulating from the model what prices would 289 
have been if the markets had experienced the same shocks to (i) real economic activity, (ii) U.S. 290 
production, (iii) Chinese soybean imports, and (iv) the supply of grain storage that we 291 
experienced post-2006, but no other shocks. The average difference between observed prices 292 
and these simulated BAU prices provides an estimate of how much the RFS affected prices.  293 
Although Garcia et al. (2015) show significant decreases in convenience yield since 2006, 294 
especially for wheat (8), allowing observed post-2006 convenience yield shocks (supply of 295 
storage) to enter the BAU simulation reduces the estimated effect of the RFS on wheat prices by 296 
only two percentage points.  297 

Estimating effects on crop rotations 298 

Following estimation of the price impacts of the RFS, we subsequently assessed the 299 
response of crop rotations to changes in price.  We assumed an estimated 30% persistent 300 
increase in the price of corn and 20% increase in the prices of soybeans and wheat (see 301 
supplementary results) and followed the approach of Hendricks et al. (2014) to estimate how 302 
changes in prices affect the likelihood of continuous corn, continuous other crops, and corn-other 303 
crop rotations (5, 9).   304 

Crop rotation model input 305 

To estimate our model, we built a spatiotemporal database of U.S. cropland fields, crop 306 
types, soil properties, climate data, and observed crop futures and basis prices.  To delineate 307 
individual fields, we used field boundary data from the publicly available 2008 USDA Common 308 
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Land Unit (CLU) produced by the Farm Service Agency (10, 11).  If CLUs were not available for a 309 
given area, then we used satellite-delineated field boundaries from Yan and Roy (12).  310 
Information on annual crop types, soil properties, and climate data for each field were then drawn 311 
from the Cropland Data Layer (13), the Soil Survey Geographic Database (SSURGO) (14), and 312 
the PRISM climate group (15), respectively.       313 

Crop futures and local cash prices used for the model were obtained from the Bloomberg 314 
Terminal (16). In total, the dataset represents local prices from 1,367 corn markets, 1,252 315 
soybean markets, 84 HRS wheat markets, 96 HRW wheat markets, and 123 SRW wheat markets 316 
that were continuously observed from 2004-16. National prices for cotton and rice were also 317 
included in areas where these crops are relevant alternatives to corn. While we do not observe 318 
georeferenced prices of rice or cotton, the production of these commodities is far more localized. 319 
The goal in collecting these prices was to construct estimates of the price that producers expect 320 
to receive at harvest time while they are making their planting decisions. Since corn planting does 321 
not take place before March, this expected price is constructed as the spread between the nearby 322 
and harvest futures prices plus the local price, averaged over the months of January and 323 
February. Depending on the commodity, this spread will be the difference between the price of a 324 
November or December contract and the price of a March contract. The spread between the 325 
nearby and harvest futures prices represents the market’s expected cost of storing a single 326 
bushel from planting time to harvest time. Adding the local price to this spread completely 327 
compensates a producer that would store a bushel to sell at harvest time relative to selling at 328 
planting time.  329 

Crop rotation model estimation 330 

First, we estimated the impact of corn prices and other crop prices on the probability of 331 
planting corn or another crop on a given field.  Our regression models are the same as those 332 
used in Pates and Hendricks (2021), which follow the frameworks of Hendricks et  al. (2014) to 333 
account for the common practice of rotating crops (e.g., alternating between corn and 334 
soybeans)(5, 9, 17). The probability of planting corn if corn was previously planted on the field 335 
was estimated as  336 

𝑃𝑟𝑜𝑏(𝑦𝑖𝑡 = 𝑐𝑜𝑟𝑛|𝑦𝑖,𝑡−1 = 𝑐𝑜𝑟𝑛) = Λ(𝛽10 + 𝛽1
𝐶𝑃𝑖𝑡

𝐶 + 𝛽1
𝑂𝑃𝑖𝑡

𝑂 + 𝜸1
′ 𝑿𝑖𝑡), 337 

and the probability of planting corn given that a different crop was previously planted was 338 
estimated as  339 

𝑃𝑟𝑜𝑏(𝑦𝑖𝑡 = 𝑐𝑜𝑟𝑛|𝑦𝑖,𝑡−1 = 𝑜𝑡ℎ𝑒𝑟) = Λ(𝛽20 + 𝛽2
𝐶𝑃𝑖𝑡

𝐶 + 𝛽2
𝑂𝑃𝑖𝑡

𝑂 + 𝜸2
′ 𝑿𝑖𝑡). 340 

The variable 𝑦𝑖𝑡 is a binary indicator if the crop on field 𝑖 in year 𝑡 is corn or some other crop, 𝑃𝑖𝑡
𝐶 is 341 

the price of corn, 𝑃𝑖𝑡
𝑂 is the price index of other crops, and 𝑿𝑖𝑡 is a vector of controls.  To reflect 342 

local basis patterns, we derived field-specific prices using an ordinary kriging of observed prices 343 
from thousands of locations in the region.  The controls in our model include the field’s slope, 344 
National Commodity Crop Productivity Index (NCCPI), irrigation status, and binary indicators for 345 
extreme precipitation conditions during the planting season.  We also include a linear time trend 346 
to account for technology change.  We estimated logistic models as denoted by the function Λ(⋅).  347 
We estimated separate models in different Major Land Resource Areas (MLRAs) and soil texture 348 
groups to account for the fact that corn area may be more responsive to price in some regions.  349 



 

 

10 

 

We estimated the models for all fields greater than 6 ha (15 acres) that were in regions where (i) 350 
over 20% of the total area was cropland; (ii) more than 10% of cropland area was planted to corn; 351 
and (iii) more than 50% of the cropland not planted to corn was planted to a crop for which prices 352 
were available, specifically wheat, soybeans, rice, and cotton.  This set of criteria ensured 353 
adequate data were available to train the model.  Our final sample included 3.6 million fields that 354 
accounted for 91.6% of corn area between 2009-16, inclusive.  A complete description of the 355 
modeling and data sources can be found in Pates and Hendricks (2021). 356 

Next, we used the estimated model to simulate the impact of a change in prices on the 357 
probability of specific crop rotations.  The probabilities of planting a corn-corn rotation 358 

(𝑃𝑟𝑜𝑏{𝐶𝐶}𝑅𝑂𝑇), an other-other rotation (𝑃𝑟𝑜𝑏{𝑂𝑂}𝑅𝑂𝑇), and a corn-other rotation (𝑃𝑟𝑜𝑏{𝑂𝐶}𝑅𝑂𝑇) were 359 
calculated for a given price scenario as follows (Pates and Hendricks, 2021): 360 

𝑃𝑟𝑜𝑏{𝐶𝐶}𝑅𝑂𝑇 = 𝑃𝑟𝑜𝑏𝑐𝑜𝑟𝑛 × 𝑃𝑟𝑜𝑏(𝑦𝑖𝑡 = 𝑐𝑜𝑟𝑛|𝑦𝑖,𝑡−1 = 𝑐𝑜𝑟𝑛), 361 

𝑃𝑟𝑜𝑏{𝑂𝑂}𝑅𝑂𝑇 = (1 − 𝑃𝑟𝑜𝑏𝑐𝑜𝑟𝑛) × (1 − 𝑃𝑟𝑜𝑏(𝑦𝑖𝑡 = 𝑐𝑜𝑟𝑛|𝑦𝑖,𝑡−1 = 𝑜𝑡ℎ𝑒𝑟)), 362 

𝑃𝑟𝑜𝑏{𝑂𝐶}𝑅𝑂𝑇 =
1

2
[𝑃𝑟𝑜𝑏𝑐𝑜𝑟𝑛 × (1 − 𝑃𝑟𝑜𝑏(𝑦𝑖𝑡 = 𝑐𝑜𝑟𝑛|𝑦𝑖,𝑡−1 = 𝑐𝑜𝑟𝑛)) 363 

+(1 − 𝑃𝑟𝑜𝑏𝑐𝑜𝑟𝑛) × 𝑃𝑟𝑜𝑏(𝑦𝑖𝑡 = 𝑐𝑜𝑟𝑛|𝑦𝑖,𝑡−1 = 𝑜𝑡ℎ𝑒𝑟)], 364 

where 𝑃𝑟𝑜𝑏𝑐𝑜𝑟𝑛 is the long-run probability of planting corn calculated as  365 

𝑃𝑟𝑜𝑏𝑐𝑜𝑟𝑛 =
𝑃𝑟𝑜𝑏(𝑦𝑖𝑡 = 𝑐𝑜𝑟𝑛|𝑦𝑖,𝑡−1 = 𝑜𝑡ℎ𝑒𝑟)

1 − 𝑃𝑟𝑜𝑏(𝑦𝑖𝑡 = 𝑐𝑜𝑟𝑛|𝑦𝑖,𝑡−1 = 𝑐𝑜𝑟𝑛) + 𝑃𝑟𝑜𝑏(𝑦𝑖𝑡 = 𝑐𝑜𝑟𝑛|𝑦𝑖,𝑡−1 = 𝑜𝑡ℎ𝑒𝑟)
. 366 

We calculated the change in probability of each rotation due to the RFS for each of the 3.6 million 367 
crop fields as the difference in the probability under the RFS scenario with observed prices and 368 
the counterfactual BAU scenario based on our estimates of crop price impacts from our vector 369 
autoregression model described in the previous section — 30% higher corn prices and 20% 370 
higher soybean and wheat prices.  To estimate the change in area of specific crop rotations, we 371 
multiplied the change in rotational probability for each field by the corresponding field size.  These 372 
field-level changes were subsequently aggregated to the county and national level for 373 
visualization and reporting, respectively.   374 

Estimating effects on cropland area 375 

We assessed the impact of the RFS on cropland area by estimating changes in the 376 
probability of cropland expansion and abandonment.  To do this, we estimated the probability of 377 
transitions between cropland and both land in pasture or in the Conservation Reserve Program 378 
(CRP).  These transition probabilities were estimated as a function of cropland, pasture, and CRP 379 
returns and trained using point-level data from the National Resources Inventory (NRI) from 380 
2000-12.  We then used the model to predict the change in transitions between 2008-16 based 381 
on changes in prices associated with the RFS (18).   382 
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Cropland transitions model input 383 

We developed our model of cropland area changes based on point-level land use 384 
transition data from the USDA National Resources Inventory (NRI) collected by the Natural 385 
Resources Conservation Service (NRCS) (18). The NRI provides annual land use data at a 386 
sampling of points across the United States from 2000-12.  For our analysis, we focused on 387 
cropland (cultivated and noncultivated) transitions with either pasture or CRP land. We also used 388 
information in the NRI about the land capability classification of each point and its soil texture. If a 389 
point was enrolled in the CRP, the NRI indicates the year of the general signup number 390 
associated with its enrollment. Because the point-level data from the NRI indicate the county in 391 
which a point is located — but not its GIS location — variables constructed from other data 392 
sources were then merged into the NRI by county. 393 

We constructed cropland returns as a 10-year discounted stream of expected returns 394 
averaged across the relevant crops of the county, assuming a discount rate of 5%. Crops in the 395 
calculations include corn, soybeans, winter wheat, spring wheat, rice, cotton, and sorghum. 396 
Projected prices for the next 10 years were obtained from the Agricultural Baseline Database 397 
from the Economic Research Service (19). These prices are created as part of the USDA’s 398 
longterm projections report. For expected crop yields, we estimated county-specific trend yields. 399 
Costs of production were from Economic Research Service Commodity Costs and Returns (20) 400 
and utilized at the Farm Resource Region level or groups of states — ERS has changed its 401 
reporting regions over time. We included costs for seed, fertilizer, pesticides, and custom 402 
operations, which represent the primary cost differences across commodities. Other cost 403 
categories available in the data were excluded because of their minor role and because their 404 
definitions have changed over time, which could have improperly distorted the model.  For all 405 
categories, we assumed costs remain constant over the 10-year projection period for the stream 406 
of expected returns. Returns were then averaged across crops for each county, where the weight 407 
given to each crop was the five-year moving average of area planted to that crop.  Pasture 408 
returns were calculated as an estimate of pasture rental rates, which were derived from 409 
information about animal stocking densities and the price of hay (21).  Pasture stocking densities 410 
(measured in animal-unit months) at the county level were obtained from Atwood et al. (2005) 411 
who extracted the values from the STATSGO soils data and cleaned the data (22). Hay prices 412 
were a five-year moving average of prices from NASS (23). Translating animal-unit months into 413 
rental rates requires several other parameter assumptions that can vary across states. Instead of 414 
making such assumptions about these parameters, we calibrated our rent estimates by state so 415 
that our rent estimates were similar in magnitude to 2009-16 pasture rental rates reported by 416 
NASS. 417 

 Several important variables for the CRP were obtained at the county level through a 418 
Freedom of Information Act request. The return from enrollment in the CRP is the rental rate of 419 
newly enrolled contracts. While the CRP rental rate data available online report the average rent 420 
for all enrolled land, we used only the rental rate of newly enrolled contracts, which better 421 
represents the decision variable for farmers. We also utilized data on (i) the average 422 
Environmental Benefits Index of land offered — both accepted and rejected — for CRP 423 
enrollment; (ii) the area of land with expiring contracts in each year based on the original contract; 424 
and (iii) the area of land eligible for early contract release in 2015 (see (24)).  425 

We used climate data at the county level (25), and assumed that farmers make land use 426 
decisions based on expected climate conditions and that these climate conditions are 427 
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approximated by a 30-year average of weather variables. Weather variables included were the 428 
water deficit, water surplus, growing degree days between 10°C and 30°C, and extreme degree 429 
days (days above 30°C). Water deficit and surplus were calculated from a daily water balance 430 
model. Water deficit represents the amount of reference evapotranspiration demand that cannot 431 
be met by available water. Water surplus represents precipitation in excess of evapotranspiration 432 
demand. See (25) for details. 433 

In order to allow for geographic variation in the extensive margin response of land use to 434 
crop prices, we trained independent models for each of seven Land Resource Regions (LRR) that 435 
correspond to aggregated Major Land Resource Areas (MLRAs) from the Natural Resources 436 
Conservation Service.  For our sample of NRI points to estimate the models, we selected Major 437 
Land Resource Regions (MLRAs) where (i) over 20% of total land area is crop production; (ii) 438 
over 10% of cropland is planted to corn, soybeans, or wheat; and (iii) more than 50% of total crop 439 
area was planted to crops included in our estimate of cropland returns. Fig. S11 shows the 440 
regions that met these criteria and were included in our analysis. The region label indicates the 441 
letter of the Land Resource Region (LRR). Multiple letters indicate that LRRs were combined. 442 
LRR M had many more NRI points than other LRRs and included some areas that were very 443 
densely cropped while other areas had a substantial portion of grassland. Therefore, we divided 444 
this LRR based on whether the Major Land Resource Region (subregions within the LRR) had 445 
grassland area less than or greater than 15% of the area of cropland.  446 

Cropland transitions model development       447 

We utilized the NRI data to estimate how changes in land use returns over time affect the 448 
probability of transitions between cropland and pasture and between cropland and the CRP (26–449 
30).   We estimated only these two transition types because there are very few transitions 450 
between cropland and other types of land use in our study region.  Notably, between 2000-12 in 451 
our region, only 0.01% of cropland became rangeland, 0.02% was changed to forestland, 0.01% 452 
of rangeland transitioned to cropland, and 0.01% of forestland became cropland. These represent 453 
too small a sample of NRI data to estimate how returns impacted the likelihood of a transition.   454 

The probability of expansion of cropland from pasture was estimated as 455 

𝑃𝑟𝑜𝑏(𝑙𝑢𝑛𝑡 = 𝑐𝑟𝑜𝑝|𝑙𝑢𝑛,𝑡−1 = 𝑝𝑎𝑠) 456 

= 𝛷(𝜃0
𝑐𝑟𝑜𝑝

𝑅𝑚𝑡
𝑐𝑟𝑜𝑝

+ 𝜃0
𝑝𝑎𝑠

𝑅𝑚𝑡
𝑝𝑎𝑠

+ 𝜑0
𝑐𝑟𝑜𝑝

𝑅̅𝑚
𝑐𝑟𝑜𝑝

+ 𝜑0
𝑝𝑎𝑠

𝑅̅𝑚
𝑝𝑎𝑠

+ 𝜹0
′ 𝑿𝑛) 457 

where 𝑃𝑟𝑜𝑏(𝑙𝑢𝑛𝑡 = 𝑐𝑟𝑜𝑝|𝑙𝑢𝑛,𝑡−1 = 𝑝𝑎𝑠) denotes the probability that NRI point 𝑛 has a land use of 458 

cropland in year 𝑡 and pasture in year 𝑡 − 1 and this probability is a function of the returns to 459 

cropland (𝑅𝑚𝑡
𝑐𝑟𝑜𝑝

) in county 𝑚, returns to pasture (𝑅𝑚𝑡
𝑝𝑎𝑠

), and a vector of other characteristics of the 460 

NRI point (𝑿𝑛). The notation 𝛷(⋅) denotes the cumulative normal distribution to indicate that the 461 
probability is estimated with a probit model. The probability of abandonment of cropland to 462 
pasture was estimated similarly as 463 

𝑃𝑟𝑜𝑏(𝑙𝑢𝑛𝑡 = 𝑝𝑎𝑠|𝑙𝑢𝑛,𝑡−1 = 𝑐𝑟𝑜𝑝) 464 

= 𝛷(𝜃1
𝑐𝑟𝑜𝑝

𝑅𝑚𝑡
𝑐𝑟𝑜𝑝

+ 𝜃1
𝑝𝑎𝑠

𝑅𝑚𝑡
𝑝𝑎𝑠

+ 𝜑1
𝑐𝑟𝑜𝑝

𝑅̅𝑚
𝑐𝑟𝑜𝑝

+ 𝜑1
𝑝𝑎𝑠

𝑅̅𝑚
𝑝𝑎𝑠

+ 𝜹1
′ 𝑿𝑛). 465 
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The controls included in the regression to account for soil productivity include a set of 466 
binary variables to indicate if the land capability classification is 1 or 2 or whether the land 467 
capability classification is 3 or 4, as well as indicators for five soil texture classifications. Controls 468 
to account for the climate of each county included water deficit, water surplus, growing degree 469 
days, and extreme degree days. The models were estimated separately for each region in Fig. S5 470 
because we expected that crop returns have a different impact on transitions in different regions.        471 

A key difference between our specification and previous literature is that we controlled for 472 

average returns (𝑅̅𝑚
𝑗

=
1

𝑇
∑ 𝑅𝑚𝑡

𝑗
𝑡 ) to account for unobservable variables that may be correlated 473 

with returns. This specification is known as the correlated random effects probit model and 474 
assumes that, conditional on average returns and observables 𝑿𝑛, any remaining unobserved 475 

heterogeneity is uncorrelated with returns (31). Intuitively, adding 𝑅̅𝑚
𝑐𝑟𝑜𝑝

 and 𝑅̅𝑚
𝑝𝑎𝑠

 as controls 476 
means that we are exploiting changes in returns over time rather than the pure cross-sectional 477 

variation in returns. The terms 𝜑
𝑐𝑟𝑜𝑝

 and 𝜑
𝑝𝑎𝑠

 are nuisance parameters to account for 478 

unobserved heterogeneity and should not be interpreted as causal parameters. The cross-479 
sectional variation in returns is subject to concerns about omitted variable bias because the NRI 480 
points in counties with higher returns may be more likely to convert to cropland but for reasons 481 
not fully accounted for in our controls 𝑿𝑛. The correlated random effects specification exploits 482 
changes in crop returns over time that occurred due to changes in the demand for crops. The 483 
correlated random effects model is similar to a fixed effects model but is free from bias from the 484 
incidental parameters problem (31). While the correlated random effects model substantially 485 
reduces endogeneity concerns, there could still be some remaining endogeneity. One potential 486 
source of endogeneity is that additional cropland area could decrease crop prices. This remaining 487 
endogeneity is expected to bias our estimates of cropland area response to price downward and 488 
understate the environmental impacts of the RFS. 489 

The probability of expansion of cropland from the CRP (i.e., exiting the CRP) was 490 
estimated as 491 

𝑃𝑟𝑜𝑏(𝑙𝑢𝑛𝑡 = 𝑐𝑟𝑜𝑝|𝑙𝑢𝑛,𝑡−1 = 𝐶𝑅𝑃𝑒𝑥𝑝𝑖𝑟𝑖𝑛𝑔) 492 

= 𝛷(𝜃0
𝑐𝑟𝑜𝑝

𝑅𝑚𝑡
𝑐𝑟𝑜𝑝

+ 𝜃0
𝐶𝑅𝑃𝑅𝑚𝑡

𝐶𝑅𝑃 + 𝜑0
𝑐𝑟𝑜𝑝

𝑅̅𝑚
𝑐𝑟𝑜𝑝

+ 𝜑0
𝐶𝑅𝑃𝑅̅𝑚

𝐶𝑅𝑃 + 𝜹0
′ 𝑿𝑛). 493 

One important note about expansion of cropland from the CRP is that we estimated the 494 
model only for NRI points that were enrolled in the CRP the previous year and for which the 495 
contract may be expiring. Farmers enrolling in the CRP agree to a multiyear contract — typically 496 
10 years. Therefore farmers make a decision about changing land use only when their CRP 497 
contract is expiring. While we cannot know the exact date an individual point expires, we can 498 
approximate this date because the NRI data indicate the CRP signup year for each NRI point. 499 
Complicating determination of the exact expiration year, however, is that the USDA offered two- 500 
to five-year contract extensions for contracts expiring between 2007-10 in order to stagger the 501 
expiration of CRP contracts (24).  Using this information and the NRI data, we tabulated how 502 
often land exited the CRP for each signup year, determined the common exit years, and 503 
estimated the model only for points in the respective years of potential exits. 504 

The probability of abandonment of cropland to the CRP (i.e., enrollment into the CRP) is 505 
estimated as     506 
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𝑃𝑟𝑜𝑏(𝑙𝑢𝑛𝑡 = 𝐶𝑅𝑃|𝑙𝑢𝑛,𝑡−1 = 𝑐𝑟𝑜𝑝, 𝑡 = 𝑠𝑖𝑔𝑛𝑢𝑝 𝑦𝑒𝑎𝑟) 507 

= 𝛷(𝜃1
𝑐𝑟𝑜𝑝

𝑅𝑚𝑡
𝑐𝑟𝑜𝑝

+ 𝜃1
𝐶𝑅𝑃𝑅𝑚𝑡

𝐶𝑅𝑃 + 𝜑1
𝑐𝑟𝑜𝑝

𝑅̅𝑚
𝑐𝑟𝑜𝑝

+ 𝜑1
𝐶𝑅𝑃𝑅̅𝑚

𝐶𝑅𝑃 + 𝜹1
′ 𝑿𝑛). 508 

We estimated our model of CRP enrollment only in years where there was a signup for 509 
general CRP. There were signups for the CRP in 2000, 2003, 2004, 2006, 2010, and 2011. 510 
However, actual land use change usually occurs in the year after the signup, therefore we 511 
estimated the model of CRP enrollment in years 2001, 2004-07, and 2011-12. We include 2006 512 
because there were two signups in 2006 and one signup was in the spring, and we observed a 513 
significant number of land use transitions to the CRP in 2006. Our models of CRP transitions are 514 
unique compared to previous literature because we account for the effect of the CRP contract on 515 
land use transitions. 516 

The controls in the CRP transition equations were the same as for pasture, but they also 517 
included the average Environmental Benefits Index (EBI) of land offered for the CRP in the 518 
county. We did not use the EBI of the respective years due to endogeneity concerns — the EBI of 519 
land offered for the CRP increases when crop prices are high because less land is offered for 520 
enrollment. Instead, we used the average EBI of offered land over time as the control to account 521 
for the fact that CRP enrollment is more likely in some counties because of a higher EBI.  522 

Cropland transitions model simulation.    523 

For the simulations, we estimated the area of land that transitioned to and from cropland 524 
2009-16, inclusive, for each region due to the RFS. For transitions with pasture, we first predicted 525 
the probability of transitions at each point with observed crop returns between 2009-12. The 526 
probability of transitioning was multiplied by the area of land the point represented — this is 527 
included in the NRI data — and aggregated to the region level. We then calculated new cropland 528 
returns if the price of corn had not experienced a 30% increase and the price of soybeans and 529 
wheat had not experienced a 20% increase, and we calculated the predicted area of transition to 530 
represent the counterfactual BAU scenario without the RFS. The average annual change in area 531 
of transition was then multiplied by eight to predict the total changes in transitions due to the RFS 532 
over the course of 2009-16, inclusive. 533 

The same basic simulation approach was used to estimate the change in transitions with 534 
the CRP, except that we accounted for expiring CRP area and signups. To predict how much 535 
land exited the CRP we calculated the change in the probability of exiting the CRP if the contract 536 
was expiring and multiplied this by the total area expiring in a given year. For years 2013-16 that 537 
are outside the NRI sample period, we scaled our estimate of CRP exiting by the relative change 538 
in the number of CRP contracts with expiring area. The relative change in the number of expiring 539 
contracts was calculated from county-level data from the Farm Service Agency. To simulate CRP 540 
enrollment, we estimated how predicted enrollment changed in signup years between 2009-16. 541 
The only general CRP signups in this period were in 2010, 2011, and 2013. We assume that all 542 
points in cropland in 2012 were eligible for CRP enrollment in fiscal year 2013.  543 

Estimating specific locations of change 544 
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After estimating the transition areas of cropland with pasture or CRP due to the RFS, we 545 
then used high resolution data on the likely locations of cropland transitions in order to spatially 546 
allocate and identify for further modeling the characteristics of converted land.  To do this, we first 547 
mapped observed land use change at the field level during our study period, building upon the 548 
approach of Lark et al. (32) and using updated recommended practices (33) to extend the 549 
analysis up through the 2016 growing season (34).  To enumerate environmental impacts, these 550 
data were then used to link the estimated extent of land use change associated with the RFS in 551 
each major LRR region to specific locations of observed conversion. Thus, while high-resolution 552 
data were used to identify the specific field-level parcels and characteristics of converted land, the 553 
data from the NRI were used to estimate the magnitude of this conversion that occurred within 554 
each region and how much could be attributed to the RFS.  This hybrid approach thereby 555 
combined the NRI data’s high certainty and long-term temporal coverage (prior to any RFS price 556 
signals — needed to estimate our probit model) with the field-level detail and specificity of the 557 
satellite-based land conversion observed during the study period (33).   558 

Estimating water quality impacts 559 

Determining the impacts of the RFS on water quality indicators due to changes in crop 560 
rotations and cropland transitions requires an assessment of the effects of various cropping 561 
systems and of recent cropland expansion and abandonment.  To do this, we employed a 562 
process-based agroecosystem model — Agro-IBIS — to simulate fluxes of water, energy, carbon, 563 
nitrogen, and phosphorus across our study period for alternate cultivation scenarios based on the 564 
methods of Motew et al. (35) and Donner and Kucharik (36).   565 

For both the crop rotation and cropland transition sets of scenarios, we simulated a 566 
common historical period, followed by unique simulations for each pathway.  The common period 567 
was 1750 to 1960 when all state variables of the model (e.g., soil carbon and nitrogen) are “spun-568 
up” to account for the legacy of historical land cover and agricultural practices. The datasets used 569 
to simulate this time period included historical land cover, nutrient applications, and irrigation 570 
extent.  The second period was 1961 to 2016 and was simulated differently for the crop rotation 571 
and the cropland transitions impact pathways.  572 

For crop rotations, we simulated five cropping systems uniformly across all agricultural 573 
land in the conterminous US (CONUS) under identical initial conditions: continuous corn (CC), 574 
continuous soy (SS), corn-soy rotation (CS), continuous wheat (WW), and corn-wheat rotation 575 
(CW). The spatial scale for the crop rotations modeling was 2.5 arc-minute grid cells and was 576 
performed for all land classified as cropland according to Lark et al. (37). To determine the 577 
impacts of the RFS, we multiplied the outputs for each cropping system by the change in its 578 
probability due to the RFS as determined via the econometric model described earlier.  For all 579 
non-corn (i.e. “other”) crops, including those not modeled, we estimated the water quality impacts 580 
as a weighted average of soybeans and wheat based on the planted area ratio of each crop 581 
within each county or region. 582 

For cropland transitions, we modeled two land cover scenarios — cropland and 583 
noncropland — for the areas determined by the specific cropland expansion and abandonment 584 
locations described above.  For this set of scenarios, we estimated impacts for each distinct patch 585 
of converted land that was classified as expanded or abandoned in the land transition model.  We 586 
then compared the median patch-level losses of nitrogen, phosphorus, and sediment for 2007-16 587 
between the cropland and non-cropland simulations to estimate the differential impact of cropland 588 
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area changes.  These per-area differential impact values (or impact intensities) were then 589 
multiplied by the estimated areas of land use change due to the RFS within each major LRR 590 
region to estimate the total impact of the RFS due to increased cropland expansion and reduced 591 
abandonment.  592 

Outputs from both pathway simulations included the median annual field-level losses of 593 
nitrogen (via potential nitrate leaching to groundwater or flux past a soil depth of 1.5 m) [kg of 594 
NO3-N/ha], phosphorus (via runoff) [kg/ha], and sediment (via runoff) [tons/km2] for the years 595 
2007-16, which provided a recent 10-year simulation period that overlapped fully with our period 596 
of study (2008-16) as well as two Censuses of Agriculture (2007 and 2012), thereby providing 597 
broader representation of data inputs and conditions across the period of interest.  598 

Below, we describe the development of the model inputs and datasets, including those 599 
for soil and topography, historic land-use/land-cover (LULC), nutrient application rates, and the 600 
extent of irrigation.  In general, all inputs were resampled to 2.5 arc-minute resolution for the crop 601 
rotation simulations or maintained in their native resolution to determine patch-level 602 
characteristics for the cropland transitions simulations. 603 

Agroecosystem model input — Soil texture and topography 604 

 We created maps of the major USDA soil texture classes based on the 30m resolution 605 
POLARIS dataset (38) which is a probabilistic remapping of the USDA Soil Survey Geographic  606 
database (SSURGO). We used values of percent sand, silt, and clay associated with the surface 607 
soil layer (0 to 5 cm depth) to predict the USDA textural class based on boundaries defined by the 608 
National Soil Survey Center (39). 609 

We created maps of the following variables related to topography and that are needed as 610 
inputs to AgroIBIS: land surface elevation, slope, slope length and steepness factor (LS-factor), 611 
and slope length. All variables were derived from a 30m resolution, hydrologically conditioned 612 
land surface elevation dataset from the USGS Elevation Derivatives for National Applications 613 
(EDNA) project (40).  We then calculated slope using the nine parameter, second order 614 
polynomial method from Zevenbergen and Thorne (41). Slope was then resampled at one arc-615 
second using a simple nearest neighbor calculation. 616 

The LS-factor used in the Modified Universal Soil Loss Equation (MUSLE), which is 617 
embedded in Agro-IBIS, was calculated following the method of Panagos et al. (42). First, we 618 
calculated flow accumulation and specific contributing area using the "Multiple Flow Direction" 619 
option in SAGA-GIS (43, 44). We then calculated the LS-factor within SAGA-GIS using the 620 
method from Desmet and Govers (45). Lastly, we resampled the LS-factor to one arc-second 621 
using a simple nearest neighbor calculation. 622 

To calculate slope length, we first resampled land surface elevation to three arc-seconds 623 
using bilinear interpolation and then calculated slope length within SAGA-GIS using the method 624 
from Olaya (46). We then developed a method to modify the slope length based on the location of 625 
channels as defined by the USGS National Hydrography Dataset Plus (NHDPlus V21) (47). The 626 
original intention of the slope length term used in MUSLE (48) was to represent the length of 627 
slope before overland flow reaches a channel or some area with substantial deposition. 628 
Therefore, we set the value of slope length for grid cells that contain a defined channel to half of 629 
the cell-width. To implement this method, we converted the national seamless network flowline 630 
from NHDPlus V21 to a three arc-second raster with a value of 45 meters using ArcGIS. We then 631 
mosaicked this new raster dataset with the original slope length raster. 632 
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Agroecosystem model input — Historical land-use/land-cover 633 

Land cover categories for the agroecosystem modeling were determined based on the 634 
vegetation types simulated in Agro-IBIS (Table S5). We used several gridded land cover datasets 635 
(Table S6) as well as historical county-level USDA Census of Agriculture data (49) to span this 636 
entire time period. Note that for post-1900 land cover and nutrient application rate map creation, 637 
we accounted for changing county boundaries over time by using county boundary shapefiles 638 
from the National Historical Geographic Information System (50). 639 

We extracted data from each available year and each county of the USDA Census of 640 
Agriculture (hereafter referred to as the Ag Census) (49) over the period 1939-2012 including 641 
area associated with harvested cropland for each distinct crop type, pasture, irrigated cropland, 642 
and irrigated pasture. We then removed outliers and interpolated missing values from each 643 
county’s time-series for each variable. Next, we grouped variables to create statistics relevant for 644 
the land cover map creation (Table S7). Note that the "wheat" category is comprised of wheat, 645 
oats, barley, buckwheat, emmer and spelt, rye, and triticale (all members of the Pooideae 646 
subfamily).  647 

We used all input datasets from Table S6 to define open water grid cells based on 648 
whether they were ever classified as open water regardless of the year or dataset. We did this to 649 
avoid the case where open water cells (not simulated by Agro-IBIS) convert from or to land cells. 650 
We used a global dataset representing potential natural vegetation created by Ramankutty and 651 
Foley (51) to associate with years 1750-1900. This 151-year period with constant vegetation 652 
cover was used during part of the biogeochemical spin-up period of the model where rates are 653 
artificially accelerated so that a quasi-equilibrium is reached in a more rapid and computationally 654 
efficient manner similar to Motew et al. (35). 655 

For the period 1901 to 2007, we used a combination of datasets (52–56) that specify land 656 
cover types that are natural (e.g., forest, grassland) or broad agricultural (e.g., cropland, 657 
hay/pasture), as well as historical county level Ag Census data (49) to allocate crop types and 658 
pasture within the broader agricultural land covers.  We used a semirandom algorithm that 659 
accounts for the relative areas of cropland and crop type within a given county, similar to Hamlin 660 
et al. (57).  Due to the county-level nature of the USDA Census of Agriculture data, we used 661 
historical county boundaries available from the National Historical Geographic Information 662 
System (50). 663 

For the period 1901-98, we used data from the FORE-SCE model (55, 56) for the years 664 
1938-98 combined with Ag Census data for the years 1939, 1944, 1949, 1954, 1959, 1964, 1969, 665 
1974, 1978, 1982, 1987, 1992, and 1997. First, non-agricultural grid cells were determined based 666 
on the FORE-SCE model output and a look-up table. Additional modifications were needed for 667 
the "developed" and "mechanically disturbed forests" classes.  If a cell was categorized as 668 
"developed," we used the developed subclass (high, medium, low intensity, open) from the 2011 669 
USGS National Land Cover Dataset (NLCD) for that cell. Therefore, once a cell was "developed", 670 
its subclass did not change over the simulation. For the FORE-SCE model output in the 671 
"historical" (56) time period (1993-98), we converted the "mechanically disturbed forest" (i.e., 672 
clearcut) classes to the nearest forest subclass from the 2006 USGS NLCD.   673 

Next, we developed a method to estimate agricultural land cover that included major crop 674 
types (corn, soy, wheat, alfalfa) at the subcounty scale. Broadly, this method uses the FORE-675 
SCE model output to determine where within a county certain cover types should be located, 676 
combined with the Ag Census data to determine the relative proportions of each cover type within 677 
a county. In addition, this method addressed the challenge of mapping pasture area within the 678 
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FORE-SCE model and modified the dataset so that it was consistent with the pasture areas 679 
reported in the Ag Census.  To do this, we isolated the grid cells categorized as "cropland" by the 680 
FORE-SCE model for each county. We then used the processed Ag Census dataset (see 681 
discussion above) to semi-randomly assign corn, soy, and wheat to grid cells based on each 682 
crop’s area relative to the total cropland area as reported in the Ag Census. If no cropland area 683 
was reported in the census data but FORE-SCE simulated cropland for a given cell, then the 684 
"hay" class was assigned. Next, we isolated the grid cells categorized as ‘hay/pasture land’ by 685 
FORE-SCE for each county and used the Ag Census data to semi-randomly assign alfalfa, 686 
nonalfalfa hay, and pasture, based on each cover type’s area relative to the total area of all three 687 
cover types as reported in the Ag Census. Following these land cover assignments, we 688 
calculated the total pasture area that had been assigned and compared it to the pasture area 689 
reported in the Ag Census. If the Ag Census pasture area value was greater than that which was 690 
currently assigned, then we randomly assigned a portion of grassland and shrubland within the 691 
county to pasture so that the areas matched. For our modeling purposes, we used the 1938 land 692 
cover for the years 1901-37. 693 

Lastly, we used a nearly identical method for the period 1999-2007 using NLCD land 694 
cover data (52, 53) instead of the FORE-SCE model output. We used NLCD 2001 for years 1999-695 
2003 and NLCD 2006 for years 2004-07.  For the period 2008-17, we used the USDA-NASS 696 
Cropland Data Layer (CDL) and a look-up table to convert CDL land cover classes to vegetation 697 
types simulated by AgroIBIS. Look-up table values for crops not simulated by AgroIBIS were 698 
made based on the closest plant functional type with corn as the default in ambiguous cases. 699 

Agroecosystem model input — Fertilizer and manure N and P application rates 700 

Following completion of the land cover dataset, we used county-level estimates of 701 
nitrogen (N) and phosphorus (P) inputs to the land surface developed by the U.S. Geological 702 
Survey (58–63) for the period 1945-2012 for fertilizer and 1982-2012 for manure (Table S8). We 703 
determined crop-specific rates of fertilizer N and P application based on the total mass of fertilizer 704 
N and P applied at the county-scale and an assumption of constant ratios between fertilizer rates 705 
for corn and those for the other agricultural land covers (soy, wheat, alfalfa, nonalfalfa hay, and 706 
pasture). We assumed that total fertilizer mass for a given county (mfert) could be calculated using 707 
the following equation: 708 

(1)         𝑚𝑓𝑒𝑟𝑡 = 𝐹𝑐𝑜𝑟𝑛 × 𝐴𝑐𝑜𝑟𝑛 + 𝐹𝑠𝑜𝑦 × 𝐴𝑠𝑜𝑦 + 𝐹𝑤ℎ𝑒𝑎𝑡 × 𝐴𝑤ℎ𝑒𝑎𝑡 + 𝐹𝑎𝑙𝑓𝑎𝑙𝑓𝑎 × 𝐴𝑎𝑙𝑓𝑎𝑙𝑓𝑎 + 𝐹ℎ𝑎𝑦 × 𝐴ℎ𝑎𝑦709 

+ 𝐹𝑝𝑎𝑠𝑡𝑢𝑟𝑒 × 𝐴𝑝𝑎𝑠𝑡𝑢𝑟𝑒 710 

where Fx is the county-average fertilizer application rate for a given crop x and Ax is the area 711 
devoted to crop x within that county. The constant ratios (Table S9) were determined based on 712 
current recommendations from several university extension publications (64, 65). 713 

We used estimates of county-level fertilizer N and P mass from Alexander and Smith (58) 714 
for years 1938-85 (using 1945 values for the missing years of 1938-44), Gronberg and Spahr (60) 715 
for years 1986-2006 (using 1987 values for the missing year of 1986), and Brakebill and 716 
Gronberg (59) for years 2007-17 (using 2012 values for the missing years of 2013-17). 717 

For manure N and P application rates, we used county-level estimates from Ruddy et al. 718 
(63) based on several Ag Census years (1982, 1987, 1992, and 1997) and applied them to the 719 
nearest year for the time period 1980-99. Similarly, we used manure data from Mueller and 720 
Gronberg (62) based on the 2002 Ag Census and applied it to the years 2000-04; and manure 721 
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data from Gronberg and Arnold (61) based on 2007 and 2012 Ag Census data applied to the 722 
years 2005-17. 723 

For each year and county, the manure N and P application rates were determined by 724 
dividing the total manure mass by the total area devoted to cropland, hay, and pasture (as 725 
specified by the land cover data). Thus, manure application is assumed to be uniform across all 726 
cover types that could potentially receive manure in each county. 727 

Agroecosystem model input — Irrigated extent 728 

Maps of irrigated agriculture (cropland and pasture) for 1938-2017 were created based 729 
on the Moderate Resolution Imaging Spectroradiometer (MODIS) Irrigated Agriculture Dataset for 730 
the United States (MIrAD-US) (66) for the years 2002, 2007, and 2012, and processed historical 731 
data from the Ag Census (see above). First, we created a maximum irrigation extent map that 732 
included all grid cells that were identified as irrigated in 2002, 2007, or 2012. Next, for each 733 
county and year in the period 1938-99 we extracted processed Ag Census data from the nearest 734 
census year on the fraction of cropland and fraction of pasture that were irrigated. Using the 735 
fraction of cropland that was irrigated, we calculated the number of grid cells that would need to 736 
be classified as irrigated cropland based on the total cropland area from the land cover map for 737 
the current year and county. We then determined which grid cells were both within the maximum 738 
irrigation extent for a given county and classified as cropland for the current year. If the number of 739 
grid cells needing to be classified as irrigated cropland was greater than or equal to the number of 740 
overlapping cells (irrigation extent and those classified as cropland), then all overlapping cells 741 
were classified as irrigated. If the number was less than the number of overlapping cells, then 742 
cells were randomly drawn from the pool of overlapping cells so that the total area of irrigated 743 
cropland was satisfied. An identical method was then implemented for irrigated pasture.  For the 744 
period 2000-17, we used the closest MIrAD-US dataset (e.g., the 2002 dataset for years 2000-04) 745 
to classify cells as irrigated if they were also classified as cropland or pasture. 746 

Estimating greenhouse gas (GHG) emissions from land use change (LUC) 747 

We used the nonlinear nitrogen effect model (NL-N-RR) of Gerber et al. (67) to estimate 748 
nitrous oxide (N2O) emissions.  For each change in crop rotation or cropland area due to the 749 
RFS, we used the associated change in N application data based on the agroecosystem model 750 
above and estimated the corresponding change in N2O emissions.  We converted our N2O 751 
estimates to CO2e by assuming a 100-year global warming potential of 265 (68).   752 

We used the methods of Spawn et al. (2019) to estimate the ecosystem carbon 753 
emissions from RFS-related land conversion (69).  Carbon emissions from soil and biomass 754 
degradation associated with land conversion were modeled for all observed cropland expansion, 755 
including methane (CH4) emissions from conversion of organic wetlands. The model has been 756 
validated against field observations of post-conversion SOC change from Sanderman (70) and 757 
accurately predicts SOC emissions throughout the US for conversion subsequently managed with 758 
conventional tillage. Model predictions are also similar to those observed after conversion of CRP 759 
land when managed with conventional tillage (71).  760 

In addition, a variant of the Spawn et al. model was created to assess forgone 761 
sequestration associated with reduced rates of cropland abandonment. This model was 762 
structurally the same as that used for conversion to cropland but used a carbon response function 763 
(72) for conversion of cropland to grassland to estimate expected soil organic carbon 764 
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accumulation over a 15 year period — the average length of a CRP contract. We thus assumed 765 
that any abandoned land would have been retired to the CRP and sequestered carbon for the 766 
duration of its contract. To attribute emissions to the RFS, we multiplied total emissions from all 767 
observed land conversion within a given LRR by the percentage of that region’s observed 768 
conversion that could be attributed to the RFS, as estimated by the econometric model above.  769 

Using the estimate of total cumulative emissions due to the RFS, we then calculated 770 
emissions per liter of increased annual ethanol demand.  To do so, we first allocated total 771 
ecosystem carbon emissions over a 30-year period following the approach of the U.S. 772 
Environmental Protection Agency (EPA) (73).  While most of the emissions associated with 773 
conversion to cropland are likely to be emitted near the start of the time period, this approach 774 
accounts for the uncertain timing and permanence of those emissions.  As noted by (73), utilizing 775 
a longer annualization period would decrease the apparent emissions from the RFS, while a 776 
shorter period would increase apparent emissions. To this annualized value of ecosystem carbon 777 
emissions, we added the annual nitrous oxide emissions from crop rotation and cropland area 778 
changes.  We then divided these combined annual emissions associated with the RFS by the 779 
increased annual demand in ethanol estimated from our price impacts model, and subsequently 780 
converted to emissions per unit of energy equivalent using a heating value of 21.46 MJ/L (73).   781 

Integrating models 782 

We estimated the overall effects of the RFS on environmental outcomes by summing the 783 
results of two independent pathways of influence—intensification and extensification—that 784 
integrated results from the price, land use, and biophysical models.  The intensification pathway 785 
captured the impacts of the RFS as manifested through changes in crop rotations, whereas the 786 
extensification pathway captured those due to cropland area changes.  A summary of model 787 
integration for each pathway is provided below, with details for each step and component 788 
available in the corresponding sections presented above.  789 

Intensification – environmental effects of crop rotation changes 790 

We estimated the RFS-induced effects of crop rotation changes on environmental 791 
outcomes by integrating outputs from the crop price, crop rotation, water quality, and nitrous 792 
oxide emissions models.  For each individual crop field mapped and modeled in our study, we 793 
multiplied the probability of each rotation under the RFS and BAU scenarios by the area of the 794 
field and the per-area environmental impact.  Total losses from nitrate leaching, soil erosion, 795 
phosphorus runoff, and nitrous oxide emissions on existing cropland for both the RFS and BAU 796 
scenarios were thus estimated as  797 

𝐿 = ∑ 𝑎𝑖

𝑖

∑ 𝐿𝑚,𝑖 𝛱𝑚,𝑖

𝑚

 798 

 799 
where 𝑎𝑖 is the area of field 𝑖 in hectares, 𝐿𝑚,𝑖 denotes the 10-year median (2007-16) loss of 800 
nitrate, soil, phosphorus, or nitrous oxide per year for crop rotation 𝑚 on field 𝑖, and 𝛱𝑚,𝑖 denotes 801 
the probability of planting a given crop rotation 𝑚 on field 𝑖.  The change in losses due specifically 802 
to the RFS was subsequently calculated as  803 
 804 
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 805 

 806 

where 𝑝𝑗 denotes the price of crop 𝑗 and 
𝜕𝑝𝑗

𝜕𝑅𝐹𝑆
 represents the change in crop price due to the RFS 807 

as estimated by our price impact model.    808 

Extensification – environmental effects of cropland area changes 809 

We estimated the RFS-induced effects of cropland area changes on environmental 810 
outcomes by integrating outputs from the crop price, cropland transitions, water quality, nitrous 811 
oxide emissions, and ecosystem carbon emissions models.  We used the estimated change in 812 
crop prices due to the RFS and the marginal probabilities of transitioning between noncropland 813 
and cropland due the changes in crop prices to estimate the total area of transitions within each 814 
LRR.  The area of transition within each LRR was subsequently allocated equally across all 815 
specific locations of observed land use change within each LRR, such that each field-level parcel 816 
of cropland expansion or abandonment was assigned a proportion of change that was due 817 
specifically to the RFS. This data fusion approach allowed us to utilize the long time period of the 818 
NRI data to estimate the response of land use to price while employing the high-resolution remote 819 
sensing data to determine the likely locations of these transitions that are important for 820 
understanding the environmental impacts. 821 

To assess environmental impacts, we multiplied the proportion of change due to the RFS 822 
for each parcel by the parcel’s area and its location-specific environmental effects.  For the water 823 
quality indicators, we multiplied the RFS-attributed change by the per-area differential impact 824 
values (or impact intensities) for nitrate leaching, soil erosion, and phosphorus runoff.  For GHG 825 
emissions, we multiplied the RFS-attributed change by the estimated nitrous oxide or ecosystem 826 
carbon emissions (mass per hectare) associated with each specific parcel of land.  827 

Estimating uncertainty 828 

We estimated uncertainty at multiple points of our causal analysis framework.  Except for 829 
the price impacts, we propagated the uncertainty results throughout the connected components—830 
from the land use models through to all subsequent environmental impacts.  The methods for 831 
deriving each component of uncertainty are described below, with all results presented in the 832 
main text as 95% confidence intervals, reported as [lower limit (0.025 quantile), upper limit (0.975 833 
quantile)].  834 

First, to understand the range of plausible price responses to the RFS, we used the 835 
approach of Carter et al. (1) to independently estimate 95% confidence intervals for the changes 836 
in price from BAU for corn, soybeans, and wheat. In order to constrain the subsequent estimates 837 
and preserve computational tractability, we then specified the price impacts of the RFS to be 838 
equal to the median percent increase in corn, soybean, and wheat prices and used these results 839 
for simulation of the remaining models.  Thus, while we estimate a range of plausible price 840 
impacts of the RFS, our environmental outcomes reflect only those due to the median estimated 841 
price effects.  842 

Next, we estimated uncertainty in our crop rotation model using a clustered wild score 843 
bootstrap. This bootstrap works by multiplying the score function by a random variable, called a 844 
perturbation, with a zero mean and unit variance. Our econometric model is comprised of a set of 845 
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logit regressions, estimated via maximum likelihood. The expected value of the score function is 846 
zero at the solution to the maximum likelihood estimation procedure. This means that the product 847 
of the score function value and a mean-zero unit-variance perturbation has the same mean and 848 
variance as the score function itself. This allowed us to simulate random draws for our model 849 
parameters by drawing pseudo-score values. Because most of the variation in crop prices is 850 
temporal, we clustered our bootstrap by year to avoid underestimating the amount of uncertainty. 851 
In practice, we do this by drawing a random perturbation term for each year and applying it to 852 
every observation within the respective year and re-estimate our model parameters. We repeated 853 
this process 1000 times to produce our parameter distributions that are used to calculate 1000 854 
different sets of crop rotation probabilities in the BAU and RFS scenarios. To ensure we have 855 
enough possible distinct sets of random draws, we used the perturbation distribution developed 856 
by Webb (74) which allows for six distinct perturbation values. 857 

For our cropland transition model, uncertainty in the magnitude of cropland area change 858 
was estimated via a clustered bootstrap routine with 1000 replications. For each region of the 859 
model, the NRI points were resampled with replacement and the predicted change in cropland 860 
area due to the RFS was estimated for each replication. The standard error of the change in 861 
cropland area was estimated as the standard deviation across the bootstrap replications. Our 862 
estimate of uncertainty was robust to heteroskedasticity between points and autocorrelation for a 863 
given point since we clustered the bootstrap by NRI point. Previous analysis indicates minimal 864 
bias to the standard errors through spatial correlation because the NRI points are sufficiently 865 
sparse (26). 866 

We then combined the bootstrapped replicate estimates from both the crop rotation 867 
exercise and that for cropland area with the biophysical model outputs to quantify uncertainty in 868 
terms of environmental indicators.  For the crop rotation-based (i.e. intensification) estimates, we 869 
multiplied each of the replicate probability bootstraps for a given field by the area of that field and 870 
the impact intensity of each environmental variable.  For each bootstrap, we summed the effects 871 
across all CONUS fields to generate a distribution (n = 1000) of total nationwide impact estimates 872 
for each environmental indicator from which we summarized the mean and 95% confidence 873 
intervals.   874 

For cropland transition estimates (i.e. extensification), since bootstrapped estimates 875 
represented the RFS-induced change in cropland area within larger LRR regions, we used a 876 
variant of the crop rotation procedure that utilized observed patterns of land use change (37) to 877 
further account for the more nuanced geographies of change that underly these aggregated 878 
estimates. Because each bootstrap represented an estimated area of change within each LRR 879 
region, for each estimate we then randomly selected patches of observed land use change from 880 
Lark et al. (37) within the corresponding region until the sum of selected patch area was equal to 881 
that of the bootstrap’s value. We then also summed the modeled environmental impacts 882 
associated with each of the selected patches. Repeating this procedure for each of the 1000 883 
bootstraps of each LRR region provided a distribution of the estimated total environmental 884 
impacts within each LRR region and, when summed across regions, the nation. 885 

Our approach did not capture uncertainty stemming directly from the biophysical and 886 
emissions models nor their inputs, as neither group of models natively quantify this uncertainty.  887 
To help address this limitation, however, we estimate the range of environmental outcomes due 888 
to uncertainty in both the magnitude and location of the underlying land use changes—thereby 889 
providing an indication of the corresponding variability in environmental outcomes.  Nevertheless, 890 
the uncertainty ranges we report for emissions and other biophysical outcomes are likely still 891 
conservative estimates of total system uncertainty. In summary, across the study, we quantify 892 
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uncertainty associated with the price impacts of the RFS, as well as that arising from the 893 
magnitude of crop rotation and cropland area changes, their spatial locations, and the associated 894 
variations in environmental impacts.  895 

  896 
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Supplementary Text (SI Results and Discussion)  897 

Supplementary results for price impacts 898 

We estimated the effects of the RFS on corn, soybean, and wheat prices by comparing 899 
observed prices in the 2006-10 crop years to the BAU projections for those years. Table S1 900 
shows that corn prices exceeded the BAU by 31%, soybean prices by 19%, and wheat prices by 901 
20% in 2006-10. These estimates include 95% confidence intervals of [5%, 70%] for corn, [-8%, 902 
72%] for soybeans, and [2%, 60%] for wheat.  Thus, there is a wide range of plausible price 903 
effects in the model, but the point estimates round to 30% for corn and 20% for soybeans and 904 
wheat. 905 

The observed and BAU prices for all 2006-16 crop years are presented in Fig. 1 of the 906 
main text, with the detailed outputs for our soybean and wheat models included in Tables S10-907 
S13 and Figs. S12-S17.  For the corresponding output for the corn model, see Tables 2-3 and 908 
Figures 5-7 of Carter et al. (1).  As the criteria do for the corn model, the AICC and BIC indicate 909 
that the soybean and wheat models fit best when using a single lag, and the impulse response 910 
functions conform to predictions of economic theory.   911 

The models contain two distinct identifying assumptions: one provides point identification 912 
while the other provides set (partial) identification. Because the assumptions differ, there is no 913 
reason that the point identified parameter should lie within the identified set. In all cases, the 914 
estimated price effects are very similar whether we use the point estimate or the identified set. 915 
The vertical bars of Fig. 1 are 95% confidence intervals that capture uncertainty in the identified 916 
set for the model parameters. The parameters are estimated using data from the 1961-2005 crop 917 
years and so are subject to sampling error.   918 

As additional validation, we compared the detrended prices of corn, soybeans, and wheat 919 
that we use in our analysis with the predicted prices from the VAR model as written in equation 920 
(23) of Carter et al. (2017)(Fig. S18). These are predictions of the current-year price given 921 
current-year values of the other variables and prior-year values of all the variables.  The R2 922 
values for log future prices in the price models depicted in Fig. S18 are 0.81, 0.81, and 0.57 for 923 
corn, soybeans, and wheat, respectively, for the period of 1962-2005 and 0.89, 0.86, and 0.89 for 924 
the period of 2006-2016.  Thus, the model fits are somewhat higher in the post-RFS period than 925 
before.  These predictions show how well our model estimates prices overall, and we believe that 926 
their congruence with observed prices helps demonstrate the validity of the model across time 927 
and crops. 928 

Our main results show that corn prices jumped in 2006 and increased even more the next 929 
year as traders stored additional corn in preparation for the impending ethanol boom (Fig. 1). 930 
Note that in the figure and text, years refer to crop years, and thus a price jump in 2006 refers to 931 
the 2006-07 crop year and therefore to a price for the crop harvested in fall 2006, which we 932 
measure in March 2007.  BAU prices also increased during this initial period due to strong global 933 
commodity demand. The relative effect of the RFS was lower than average in the 2008-09 crop 934 
years as the financial crisis and the corresponding crash in oil prices and gasoline demand 935 
caused a drop in demand for corn from ethanol producers. Then in 2010-11, along with worse-936 
than-expected crop yields, increasing ethanol demand caused corn prices to rise again 937 
significantly above the BAU values. In these two years, we estimate that corn prices were more 938 
than 50% higher than they would have been without the RFS-induced shocks. 939 
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In the BAU scenario, the market would have reduced corn inventory in 2010-11, making 940 
the market more vulnerable to the 2012 drought than occurred in actuality. In the real world, the 941 
presence of persistent high ethanol demand prevented inventories from being depleted too much 942 
and thus made the market more resilient entering the 2012 crop year. As a result, the drought hit 943 
BAU corn prices harder than observed prices, and the observed 2012 spot price was 30% above 944 
the BAU price. Good weather through the remainder of our study period produced large crops, so 945 
corn prices have declined from their peak values, but these declines also occur in the BAU 946 
scenario.    947 

The patterns for corn are mirrored in soybeans and wheat, especially in the 2006-10 948 
period. The 2012 drought had much smaller effects on these commodities than on corn. There 949 
was a relatively small yield decline for soybeans and a yield increase for wheat in that year, so 950 
the BAU price does not spike for them as it does for corn. In the last few years, both the observed 951 
and BAU prices declined. 952 

 Our BAU projections become less credible as time passes. These projections assume 953 
only four sources of price shocks, and other potential sources of shocks became apparent after 954 
2010. In particular, a severe drought in South America reduced soybean production from 955 
Argentina and Brazil in the 2011 crop year (i.e., the harvest that occurred in the early part of 956 
calendar year 2012). These two countries produce half of the world’s soybeans. This event 957 
pushed soybean prices up significantly, but it is not accounted for in the BAU projections.  As a 958 
result, the BAU soybean prices after 2011 may be too low.     959 

Similarly, for wheat, the 2012 drought caused an increase in the demand for animal feed 960 
due to the reduction in available corn. As a result, wheat prices rose. This shock is not included in 961 
the BAU projection, so the BAU wheat prices after 2011 may be too low. Thus, if we were to 962 
estimate the effect of the RFS by averaging all years from 2006-16, we would obtain estimates for 963 
soybeans and wheat that are larger than 20% but that are likely biased upwards.  Therefore we 964 
conservatively used the average for 2006-10, which best captures the effects of the RFS while 965 
reducing interference and uncertainty from events that occur much later.    966 

For comparison, Carter, Rausser, and Smith (1) report an alternative estimate of the 967 
effect of the RFS on corn prices. They impose a permanent demand shift of 1.3 billion bushels on 968 
the model and find a new equilibrium with 31% higher prices (90% CI: 0.05, 0.95). Their 1.3 billion 969 
bushel corn demand increase is equivalent to 20.8 billion additional liters of ethanol, which 970 
matches our posited incremental effect of the RFS. Thus, the similarity of the estimate from (1) to 971 
ours in Table S1 further supports our BAU approach. 972 

Supplementary results for crop rotations 973 

The validity of the crop rotation model is assessed by comparing predicted values to 974 
observed values. We find the model predicts well. Figure S19 shows the predicted corn area 975 
compared to the observed corn area over time while figure S20 shows the same for each crop 976 
rotation. The predicted area of corn and each crop rotation changes similarly with the observed 977 
areas over time. On average, our prediction is within 1.8% of the observed area for corn. Figure 978 
S21 shows the performance of the model at predicting differences in the area of each crop 979 



 

 

26 

 

rotation across space. The model does a good job of predicting more area of a corn-corn rotation 980 
in regions with a larger observed corn-corn rotation area, and similarly for other crop rotations. 981 

Table S14 reports crop rotation elasticities with respect to prices. Elasticities indicate the 982 
percent change in area for each rotation with respect to a 1 percent increase in price, holding all 983 
else constant. As expected, the model indicates that an increase in the price of corn increases 984 
the area of a corn-corn rotation and corn-other rotation and decreases the area of other-other 985 
rotation. We also find that an increase in the price of other crops decreases the area of rotations 986 
with corn and increases the area of an other-other rotation. Corn-corn and other-other rotations 987 
are elastic with respect to the price of corn, in part because the area of corn-corn and other-other 988 
rotations are smaller than a corn-other rotation.  989 

Table S15 reports the aggregate corn acreage elasticity. We estimate a long-run own-990 
price elasticity of 0.574 and a cross-price elasticity of -0.467. In other words, a 10% increase in 991 
the price of corn increases corn acreage by 5.74% across the nation, holding constant the price 992 
of other crops. The cross-price elasticity is similar in magnitude to the own-price elasticity, but of 993 
the opposite sign. 994 

We estimate that the 2007 RFS increased annual corn extent by 2.8 Mha across our 995 
modeled region, which included about 91.6% of corn area in the U.S.  Assuming a similar 996 
increase in the remaining areas of the country suggests there were approximately 3.0 Mha of 997 
additional corn each year following the RFS.  According to the USDA, farmers planted an average 998 
of 37.0 Mha of corn annually between 2009-16. Therefore our estimate implies that farmers would 999 
have planted only 34.0 Mha of corn on average during this period had the RFS not occurred, 1000 
which suggests that about 8.2% of the current corn extent is attributable to the policy.  More 1001 
broadly, the area planted to corn increased 5.1 Mha between the periods 1999-2006 and 2009-1002 
16. Thus, while several factors played a role in this expansion, we attribute roughly 60% of the 1003 
recent increase to the 2007 expansion of the RFS. Absolute increases in corn area were largest 1004 
in North Dakota, South Dakota, and northwestern Minnesota (Fig. S1, a-c).  Relative to existing 1005 
corn extent, the Mississippi Alluvial Plain and the Columbia Plateau region of Oregon and 1006 
Washington experienced the greatest transformations, with more than a 100% increase due to 1007 
the RFS (Fig. S1, d-f).  In other words, roughly half of the current corn area in these locations can 1008 
be attributed to the RFS.     1009 

This proliferation of corn occurred through changes in its rotation pattern relative to other 1010 
crops.  For example, the area of continuous corn rotations (i.e. corn planted as successive crops) 1011 
increased by 2.1 Mha [95% CI: 1.8, 2.3] due to the RFS or 47% [36%, 63%] relative to BAU, with 1012 
greatest influence in the Upper Midwest (Fig. S1).  To accommodate this increase in corn 1013 
monoculture, the area of non-corn (i.e. other) crops planted in back-to-back years decreased by 1014 
3.4 Mha [2.6, 4.2] or 10.8% [7.8%, 13.6%].  The area of corn planted in rotation with other crops 1015 
varied by region throughout the US.  In core agricultural locations, where rotation with other crops 1016 
was already common (e.g., Iowa, Illinois, and Nebraska), there was a reduction in corn-other 1017 
rotations associated with the shifting trend toward increased continuous corn production.  On the 1018 
other hand, in areas previously dominated by other crops, like soybeans and wheat (e.g., North 1019 
Dakota, South Dakota, and the Mississippi Alluvial Plain), more corn was added to the landscape 1020 
via rotation with other crops.  In total across the study region, the area of corn-other rotations 1021 
increased by 1.4 Mha [0.8, 1.9] or 4.6% [0.8%, 8.3%]. 1022 
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Supplementary results for water quality impacts from crop rotations 1023 

Continuous corn cropping systems generate on average 163% more nitrate leaching than 1024 
continuous soybean and 145% more than continuous wheat systems (Table S16). These larger 1025 
losses of nitrate for continuous corn are driven primarily by the larger amount of nitrogen fertilizer 1026 
inputs for corn compared to the other cropping systems (Table S17). Patterns of nitrate leaching 1027 
across the US (Fig. S22) reveal higher values for all cropping systems within the Corn Belt and 1028 
the Mississippi Alluvial Plain, where substantial mineralization of nitrogen occurs due to soils rich 1029 
in organic matter, where historical applications of nitrogen fertilizer were high, and where 1030 
additional high inputs are currently applied. Nitrate leaching is also high in heavily irrigated 1031 
regions in Nebraska and the Mississippi Alluvial Plain where nitrogen is more easily mobilized via 1032 
irrigation-induced drainage. Lastly, areas with coarser soils and more precipitation are also 1033 
subject to heightened drainage and leaching of nitrate (e.g. northern part of the Mississippi 1034 
Alluvial Plain). 1035 

Regarding soil erosion and phosphorus runoff, continuous corn also leads to the largest 1036 
impacts compared to other cropping systems, with 56% and 71% more soil loss and 58% and 1037 
40% more phosphorus runoff compared to continuous soy and continuous wheat systems, 1038 
respectively. This is mainly due to the relatively high erosion risk associated with continuous corn 1039 
relative to the other systems, and partially due to high P input for continuous corn relative to the 1040 
other systems. 1041 

Variation in soil erosion and sediment loss (Fig. S23) is primarily driven by slope and 1042 
runoff, with finer-grained soils and higher precipitation also contributing to this susceptibility.  1043 
Phosphorus is bound to soil, so steeper slopes, finer-grained soils, and higher precipitation also 1044 
lead to higher phosphorus losses. In addition, phosphorus can be lost downstream in dissolved 1045 
form and the amount is dependent on its concentration in soil at the ground surface. 1046 
Overapplication of phosphorus can build up this surface soil concentration and lead to higher risk 1047 
of dissolved and soil-bound phosphorus. Spatial patterns of phosphorus runoff (Fig. S24) thus 1048 
show higher values in areas with steeper slopes (e.g., western Iowa) and historical legacies of 1049 
heavy application of fertilizer and manure phosphorus.   1050 

We calculated the differential impact of continuous corn versus the four other cropping 1051 
systems to visualize where the impacts of continuous corn may be both greatest and least 1052 
substantial (Table S18 and Fig. S25-S27). Maps of this difference (continuous corn vs. other 1053 
systems) reveal a variable pattern where the vast majority of areas show much higher differential 1054 
impacts while very few areas show slightly less. For nitrate leaching, the largest differences (i.e., 1055 
where continuous corn has greatest impact) occur in the regions with the highest nitrate leaching 1056 
values (Corn Belt and Mississippi Alluvial Plain), which shows that the impacts of changes in crop 1057 
type are highest in the areas of most intense production. These high differential impacts are 1058 
primarily driven by more nitrogen inputs for continuous corn relative to the other cropping systems 1059 
(Table S17 and Fig. S28). The only area to show a slightly lower impact from continuous corn is 1060 
in the south-central Mississippi Alluvial Plain, with wheat. Here the difference in primary 1061 
production between corn and wheat is the largest (corn higher than wheat) and this leads to both 1062 
relatively large differences in nitrogen uptake (more uptake by corn) and slightly more water use 1063 
(less drainage in the corn system). Thus nitrate leaching is slightly less for continuous corn 1064 
compared to continuous wheat even though the nitrogen inputs for wheat are less than 50% of 1065 
that for corn. 1066 
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The differential impact maps for phosphorus are also quite variable, however most areas 1067 
show continuous corn to have greater impacts than the other cropping systems. This is primarily 1068 
driven by two factors: inputs of P are higher for corn (Fig. S29), and corn is more susceptible to 1069 
erosion compared to the other cropping systems. The highest differences occur in regions where 1070 
the slope is relatively steep (e.g., southwestern Iowa). The only regions where continuous corn 1071 
has slightly less phosphorus impact than other systems are in northwestern Iowa and the 1072 
southern part of the Mississippi Alluvial Plain. In northwestern Iowa, high manure P inputs lead to 1073 
high surface soil P concentrations for both corn and wheat but slightly less for corn because 1074 
primary production is higher than wheat. In the southern Mississippi Alluvial Plain, higher primary 1075 
production for corn leads to more mining of soil P and lower surface soil P concentrations relative 1076 
to wheat. Low slopes in this region also minimize the differences in soil loss (and soil-bound P) 1077 
between corn and wheat. 1078 

Supplementary results for cropland area  1079 

The validity of the cropland transition model was also assessed by comparing predicted 1080 
versus observed land use. Figure S30 shows the predicted area of cropland compared to the 1081 
observed area over time and figure S31 shows the same for the area of cropland transitions. The 1082 
predicted area follows the same pattern as the observed area over time. The largest difference 1083 
was in 2001 where the National Resources Inventory indicated a large transition from cropland to 1084 
pasture that is not predicted by the model. On average, the predicted area of cropland is within 1085 
0.2% of the observed area. Figure S32 indicates that the model does well at predicting the Land 1086 
Resource Region where cropland transitions occurred as well. The model predicts large 1087 
transitions from CRP to cropland between 2007 and 2012 in Land Resource Regions where large 1088 
transitions were observed.  1089 

Table S19 reports cropland transition elasticities. These elasticities indicate the percent 1090 
change in transitions due to a 1 percent increase in the price of crops, pasture rent, or CRP rent. 1091 
The elasticities are relatively large because they represent the percent change in transitions—not 1092 
the percent change in final land use—and there are relatively few transitions. The price of crops 1093 
has no significant impact on aggregate transitions between cropland and pasture. Elasticities of 1094 
cropland transitions with CRP all have the expected sign and are statistically significant. When 1095 
crop prices increase by 10%, the transitions from CRP to cropland increase by 73.5% and 1096 
transitions from cropland to CRP decrease by 12.18%. An increase in CRP rental rates 1097 
decreases exits from CRP to cropland and increases enrollment of cropland to CRP.  1098 

The five-year elasticities of aggregate cropland area with respect to prices are reported in 1099 
table S20. Five-year elasticities are reported as a medium-run elasticity relevant to the time frame 1100 
of our modeling. We estimate an elasticity of cropland with respect to crop prices of 0.071—a 1101 
10% increase in crop prices increases cropland area by 7.1%. This elasticity of 0.071 is likely 1102 
larger than the national cropland elasticity implied by our model because we only consider the 1103 
areas of the United States with substantial corn growing area and these areas are likely more 1104 
responsive to crop prices than areas outside our analysis. Our estimate is similar in magnitude to 1105 
other estimates from the literature. Previous estimates include the following: 0.07 (Li, Miao, and 1106 
Khanna, 2019 (75)); 0.16-0.20 (Claassen, Langpap, and Wu, 2016 (30)); 0.05 for a 5-year 1107 
elasticity (Ahmed, Hertel, and Lubowski (2009)(76) using the model estimates of Lubowski, 1108 
Plantinga, and Stavins (2008)(26)); and 0.03 (Barr, et al., 2011)(77). Langpap and Wu (2011) 1109 
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estimate an elasticity with respect to corn price of 0.059 in the Corn Belt and 0.142 in the Lakes 1110 
States (29). The estimate of Langpap and Wu (2011) would be even larger if it included an 1111 
increase in all crop prices as we estimate. Our estimate of the elasticity of cropland with respect 1112 
to pasture rent is the opposite sign that was expected, perhaps because we do not have as 1113 
accurate a measurement of pasture rents. The effect of CRP rental rates on cropland area is 1114 
negative, as expected, and more inelastic than the effect of crop prices. 1115 

Overall, across transitions between cropland and noncropland (including pasture and 1116 
CRP), we found that cropland expansion increased by 1.8 Mha [95% CI: 1.5, 2.1] and 1117 
abandonment decreased by 0.4 Mha [0.1, 0.6] due to the RFS (Table S21). Combined, this 1118 
resulted in a net increase of 2.1 Mha of cropland area that can be attributed to the RFS for years 1119 
2009-16.  Note that for the model simulation and all related results, we predicted changes for 1120 
eight conversion years, with the first transitions occurring between the 2008-09 growing season 1121 
and the final transitions occurring between 2015-16.  This approach may thus underestimate the 1122 
total extensive margin land response to the RFS, as some land likely came into initial production 1123 
prior to the 2009 growing season and after the 2016 growing season.  Each of these aggregate 1124 
changes in cropland area due to the RFS were significant at the 5% level. The largest increase 1125 
due to the RFS was in the region Mgrass where expansion grew by 0.76 Mha and abandonment 1126 
decreased by 0.26 for an overall increase of 1.0 Mha. Region F also saw an increase of 0.63 Mha 1127 
and region H had an increase of 0.38 Mha due to the RFS. 1128 

Specific examinations of the subset of transitions between cropland and pasture revealed 1129 
no statistically significant evidence that the increase in cropland returns due to the RFS increased 1130 
conversion of pasture to cropland (Table S22). However, in region Mgrass we estimated an 1131 
increase in conversions of about 0.12 Mha, which is about an 18% increase in the average 1132 
number of conversions. Some of the estimates of cropland expansion show an unexpected 1133 
negative sign, but only one is significant at the 10% level. 1134 

Instead, we found stronger evidence that the increase in cropland returns decreased the 1135 
amount of cropland that transitioned to pasture. In region Mgrass, we estimated that about 0.21 1136 
Mha that were not abandoned would otherwise have been in the absence of the RFS. This effect 1137 
is statistically significant at the 5% level. We also found significant evidence of reduced 1138 
abandonment in the KL region. Our net estimate is that cropland area increased by only 0.06 Mha 1139 
through transitions with pasture due to the RFS.  However, the impacts differed by region and 1140 
there was an 0.33 Mha increase in cropland in the Mgrass region due to transitions with pasture 1141 
that is significant at the 5% level. 1142 

In contrast to the transitions with pasture, we found large and statistically significant 1143 
impacts of the RFS on cropland conversions specifically with the CRP (Table S23). The largest 1144 
increases in cropland expansion from the CRP occurred in regions F and Mgrass where they 1145 
increased by over 0.63 Mha in each region due to the RFS. Region H also saw an increase in 1146 
conversions of 0.32 Mha. 1147 

The increase in crop prices not only increased cropland expansion from CRP but also 1148 
decreased the area of associated cropland abandonment (i.e., enrollment into CRP). Enrollment 1149 
of cropland into CRP decreased by about 0.05 Mha in regions F and Mgrass and about 0.10 Mha 1150 
in region H.  Overall, net cropland area increased by 2.1 Mha due to the RFS from changes in 1151 
transitions between cropland and the CRP. 1152 
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We can compare our aggregated results to national-level data from the NRI to estimate 1153 
the relative contribution of the RFS to all land use changes observed over the study period to put 1154 
each change in perspective.  Of note, cropland area had been trending downward from 1982-1155 
2007.  Had the most recent trend from 1992-2007 continued, cropland area would have been 7.8 1156 
Mha lower than it actually was in 2015.  Instead, cropland area increased nationally by 3.0 Mha 1157 
from 2007-15, in part due to the RFS, but also due to several other factors. One estimate of 1158 
cropland area without the RFS is shown as the point in Fig. S33 and is calculated as the 2015 1159 
NRI cropland area minus the impact of the RFS — simulated between 2008-15 for consistency 1160 
with the NRI endpoints. This indicates that about 24% of the difference between trendline 1161 
cropland area and actual 2015 area is due to the RFS, or that the increase in cropland area in 1162 
2015 was 32% greater than it would have been in the BAU. 1163 

Another way to assess the relative changes is to look at the contribution of the individual 1164 
components of cropland area change, i.e., cropland expansion and reduced abandonment.  From 1165 
2007-15, the NRI reports total cropland expansion of 8.7 Mha or an average of 1.1 Mha yr-1.  We 1166 
estimate 1.8 Mha or 0.2 Mha yr-1 of expansion due to the RFS, which is 21% of the total observed 1167 
by the NRI and 26% larger than what would have occurred without the RFS (Table S2).  In a 1168 
similar fashion, the NRI identified 5.6 Mha or 0.7 Mha yr-1 of abandonment 2007-15.  We estimate 1169 
this had been lessened by 0.4 Mha or 0.04 Mha yr-1 due to the RFS, which is 6.3% of the amount 1170 
identified by the NRI or 5.9% less than would have occurred without the RFS.  1171 

Supplementary results for water quality impacts of cropland area  1172 

The water quality impact of recent cropland expansion and abandonment depends on the 1173 
amount of land converted as well as the spatially variable impact intensity (impact per unit area) 1174 
of converting from cropland to non-cropland and vice versa. We calculated county-level average 1175 
impact intensities (loss per unit area) to visualize the county-specific differential impacts between 1176 
cropland and non-cropland (Fig. S34). These impact intensities reveal substantial spatial 1177 
variability for nitrogen, phosphorus, and sediment. Across all three variables, however, almost all 1178 
counties had a higher impact associated with cropland than with non-cropland (shades of red in 1179 
Fig. S34). 1180 

Areas with higher impact intensity for nitrate leaching tended to have coarser grained 1181 
soils that are more susceptible to high drainage and leaching and have larger inputs of N 1182 
fertilizer. High sediment yield impact intensities largely accompanied areas of steeper slopes 1183 
(e.g., Appalachia and the Driftless Area of southwestern Wisconsin). Spatial patterns of 1184 
phosphorus runoff intensities were similar to soil erosion due to the connection between erosion 1185 
and sediment-bound phosphorus. However, higher phosphorus inputs to cropland (e.g. southeast 1186 
US) also contributed to higher phosphorus impact intensities. The only region with slightly 1187 
negative phosphorus impact intensities was the southern Mississippi Alluvial Plain where corn 1188 
and soybeans are highly productive and able to uptake and reduce soil surface phosphorus 1189 
concentrations more than non-cropland. Thus, the lower soil surface P and its low slope (very 1190 
minimal erosion) led to lower P losses for cropland. 1191 

While the impact intensity results were primarily used to assess the parcel-level impacts 1192 
attributed specifically to the RFS (see main text results), we also present here the total impacts – 1193 
due to the RFS or otherwise – of all recent cropland expansion and abandonment to help 1194 
understand the broader underlying trends and spatial patterns. Net impacts at the county level for 1195 
all cropland expansion and abandonment were calculated for nitrate leaching, soil erosion, and 1196 
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phosphorus runoff by accounting for the total impact (intensity x area) associated with cropland 1197 
expansion and subtracting the total impact associated with abandonment. We then divided this 1198 
total net impact per county by the total county land area to create a normalized net impact (mass 1199 
per county unit area) for visualization. Nationwide net impacts for all cropland expansion and 1200 
abandonment for nitrate leaching, phosphorus runoff, and soil erosion were 81.2 Gg, 0.931 Gg, 1201 
and 903 Gg, respectively. Areas of high net impacts for nitrate leaching included the eastern 1202 
Dakotas, northeastern Nebraska, southern Iowa, western Kentucky, and western North Carolina 1203 
(Fig. S35). High net impacts for sediment and phosphorus yield occurred mostly in southern Iowa, 1204 
western Kentucky, southwestern Wisconsin, and western North Carolina. 1205 

Supplementary results for greenhouse gas (GHG) emissions from land use change (LUC)  1206 

We found total ecosystem carbon emissions of 397.7 Tg CO2e associated with the 2.1 1207 
Mha of additional cropland due to RFS.  Following the approach of the EPA’s regulatory impact 1208 
analysis (RIA) (73), we amortize these emissions over a 30-year period, which equates to 1209 
annualized emissions of 13.3 Tg CO2e yr-1.  These emissions were induced by a modeled 20.8 1210 
billion liters per year increase in ethanol demand due to the RFS, which suggests emissions of 1211 
approximately 637 g CO2e per liter or a domestic ecosystem carbon LUC emissions factor of 29.7 1212 
g CO2e MJ-1. 1213 

In addition to these one-time emissions associated with land conversion, there are 1214 
additional, ongoing emissions of nitrous oxide from the annual fertilizer applied to the additional 1215 
cropland extent.  We estimate these emissions at 1.3 Tg CO2e yr-1, which equates to an 1216 
emissions intensity of 61.4 g CO2e per liter of increased annual ethanol demand or 2.9 g CO2e 1217 
MJ-1 (Table S3).  Including nitrous oxide emissions from crop rotation changes due to the RFS 1218 
further raise land use nitrous oxide emissions to 4.1 Tg CO2e yr-1, 194.6 g CO2e per liter, and 9.1 1219 
g CO2e MJ-1. 1220 

Several factors may cause these LUC GHG emissions estimates to be conservative, 1221 
particularly for those associated with changes to cropland extent.  First, recently expanded 1222 
croplands are typically planted on lower quality land because the highest quality land is already in 1223 
production (32, 78).  Thus, the yields of corn planted on new croplands are lower, leading to lower 1224 
yields of ethanol and higher emissions per volume of ethanol produced.  New croplands planted 1225 
to corn during the study period yielded, on average, 8% less than the national average (37), 1226 
suggesting that the emissions per liter of ethanol produced from new croplands may be higher 1227 
than that for average croplands reported here. 1228 

Second, we attribute 2.1 Mha of cropland area change 2008-16 to the 20.8 billion liter 1229 
increase in annual ethanol demand from the RFS.  However, it is likely that some land was 1230 
converted to cropland due to the RFS prior to and following this period, thereby increasing the 1231 
total area of LUC and emissions that should be attributed to the policy and associated ethanol 1232 
demand.     1233 

Third, we quantify only the emissions from ecosystem carbon fluxes and onsite nitrous 1234 
oxide due to fertilizer application.  However, we also show substantial increases in nitrate 1235 
leaching, phosphorus runoff, and sedimentation, each of which has been shown to increase GHG 1236 
emissions from rivers, lakes, or other water bodies (79–81).  Accounting of such downstream 1237 
emissions would thus further increase emissions associated with RFS-induced LUC. 1238 
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Conversely, our model of ecosystem carbon losses is notably agnostic towards 1239 
management practices used after conversion and may therefore overestimate losses in some 1240 
instances. Ecosystem C losses, particularly those sourced from soil organic matter, often play out 1241 
over several decades. While the general trajectory tends to be that of C loss when natural 1242 
ecosystems are converted to cropland and C gain from the opposite transition, there exist some 1243 
ensuing management practices that can alter these trajectories to varying degrees by enhancing 1244 
rates of C sequestration or slowing rates of C loss. Reduced-, conservation-, and no-tillage 1245 
practices, for example, have been shown in some cases to minimize or even reverse soil C 1246 
losses from some production systems (82).  Non-conventional tillage regimes, however, are still 1247 
not yet widely used in the United States, with only 37% of U.S. croplands adopting any type of 1248 
reduced tillage in 2017 (83).  Furthermore, rates of long-term no-till adoption remain significantly 1249 
lower (84), and field studies suggest that even intermittent tillage can entirely undermine the C 1250 
gains attained during intervening periods of no-till (85, 86).  Lastly, the activity of converting 1251 
grassland to crops frequently entails at least initial tillage to break up soil prior to subsequent 1252 
cultivation. Because the largest relative C losses tend to occur in the year(s) immediately 1253 
following conversion – before the effects of ensuing management might flatten the emissions 1254 
curve – it is therefore likely that the act of conversion itself is more influential than ensuing 1255 
management decisions in terms total C impacts of conversion.  Thus, while our results collectively 1256 
reflect the most common management and C outcome from land conversion, it is possible that 1257 
emissions could be reduced or amplified based on subsequent management decisions. 1258 

Our GHG emissions analyses are designed to be comparable to those of the EPA 1259 
Regulatory Impact Analysis (RIA) (73), yet our findings differ in both the magnitude of estimated 1260 
LUC area as well as the net impact on emissions.  For example, the EPA’s RIA scenario for 1261 
ethanol production uses the FASOM model to estimate that by 2022, there would be 0.36 Mha of 1262 
increased cropland area, primarily coming from land classified previously as cropland-pasture. 1263 
However, there are also simultaneous increases in forest pasture by 0.08 Mha acres and a 1264 
decrease in forestland by 0.01 Mha.  Though individual land use change contributions to 1265 
emissions are not identified in the RIA, it is likely that the relatively small magnitude of predicted 1266 
domestic cropland extensification along with forest increases attributed to the RFS are at least in 1267 
part responsible for the unlikely net sequestration estimated for domestic LUC by the RIA.   1268 

Along with those changes to broad land use areas, the RIA estimates shifts in crop 1269 
planting patterns and associated N2O emissions.  For example, the RIA estimated an increase of 1270 
1.5 Mha of corn and a decrease of 0.5 Mha in soybeans, as well as changes in other crop 1271 
extents.  FASOM was then used to sum all emissions associated with agricultural land (CO2 and 1272 
N2O from cropland, pastureland, CRP land) and forestland (CO2 from biomass, soil, and forest 1273 
products) between the years 2000-22 for the control and their fuel-specific scenarios.  Again, 1274 
individual LUC contributions to emissions are not enumerated, but rather the difference between 1275 
the control and baseline scenarios represents the change in total GHG emissions due to 1276 
domestic LUC, and cumulative emissions are distributed across a 30-year time horizon after 2022 1277 
(with a 0% discount rate) to account for the variable timing of LUC GHG impacts.  From all shifts 1278 
in domestic land use – from both broad agricultural area and crop planting patterns – the RIA 1279 
estimates emissions of -4.0 kg CO2e mmBtu-1 or -3.8 g CO2e MJ-1 for corn grain ethanol (p. 362) 1280 
(73).   1281 

Looking more broadly at the overall emissions identified in the RIA, it is worth noting that 1282 
the primary estimate upon which the regulatory compliance of corn ethanol was determined 1283 
reflects projected improvements in feedstock production and refining processing that were 1284 
anticipated to occur by 2022.  Similar estimates were also made for the GHG intensities of corn 1285 
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ethanol production for the years 2012 and 2017.  For example, the estimated carbon intensities 1286 
(CI) for a base plant (corn ethanol dry mill with dry DDG and using natural gas for its process 1287 
energy source) were already 33% and 10% higher than gasoline, respectively, and would rise to 1288 
79% and 56% higher after incorporating our results of domestic LUC (73).  As such, the average 1289 
CI of corn ethanol produced over the life of the RFS program from its inception to present day is 1290 
likely higher than that projected for 2022.  We focused on results for 2022, however, as these 1291 
projections received the most vetting during the regulatory review process, formed the basis of 1292 
the fuel compliance decisions, and most closely represent current conditions and other recent 1293 
benchmarks.   1294 

Other models and assessments provide additional points of comparison for the LUC-1295 
associated GHG emissions of corn ethanol production.  The California Air Resources Board, or 1296 
CARB, implements the Low Carbon Fuel Standard (LCFS).  In its original modeling in 2009, the 1297 
LCFS estimated a LUC CI for U.S.-produced corn ethanol of 30 g CO2e MJ-1, which included 1298 
emissions from both domestic and international LUC combined.  In its updated modeling for 2015 1299 
and 2019, this LUC CI factor was reduced to 19.8 g CO2e MJ-1.  This estimate is calculated using 1300 
the GTAP-Bio-AEZ model, and its results are included in the California version of the Greenhouse 1301 
Gases, Regulated Emissions, and Energy Use in Technologies (CA-GREET) (87).  Using a 1302 
representative simulation of the GTAP-Bio-AEZ model used in CA-GREET, we estimate 25.5% 1303 
(5.0 CO2e MJ-1) of the total LUC emissions modeled by the LCFS occur domestically, with the 1304 
remaining 14.8 CO2e MJ-1 attributable to international land use change.   1305 

A more general version of GREET developed and distributed by the Argonne National 1306 
Laboratory has been widely used by independent researchers due in part to its noteworthy ease 1307 
of use (88–90). This  version of GREET relies on LUC projections generated using the GTAP-BIO 1308 
computable general equilibrium model parameterized with a host of a priori assumptions and 1309 
user-selected emissions factors to predict LUC emissions associated with the demand for 1310 
ethanol. Pertaining to domestic (U.S.) LUC associated with corn ethanol, GREET includes two 1311 
LUC scenarios from which users can choose: (i) the “Corn Ethanol 2011” scenario which predicts 1312 
2.1 Mha of LUC with 55% LUC affecting “cropland-pasture”—a land use type equated to lands 1313 
enrolled in the CRP—and (ii) the “Corn Ethanol 2013” scenario which predicts 1.9 Mha of LUC in 1314 
total, 92% of which displaces “cropland-pasture”. Assumptions underlying the latter scenario 1315 
which predicts less LUC have been called into question and shown to almost certainly 1316 
underestimate LUC emissions (91, 92). Note, however, that the total extent of domestic LUC 1317 
predicted by both of these GREET scenarios falls within the 95% confidence interval of our 1318 
independent estimates of gross cropland expansion (1.5-2.1 Mha) and net cropland 1319 
extensification (1.8-2.5 Mha). Thus, the primary difference between these estimates and ours 1320 
stems from the estimated emissions associated with LUC. 1321 

Depending on the emissions factors applied to these LUC projections, GREET-based 1322 
estimates of domestic LUC emissions can range from -2.3 g CO2e MJ-1 using GREET’s 1323 
“CENTURY/COLE” emissions factors with the Corn Ethanol 2013 scenario (the negative value, 1324 
here, indicates net sequestration, rather than emission), to at least 9.5 g CO2e MJ-1 when 1325 
GREET’s “Woods Hole” emissions factors are used in conjunction with the LUC predictions of the 1326 
Corn Ethanol 2011 scenario. Note however, that the “CENTURY/COLE” emissions factors 1327 
responsible for the lowest estimates assume that cropland-pasture conversion—the most 1328 
common form of predicted conversion—sequesters carbon, an assumption that is not supported 1329 
by field observations nor independent modeling (92). Note also that the larger emission estimate 1330 
generated using the Woods Hole emissions factors are definitively an underestimate since they 1331 
inexplicably omit all emissions from cropland-pasture conversion. If the cropland-pasture 1332 
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emission estimate generated using the GREET’s “Winrock” emissions factors (5 g CO2e MJ-1 ) 1333 
were used in place of the missing Woods Hole equivalent, estimated emissions would rise to 14.5 1334 
g CO2e MJ-1 (84). GREET also provides separate estimates for international land use change 1335 
ranging from 5-5.5 g CO2e MJ-1 based on the Winrock emisisons factors (incomplete, smaller 1336 
estimates are also provided based on the Woods Hole emissions factors without explanation). 1337 

While both GREET and CA-GREET domestic emissions estimates are lower than ours, 1338 
we note that, with the exception of the questionable “CENTURY/COLE” emissions factors, the 1339 
generalized GREET domestic emissions factors for each land cover type simply represent the 1340 
national average carbon stocks of those lands as inferred from either literature review or sparse 1341 
field inventories and are relatively agnostic to the geographies of land use change. By contrast, 1342 
the approach we use integrates the latest high resolution data on vegetation and soil organic 1343 
carbon stocks with highly resolved patterns of observed LUC to better reflect realized outcomes. 1344 
Validation of our emissions estimates shows good agreement with independent field 1345 
observations, particularly those from grasslands converted to conventionally tilled croplands (69). 1346 

It should also be noted that induced LUC, such as that modeled in our study and the 1347 
others referenced here, is just one way of assigning a cost to the use of land. Others have found, 1348 
for example, that if corn devoted to biofuels were replaced with the global average carbon cost of 1349 
producing corn, the induced LUC emissions would be 200 g CO2e MJ-1 (Supplementary Table 4 1350 
of reference (93)).  Such references provide a helpful point of comparison, as any estimate of 1351 
LUC less than this value suggests that either an equivalent amount of that crop will not be 1352 
replaced or that it will be replaced at a fraction of the global average cost of production (93, 94).  1353 
Estimates in both the RFS RIA and CARB LCFS, as examples, assume that at least a portion of 1354 
the displaced crops is not replaced within the food supply (94). 1355 

  1356 
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Figs. S1-S35. 1357 

 1358 

Fig. S1.  Changes in crop rotations due to the RFS. (A-C) Absolute changes in crop rotation 1359 
area within each county. (D-F) Relative changes in crop rotation area, represented as a percent 1360 
of the rotation area in the BAU.  Continuous corn represents cropland planted to corn in 1361 
sequential years. Rotational corn represents cropland planted in rotation between corn and 1362 
another crop.  Total corn area is equivalent to continuous corn area + ½ rotational corn area. 1363 

  1364 
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 1365 

Fig. S2. Changes in cropland area and associated carbon emissions due the RFS. (A-C) 1366 
Changes in cropland area as a percent of the total area within each aggregated MLRA region. (D-1367 
F) Absolute changes in cropland area within each county. (G-I) Changes in associated ecosystem 1368 
carbon emissions.  1369 
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 1372 

Fig. S3.  Changes in nitrogen-related outcomes due to crop rotation changes under the 1373 
RFS. (A-C) Changes in total applied nitrogen. (D-F) Changes in nitrous oxide (N2O) emissions. 1374 
(G-I) Changes in nitrate (NO3

+) leaching. 1375 
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 1377 

Fig. S4.  Changes in nitrogen-related outcomes due to cropland area changes under the 1378 
RFS.  (A-C) Changes in total applied nitrogen. (D-F) Changes in nitrous oxide (N2O) emissions. 1379 
(G-I) Changes in nitrate (NO3

+) leaching.   1380 
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 1381 

Fig. S5.  Changes in phosphorus and erosion-related outcomes due to crop rotation 1382 
changes under the RFS. (A-C) Changes in total applied phosphorus. (D-F) Changes in soil 1383 
sediment loss. (G-I) Changes in total phosphorus runoff. 1384 

  1385 
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 1386 

Fig. S6. Changes in phosphorus and erosion-related outcomes due to cropland area 1387 
changes under the RFS. (A-C) Changes in total applied phosphorus. (D-F) Changes in soil 1388 
sediment loss. (G-I) Changes in total phosphorus runoff.  1389 

 1390 

 1391 

  1392 
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 1393 

Fig. S7. Projected, mandated, and actual ethanol production.  Dashed lines represented the 1394 
amount of conventional renewable fuels mandated by the 2005 and 2007 versions of the RFS.  1395 
Solid lines represent the amount of production projected by the USDA in February 2006 and 1396 
February 2007.  1397 
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 1399 

 1400 

 1401 
Fig. S8. Supply of corn, soybeans, and wheat. Vertical line at 2006 indicates when the 2007 1402 
RFS first affected grain markets. Data from USDA (23). 1403 
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 1405 

 1406 

 1407 
Fig. S9. Uses of corn, soybeans and wheat in the US. Vertical line at 2006 indicates when the 1408 
2007 RFS first affected grain markets. Data from USDA (23). 1409 
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 1411 
Fig. S10. Real price indexes for corn, soybeans and wheat in the U.S. Monthly prices 1412 
deflated using the U.S. consumer price index for all items and indexed to average a value of one 1413 
across the 2001-05 crop years. Corn and soybean prices are Central Illinois cash bids. Wheat 1414 
prices are Kansas City hard red winter cash bids.  Vertical line at 2006 indicates when 2007 RFS 1415 
first affected grain markets. Time reflects the crop year, i.e., the label 1995 denotes September 1 1416 
of that year. Data from USDA (23). 1417 
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 1419 

Fig. S11. Map of regions used in the econometric analysis of cropland transitions.  1420 
Separate models were estimated for each region, with the region label indicating the letter of the 1421 
Land Resource Region (LRR). Multiple letters indicate that LRRs were combined. LRR M had 1422 
many more NRI points than other LRRs and included some areas that were very densely cropped 1423 
and other areas that had substantial portions of grassland. Therefore, we divided this LRR based 1424 
on whether the Major Land Resource Area (a subregion within an LRR) had grassland area less 1425 
than (pink) or greater than (bright red) 15% of the area of cropland. 1426 

 1427 
  1428 
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 1429 
Fig. S12. Detrended data for key variables in soybean model. For clarity, this figure shows 1430 
linearly detrended series, where we estimate the trend in the pre-RFS period (1961-2005). For 1431 
the VAR estimation, we use the actual series and include a constant and linear trend in each 1432 
equation of the model. 1433 
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 1435 

 1436 
 1437 
Fig. S13. Impulse response functions for soybeans. Responses to one-time one standard 1438 
deviation shocks for the two-lag model. The dark boxes indicate the range of impulse responses 1439 
in the identified set. The vertical bars indicate estimated confidence intervals that cover the true 1440 
parameter with probability greater than 0.90.  We obtain these intervals using a recursive-design 1441 
wild bootstrap following the approach of Carter et al. (1). 1442 
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 1444 
Fig. S14. Historical decomposition for soybeans. Figures show contributions of each shock to 1445 
the relevant series for the one-lag model. The sum of the contributions equals the observed data 1446 
(net of trend). 1447 
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 1449 
Fig. S15. Detrended data for key variables in wheat model. For clarity, this figure shows 1450 
linearly detrended series, where we estimate the trend in the pre-RFS period (1961-2005). For 1451 
the VAR estimation, we use the actual series and include a constant and linear trend in each 1452 
equation of the model. 1453 
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 1455 
 1456 
Fig. S16. Impulse response functions for wheat.  Responses to one-time one standard 1457 
deviation shocks for the two-lag model. The dark boxes indicate the range of impulse responses 1458 
in the identified set. The vertical bars indicate estimated confidence intervals that cover the true 1459 
parameter with probability greater than 0.90.  We obtain these intervals using a recursive-design 1460 
wild bootstrap following the approach of Carter et al. (1). 1461 
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 1463 
Fig. S17. Historical decomposition for wheat. Figures show contributions of each shock to the 1464 
relevant series for the one-lag model. The sum of the contributions equals the observed data (net 1465 
of trend). 1466 
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 1468 

 1469 

 1470 
 1471 
Fig. S18. Predicted crop prices versus observed crop prices over time.  Figure shows 1472 
detrended market prices, as predicted by the VAR model compared to observed prices.  1473 
Predictions are of the current-year price given current-year values of the other variables and 1474 
prior-year values of all the variables.   1475 
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 1476 
Fig. S19. Predicted corn area versus observed area over time. Figure shows the predicted 1477 
corn area from the crop rotation model (dashed line) compared to the aggregate area from the 1478 
Cropland Data Layer (solid line) from 2009 to 2016. We begin the graph in 2009 because the 1479 
Cropland Data Layer was available for the entire nation starting in 2008 and a one-year lag is 1480 
used in the modeling. The predicted and observed areas only represent the regions used in our 1481 
econometric model and not the entire nation.   1482 
 1483 
 1484 
 1485 
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 1486 
 1487 
Fig. S20. Predicted area of each crop rotation versus observed area over time. Figure 1488 
shows the predicted area of each rotation from the econometric model (dashed line) compared to 1489 
the aggregate area from the Cropland Data Layer (solid line) from 2009 to 2016. We begin the 1490 
graph in 2009 because the Cropland Data Layer was available for the entire nation starting in 1491 
2008 and a one-year lag is used in the modeling. The predicted and observed areas only 1492 
represent the regions used in our econometric model and not the entire nation.   1493 
 1494 
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 1495 
 1496 
Fig. S21. Predicted area of each crop rotation versus observed area across Major Land 1497 
Resource Areas. The points in the figure show the predicted area of each rotation from the 1498 
econometric model and the area from the Cropland Data Layer for each Major Land Resource 1499 
Area (MLRA) in each year. In other words, each dot represents an MLRA-year pair. The red line 1500 
starts at the origin with a slope of 1 and indicates the line of perfect fit.  1501 
  1502 



 

 

56 

 

 1503 
 1504 
Figure S22. Median annual field-level nitrate leaching.  Results shown for the five cropping 1505 
rotations modeled across all cropland during the 2007-16 time period. 1506 
  1507 



 

 

57 

 

 1508 
 1509 
Figure S23. Median annual field-level soil erosion. Results shown for the five cropping 1510 
rotations modeled across all cropland during the 2007-16 time period. 1511 
 1512 
 1513 
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 1514 
 1515 
Figure S24. Median annual field-level phosphorus runoff.  Results shown for the five cropping 1516 
rotations modeled across all cropland during the 2007-16 time period. 1517 
  1518 
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 1519 
 1520 

 1521 
 1522 
Figure S25. Corn intensification impact. Difference in median annual (2007-16) nitrate 1523 
leaching loss between continuous corn and other cropping rotations (green indicates continuous 1524 
corn has less impact; red indicates continuous corn has more impact). 1525 
  1526 
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 1527 
 1528 
Figure S26. Corn intensification impact. Difference in median annual (2007-16) phosphorus 1529 
runoff loss between continuous corn and other cropping rotations (green indicates continuous 1530 
corn has less impact; red indicates continuous corn has more impact). 1531 
  1532 
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 1533 
 1534 
 1535 
Figure S27. Corn intensification impact. Difference in median annual (2007-16) soil erosion 1536 
loss between continuous corn and other cropping rotations (green indicates continuous corn has 1537 
less impact; red indicates continuous corn has more impact) 1538 
 1539 
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 1540 
 1541 
Figure S28. Total nitrogen inputs for scenarios. Mean total (fertilizer and manure) nitrogen 1542 
inputs over the 2007-16 period for each of the five cropping rotations modeled. 1543 
 1544 
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 1545 
 1546 
Figure S29. Total phosphorus inputs for scenarios. Mean total (fertilizer and manure) 1547 
phosphorus inputs over the 2007-16 period for each of the five cropping rotations modeled. 1548 
  1549 
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 1550 
 1551 
Fig. S30. Predicted area of cropland versus observed area over time. Figure shows the 1552 
predicted area of cropland from the econometric model for cropland transitions (dashed line) 1553 
compared to the aggregate area from the National Resources Inventory (solid line) from 2001 to 1554 
2012. We begin the graph in 2001 because a one-year lag is used in the modeling. The predicted 1555 
and observed areas only represent the regions used in our econometric model and not the entire 1556 
nation.   1557 
 1558 
 1559 
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 1560 
 1561 
Fig. S31. Predicted area of each cropland transition versus observed area over time. Figure 1562 
shows the predicted area of each cropland transition from the econometric model (dashed line) 1563 
compared to the aggregate area from the National Resources Inventory (solid line) from 2001 to 1564 
2012. We begin the graph in 2001 because a one-year lag is used in the modeling. The predicted 1565 
and observed areas only represent the regions used in our econometric model and not the entire 1566 
nation.   1567 
 1568 
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 1569 
 1570 
Fig. S32. Predicted area of each cropland transition versus observed area across Land 1571 
Resource Regions. The points in the figure show the predicted area of each transition from the 1572 
econometric model and area from the National Resources Inventory (NRI) for each Land 1573 
Resource Region group modeled. Areas are averaged for transitions between 2007 and 2012. 1574 
The red line starts at the origin with a slope of 1 and indicates the line of perfect fit.  1575 
  1576 
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 1577 
 1578 
Figure S33. National cropland area over time.  The blue line shows total observed cropland 1579 
area according to the NRI data.  The red line represents an extension of the 1992-2007 NRI 1580 
trend.  Point estimate of “No RFS” reflects the actual NRI data minus our estimated impact of the 1581 
RFS. 1582 
 1583 
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 1584 
 1585 
Figure S34. County-averaged impact intensity for nitrate leaching, phosphorus runoff, and 1586 
soil erosion.   Results separated into land use patches that underwent cropland expansion (left 1587 
column) and abandonment (right column).  The impact intensities for all maps (A-F) represent the 1588 
differences in values for cropland minus noncropland. 1589 
  1590 
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 1591 
 1592 
Figure S35. Net impacts for nitrate leaching, phosphorus runoff, and soil erosion for all 1593 
cropland expansion and abandonment, 2008-16.  Net impacts reflect the total impacts 1594 
(intensity x area of conversion) from cropland expansion minus those from abandonment within 1595 
each county. Net impact values are divided by total county area for normalization and 1596 
visualization. Note that for this figure only, results reflect impacts from all recent land conversion, 1597 
not only the subset due to the RFS, and are included to document the underlying trends and data 1598 
used to estimate RFS-specific water quality impacts. 1599 
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Tables S1-S23. 1601 

 1602 

  Corn   Soybeans   Wheat 

Dollars per bushel 
        2001-05 2.15 

 
5.96 

 
4.03 

2006-10 
        Observed 3.81 

 
9.67 

 
6.52 

BAU 2.90 
 

8.11 
 

5.45 

(95% CI for BAU) 2.24 3.65 
 

5.61 10.56 
 

4.07 6.39 

 
        

2006-10 percent increase relative to …       
… 2001-05 77% 

 
62% 

 
62% 

… BAU 31% 
 

19% 
 

20% 

(95% CI for BAU) 70% 5%   72% -8%   60% 2% 

 1603 
Table S1: Observed vs. business-as-usual (BAU) spot prices. The BAU prices are produced 1604 
from the model in Carter et al. (1) using data updated through the 2016-17 crop year. The model 1605 
projects the natural log of prices. To obtain the BAU value, we took the average projected 1606 
difference between the observed and BAU log prices during 2006-10. These differences were 1607 
0.27 for corn, 0.18 for soybeans, and 0.20 for wheat, which correspond to 31%, 19%, and 20% 1608 
respective differences and imply that the observed prices were 31%, 19%, and 20% above the 1609 
BAU for the three commodities. The point estimates come from the point identified parameters in 1610 
the model and the confidence intervals are generated from the identified set (see Tables S10-1611 
S13).  1612 
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  NRI total cropland Δ Due to RFS (this study) RFS contribution 

 

2007-15 

(Mha) 

Annual 

Ave. (Mha) 

2008-16 

(Mha) 

Annual 

Ave. (Mha) 

% of 

NRI 

%Δ from 

BAU 

Expansion 8.68 1.09 1.80 0.22 20.7% 26.1% 

Abandonment 5.64 0.71 -0.35 -0.04 -6.3% -5.9% 

Net 3.04 0.38 2.15 0.27 70.7% 240.9% 

Table S2. Relative contribution of the RFS to cropland expansion and abandonment. 1613 
Percent contributions of the RFS calculated from mean annual changes to account for different 1614 
endpoints between this study and the NRI dataset used for comparison.   1615 
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Emissions 

Total Annualized GHG Intensity 

Gg CO2e 
Gg CO2e / 

yr 
g CO2e / L g CO2e / MJ 

kg CO2e / 
mmBtu 

Ecosystem carbon 397,659 13,255 636.67 29.66 31.29 
--Cropland expansion 320,380 10,679 512.94 23.90 25.21 
--Forgone 
abandonment 

77,279 2,576 123.73 5.76 6.08 

            
N2O - 4,052 194.60 9.07 9.57 
--Crop rotations Δ - 2,773 133.20 6.21 6.55 
--Cropland extent Δ - 1,279 61.42 2.86 3.02 
      
Total domestic LUC - 17,307 831.27 38.73 40.86 

 1616 
Table S3: Greenhouse gas (GHG) emissions by source.  Annualized ecosystem carbon 1617 
emissions based on a 30-year amortization period (73).  GHG intensities calculated using a 20.82 1618 
billion liter modeled change in annual production, an ethanol heating value of 21.46 MJ / L, and a 1619 
conversion factor of 947.82 MJ / Btu.   1620 
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 1621 
 1622 
Table S4: Data used in price impact model. All variables measured annually from 1960-2017. 1623 
All prices deflated by the March Consumer Price Index for all items. The price and inventory 1624 
variables enter the model in logs.   1625 

Corn Soybeans Wheat

Global Commodity             

   Demand (X)

variable Real economic 

activity index

Real economic 

activity index

Real economic             

activity index

Source Kilian (2009) Kilian (2009) Kilian (2009)

timing March March March

Inventory (I) variable Total ending 

stocks (bu)

Total ending 

stocks (bu)

Total ending                    

stocks (bu)

source USDA USDA USDA

timing September September June

Futures Price (F) variable CBOT Dec 

contract

CME Nov 

contract

CBOT Dec contract        

(1960-1976), KCBOT Dec 

contract (1977-2017)

source quandl quandl quandl

timing average daily 

price in March

average daily 

price in March

average daily                    

price in March

Spot Price (S) variable Central IL cash 

bid

Central IL cash 

bid

St Louis SRW cash bid 

(1960-1976), Kansas City 

HRW cash bid (1977-2017) 

source USDA AMS USDA AMS USDA AMS

timing average daily 

price in March

average daily 

price in March

average daily                    

price in March

Annual Timeline

Harvest
New Crop 

Year

New Crop 
Year Nov/DecPlantingHarvest March

X, S, F I
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Value Vegetation Type in AgroIBIS 

1 Tropical broadleaf evergreen tree 

2 Tropical broadleaf drought-deciduous tree 

3 Warm-temperate broadleaf evergreen tree 

4 Temperate conifer evergreen tree 

5 Temperate broadleaf cold-deciduous tree 

6 Boreal conifer evergreen tree 

7 Boreal broadleaf cold-deciduous tree 

8 Mixed Forest 

9 Savanna 

10 Grassland 

11 Dense Shrubland 

12 Open Shrubland 

13 Tundra 

14 Desert 

15 Polar Desert 

16 Corn 

17 Soybean 

18 Wheat 

19 Alfalfa 

20 Hay 

21 Pasture 

22 Developed / High Intensity (Turf Grass) 

23 Developed / Medium Intensity (Turf Grass) 

24 Developed / Low Intensity (Turf Grass) 

25 Developed / Open Space (Turf Grass) 

26 Herbaceous Wetland 

27 Woody Wetland 

30 Barren 

98 Open Water 

 1626 

Table S5. Vegetation types simulated in the agroecosystem modeling.  1627 
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StartYear EndYear Dataset Name Spatial Resolution Source 

N/A N/A Potential Vegetation 5 arc-minute 
Ramankutty and Foley 

[1999]  

1938 1992 
FORE-SCE 

BACKCAST 
250 meter Sohl et al. [2016]  

1993 1998 
FORE-SCE 

HISTORICAL 
250 meter Sohl et al. [2014]  

2001 2001 USGS NLCD 2001 30 meter Homer et al. [2007] 

2006 2006 USGS NLCD 2006 30 meter Fry et al. [2011]  

2011 2011 USGS NLCD 2011 30 meter Homer et al. [2015] 

2008 2016 USDA-NASS CDL 30 meter USDA [2017]  

 1628 

Table S6. Land cover datasets used for the agroecosystem modeling.  1629 

https://doi.org/10.1029/1999GB900046
https://doi.org/10.1029/1999GB900046
http://dx.doi.org/10.1080/1747423x.2016.1147619
http://dx.doi.org/10.1890/13-1245.1
https://www.mrlc.gov/nlcd2001.php
https://www.mrlc.gov/downloadfile2.php?file=September2011PERS.pdf
https://www.mrlc.gov/nlcd2011.php
https://www.nass.usda.gov/Research_and_Science/Cropland/Release/index.php
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Variable/Statistic Name 

Federal Information Processing Standards (FIPS) county code 

Cropland harvested, total area 

Cropland, irrigated area 

Corn harvested area 

Soybeans harvested area 

Wheat harvested area 

Alfalfa harvested area 

Hay harvested area 

Non-simulated crops area 

Pasture area 

Irrigated pasture area 

Fraction of cropland harvested that was irrigated 

Fraction of pasture that was irrigated 

 1630 
Table S7. Variables and statistics derived from Ag Census to map historic land cover.   1631 
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Start Year End Year Fertilizer Manure Source Citation 

1945 1985 X  Alexander and Smith, 1990 

1987 2006 X  Gronberg and Spahr, 2012 

2007 2012 X  Brakebill and Gronberg, 2017 

1982 1997  X Ruddy et al., 2006 

2002 2002  X Mueller and Gronberg, 2013 

2007 2012  X Gronberg and Arnold, 2017 

 1632 

Table S8. Sources of county-level estimates of N and P inputs to the landscape.  1633 
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Crop/Cover 

Type 

Recommended 

Fertilizer N 

Rate [lb/acre] 

Ratio to 

Corn 

(R) 

Recommended 

Fertilizer P2O5 

Rate [lb/acre] 

Ratio to 

Corn (R) Source Citation (state) 

Corn 180 1 80 1 Laboski et al. 2012 

(WI) 

Soy 0 0 50 0.63 Laboski et al. 2012 

(WI) 

Wheat 70 0.39 35 0.44 Laboski et al. 2012 

(WI) 

Alfalfa 5 0.03 68 0.85 Laboski et al. 2012 

(WI) 

Non-alfalfa 

hay 

100 0.56 55 0.69 Laboski et al. 2012 

(WI) 

Pasture 100 0.56 55 0.69 Laboski et al. 2012 

(WI) 

Other crop* 150 0.83 60 0.75 Mylavarapu et al. 

2015 (FL) 

 1634 

Table S9. Recommended fertilizer N and P application rates, and ratios of rates to corn 1635 
rate used in mapping.  *Rates are an average for sorghum and cotton   1636 
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Equation REA Inventory Futures Conv. Yield 

 Reduced Form Estimates: A-1B1 

REAt-1 0.52* (0.12) -0.24 (0.29) 0.04 (0.11) -0.07 (0.06) 

Inventoryt-1 -0.02 (0.04) 0.71* (0.11) 0.04 (0.04) -0.04* (0.02) 

Futurest-1 -0.04 (0.10) 0.90* (0.30) 0.71* (0.10) -0.06 (0.04) 

Conv. Yieldt-1 0.86* (0.26) 1.87* (0.53) 0.33 (0.44) -0.01 (0.11) 

     

Constant 0.11 (0.36) -0.20 (1.16) 0.37 (0.30) 0.60 (0.19) 

Trend 0.000 (0.003) 0.035* (0.013) -0.011* (0.004) 0.000 (0.001) 

     

 A Matrix: imposing  23 32 42 344.4 1 / (1 )       

REA 1 0 0 0 

Inventory Supply 0.65 1 -0.50 -0.50 

Inventory Demand 
-0.44 0.17 1 -0.12 

Supply of Storage 
-0.10 0.09 0 1 

     

 A Matrix: Identified Set 

REA 1 0 0 0 

Inventory Supply [0.49, 3.04] 1 [-4.25,-0.25] [-4.25,-0.25] 

Inventory Demand [-0.44,-0.37] [0.15, 0.24] 1 [-0.46, -0.16] 

Supply of Storage [-0.10, -0.08] [0.09, 0.15] 0 1 

     

 A Matrix: >90% Confidence Interval 

REA 1 0 0 0 

Inventory Supply [-0.04, 4.89] 1 [-6.60, -0.25] [-6.60, -0.25] 

Inventory Demand [-0.52,-0.25] [0.09, 0.30] 1 [-0.93, 0.12] 

Supply of Storage [-0.18, 0.02] [0.05, 0.22] 0 1 

 1637 
Table S10. Soybean VAR parameter estimates. Sample range: 1961–2005; standard errors in 1638 
parentheses; * indicates significance at 5%; model selection criteria values are AICC = -648.86 1639 
and BIC = -620.31; for the two-lag model, we obtain AICc = -640.24 and BIC = -583.15, so the 1640 
one-lag model is favored. We obtain the confidence intervals using a recursive-design wild 1641 
bootstrap (1).  1642 
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 1643 
 1644 
Table S11. Log difference between actual and counterfactual for soybeans.  Here we define 1645 
the log cash price as log futures plus convenience yield. Table entries are results from the BAU 1646 
calculations described in the text. Total surprise is production surprise minus China import 1647 
surprise. Surprise terms divided by 6.6 MMT, which is average soybean inventory from 1996-1648 
2005. Because the identifying assumptions differ slightly, there is no requirement that the point 1649 
identified parameters lie in the identified set.  1650 

2006-07 2007-08 2008-09 2009-10 2010-11

No Inventory-Demand Shocks

Inventory 0.00 0.00 0.00 0.00 0.00 0.00

Fut. Price 0.00 0.00 0.00 0.00 0.00 0.00

Conv. Yield 0.00 0.00 0.00 0.00 0.00 0.00

Cash Price 0.00 0.00 0.00 0.00 0.00 0.00

No Inventory-Demand or -Supply Shocks

Inventory 0.61 -0.28 -0.85 -0.66 -0.35 -0.31

Fut. Price 0.09 0.39 0.22 0.29 0.82 0.36

Conv. Yield -0.06 0.04 0.10 0.06 0.03 0.03

Cash Price 0.04 0.43 0.31 0.35 0.85 0.40

No Inventory-Demand Shocks

Inventory-Supply Shocks from Production and China-Import Surprises Only

Inventory -0.19 0.12 0.56 0.89 0.58 0.39

Fut. Price 0.24 0.36 -0.03 -0.07 0.51 0.20

Conv. Yield 0.02 -0.01 -0.04 -0.08 -0.04 -0.03

Cash Price 0.26 0.36 -0.07 -0.14 0.47 0.18

No Inventory-Demand Shocks (95% confidence band)

Inventory-Supply Shocks from Production and China-Import Surprises Only

Inventory -0.51 0.15 -0.34 0.70 -0.25 1.26 -0.21 1.55 -0.65 1.31 -0.32 0.94

Fut. Price 0.09 0.37 0.09 0.63 -0.35 0.34 -0.41 0.34 0.12 0.97 -0.07 0.52

Conv. Yield -0.04 0.09 -0.09 0.07 -0.12 0.02 -0.20 0.01 -0.15 0.05 -0.09 0.03

Cash Price 0.07 0.43 0.04 0.67 -0.39 0.31 -0.47 0.27 0.10 0.94 -0.10 0.50

Identified Set

No Inventory-Demand Shocks

Inventory-Supply Shocks from Production and China-Import Surprises Only

Inventory -0.26 0.34 0.11 0.12 -0.06 0.65 0.30 0.99 0.21 0.68 0.18 0.43

Fut. Price 0.18 0.24 0.34 0.37 -0.02 0.02 -0.04 0.01 0.54 0.57 0.22 0.23

Conv. Yield -0.05 0.02 -0.01 0.01 -0.05 0.05 -0.08 -0.03 -0.05 -0.02 -0.03 -0.01

Cash Price 0.13 0.27 0.34 0.37 -0.07 0.07 -0.12 -0.02 0.49 0.55 0.19 0.22

Identified Set (>95% confidence band)

No Inventory-Demand Shocks

Inventory-Supply Shocks from Production and China-Import Surprises Only

Inventory -0.57 0.68 -0.37 0.71 -0.88 1.34 -0.71 1.66 -0.92 1.40 -0.50 0.98

Fut. Price 0.03 0.37 0.10 0.64 -0.34 0.40 -0.40 0.42 0.14 1.02 -0.06 0.54

Conv. Yield -0.11 0.09 -0.09 0.08 -0.13 0.12 -0.20 0.04 -0.15 0.05 -0.09 0.04

Cash Price -0.06 0.44 0.05 0.67 -0.39 0.48 -0.46 0.39 0.11 1.01 -0.09 0.54

Production Surprises (MMT)

Actual Prod. 87.0 72.9 80.7 91.5 90.7

May Forecast 83.8 74.7 84.5 87.0 90.1

Surprise 3.2 -1.8 -3.8 4.5 0.6

China Import Surprises (MMT)

Actual Imports 28.7 37.8 41.1 50.3 52.3

May Forecast 31.5 34.5 35.5 38.1 49.0

Surprise -2.8 3.3 5.6 12.2 3.3

Total Surprise 6.0 -5.2 -9.4 -7.7 -2.8

Average
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Equation REA Inventory Futures Conv. Yield 

 Reduced Form Estimates: A-1B1 

REAt-1 0.59* (0.14) -0.51* (0.19) 0.42* (0.15) -0.02 (0.07) 

Inventoryt-1 -0.05 (0.07) 0.71* (0.09) 0.07 (0.06) 0.04 (0.04) 

Futurest-1 -0.16 (0.10) 0.58* (0.17) 0.53* (0.10) -0.05 (0.05) 

Conv. Yieldt-1 0.01 (0.24) -0.10 (0.38) 0.18 (0.28) 0.31* (0.13) 

     

Constant 0.85 (0.77) 1.80 (1.11) 0.17 (0.69) -0.21 (0.37) 

Trend -0.005 (0.004) 0.016* (0.006) -0.014* (0.004) 0.001 (0.002) 

     

 A Matrix: imposing  23 32 42 344.4 1 / (1 )       

REA 1 0 0 0 

Inventory Supply 2.11 1 -3.44 -3.44 

Inventory Demand 
0.04 0.81 1 0.44 

Supply of Storage 
0.11 0.16 0 1 

     

 A Matrix: Identified Set 

REA 1 0 0 0 

Inventory Supply [0.71, 1.25] 1 [-1.47,-0.25] [-1.47,-0.25] 

Inventory Demand [-0.16,-0.04] [0.48, 0.68] 1 [0.56, 0.64] 

Supply of Storage [0.09, 0.10] [0.12, 0.14] 0 1 

     

 A Matrix: >90% Confidence Interval 

REA 1 0 0 0 

Inventory Supply [0.42, 1.72] 1 [-1.82, -0.25] [-1.82, -0.25] 

Inventory Demand [-0.29,0.15] [0.35, 0.78] 1 [0.20, 0.95] 

Supply of Storage [0.02, 0.20] [0.07, 0.20] 0 1 

 1651 
Table S12. Wheat VAR parameter estimates. Sample range: 1961–2005; standard errors in 1652 
parentheses; *indicates significance at 5%; model selection criteria values are AICc=-648.86 and 1653 
BIC=-620.31; for the two-lag model, we obtain AICc = -640.24 and BIC = -583.15, so the one-lag 1654 
model is favored. We obtain the confidence intervals using a recursive-design wild bootstrap (1).  1655 
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 1656 
 1657 
Table S13. Log difference between actual and counterfactual for wheat.  Here we define the 1658 
log cash price as log futures plus convenience yield. Table entries are results from the BAU 1659 
calculations described in the text. Surprise terms divided by 18.7 MMT, which is average wheat 1660 
inventory from 1996-2005.  Because the identifying assumptions differ slightly, there is no 1661 
requirement that the point identified parameters lie in the identified set. 1662 
  1663 

2006-07 2007-08 2008-09 2009-10 2010-11

No Inventory-Demand Shocks

Inventory 0.00 0.00 0.00 0.00 0.00 0.00

Fut. Price 0.00 0.00 0.00 0.00 0.00 0.00

Conv. Yield 0.00 0.00 0.00 0.00 0.00 0.00

Cash Price 0.00 0.00 0.00 0.00 0.00 0.00

No Inventory-Demand or -Supply Shocks

Inventory -0.06 -0.28 0.21 0.60 0.34 0.16

Fut. Price -0.01 0.52 0.07 -0.12 0.39 0.17

Conv. Yield 0.01 0.04 -0.04 -0.07 0.02 -0.01

Cash Price 0.00 0.56 0.03 -0.19 0.41 0.16

No Inventory-Demand Shocks

Inventory-Supply Shocks from Production Surprises Only

Inventory -0.04 -0.23 0.18 0.52 0.27 0.14

Fut. Price -0.03 0.48 0.09 -0.06 0.45 0.18

Conv. Yield 0.01 0.03 -0.03 -0.06 0.02 -0.01

Cash Price -0.03 0.51 0.05 -0.12 0.47 0.18

No Inventory-Demand Shocks (95% confidence band)

Inventory-Supply Shocks from Production Surprises Only

Inventory -0.23 0.17 -0.61 0.08 -0.40 0.60 -0.10 1.00 -0.41 0.86 -0.32 0.53

Fut. Price -0.15 0.09 0.29 0.73 -0.17 0.45 -0.31 0.29 0.21 0.79 -0.01 0.46

Conv. Yield -0.06 0.06 -0.05 0.11 -0.15 0.05 -0.17 0.02 -0.09 0.09 -0.10 0.06

Cash Price -0.13 0.10 0.34 0.74 -0.18 0.38 -0.33 0.21 0.24 0.79 0.00 0.43

Identified Set

No Inventory-Demand Shocks

Inventory-Supply Shocks from Production Surprises Only

Inventory -0.02 0.02 -0.19 -0.13 0.14 0.16 0.30 0.43 -0.06 0.15 0.05 0.10

Fut. Price -0.04 -0.04 0.46 0.46 0.10 0.11 -0.03 -0.01 0.50 0.53 0.20 0.21

Conv. Yield 0.00 0.00 0.02 0.02 -0.03 -0.02 -0.04 -0.02 0.03 0.04 0.00 0.00

Cash Price -0.05 -0.04 0.48 0.49 0.07 0.09 -0.07 -0.02 0.53 0.58 0.20 0.22

Identified Set (>95% confidence band)

No Inventory-Demand Shocks

Inventory-Supply Shocks from Production Surprises Only

Inventory -0.21 0.22 -0.58 0.17 -0.47 0.58 -0.33 0.92 -0.73 0.76 -0.41 0.49

Fut. Price -0.16 0.08 0.27 0.72 -0.16 0.48 -0.27 0.35 0.25 0.87 0.00 0.49

Conv. Yield -0.07 0.06 -0.06 0.10 -0.14 0.07 -0.15 0.06 -0.08 0.11 -0.10 0.07

Cash Price -0.15 0.09 0.31 0.72 -0.17 0.43 -0.29 0.30 0.29 0.88 0.02 0.47

Production Surprises (MMT)

Actual Prod. 49.2 55.8 68.4 60.1 58.9

May Forecast 51.0 59.2 65.1 55.1 55.6

Surprise -1.8 -3.3 3.3 5.0 3.3

Average
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 Crop Rotation 

Elasticity with 
Respect to Corn-Corn Corn-Other Other-Other 

Price of Corn 
1.644** 0.179** -1.315** 
(0.198) (0.065) (0.238) 

Price of Other 
Crops 

-1.314** -0.221** 0.891** 

(0.261) (0.085) (0.215) 

 1664 
Table S14. Long-Run Crop Rotation Elasticities.  Bootstrap standard errors are in 1665 
parentheses.  Note * and ** denote significance at the 10% and 5% levels, respectively. The 1666 
results in this table are replicated from results in table A10 in the supplementary appendix of 1667 
Pates and Hendricks(17). 1668 
  1669 
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Elasticity with 
Respect to Corn Area Elasticity 

Price of Corn 
0.574** 
(0.045) 

Price of Other 
Crops 

-0.467** 

(0.062) 

 1670 
Table S15. Long-Run Aggregate Corn Acreage Elasticities.  Bootstrap standard errors are in 1671 
parentheses.  Note * and ** denote significance at the 10% and 5% levels, respectively. The 1672 
results in this table are replicated from results in table 3 of Pates and Hendricks (17).  1673 
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Rotation NO3 Leaching 
[kg/ha] 

P runoff [kg/ha] Sediment loss [tons/km2] 

CC = continuous corn 41.6 ± 27.5 0.282 ± 0.279 22.2 ± 35.0 

SS = continuous soy 15.8 ± 12.4 0.179 ± 0.224 14.2 ± 22.5 

CS = corn-soy rotation 28.8 ± 19.5 0.231 ± 0.250 18.2 ± 28.8 

WW = continuous wheat 17.0 ± 11.3 0.202 ± 0.272 13.0 ± 20.6 

CW = corn-wheat rotation 29.4 ± 18.8 0.242 ± 0.272 17.6 ± 27.8 

Table S16.  Average field-level water quality impacts (+/- one standard deviation) across 1674 
CONUS cropland over 2007-16 time period for different cropping rotations.  1675 
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Rotation Fertilizer N 
[kg/ha] 

Fertilizer P 
[kg/ha] 

Manure N 
[kg/ha] 

Manure P 
[kg/ha] 

CC = continuous corn 174 ± 49.9 17.9 ± 6.50 18.9 ± 36.7 5.60 ± 11.5 

SS = continuous soy 0 ± 0 11.2 ± 4.09 18.9 ± 36.7 5.60 ± 11.5 

CS = corn-soy rotation 86.8 ± 25.0 14.5 ± 6.38 18.9 ± 36.7 5.60 ± 11.5 

WW = continuous wheat 68.9 ± 25.4 7.82 ± 2.88 18.9 ± 36.7 5.60 ± 11.5 

CW = corn-wheat rotation 121 ± 65.7 12.8 ± 7.10 18.9 ± 36.7 5.60 ± 11.5 

 1676 
Table S17:  Fertilizer and manure inputs to each cropping rotation.   Average (+/- one 1677 
standard deviation) fertilizer and manure nitrogen and phosphorus across CONUS cropland.  1678 



 

 

87 

 

CC compared to XX NO3 Leaching [kg/ha] P runoff [kg/ha] Sediment loss [tons/km2] 

CC‒SS 25.8 ± 17.5 0.102 ± 0.080 8.01 ± 12.51 

CC‒CS 12.9 ± 8.8 0.051 ± 0.040 4.00 ± 6.25 

CC‒WW 24.6 ± 18.5 0.080 ± 0.099 9.20 ± 14.51 

CC‒CW 12.2 ± 9.34 0.039 ± 0.051 4.60 ± 7.25 

 1679 
Table S18:  Corn intensification impact. Average (+/- one standard deviation) difference of 1680 
impacts due to continuous corn to impacts from other cropping rotations, i.e. the differential 1681 
impact of continuous corn compared to the other rotations.  1682 
  1683 
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 Type of Transition 

Elasticity with 
Respect to 

Expand Cropland 
from Pasture 

Abandon Cropland 
to Pasture 

Expand Cropland 
from CRP 

Abandon Cropland 
to CRP 

Price of Crops 
-0.015 0.014 7.350** -1.218** 
(0.073) (0.053) (0.323) (0.096) 

Pasture Rent 
-0.298** -0.685**   
(0.079) (0.050)   

CRP Rent 
  -0.394** 0.227** 

  (0.129) (0.091) 

 1684 
Table S19. Five-Year Cropland Transition Elasticities.  Bootstrap standard errors are in 1685 
parentheses.  Note * and ** denote significance at the 10% and 5% levels, respectively. 1686 
  1687 
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Elasticity with 
Respect to Cropland Area Elasticity 

Price of Crops 
0.071** 
(0.005) 

Pasture Rent 
0.024** 
(0.004) 

CRP Rent 
-0.005** 

(0.001) 

 1688 
Table S20. Five-Year Aggregate Cropland Area Elasticities.  Bootstrap standard errors are in 1689 
parentheses.  Note * and ** denote significance at the 10% and 5% levels, respectively.  1690 
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Expand Cropland from 
Pasture or CRP  

Abandon Cropland to 

   Pasture or CRP 

Region Change (ha) 
 

Region Change (ha) 
 

Net Change 

F 673,049 **  F 47,678 
 

 625,371 ** 

 
(52,699) 

   
(41,453) 

  
(67,061) 

 
H 314,044 **  H -62,641 *  376,685 ** 

 
(40,129) 

   
(33,776) 

  
(52,391) 

 
JNOP -41,023   JNOP 19,443 

 
 -60,465 

 
 

(64,234) 
   

(31,389) 
  

(72,313) 
 

KL -16,834   KL -82,820 *  65,987 
 

 
(56,325) 

   
(44,700) 

  
(71,843) 

 
Mcrop 95,368 **  Mcrop -8,917 

 
 104,285 * 

 
(39,825) 

   
(45,072) 

  
(59,688) 

 
Mgrass 759,093 **  Mgrass -257,218 **  1,016,311 ** 

 
(97,651) 

   
(76,002) 

  
(125,091) 

 
RST 11,969   RST -9,707   21,677 

 
 

(20,716) 
   

(18,899) 
  

(28,194) 
 

Total 1,795,668 **   -354,183 **  2,149,851 ** 

 
(151,295) 

   
(119,121) 

  
(193,298) 

 
 1691 
Table S21. Predicted changes in transitions of cropland with pasture or CRP due to RFS. 1692 
Bootstrap standard errors are in parentheses.  Note * and ** denote significance at the 10% and 1693 
5% levels, respectively.  1694 
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Expand Cropland from 
Pasture  

Abandon Cropland to Pasture 
   

Region Change (ha) 
 

Region Change (ha) 
 

Net Change 

F 33,532   F 98,394 **  -64,862 
 

 
(27,503) 

   
(38,556) 

  
(47,251) 

 
H -9,347   H 35,468 

 
 -44,814 

 

 
(31,021) 

   
(32,399) 

  
(44,421) 

 
JNOP -116,488 *  JNOP 45,590 

 
 -162,079 ** 

 
(63,763) 

   
(30,692) 

  
(71,323) 

 
KL -68,019   KL -74,499 *  6,480 

 

 
(55,507) 

   
(44,643) 

  
(70,844) 

 
Mcrop 15,464   Mcrop 29,689 

 
 -14,225 

 

 
(38,490) 

   
(41,713) 

  
(55,925) 

 
Mgrass 124,978   Mgrass -206,332 **  331,310 ** 

 
(93,895) 

   
(74,291) 

  
(120,494) 

 
RST 301   RST -5,303   5,604 

 

 
(20,612) 

   
(18,741) 

  
(27,816) 

 
Total -19,580    -76,993   57,413 

 

 
(138,067) 

   
(114,138) 

  
(178,807) 

 
 1695 
Table S22. Predicted changes in transitions of cropland with pasture due to the RFS. 1696 
Bootstrap standard errors are in parentheses.  Note * and ** denote significance at the 10% and 1697 
5% levels, respectively.  1698 
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Expand Cropland from 
CRP  

Abandon Cropland to 
CRP    

Region Change (ha) 
 

Region Change (ha) 
 

Net Change 

F 639,518 **  F -50,715 **  690,233 ** 

 
(45,751) 

   
(14,671) 

  
(47,816) 

 
H 323,391 **  H -98,109 **  421,500 ** 

 
(26,084) 

   
(9,258) 

  
(27,738) 

 
JNOP 75,466 **  JNOP -26,148 **  101,613 ** 

 
(9,560) 

   
(6,473) 

  
(11,300) 

 
KL 51,186 **  KL -8,321 **  59,507 ** 

 
(9,827) 

   
(3,707) 

  
(10,630) 

 
Mcrop 79,904 **  Mcrop -38,606 **  118,510 ** 

 
(10,065) 

   
(16,468) 

  
(19,416) 

 
Mgrass 634,115 **  Mgrass -50,887 **  685,002 ** 

 
(28,819) 

   
(14,127) 

  
(31,993) 

 
RST 11,669 **  RST -4,404 **  16,073 ** 

 
(4,116) 

   
(2,334) 

  
(4,670) 

 
Total 1,815,248 **   -277,190 **  2,092,438 ** 

 
(61,823) 

   
(29,175) 

  
(68,261) 

 
 1699 
Table S23. Predicted changes in transitions of cropland with CRP due to RFS.  Bootstrap 1700 
standard errors are in parentheses.  Note * and ** denote significance at the 10% and 5% levels, 1701 
respectively.  1702 



 

 

93 

 

SI References 1703 

 1704 
1.  C. A. Carter, G. C. Rausser, A. Smith, Commodity storage and the market effects 1705 

of biofuel policies. American Journal of Agricultural Economics 99, 1027–1055 1706 

(2017). 1707 

2.  J. C. Williams, B. D. Wright, Storage and commodity markets. (Cambridge 1708 

university press, 1991). 1709 

3.  C. A. Carter, G. C. Rausser, A. Smith, Commodity Booms and Busts. Annual 1710 

Review of Resource Economics 3, 87–118 (2011). 1711 

4.  M. K. Adjemian, A. Smith, Using USDA Forecasts to Estimate the Price 1712 

Flexibility of Demand for Agricultural Commodities. American Journal of 1713 

Agricultural Economics 94, 978–995 (2012). 1714 

5.  N. P. Hendricks, A. Smith, D. A. Sumner, Crop Supply Dynamics and the Illusion 1715 

of Partial Adjustment. Am J Agric Econ 96, 1469–1491 (2014). 1716 

6.  L. Kilian, Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply 1717 

Shocks in the Crude Oil Market. American Economic Review 99, 1053–1069 1718 

(2009). 1719 

7.  S. Gonçalves, L. Kilian, Bootstrapping autoregressions with conditional 1720 

heteroskedasticity of unknown form. Journal of Econometrics 123, 89–120 (2004). 1721 

8.  P. Garcia, S. H. Irwin, A. Smith, Futures Market Failure? Am J Agric Econ 97, 40–1722 

64 (2015). 1723 

9.  N. P. Hendricks, et al., The environmental effects of crop price increases: Nitrogen 1724 

losses in the US Corn Belt. Journal of Environmental Economics and Management 1725 

68, 507–526 (2014). 1726 

10.  J. Woodard, Big data and Ag-Analytics: An open source, open data platform for 1727 

agricultural & environmental finance, insurance, and risk. Agricultural Finance 1728 

Review 76, 15–26 (2016). 1729 

11.  F. S. A. USDA, FSA Common Land Unit infosheet (2012) (July 15, 2015). 1730 

12.  L. Yan, D. P. Roy, Automated crop field extraction from multi-temporal Web 1731 

Enabled Landsat Data. Remote Sensing of Environment 144, 42–64 (2014). 1732 

13.  C. Boryan, Z. Yang, R. Mueller, M. Craig, Monitoring US agriculture: the US 1733 

Department of Agriculture, National Agricultural Statistics Service, Cropland Data 1734 

Layer Program. Geocarto International 26, 341–358 (2011). 1735 

14.  N. R. C. S. Soil Survey Staff United States Department of Agriculture, Soil Survey 1736 

Geographic (SSURGO) Database for the United States (November 15, 2018). 1737 



 

 

94 

 

15.  C. Daly, et al., High-quality spatial climate data sets for the United States and 1738 

beyond. Transactions of the ASAE 43, 1957 (2000). 1739 

16.  Bloomberg L.P., “Local US agricultural spot and commodity futures prices.” 1740 

(November 8, 2017). 1741 

17.  N. J. Pates, N. P. Hendricks, Fields from Afar: Evidence of Heterogeneity in 1742 

United States Corn Rotational Response from Remote Sensing Data. American 1743 

Journal of Agricultural Economics n/a (2021). 1744 

18.  USDA, “2012 National Resources Inventory: Summary Report” (Natural  1745 

Resources Conservation Service , 2015). 1746 

19.  E. R. S. USDA, “USDA ERS - Agricultural Baseline Database” (May 21, 2020). 1747 

20.  E. R. S. USDA, “USDA ERS - Commodity Costs and Returns” (May 21, 2020). 1748 

21.  D. Hofstrand, W. Edwards, “Computing a Pasture Rental Rate” (2015) (June 10, 1749 

2020). 1750 

22.  J. Atwood, T. Watts, K. Price, J. Kastens, The big picture - Satellite remote sensing 1751 

applications in rangeland assessment and crop insurance in (2005) (May 21, 2020). 1752 

23.  USDA NASS, QuickStats (2012) (May 10, 2012). 1753 

24.  M. Stubbs, Conservation Reserve Program (CRP): Status and Issues. 1754 

Congressional Research Service, 7–5700 (2012). 1755 

25.  N. P. Hendricks, Potential Benefits from Innovations to Reduce Heat and Water 1756 

Stress in Agriculture. Journal of the Association of Environmental and Resource 1757 

Economists 5, 545–576 (2018). 1758 

26.  R. N. Lubowski, A. J. Plantinga, R. N. Stavins, What drives land-use change in the 1759 

United States? A national analysis of landowner decisions. Land Economics 84, 1760 

529–550 (2008). 1761 

27.  B. S. Rashford, J. A. Walker, C. T. Bastian, Economics of grassland conversion to 1762 

cropland in the Prairie Pothole Region. Conservation Biology 25, 276–284 (2011). 1763 

28.  J. J. Lawler, et al., Projected land-use change impacts on ecosystem services in the 1764 

United States. Proceedings of the National Academy of Sciences 111, 7492–7497 1765 

(2014). 1766 

29.  C. Langpap, J. Wu, Potential Environmental Impacts of Increased Reliance on 1767 

Corn-Based Bioenergy. Environmental and Resource Economics 49, 147–171 1768 

(2011). 1769 



 

 

95 

 

30.  R. Claassen, C. Langpap, J. Wu, Impacts of Federal Crop Insurance on Land Use 1770 

and Environmental Quality. American Journal of Agricultural Economics 83, 1771 

aaw075 (2016). 1772 

31.  J. M. Wooldridge, Econometric analysis of cross section and panel data (MIT 1773 

press, 2010). 1774 

32.  T. J. Lark, J. M. Salmon, H. K. Gibbs, Cropland expansion outpaces agricultural 1775 

and biofuel policies in the United States. Environ. Res. Lett. 10, 044003 (2015). 1776 

33.  T. J. Lark, R. M. Mueller, D. M. Johnson, H. K. Gibbs, Measuring land-use and 1777 

land-cover change using the U.S. department of agriculture’s cropland data layer: 1778 

Cautions and recommendations. International Journal of Applied Earth 1779 

Observation and Geoinformation 62, 224–235 (2017). 1780 

34.  T. Lark, M. Bougie, S. Spawn, H. Gibbs, “Cropland Expansion in the United 1781 

States, 2008-2016” (University of Wisconsin-Madison, 2018). 1782 

35.  M. Motew, et al., The Influence of Legacy P on Lake Water Quality in a 1783 

Midwestern Agricultural Watershed. Ecosystems 20, 1468–1482 (2017). 1784 

36.  S. D. Donner, C. J. Kucharik, Corn-based ethanol production compromises goal of 1785 

reducing nitrogen export by the Mississippi River. Proceedings of the National 1786 

Academy of Sciences 105, 4513–4518 (2008). 1787 

37.  T. Lark, S. Spawn, M. Bougie, H. Gibbs, Cropland expansion in the United States 1788 

produces marginal yields at high costs to wildlife. Nature Communications 1789 

(Accepted, in press). 1790 

38.  N. W. Chaney, et al., POLARIS Soil Properties: 30-m Probabilistic Maps of Soil 1791 

Properties Over the Contiguous United States. Water Resour Res 55, 2916–2938 1792 

(2019). 1793 

39.  E. Benham, R. J. Ahrens, W. D. Nettleton, “Clarification of Soil Textural Class 1794 

Boundaries” (U.S. Department of Agriculture, Natural Resources Conservation 1795 

Service, National Soil Survey Center, 2009). 1796 

40. ,  “Elevation derivatives for national applications” (2005) 1797 

https:/doi.org/10.3133/fs20053049. 1798 

41.  L. W. Zevenbergen, C. R. Thorne, Quantitative-Analysis of Land Surface-1799 

Topography. Earth Surf Processes 12, 47–56 (1987). 1800 

42.  P. Panagos, P. Borrelli, K. Meusburger, New European Slope Length and 1801 

Steepness Factor (LS-Factor) for Modeling Soil Erosion by Water. Geosciences 5, 1802 

117–126 (2015). 1803 



 

 

96 

 

43.  T. G. Freeman, Calculating Catchment-Area with Divergent Flow Based on a 1804 

Regular Grid. Comput Geosci 17, 413–422 (1991). 1805 

44.  P. Quinn, K. Beven, P. Chevallier, O. Planchon, The Prediction of Hillslope Flow 1806 

Paths for Distributed Hydrological Modeling Using Digital Terrain Models. 1807 

Hydrol Process 5, 59–79 (1991). 1808 

45.  P. J. J. Desmet, G. Govers, A GIS procedure for automatically calculating the 1809 

USLE LS factor on topographically complex landscape units. J Soil Water Conserv 1810 

51, 427–433 (1996). 1811 

46.  V. Olaya, “Basic land-surface parameters” in Geomorphometry: Concepts, 1812 

Software, Applications. Developments in Soil Science, 33., T. Hengl, H. I. Reuter, 1813 

Eds. (Elsevier, 2009), pp. 141–169. 1814 

47.  L. McKay, et al., NHDPlus Version 2: User Guide (2012). 1815 

48.  J. R. Williams, “Sediment-yield prediction with Universal Equation using runoff 1816 

energy factor” in Present and Prospective Technology for Predicting Sediment 1817 

Yield and Sources. Vol. ARS-S-40., (U.S. Department of Agriculture, Agricultural 1818 

Research Service, 1975), pp. 244–252. 1819 

49.  M. Haines, P. Fishback, P. Rhode, United States Agriculture Data, 1840 - 2012 1820 

(2018) https:/doi.org/10.3886/ICPSR35206.v4. 1821 

50.  S. Manson, J. Schroeder, D. V. Riper, S. Ruggles, IPUMS National Historical 1822 

Geographic Information System: Version 13.0 (2018) 1823 

https:/doi.org/10.18128/D050.V13.0. 1824 

51.  N. Ramankutty, J. A. Foley, Estimating historical changes in global land cover: 1825 

Croplands from 1700 to 1992. Global Biogeochem Cy 13, 997–1027 (1999). 1826 

52.  J. Fry, et al., Completion of the 2006 National Land Cover Database for the 1827 

Conterminous United States. Photogrammetric Engineering and Remote Sensing 1828 

77, 858–864 (2011). 1829 

53.  C. Homer, et al., Completion of the 2001 National Land Cover Database for the 1830 

conterminous United States. Photogramm Eng Rem S 73, 337–341 (2007). 1831 

54.  C. Homer, et al., Completion of the 2011 National Land Cover Database for the 1832 

conterminous United States–representing a decade of land cover change 1833 

information. Photogrammetric Engineering & Remote Sensing 81, 345–354 1834 

(2015). 1835 

55.  T. Sohl, et al., Modeled historical land use and land cover for the conterminous 1836 

United States. J Land Use Sci 11, 476–499 (2016). 1837 



 

 

97 

 

56.  T. L. Sohl, et al., Spatially explicit modeling of 1992–2100 land cover and forest 1838 

stand age for the conterminous United States. Ecological Applications 24, 1015–1839 

1036 (2014). 1840 

57.  Q. F. Hamlin, et al., Quantifying Landscape Nutrient Inputs With Spatially 1841 

Explicit Nutrient Source Estimate Maps. Journal of Geophysical Research: 1842 

Biogeosciences 125, e2019JG005134 (2020). 1843 

58.  R. B. Alexander, R. A. Smith, “County-Level Estimates of Nitrogen and 1844 

Phosphorus Fertilizer Use in the United States, 1945 to 1985. Open-File Report 90-1845 

130” (U.S. Geological Survey, 1990). 1846 

59.  J. W. Brakebill, J. A. M. Gronberg, County-Level Estimates of Nitrogen and 1847 

Phosphorus from Commercial Fertilizer for the Conterminous United States, 1987-1848 

2012 (2017) https:/doi.org/10.5066/F7H41PKX (February 27, 2019). 1849 

60.  J. A. M. Gronberg, N. E. Spahr, “County-Level Estimates of Nitrogen and 1850 

Phosphorus from Commercial Fertilizer for the Conterminous United States, 1987–1851 

2006. Scientific Investigations Report 2012-5207” (U.S. Geological Survey, 2012). 1852 

61.  J. M. Gronberg, T. L. Arnold, “County-level estimates of nitrogen and phosphorus 1853 

from animal manure for the conterminous United States, 2007 and 2012” (US 1854 

Geological Survey, 2017). 1855 

62.  D. K. Mueller, J. A. M. Gronberg, “County-Level Estimates of Nitrogen and 1856 

Phosphorus from Animal Manure for the Conterminous United States, 2002: U.S. 1857 

Geological Survey Open-File Report 2013-1065” (2013). 1858 

63.  B. C. Ruddy, D. L. Lorenz, D. K. Mueller, “County-Level Estimates of Nutrient 1859 

Inputs to the Land Surface of the Conterminous United States, 1982–2001: U.S. 1860 

Geological Survey Scientific Investigations Report 2006-5012” (2006). 1861 

64.  R. Mylavarapu, D. Wright, G. Kidder, “UF/IFAS Standardized Fertilization 1862 

Recommendations for Agronomic Crops. SL129.” (University of Florida, Soil and 1863 

Water Science Department, Institute of Food and Agricultural Sciences, 2015). 1864 

65.  C. A. M. Laboski, J. B. Peters, “Nutrient application guidelines for field, 1865 

vegetable, and fruit crops in Wisconsin, A2809 R-11-2012” (University of 1866 

Wisconsin Extension, 2012). 1867 

66.  J. F. Brown, M. S. Pervez, Merging remote sensing data and national agricultural 1868 

statistics to model change in irrigated agriculture. Agricultural Systems 127, 28–40 1869 

(2014). 1870 

67.  J. S. Gerber, et al., Spatially explicit estimates of N2O emissions from croplands 1871 

suggest climate mitigation opportunities from improved fertilizer management. 1872 

Global Change Biology 22, 3383–3394 (2016). 1873 



 

 

98 

 

68. ,  “IPCC Assessment Report 5: Anthropogenic and Natural Radiative Forcing” 1874 

(Cambridge University Press, 2013). 1875 

69.  S. A. Spawn, T. J. Lark, H. K. Gibbs, Carbon emissions from cropland expansion 1876 

in the United States. Environmental Research Letters 14, 045009 (2019). 1877 

70.  J. Sanderman, Soil carbon profile data from paired land use comparisons (2017) 1878 

https:/doi.org/10.7910/DVN/QQQM8V (July 9, 2020). 1879 

71.  I. Gelfand, et al., Carbon debt of Conservation Reserve Program (CRP) grasslands 1880 

converted to bioenergy production. Proceedings of the National Academy of 1881 

Sciences 108, 13864–13869 (2011). 1882 

72.  C. Poeplau, et al., Temporal dynamics of soil organic carbon after land-use change 1883 

in the temperate zone – carbon response functions as a model approach. Global 1884 

Change Biology 17, 2415–2427 (2011). 1885 

73.  U.S. EPA, “Renewable Fuel Standard Program (RFS2) Regulatory Impact 1886 

Analysis” (Office of Transportation and Air Quality, Assessment and Standards 1887 

Division, 2010). 1888 

74.  M. D. Webb, “Reworking Wild Bootstrap Based Inference for Clustered Errors” 1889 

(Queen’s Economics Department Working Paper, 2013) (July 8, 2020). 1890 

75.  Y. Li, R. Miao, M. Khanna, Effects of Ethanol Plant Proximity and Crop Prices on 1891 

Land-Use Change in the United States. Am J Agric Econ 101, 467–491 (2019). 1892 

76.  S. Ahmed, T. Hertel, R. Lubowski, “Calibration of a Land Cover Supply Function 1893 

Using Transition Probabilities” (Center for Global Trade Analysis, Department of 1894 

Agricultural Economics, Purdue University, 2009) (July 14, 2021). 1895 

77.  K. J. Barr, B. A. Babcock, M. A. Carriquiry, A. M. Nassar, L. Harfuch, 1896 

Agricultural Land Elasticities in the United States and Brazil. Appl Econ Perspect 1897 

Policy 33, 449–462 (2011). 1898 

78.  N. P. Hendricks, E. Er, Changes in cropland area in the United States and the role 1899 

of CRP. Food Policy 75, 15–23 (2018). 1900 

79.  J. T. Crawford, E. H. Stanley, Controls on methane concentrations and fluxes in 1901 

streams draining human-dominated landscapes. Ecological Applications 26, 1581–1902 

1591 (2016). 1903 

80.  J. J. Beaulieu, T. DelSontro, J. A. Downing, Eutrophication will increase methane 1904 

emissions from lakes and impoundments during the 21st century. Nat Commun 10, 1905 

1375 (2019). 1906 

81.  Y. Yao, et al., Increased global nitrous oxide emissions from streams and rivers in 1907 

the Anthropocene. Nat. Clim. Chang. 10, 138–142 (2020). 1908 



 

 

99 

 

82.  K. Paustian, et al., Climate-smart soils. Nature 532, 49–57 (2016). 1909 

83.  N. USDA, “2017 Census of Agriculture” (2019) (September 19, 2019). 1910 

84.  T. Wade, R. Claassen, S. Wallander, “Conservation-practice adoption rates vary 1911 

widely by crop and region” (2015). 1912 

85.  D. S. Powlson, et al., Limited potential of no-till agriculture for climate change 1913 

mitigation. Nature Climate Change 4, 678–683 (2014). 1914 

86.  R. T. Conant, M. Easter, K. Paustian, A. Swan, S. Williams, Impacts of periodic 1915 

tillage on soil C stocks: A synthesis. Soil and Tillage Research 95, 1–10 (2007). 1916 

87.  California Air Resources Board, CA-GREET3.0 Supplemental Document and 1917 

Tables of Changes (2018). 1918 

88.  Wang, Michael, et al., Greenhouse gases, Regulated Emissions, and Energy use in 1919 

Technologies Model ® (2020 .Net) (Argonne National Laboratory (ANL), 1920 

Argonne, IL (United States), 2020) https:/doi.org/10.11578/GREET-NET-1921 

2020/DC.20200913.1 (July 26, 2021). 1922 

89.  H. Kwon, et al., “Carbon Calculator for Land Use and Land Management Change 1923 

from Biofuels Production (CCLUB)” (Argonne National Lab.(ANL), Argonne, IL 1924 

(United States), 2020). 1925 

90.  M. Wang, et al., “Summary of Expansions and Updates in GREET® 2020” 1926 

(Argonne National Lab.(ANL), Argonne, IL (United States), 2020). 1927 

91.  C. Malins, R. Plevin, R. Edwards, How robust are reductions in modeled estimates 1928 

from GTAP-BIO of the indirect land use change induced by conventional biofuels? 1929 

Journal of Cleaner Production 258, 120716 (2020). 1930 

92.  S. A. Spawn-Lee, et al., Comment on ‘Carbon intensity of corn ethanol in the 1931 

United States: state of the science’ (2021) https:/doi.org/10.32942/osf.io/cxhz5 1932 

(July 5, 2021). 1933 

93.  T. D. Searchinger, S. Wirsenius, T. Beringer, P. Dumas, Assessing the efficiency 1934 

of changes in land use for mitigating climate change. Nature 564, 249–253 (2018). 1935 

94.  T. Searchinger, R. Edwards, D. Mulligan, R. Heimlich, R. Plevin, Do biofuel 1936 

policies seek to cut emissions by cutting food? Science 347, 1420–1422 (2015). 1937 

 1938 


