Supplemental Online Content

2

- 3 Watanabe H, Morimoto T, Natsuaki M, et al; the STOPDAPT-2 ACS Investigators. Comparison
- 4 of clopidogrel monotherapy after 1 to 2 months of dual antiplatelet therapy with 12 months of
- 5 dual antiplatlet therapy in patients with acute coronary syndrome: the STOPDAPT-2 ACS
- 6 randomized clinical trial. *JAMA Cardiol*. Published online March 2, 2022.
- 7 doi:10.1001/jamacardio.2021.5244
- 8
- 9 **eAppendix 1.** STOPDAPT-2 ACS Study Organization.
- 10 **eAppendix 2.** Participating centers in the STOPDAPT-2 ACS.
- 11 **eAppendix 3**. Definition of endpoints.
- 12 eMethods.
- 13 **eTable 1.** Clinical and procedural characteristics compared between enrolled patients and
- 14 eligible but non-enrolled patients among overall ACS patients, ACS patients in STOPDAPT-2,
- 15 and patients in STOPDAPT-2 ACS.
- 16 **eTable 2.** Complete baseline characteristics.
- 17 **eTable 3**. Comparison of baseline characteristics between STOPDAPT-2 and STOPDAPT-2
- 18 ACS.
- 19 **eTable 4**. Per-protocol and as-treated population according to the mode of antithrombotic
- 20 therapy at 60-day.
- 21 **eTable 5**. Details of cases with definite or probable stent thrombosis.
- 22 **eFigure 1**. The rate of persistent DAPT discontinuation rate.
- 23 **eFigure 2**. Per-protocol analysis for the primary endpoint.
- 24 **eFigure 3**. As-treated analysis for the primary endpoint.
- 25 **eFigure 4**. Worst-case scenario for the primary endpoint.
- 26 **eFigure 5**. Landmark analysis at 30 days.
- 27 **eFigure 6**. Landmark analysis at 60 days.
- eFigure 7. Landmark analysis at the day of drug modification.
- 29 eFigure 8. Time-to-event curves for the primary and major secondary cardiovascular and
- 30 bleeding endpoints in the 1-2 month DAPT group stratified by the median value of DAPT
- 31 duration.
- 32 **eFigure 9**. Subgroup analyses for the relative effect of 1-2 month DAPT on the primary and
 - © 2021 American Medical Association. All rights reserved.

- 1 major secondary endpoints.
- 2 **eFigure 10**. Time-to-event curves for the primary and major secondary cardiovascular and
- 3 bleeding endpoints stratified by the study (patients in STOPDAPT-2 and STOPDAPT-2 ACS.

1 eAppendix 1. STOPDAPT-2 ACS Study Organization

- 2 Steering Committee:
- 3 Takeshi Kimura (Principal Investigator), Mitsuru Abe, Kenji Ando, Yuji Ikari, Kazushige Kadota, Kazuya
- 4 Kawai, Ken Kozuma, Kengo Tanabe, Keiichi Hanaoka, Koichi Nakao, Yoshihiro Morino.
- 5 Clinical Event Committee:
- 6 Yoshihisa Nakagawa, Yutaka Furukawa
- 7 Statistical Analysis:
- 8 Takeshi Morimoto
- 9 Coordinating Center:
- 10 Research Institute for Production Development, Kyoto, Japan
- 11 Saori Tezuka, Yumika Fujino, Naoko Okamoto, Risa Kato, Masayo Kitamura, Miyuki Tsumori, Miya
- 12 Hanazawa, Misato Yamauchi, Itsuki Yamazaki.

1 eAppendix 2. Participating Centers in the STOPDAPT-2 ACS

- 2 Following 74 institutes in Japan screened or enrolled one or more eligible patients.
- 3 The current analysis included the patients enrolled from 96 centers in Japan including the centers which
- 4 participated in the previous STOPDAPT-2 but did not participate in the STOPDAPT-2 ACS.
- 5
- 6 Teine Keijinkai Hospital, Sapporo, (Mitsugu Hirokami)
- 7 Megumino Hospital, Eniwa, (Nobuko Makiguchi)
- 8 Hokko Memorial Hospital, Sapporo, (Yoichi Nozaki)
- 9 Hirosaki University Hospital, Hirosaki, (Hirofumi Tomita)
- 10 Iwate Medical University Hospital, Morioka, (Yoshihiro Morino)
- 11 Sendai Kousei Hospital, Sendai, (Tsuyoshi Isawa)
- 12 Sendai Cardiovascular Center, Sendai, (Masahiro Yagi)
- 13 Tohoku Medical and Pharmaceutical University Hospital, Sendai, (Tatsuya Komaru)
- 14 Mito Saiseikai General Hospital, Mito, (Motoaki Higuchi)
- 15 Kawaguchi Cardiovascular and Respiratory Hospital, Kawaguchi, (Hideo Tokuyama)
- 16 Ageo Central General Hospital, Ageo, (Takaaki Isshiki)
- 17 Mitsui Memorial Hospital, Tokyo, (Kengo Tanabe)
- 18 Toranomon Hospital, Tokyo, (Takahide Kodama)
- 19 Showa University Koto Toyosu Hospital, Tokyo, (Kohei Wakabayashi)
- 20 Kawakita General Hospital, Tokyo, (Atsushi Tosaka)
- 21 Sakakibara Heart Institute, Fuchu, (Itaru Takamisawa)
- 22 Tokyo Metropolitan Tama Medical Center, Fuchu, (Hiroyuki Tanaka)
- 23 Minamino Cardiovascular Hospital, Hachioji, (Yoshiki Hata)
- 24 Higashiyamato Hospital, Higashiyamato, (Ryuichi Kato)
- 25 St.Marianna University School of Medicine Hospital, Kawasaki, (Yoshihiro Akashi)
- 26 Yokohama Rosai Hospital, Yokohama, (Kazuhiko Yumoto)
- 27 Showa University Fujigaoka Hospital, Yokohama, (Hiroshi Suzuki)
- 28 Yokohama City University Medical Center, Yokohama, (Kiyoshi Hibi)
- 29 Fujisawa City Hospital, Fujisawa, (Kengo Tsukahara)
- 30 Kitasato University Hospital, Sagamihara, (Junya Ako)
- 31 Hiratsuka Kyosai Hospital, Hiratsuka, (Yuko Onishi)
- 32 Tokai University Hospital, Isehara, (Yuji Ikari)
- 33 University of Fukui Hospital, Fukui, (Hiroyasu Uzui)
- 34 Gifu Prefectural General Medical Center, Gifu, (Toshiyuki Noda)
 - © 2021 American Medical Association. All rights reserved.

- 1 Ogaki Municipal Hospital, Ogaki, (Itsuo Morishima)
- 2 Juntendo University Shizuoka Hospital, Izunokuni, (Satoru Suwa)
- 3 Shizuoka General Hospital, Shizuoka, (Hiroki Sakamoto)
- 4 Shizuoka Saiseikai General Hospital, Shizuoka, (Minoru Yamada)
- 5 Nagoya Daini Red Cross Hospital, Nagoya, (Ruka Yoshida)
- 6 Handa City Hospital, Handa, (Susumu Suzuki)
- 7 Ichinomiyanishi Hospital, Ichinomiya, (Takuya Maeda)
- 8 Matsusaka Central General Hospital, Matsusaka, (Takashi Tanigawa)
- 9 Otsu Red Cross Hospital, Otsu, (Kazuaki Kaitani)
- 10 Kyoto University Hospital, Kyoto, (Takeshi Kimura)
- 11 Uji Tokushukai Hospital, Uji, (Shunzo Matsuoka)
- 12 Kyoto Medical Center, Kyoto, (Masaharu Akao)
- 13 Mitsubishi Kyoto Hospital, Kyoto, (Takafumi Yokomatsu)
- 14 Kitano Hospital, Osaka, (Moriaki Inoko)
- 15 Osaka Red Cross Hospital, Osaka, (Tsukasa Inada)
- 16 Osaka General Medical Center, Osaka, (Takashi Morita)
- 17 Kindai University Hospital, Sayama, (Gaku Nakazawa)
- 18 Mimihara General Hospital, Sakai, (Shozo Ishihara)
- 19 Kobe City Medical Center General Hospital, Kobe, (Makoto Kinoshita)
- 20 Tsukazaki Hospital, Himeji, (Takanori Kusuyama)
- 21 Kindai University Nara Hospital, Ikoma, (Kiyonori Togi)
- 22 Tenri Hospital, Tenri, (Toshihiro Tamura)
- 23 Japanese Red Cross Wakayama Medical Center, Wakayama, (Hiroki Watanabe)
- 24 Wakayama Medical University Hospital, Wakayama, (Takashi Akasaka)
- 25 Okayama Medical Center, Okayama, (Isao Tabuchi)
- 26 Kurashiki Central Hospital, Kurashiki, (Kazushige Kadota)
- 27 Hiroshima University Hospital, Hiroshima, (Yasuki Kihara)
- 28 Hiroshima Prefectural Hospital, Hiroshima, (Hironori Ueda)
- 29 Iwakuni Medical Center, Iwakuni, (Yusuke Katayama)
- 30 Tokuyama Central Hospital, Shunan, (Takatoshi Wakeyama)
- 31 Shimonoseki City Hospital, Shimonoseki, (Takeo Kaneko)
- 32 Tokushima University Hospital, Tokushima, (Tetsuzo Wakatsuki)
- 33 Tokushima Red Cross Hospital, Komatsushima, (Koichi Kishi)
- 34 Kagawa Prefectural Central Hospital, Takamatsu, (Masayuki Doi)
- Ehime Prefectural Central Hospital, Matsuyama, (Hideki Okayama)
 © 2021 American Medical Association. All rights reserved.

- 1 Chikamori Hospital, Kochi, (Kazuya Kawai)
- 2 Kokura Memorial Hospital, Kitakyusyu, (Kenji Ando)
- 3 Saiseikai Fukuoka General Hospital, Fukuoka, (Nobuhiro Suematsu)
- 4 Iizuka Hospital, Iizuka, (Shujiro Inoue)
- 5 Saga University Hospital, Saga, (Masahiro Natsuaki)
- 6 Kumamoto University Hospital, Kumamoto, (Kenichi Tsujita)
- 7 Saiseikai Kumamoto Hospital, Kumamoto, (Tomohiro Sakamoto)
- 8 Hitoyoshi Medical Center, Hitoyoshi, (Hirofumi Kurokawa)
- 9 Ibusuki Medical Center, Ibusuki, (Katsuro Kashima)
- 10 Urasoe General Hospital, Urasoe, (Hiroki Uehara)
- 11
- 12

1 eAppendix 3. Definition of Endpoints

 As classified by Academic Research Consortium (ARC) Cardiac Death 	
4 • Cardiac Death	
5 Any death due to proximate cardiac cause (e.g. MI, low-	output failure, fatal arrhythmia),
6 unwitnessed death and death of unknown cause, all proce	edure related deaths including those
7 related to concomitant treatment. All deaths are considered	ed cardiac unless an unequivocal
8 non-cardiac cause can be established. Specifically, any un	nexpected death even in subjects with
9 coexisting potentially fatal non-cardiac disease (e.g. canc	cer, infection) should be classified as
10 cardiac.	
11 • Vascular Death	
12 Death due to non-coronary vascular causes such as cereb	provascular disease, pulmonary
13 embolism, ruptured aortic aneurysm, dissecting aneurysr	m, or other vascular cause.
14 • Non-cardiovascular Death	
15 Any death not covered by the above definitions such as c	death caused by infection, malignancy,
16 sepsis, pulmonary causes, accident, suicide or trauma.	
17 2. Myocardial Infarction: MI	
18 As classified by Academic Research Consortium (ARC): However, the	e sensitivity is too high for the
19 evaluation with Troponin of the peri-procedural MI, thus CKMB will	be used.
20 • Preprocedural Adjudication of MI	
21 Myocardial Infarction (MI) is defined by the ARC criteria. H	owever, periprocedural MI will be
22 evaluated by CKMB, because the evaluation by troponin is to	oo sensitive.
• Baseline MI evaluation	
24 ECG showing ST elevation, development of new abnorm	nal Q-wave, clinical symptoms specific
25 to MI, troponin or CK-MB values exceeding the standard	d values
Periprocedural MI	
0 Occurrence of any of the following events with	in 48 hours after PCI procedure will be
28 judged as MI.	
29■ CK-MB ≥ 3 times Upper Reference	Limit (URL) (CK-MB value exceeding
30 URL before procedure is not cons	sidered as a new MI, but as MI at
31 enrollment.)	
 117 118 119 200 211 222 223 224 225 226 227 228 229 300 311 	 2. Myocardial Infarction: MI As classified by Academic Research Consortium (ARC): However, the evaluation with Troponin of the peri-procedural MI, thus CKMB will Preprocedural Adjudication of MI Myocardial Infarction (MI) is defined by the ARC criteria. He evaluated by CKMB, because the evaluation by troponin is to Baseline MI evaluation ECG showing ST elevation, development of new abnorm to MI, troponin or CK-MB values exceeding the standar Periprocedural MI Occurrence of any of the following events with judged as MI. CK-MB ≥ 3 times Upper Reference URL before procedure is not consent enrollment.)

1	• Occurrence of troponin \geq 5 times URL or CK-MB \geq 5 times URL within 72 hours
2	after CABG procedure accompanied by any of the following criteria will be judged as
3	MI. (CK-MB value exceeding URL before procedure is not considered as a new MI,
4	but as MI at enrollment.)
5	 Abnormal ECG (new Q-wave, left bundle branch block)
6	 New occlusion of coronary autografts or grafts
7	 Reduction in living myocardium confirmed by diagnostic imaging
8	• Spontaneous MI
9	• Occurrence of any of the following events at > 48 hours after PCI or > 72 hours after
10	CABG will be judged as MI. MI caused by revascularization procedures, such as TLR
11	and TVR, is defined as periprocedural MI.
12	 Abnormal ECG (new Q-wave, left bundle branch block)
13	 Troponin or CK-MB value > URL (CK-MB value exceeding URL before
14	procedure is not considered as a new MI, but as MI at enrollment.)
15	Sudden Death
16	• When death occurred before blood sampling for biomarker measurements or while
17	biomarkers appeared to be increasing, MI will be judged according to the following
18	criteria:
19	 Clinical symptoms suggesting ischemia that are accompanied by one of the
20	following:
21	- New ST elevation or left bundle branch block
22	- Thrombus determined by angiography or at autopsy
23	Reinfarction
24	• When after onset of MI stable or decreasing values are confirmed in 2 biomarker
25	measurements, but 20% increase 3 to 6 hours is observed after the second
26	measurement.
27	• If biomarkers are increasing or have not yet reached the peak, data are insufficient
28	to diagnose reinfarction.
29	Electrocardiographic Classification:
30	Classification based on Q-wave
31	• Q-wave MI (QMI)
32	 Development of abnormal Q-waves confirmed in 2 or more contiguous leads with
33	or without elevation in cardiac enzymes.
34	• Non-Q-wave MI (NQMI)
35	 All MIs not classified as Q-wave.
	© 2021 American Medical Association. All rights reserved.

1	Classification based on ST segment。
2	• ST-elevation myocardial infarction (MI) (STEMI)
3	 New or presumably new elevation of ST segment at J point in 2 or more
4	contiguous leads. Cut-off point is ≥ 0.2 mV in V1, V2 and V3 leads and ≥ 0.1 mV
5	in other leads.
6	• Non-ST elevation myocardial infarction (MI) (NSTEMI)
7	• MI that is not STEMI
8	Determination by Infarction Size:
9	Major Infarction
10	• CK-MB level is ≥ 10 times the upper limit of normal (ULN) (or CK level is ≥ 10 times
11	ULN in case CK-MB level is not measurable).
12	• Even if the above conditions are not met, fatal MI is determined as large
13	infarction.
14	Minor Infarction
15	• All types of MI other than the major infarction
16	Classification of MI Size Based on the ARC Classification
17	• Increase in the cardiac enzyme (CK-MB, Tn, and total CK) levels ≥ 10 times ULN
18	• Increase in the cardiac enzyme (CK-MB, Tn, and total CK) levels \geq 5 times, < 10 times
19	ULN
20	• Increase in the cardiac enzyme (CK-MB, Tn, and total CK) levels \geq 3 times, < 5 times
21	ULN
22	• Increase in the cardiac enzyme (CK-MB, Tn, and total CK) levels < 3 times ULN
23	• Increase in the troponin level; no increase in the CK-MB and total CK levels
24	• Increase in the troponin level; no measurements of the CK-MB and total CK levels
25	The cardiac enzymes should be prioritized in the order of CK-MB, Tn, and total CK.
26	Classification of MI Size Based on the CK-MB Level
27	• Increase in the cardiac enzyme (CK-MB) level ≥ 10 times ULN
28	• Increase in the cardiac enzyme (CK-MB) level \geq 5 times, < 10 times ULN
29	• Increase in the cardiac enzyme (CK-MB) level \geq 3 times, < 5 times ULN
30	• Increase in the cardiac enzyme (CK-MB) level < 3 times ULN
31	• Increase in the troponin level; no increase in the CK-MB level
32	• Increase in the troponin level; no measurement of the CK-MB level
33	• Classification of MI Size Based on the Troponin Level
34	• Increase in the cardiac enzyme (Tn) level ≥ 10 times ULN
35	• Increase in the cardiac enzyme (Tn) level \geq 5 times, < 10 times ULN
	© 2021 American Medical Association. All rights reserved.

1	• Increase in the cardiac enzyme (Tn) level \geq 3 times, < 5 times ULN
2	• Increase in the cardiac enzyme (Tn) level < 3 times ULN
3	• Increase in the troponin level; no increase in the CK-MB level
4	• Increase in the troponin level; no measurement of the CK-MB level
5	3. Revascularization
6	Classification.
7	• Target Lesion Revascularization (TLR)
8	PCI performed in the target lesion (within 5 mm of the stent edges), or CABG performed for
9	restenosis of the target lesion or for treatment of other complications
10	• Target Vessel Revascularization (TVR)
11	PCI performed in the target vessel or revascularization by CABG, including TLR
12	• Target Vessel Revascularization-Remote (TVR-Remote)
13	Revascularization of a non-target lesion in the target vessel
14	Non Target Vessel Revascularization (Non-TVR)
15	Any revascularization in a vessel other than the target vessel
16	Non Target Lesion Revascularization (Non-TLR)
17	Any revascularization in a lesion other than the target lesion
18	Non-TLR = TVR-Remote + Non-TVR
19	Clinically indicated revascularization:
20	• The revascularization that meets the following criteria is considered as clinically indicated
21	revascularization. Presence/absence of clinical findings is judged by the operator of the
22	procedure before the revascularization.
23	• Recurrence of angina pectoris, presumably related to the target vessel;
24	• Objective signs of ischemia at rest or during exercise test (or equivalent), presumably
25	related to the target vessel;
26	• Signs of functional ischemia revealed by any invasive diagnostic test (e.g., Doppler
27	flow velocity reserve [FVR], fractional flow reserve [FFR]);
28	• Revascularization for \geq 70% diameter stenosis even in the absence of the
29	above-mentioned ischemic signs or symptoms.
30	4. Stent Thrombosis
31	Based on the ARC definition. Stent thrombosis is classified into definite, probable and possible
32	according to the "probability", and into acute, subacute late and very late according to timing of the
33	onset.
34	Definite Stent Thrombosis

1		 Angiographic confirmation of stent thrombosis*:
2		• The presence of a thrombus† that originates in the stent segment (including 5 mm
3		of the stent edges) is revealed by angiography, and presence of at least one of the
4		following criteria within a 48-hour time window is observed:
5		- Acute onset of ischemic symptoms at rest
6		- New ECG changes that suggest acute ischemia
7		- Typical rise and fall in cardiac biomarkers (refer to definition of spontaneous
8		MI)
9		- Nonocclusive thrombus
10		 Intracoronary thrombus is defined as a noncalcified filling defect
11		(spherical, ovoid, or irregular) or lucency surrounded by contrast material
12		(on 3 sides or within a coronary stenosis) seen in multiple projections, or
13		persistence of contrast material within the lumen, or a visible
14		embolization
15		- Occlusive thrombus
16		• TIMI 0 or TIMI 1 intrastent or proximal to a stent up to the most adjacent
17		downstream side branch or main branch
18		• Pathological confirmation of stent thrombosis:
19		 Evidence of recent thrombus within the stent determined at autopsy or via
20		examination of tissue retrieved following thrombectomy
21	•	Probable Stent Thrombosis
22		• When the following cases occurred after intracoronary stenting:
23		 Any unexplained death within the first 30 days after procedure;
24		 Irrespective of the time after the index procedure, any MI in the territory of the
25		implanted stent in the absence of any other obvious cause such as angiography or
26		other lesions
27	•	Possible Stent Thrombosis
28		• Any unexplained death from 30 days after intracoronary stenting
29		* The incidental angiographic documentation of stent occlusion in the absence of
30		clinical signs is not considered to be a confirmed stent thrombosis (silent occlusion)
31		† Intracoronary thrombus
32	•	Acute Stent Thrombosis
33		0-24 hours post stent implantation (Time 0 is defined as the time of removal of the guiding
34		catheter).
35	•	Subacute Stent Thrombosis

1	> 24 hours-30 days post stent implantation
2	Late Stent Thrombosis *
3	> 30 days-1 year post stent implantation
4	Very Late Stent Thrombosis *
5	> 1 year post stent implantation
6	* Including "primary" as well as "secondary" stent thrombosis after stented segment
7	revascularization.
8	5. Surgery
9	Including endoscopic surgeries and therapies
10	Including CABG
11	Excluding percutaneous intravascular treatments
12	Including aortic aneurysm stent graft procedure
13	Excluding tooth extraction
14	6. Bleeding/Hemorrhagic Complications
15	Bleeding/Hemorrhagic Complications will be evaluated using the TIMI, GUSTO and BARC definitions
16	TIMI bleeding classification:
17	Bleeding is classified by the Thrombosis in Myocardial Infarction (TIMI). Measurement of
18	hemoglobin and hematocrit values at baseline is required for the severity rating.
19	Major Bleeding
20	• When any of the following criteria is met.
21	 Intracranial hemorrhage
22	• Decrease in hemoglobin to ≥ 5 g/dL decrease in the hemoglobin concentration
23	• Absolute drop in hematocrit to $\geq 15\%$ (Baseline – Onset of the event)
24	Minor Bleeding
25	• When blood loss is observed, and any of the following criteria is met:
26	• Decrease in hemoglobin to $\geq 3 \text{ g/dL}$
27	• Decrease in hematocrit to $\geq 10\%$ (Baseline – Onset of the event)
28	• When no blood loss is observed, but any of the following criteria is met:
29	• Decrease in hemoglobin to $\geq 4 \text{ g/dL}$
30	• Decrease in hematocrit to $\geq 12\%$ (Baseline – Onset of the event)
31	Minimal Bleeding
32	• Any clinically overt sign of hemorrhage that is associated with a fall in hemoglobin to
33	< 3 g/dL.
34	(Microscopical urine occult blood and fecal occult blood are not defined as Minimal
	© 2021 American Medical Association. All rights reserved.

1	bleeding.)
2	GUSTO bleeding classification:
3	Severe Bleeding
4	Life-threatening bleeding
5	Intracranial hemorrhage
6	• Hemorrhage or bleeding that causes drop in blood pressure and requires interventions, such as
7	infusion, blood transfusion, administration of a hypertensor, surgical interception.
8	Moderate Bleeding
9	• Bleeding that requires blood transfusion but does not meet criteria for severe bleeding
10	BARC bleeding classification:
11	Bleeding is classified based on definitions by the Bleeding Academic Research Consortium (BARC).
12	Measurement of hemoglobin concentration is required for severity rating.
13	• Type 0: No bleeding
14	• Type 1: Bleeding that is not medically significant and does not cause the patient to seek
15	unscheduled performance of studies, hospitalization, or treatment by a health care professional.
16	• Type 2: Any overt sign of hemorrhage that should be treated and does not fit the criteria for
17	Types 3, 4, or 5, but does meet at least one of the following criteria:
18	(1) requiring non-surgical, medical intervention by a health care professional, (2) leading to
19	hospitalization or increased level of care, (3) prompting evaluation.
20	• Type 3:
21	o Type 3a
22	 Overt bleeding plus hemoglobin drop of 3-5 g/dL
23	 Transfusion with overt bleeding
24	o Type 3b
25	• Overt bleeding plus hemoglobin drop of $\geq 5 \text{ g/dL}$
26	Cardiac tamponade
27	 Bleeding requiring surgical intervention (excluding dental/nasal/skin/hemorrhoid)
28	 Bleeding requiring intravenous vasoactive drugs
29	o Type 3c
30	 Intracranial hemorrhage
31	 Intraocular bleeding compromising vision
32	• Type4: CABG-related bleeding
33	• Perioperative intracranial hemorrhage within 48 hours
34	• Reoperation following closure of sternotomy for the purpose of controlling bleeding
35	○ Transfusion of \ge 5 units of whole blood or concentrated red blood cell within 48 hours

 $\ensuremath{\mathbb{C}}$ 2021 American Medical Association. All rights reserved.

1	• Chest tube output ≥ 2 L within 24 hours
2	• Type5: Fatal bleeding
3	o Type 5a
4	Probable Fatal bleeding: no autopsy or imaging confirmation, but clinically suspicious
5	• Type 5b
6	Definite fatal bleeding: overt bleeding or autopsy or imaging confirmation
7	7. Composite Endpoint
8	Composite endpoint of secondary endpoints will be defined as follows:
9	TLF: Target Lesion Failure
10	Cardiac death, myocardial infarction (MI) of target vessels, Clinically-indicated TLR
11	TVF:Target Vessel Failure
12	Cardiac death, MI or Clinically-indicated TVR_{\circ}
13	MACE: Major Adverse Cardiac Events
14	Cardiac death, MI or Clinically-indicated TVR
15	8. Stroke or Cerebrovascular Accident
16	Acute onset of a neurological deficit that persists for at least 24 hours and is the result of a disturbance of the
17	cerebral circulation due to ischemia or hemorrhage. Deficits that last ≤ 24 hours are due to transient ischemic
18	neurological attack and are not classified in this category.
19	9. Classification of Angina
20	• Braunwald Classification of Unstable Angina
21	• Class I: New onset of severe or accelerated angina: Patients with new onset (< 2
22	months in duration) exertional angina pectoris that is severe or frequent (> 3
23	episodes/day) or patients with chronic stable angina who develop accelerated angina
24	(angina distinctly more frequent, severe, longer in duration, or precipitated by
25	distinctly less exertion than previously) but who have not experienced pain at rest
26	during the preceding 2 months.
27	• Class II : Angina at rest, subacute: Patients with 1 or more episodes of angina at rest
28	during the preceding month but not within the preceding 48 hours
29	• Class III : Angina at rest, acute: Patients with 1 or more episodes of angina at rest
30	within the preceding 48 hours
31	Canadian Cardiovascular Society (CCS) Classification of Stable Angina
32	• Class I: Ordinary physical activity does not cause angina, such as walking or climbing
33	stairs. Angina occurs with strenuous, rapid or prolonged exertion at work or recreation.

1	0	Class II : Slight limitation of ordinary activity. Angina occurs on walking or climbing
2		stairs rapidly, walking uphill, walking or stair climbing after meals, or in cold, in wind,
3		under emotional stress or only during the few hours after awakening. Angina occurs on
4		walking more than two blocks on the level and climbing more than one flight of
5		ordinary stairs at a normal pace and in normal condition.
6	0	Class III: Marked limitation of ordinary physical activity. Angina occurs on walking
7		one to two blocks on the level and climbing one flight of stairs in normal conditions
8		and at a normal pace.
9	0	Class IV : Inability to carry on any physical activity without discomfort – angina
10		symptoms may be present at rest.
11		
12		

1 eMethods

2 Statistical analysis

3 For the primary and major secondary endpoints, hierarchical testing was predefined in the 4 following order: 1) noninferiority test on the primary endpoint; 2) noninferiority test for the major secondary 5 cardiovascular composite endpoint; 3) superiority test for the major secondary bleeding endpoint; and 4) 6 superiority test for the primary endpoint. The main results were described on basis of the intention-to-treat 7 analysis. The noninferiority of the experimental arm to the control arm for the primary outcome was also 8 tested in per-protocol population, as-treated population, and worst-case scenario, as defined in the statistical 9 analysis plan. The interaction tests were made to confirm the consistency of the treatment effect for the 10 primary endpoint for the following pre-specified subgroups: age over 75, sex, diabetes, severe chronic kidney disease (estimated glomerular filtration rate less than 30 ml/min/1.73m² or dialysis), prior MI and acute 11 12 myocardial infarction at presentation of the current study, ST-segment elevated MI, total stent length over 28 13 mm, two or more target vessels, Paris thrombotic/bleeding risk scores, CREDO-Kyoto thrombotic/bleeding 14 risk scores, and the study (STOPDAPT-2 ACS or the ACS patients in STOPDAPT-2). Results for the other 15 secondary endpoints were described only in the form of HRs with their confidence intervals (CIs) without 16 P-values.

 $\ensuremath{\mathbb{C}}$ 2021 American Medical Association. All rights reserved.

1 eTables

- 2 eTable 1. Clinical and procedural characteristics compared between enrolled patients and eligible but non-enrolled
- 3 patients among overall ACS patients, ACS patients in STOPDAPT-2, and patients in STOPDAPT-2 ACS.

	Overall			STOPDAPT-2			STOPDAPT-2 ACS		
	Enrolled	Non-enrolled	Р	Enrolled	Non-enrolled	P value	Enrolled	Non-enrolled	Р
	N=4136	N=2305	value	N=1148	N=1257		N=2988	N=1048	value
Age, yr	66.8±11.9	70.1±13.1	<0.001	66.6±11.6	69.2±13.0	<0.001	66.9±12.0	71.2±13.2	<0.001
Men, no (%)	3280	1707 (74.1)	<0.001	914 (79.6)	943 (75.0)	0.01	2366	764 (72.9)	<0.001
	(79.3)						(79.2)		
Body-mass index, kg/m ²	24.1±3.6	23.7±3.7	<0.001	24.2±3.5	23.8±3.6	0.005	24.1±3.6	23.6±3.9	<0.001
Acute coronary syndrome, no (%)	4136	2305 (100)		1148 (100)	1257 (100)		2988	1048 (100)	
	(100)						(100)		
STEMI, no. (%)	2324	1346 (58.4)	0.001	561 (48.9)	702 (55.9)	0.001	1763	644 (61.5)	0.01
	(56.2)						(59.0)		
NSTEMI, no. (%)	826	375 (16.3)		180 (15.7)	192 (15.3)		646	183 (17.5)	
	(20.0)						(21.6)		
Unstable angina, no. (%)	986	584 (25.3)		407 (35.5)	363 (28.9)		579	221 (21.1)	
	(23.8)						(19.4)		
Hypertension, no (%)	2810	1596 (69.2)	0.28	802 (69.9)	862 (68.6)	0.50	2008	734 (70.0)	0.09
	(67.9)						(67.2)		
Diabetes, no (%)	1229	765 (33.2)	0.004	358 (31.2)	400 (31.8)	0.74	871	365 (34.8)	<0.001

	(29.7)						(29.2)		
Treated with insulin, no (%)	125 (3.0)	117 (5.1)	<0.001	40 (3.5)	47 (3.7)	0.74	85 (2.8)	70 (6.7)	<0.001
Smoking, no (%)	2698	1388 (60.2)	<0.001	745 (64.9)	762 (60.6)	0.03	1953	626 (59.7)	0.001
	(65.2)						(65.4)		
Current smoking, no (%)	1420	682 (29.6)	<0.001	367 (32.0)	377 (30.0)	0.30	1053	305 (29.1)	<0.001
	(34.3)						(35.2)		
Prior myocardial infarction, no (%)	244 (5.9)	240 (10.4)	<0.001	70 (6.1)	144 (11.5)	<0.001	174 (5.8)	96 (9.2)	<0.001
Prior stroke, no (%)	193 (4.7)	155 (6.7)	<0.001	57 (5.0)	78 (6.2)	0.19	136 (4.6)	77 (7.4)	<0.001
Prior PCI, no (%)	559	395 (17.1)	<0.001	271 (23.6)	229 (18.2)	0.001	288 (9.6)	166 (15.8)	<0.001
	(13.5)								
Prior 1st generation DES implantation, no (%)	75 (1.8)	85 (3.7)	<0.001	31 (2.7)	47 (3.7)	0.15	44 (1.5)	38 (3.6)	<0.001
Heart failure, no (%)	308 (7.5)	91 (4.0)	<0.001	62 (5.4)	44 (3.5)	0.02	246 (8.2)	47 (4.5)	<0.001
Peripheral artery disease, no (%)	82 (2.0)	75 (3.3)	0.002	35 (3.1)	38 (3.0)	0.97	47 (1.6)	37 (3.5)	<0.001
Severe CKD, no (%)	138 (3.3)	212 (9.2)	<0.001	33 (2.9)	103 (8.2)	<0.001	105 (3.5)	109 (10.4)	<0.001
Dialysis, no (%)	49 (1.2)	106 (4.6)	<0.001	13 (1.1)	54 (4.3)	<0.001	36 (1.2)	52 (5.0)	<0.001
Atrial fibrillation, no (%)	51 (1.2)	64 (2.8)	<0.001	11 (1.0)	33 (2.6)	0.002	40 (1.3)	31 (3.0)	0.001
Number of treated lesions	1.27±0.59	1.20±0.49	<0.001	1.27±0.61	1.19±0.48	<0.001	1.27±0.59	1.22±0.51	0.004
Number of stents	1.40±0.78	1.24±0.54	<0.001	1.39±0.77	1.23±0.52	<0.001	1.41±0.78	1.25±0.55	<0.001
Minimal stent diameter, mm	3.02±0.51	3.02±0.49	0.79	3.01±0.49	3.03±0.47	0.51	3.02±0.52	3.01±0.50	0.78
Total stent length, mm	34.5±23.0	29.9±16.9	<0.001	32.9±21.0	28.4±15.2	<0.001	35.1±23.7	31.8±18.5	< 0.001
Target lesion location									
Left main coronary artery, no. (%)	110 (2.7)	120 (5.2)	<0.001	18 (1.6)	53 (4.2)	<0.001	92 (3.1)	67 (6.4)	<0.001

 $\ensuremath{\textcircled{}}$ © 2021 American Medical Association. All rights reserved.

Left anterior descending coronary artery, no. (%)	2497	1254 (54.4)	<0.001	701 (61.1)	680 (54.1)	<0.001	1796	574 (54.8)	0.003
	(60.4)						(60.1)		
Left circumflex coronary artery, no. (%)	825	368 (16.0)	<0.001	241 (21.0)	218 (17.3)	0.02	584	150 (14.3)	<0.001
	(20.0)						(19.5)		
Right coronary artery, no. (%)	1486	720 (31.7)	<0.001	394 (34.3)	386 (30.7)	0.06	1092	344 (32.8)	0.03
	(35.9)						(36.6)		
Bypassed graft, no. (%)	3 (0.1)	6 (0.3)	0.08	1 (0.1)	5 (0.4)	0.22	2 (0.1)	1 (0.1)	1.00
Target of 2 vessels or more, no. (%)	734	221 (9.6)	<0.001	184 (16.0)	105 (8.4)	<0.001	550	116 (11.1)	<0.001
	(17.8)						(18.4)		
Target of 3 vessels or more, no. (%)	133 (3.2)	9 (0.4)	<0.001	32 (2.8)	5 (0.4)	<0.001	101 (3.4)	4 (0.4)	<0.001

1 Among the 1282 ACS patients who were eligible but not enrolled in the STOPDAPT-2, complete screening data was available in 1257 patients. The data on baseline characteristics were obtained in

2 all the 1048 ACS patients who were eligible but not enrolled into STOPDAPT-2 ACS.

3 ACS denotes acute coronary syndrome, CKD chronic kidney disease, DES drug-eluting stents, NSTEMI non-ST-segment elevation myocardial infarction, PCI percutaneous coronary intervention,

4 and STEMI ST-segment elevation myocardial infarction.

1	eTable 2.	Complete	baseline	characteristics
---	-----------	----------	----------	-----------------

	All	1-2 month	12 months
		DAPT	DAPT
	N=4136	N=2058	N=2078
Patient demographics			
Age, yr	66.8±11.9	67.0±11.9	66.6±11.9
>=75, no. (%)	1183 (28.6)	585 (28.4)	598 (28.8)
Men, no. (%)	3280 (79.3)	1631 (79.3)	1649 (79.4)
Women, no. (%)	856 (20.7)	427 (20.8)	429 (20.6)
Body mass index, kg/m ²	24.1±3.6	24.1±3.7	24.2±3.5
Body mass index <25, no. (%)	2599 (62.8)	1301 (63.2)	1298 (62.5)
Clinical presentation			
Acute coronary syndrome, no. (%)	4136 (100)	2058 (100)	2078 (100)
Acute myocardial infarction, no. (%)	3150 (76.2)	1578 (76.7)	1572 (75.7)
ST segment elevation, no. (%)	2324 (56.2)	1179 (57.3)	1145 (55.1)
Non-ST segment elevation, no. (%)	826 (20.0)	399 (19.4)	427 (20.6)
Treated =< 24 hours, no. (%)	2734 (86.8)	1386 (87.8)	1348 (85.8)
> 24 hours, no. (%)	416 (13.2)	192 (12.2)	224 (14.3)
Onset to door time, hour	3.0 (1.3-10.0)	3.0 (1.3-9.4)	3.0 (1.3-10.1)
Door to wire crossing time	60 (44-78)	60 (44-81)	60 (44-77)
(STEMI within 24 hours), min			
Killip class			
1	2717 (86.3)	1351 (85.6)	1366 (87.1)
2	263 (8.4)	140 (8.9)	123 (7.8)
3	66 (2.1)	34 (2.2)	32 (2.0)
4	101 (3.2)	53 (3.4)	48 (3.1)
Location of STEMI 1)			
Anterior, no. (%)	1241 (53.5)	628 (53.3)	613 (53.6)
Inferior, no. (%)	925 (39.9)	466 (39.6)	459 (40.2)
Posterolateral, no. (%)	286 (12.3)	154 (13.1)	132 (11.6)
Peak CK/ULN	6.4 (2.3-13.3)	6.5 (2.4-13.2)	6.3 (2.2-13.4)
Peak CKMB/ULN	8.5 (2.3-21.9)	8.6 (2.3-22.1)	8.2 (2.2-21.3)
Unstable angina, no. (%)	986 (23.8)	480 (23.3)	506 (24.4)

Braunwald class			
I	411 (41.7)	206 (42.9)	205 (40.5)
II	137 (13.9)	75 (15.6)	62 (12.3)
	438 (44.4)	199 (41.5)	239 (47.2)
Culprit vessels 2)			
Left anterior descending	2208 (53.6)	1108 (54.0)	1100 (53.2)
coronary artery			
Left circumflex coronary artery	554 (13.5)	284 (13.8)	270 (13.1)
Right coronary artery	1309 (31.8)	632 (30.8)	677 (32.7)
Left main coronary artery	46 (1.1)	27 (1.3)	19 (0.9)
Saphenous vein graft	3 (0.1)	1 (0.1)	2 (0.1)
СРАОА	40 (1.0)	22 (1.1)	18 (0.9)
ECMO use	13 (0.3)	7 (0.3)	6 (0.3)
Impella use	3 (0.1)	2 (0.1)	1 (0.1)
IABP use	148 (3.6)	84 (4.1)	64 (3.1)
Past history and comorbidities			
Prior PCI, no. (%)	427 (10.3)	225 (10.9)	202 (9.7)
Prior first-generation DES, no. (%)	75 (1.8)	43 (2.1)	32 (1.5)
Prior CABG, no. (%)	27 (0.7)	9 (0.4)	18 (0.9)
Prior myocardial infarction, no. (%)	244 (5.9)	135 (6.6)	109 (5.3)
Prior stroke, no. (%)	193 (4.7)	98 (4.8)	95 (4.6)
Prior bleeding events, no. (%)	32 (0.8)	18 (0.9)	14 (0.7)
Heart failure, no. (%)	308 (7.5)	157 (7.6)	151 (7.3)
Atrial fibrillation, no. (%)	51 (1.2)	35 (1.7)	16 (0.8)
Anemia, no. (%) ³⁾	247 (6.0)	117 (5.7)	130 (6.3)
Thrombocytopenia, no. (%) 4)	21 (0.5)	9 (0.4)	12 (0.6)
Chronic obstructive pulmonary	87 (2.1)	34 (1.7)	53 (2.6)
disease, no. (%)			
Cirrhosis, no. (%)	10 (0.2)	5 (0.2)	5 (0.2)
Cancer, no. (%)	272 (6.6)	135 (6.6)	137 (6.6)
Active cancer, no. (%)	43 (1.0)	22 (1.1)	21 (1.0)
Peripheral artery disease, no. (%)	82 (2.0)	40 (1.9)	42 (2.0)
Moderate or Severe chronic kidney	1227 (29.7)	622 (30.2)	605 (29.1)
disease, no. (%) 5)			

Severe chronic kidney disease, no.	138 (3.3)	68 (3.3)	70 (3.4)
(%) ⁵⁾			
eGFR <30 mL/min/1.73m ² not on	89 (2.2)	42 (2.0)	47 (2.3)
dialysis, no. (%) ⁵⁾			
Dialysis, no. (%)	49 (1.2)	26 (1.3)	23 (1.1)
Hypertension, no. (%)	2810 (67.9)	1396 (67.8)	1414 (68.1)
Hyperlipidemia, no. (%)	2764 (66.8)	1373 (66.7)	1391 (66.9)
Diabetes, no. (%)	1229 (29.7)	608 (29.5)	621 (29.9)
Diabetes with insulin, no. (%)	125 (3.0)	51 (2.5)	74 (3.6)
Smoker, no. (%)	2698 (65.2)	1346 (65.4)	1352 (65.1)
Current Smoker, no. (%)	1420 (34.3)	718 (34.9)	702 (33.8)
Left ventricular ejection fraction, % $^{6)}$	56.8±10.6	56.7±10.6	56.9±10.5
<40%, no. (%) ⁶⁾	171 (4.5)	95 (5.0)	76 (4.0)
Mitral regurgitation grade 3/4, no.	63 (1.5)	29 (1.4)	34 (1.6)
(%)			
Risk scores			
PARIS Thrombotic Risk Score	3 (2-4)	3 (2-4)	3 (2-4)
High >=5	685 (16.6)	347 (16.9)	338 (16.3)
Intermediate 3-4	2127 (51.4)	1076 (52.3)	1051 (50.6)
Low 0-2	1324 (32.0)	635 (30.9)	689 (33.2)
PARIS Bleeding Risk Score	5 (3-7)	5 (3-7)	5 (3-7)
High >=8	747 (18.1)	380 (18.5)	367 (17.7)
Intermediate 4-7	2138 (51.7)	1071 (52.0)	1067 (51.4)
Low 0-3	1251 (30.3)	607 (29.5)	644 (31.0)
CREDO-Kyoto Thrombotic Risk	1 (0-1)	1 (0-1)	1 (0-1)
Score			
High >=4	171 (4.1)	78 (3.8)	93 (4.5)
Intermediate 2-3	694 (16.8)	355 (17.3)	339 (16.3)
Low 0-1	3271 (79.1)	1625 (79.0)	1646 (79.2)
CREDO-Kyoto Bleeding Risk Score	0 (0-0)	0 (0-0)	0 (0-0)
High >=3	132 (3.2)	71 (3.5)	61 (2.9)
Intermediate 1-2	800 (19.3)	402 (19.5)	398 (19.2)
Low 0	3204 (77.5)	1585 (77.0)	1619 (77.9)
Procedural characteristics			

Emergent procedure, no. (%)	3372 (81.5)	1691 (82.2)	1681 (80.9)
Radial approach, no. (%)	3695 (89.3)	1832 (89.0)	1863 (89.7)
Brachial approach, no. (%)	106 (2.6)	50 (2.4)	56 (2.7)
Femoral approach, no. (%)	494 (11.9)	257 (12.5)	237 (11.4)
Only radial approach, no. (%)	3541 (85.6)	1751 (85.1)	1790 (86.1)
Invasive fractional flow reserve, no.	137 (3.3)	60 (2.9)	77 (3.7)
(%)			
Staged procedure, no. (%) 7)	597 (14.4)	280 (13.6)	317 (15.3)
Number of procedures	1.16±0.40	1.15±0.39	1.17±0.41
Number of target lesions 7)	1.27±0.59	1.27±0.60	1.28±0.59
Target lesion location			
Left main coronary artery, no. (%)	110 (2.7)	52 (2.5)	58 (2.8)
Left anterior descending coronary	2497 (60.4)	1242 (60.4)	1255 (60.4)
artery, no. (%)			
Left circumflex coronary artery, no.	825 (20.0)	408 (19.8)	417 (20.1)
(%)			
Right coronary artery, no. (%)	1486 (35.9)	719 (34.9)	767 (36.9)
Bypassed graft, no. (%)	3 (0.1)	1 (0.1)	2 (0.1)
Chronic total occlusion, no. (%)	128 (3.1)	66 (3.2)	62 (3.0)
Bifurcation lesions, no. (%)	1101 (26.6)	552 (26.8)	549 (26.4)
Final 2 stents implantation, no.	25 (0.6)	15 (0.7)	10 (0.5)
(%)			
Target of 2 vessels or more, no. (%)	734 (17.8)	344 (16.7)	390 (18.8)
Target of 3 vessels or more, no. (%)	133 (3.2)	60 (2.9)	73 (3.5)
Use of IVUS or OCT, no. (%)	4023 (97.3)	1994 (96.9)	2029 (97.6)
IVUS, no. (%)	3588 (86.8)	1796 (87.3)	1792 (86.2)
OCT, no. (%)	589 (14.2)	279 (13.6)	310 (14.9)
Number of implanted stents	1.40±0.78	1.40±0.77	1.41±0.79
Minimal stent diameter, mm	3.02±0.51	3.01±0.51	3.02±0.50
<3.0 mm, no. (%)	1599 (38.7)	817 (39.7)	782 (37.6)
Total stent length, mm	34.5±23.0	34.3±22.6	34.6±23.5
>=28mm, no. (%)	2238 (54.1)	1111 (54.0)	1127 (54.2)
Length of hospital stay			
Admission to discharge, day	9 (6-12)	9 (6-12)	9 (5-12)

Index PCI to discharge, day	7 (3-11)	8 (3-11)	7 (3-11)
Admission to staged PCI, day	7 (4-11)	7 (4-11)	7 (3-11)
Medication at discharge			
Aspirin, no. (%)	4131 (99.9)	2055 (99.9)	2076 (99.9)
200mg/day, no. (%)	2 (0.1)	1 (0.1)	1 (0.1)
100mg/day, no. (%)	4070 (98.5)	2027 (98.6)	2043 (98.4)
81mg/day, no. (%)	59 (1.4)	27 (1.3)	32 (1.5)
P2Y ₁₂ inhibitors, no. (%)	4131 (99.9)	2055 (99.9)	2076 (99.9)
Ticlopidine, no. (%)	0 (0)	0 (0)	0 (0)
Clopidogrel, no. (%)	2170 (52.5)	1062 (51.6)	1108 (53.3)
75mg/day, no. (%)	2170 (100)	1062 (100)	1108 (100)
Prasugrel, no. (%)	1962 (47.4)	994 (48.3)	968 (46.6)
3.75mg/day, no. (%)	1931 (98.4)	982 (98.8)	949 (98.0)
2.5mg/day, no. (%)	31 (1.6)	12 (1.2)	19 (2.0)
Ticagrelor, no. (%)	0 (0)	0 (0)	0 (0)
Anticoagulation, no. (%) ⁸⁾	23 (0.56)	10 (0.5)	13 (0.6)
Novel oral anticoagulants, no. (%)	13 (0.3)	6 (0.3)	7 (0.3)
Warfarin, no. (%)	10 (0.2)	4 (0.2)	6 (0.3)
Beta-blockers, no. (%)	2436 (58.9)	1246 (60.5)	1190 (57.3)
Angiotensin converting enzyme	2152 (52.0)	1071 (52.0)	1081 (52.0)
inhibitors, no. (%)			
Angiotensin-2 receptor blockers, no.	988 (23.9)	488 (23.7)	500 (24.1)
(%)			
Calcium channel blockers, no. (%)	902 (21.8)	434 (21.1)	468 (22.5)
Nitrates, no. (%)	198 (4.8)	107 (5.2)	91 (4.4)
Statin, no. (%)	3989 (96.5)	1981 (96.3)	2008 (96.6)
High-intensity statin, no. (%) 9)	1407 (34.0)	710 (34.5)	697 (33.6)
Proton pump inhibitors, no. (%)	3808 (92.1)	1875 (91.1)	1933 (93.0)

1 Categorical variables were presented as number and percentage. Continuous variables are presented as mean ± SD or

2 median with interquartile range.

3 1) Some patients had two or more location of myocardial infarction.

4 2) The culprit vessels are missing in 6 patients in 1-2 month DAPT group and 10 patients in 12 months DAPT group.

5 These 16 patients were enrolled in STOPDAPT-2.

6 3) Anemia was defined as hemoglobin <11 g/dl. Hemoglobin values were missing in 3 patients, who were included in the

 $\ensuremath{\mathbb{C}}$ 2021 American Medical Association. All rights reserved.

1 no anemia group.

- 2 4) Thrombocytopenia was defined as platelet counts <100*10º/L. Platelet counts were missing in 12 patients, who were
 3 included in the no thrombocytopenia group.
- Moderate chronic kidney disease is defined as estimated glomerular filtration rate <60 and >=30 ml/min/1.73m². Severe
 chronic kidney disease is defined as estimated glomerular filtration rate <30 ml/min/1.73m² or maintenance dialysis
 therapy. Preprocedural creatinine values were missing in 11 patients. One of these patients on dialysis was included in
- severe chronic kidney disease, while the remaining 10 patients were regarded as having neither moderate nor severe
 chronic kidney disease.
- 9 6) Left ventricular ejection fraction was missing in 312 patients, who were excluded for the calculation of left ventricular
 ejection fraction <40%.
- 11 7) Lesions treated at the staged procedure(s) preceding the index PCI procedure were included as the target lesions.
- Clinical diagnosis and baseline characteristics were defined based on the findings at the time of first PCI for the index
 ACS event.
- 8) Concomitant oral anticoagulant use was one of the exclusion criteria, but some patients started anticoagulation after
 enrollment (e.g., new onset of atrial fibrillation or venous thrombosis).
- 16 9) High-intensity statin therapy was defined by the maximum approved dose of strong statin in Japan (e.g., rosuvastatin
- 17 10mg, atorvastatin 20mg, or pitavastatin 4mg).
- 18 CABG coronary artery bypass grafting, CK creatine kinase, CKMB creatine kinase-MB, CPAOA cardiopulmonary arrest on
- 19 arrival, CREDO-Kyoto The Coronary Revascularization Demonstrating Outcome Study in Kyoto, DAPT dual antiplatelet
- 20 therapy, DES drug eluting stents, ECMO extracorporeal membrane oxygenation, eGFR estimated glomerular filtration rate,
- 21 IVUS intravascular ultrasound, IABP intra-aortic balloon pumping, OCT optical coherence tomography, PARIS Patterns of
- 22 Non-Adherence to Anti-Platelet Regimen in Stented Patients, PCI percutaneous coronary intervention, STEMI ST segment
- $23 \qquad \text{elevation myocardial infarction, and ULN upper limit of normal.}$

24

eTable 3. Comparison of baseline characteristics between STOPDAPT-2

2 and STOPDAPT-2 ACS

	STOPDAPT-2 ACS	STOPDAPT-2	
	N=2988	N=1148	P value
Patient demographics			
Age, yr	66.9±12.0	66.6±11.6	0.39
>=75, no. (%)	885 (29.6)	298 (26.0)	0.02
Men, no. (%)	2366 (79.2)	914 (79.6)	0.76
Women, no. (%)	622 (20.8)	234 (20.4)	
Body mass index, kg/m ²	24.1±3.6	24.2±3.5	0.59
Body mass index <25, no. (%)	1895 (63.4)	704 (61.3)	0.21
Clinical presentation			
Acute coronary syndrome, no. (%)	2988 (100)	1148 (100)	-
Acute myocardial infarction, no. (%)	2409 (80.6)	741 (64.6)	<0.001
ST segment elevation, no. (%)	1763 (73.2)	561 (75.7)	0.17
Non-ST segment elevation, no. (%)	646 (26.8)	180 (24.3)	
Treated =< 24 hours, no. (%)	2093 (86.9)	641 (86.5)	0.79
> 24 hours, no. (%)	316 (13.1)	100 (13.5)	
Onset to door time, hour	3.0 (1.3-10.0)	3.0 (1.3-10.2)	0.72
Door to wire crossing time (STEMI	60 (42-77)	60 (46-82)	<0.001
within 24 hours), min			
Killip class			0.003
1	2055 (85.3)	662 (89.7)	
2	209 (8.7)	54 (7.3)	
3	57 (2.4)	9 (1.2)	
4	88 (3.7)	13 (1.8)	
Location of STEMI ¹⁾			
Anterior, no. (%)	958 (54.3)	283 (50.7)	0.14
Inferior, no. (%)	697 (39.5)	228 (40.9)	0.58
Posterolateral, no. (%)	213 (12.1)	73 (13.1)	0.53
Peak CK/ULN	6.5 (2.2-13.4)	6.2 (2.6-12.7)	0.98
Peak CKMB/ULN	7.9 (2.1-20.8)	9.6 (2.8-23.6)	0.009
Unstable angina, no. (%)	579 (19.4)	407 (35.5)	<0.001
Braunwald class			<0.001

 $\ensuremath{\mathbb{C}}$ 2021 American Medical Association. All rights reserved.

I	229 (39.6)	182 (44.7)	
II	66 (11.4)	71 (17.4)	
III	284 (49.1)	154 (37.8)	
Culprit vessels 2)			0.06
Left anterior descending	1600 (53.6)	608 (53.7)	
coronary artery			
Left circumflex coronary artery	390 (13.1)	164 (14.5)	
Right coronary artery	955 (32.0)	354 (31.3)	
Left main coronary artery	41 (1.4)	5 (0.4)	
Saphenous vein graft	2 (0.1)	1 (0.1)	
CPAOA	26 (0.9)	14 (1.2)	0.30
ECMO use	10 (0.3)	3 (0.3)	1.00
Impella use	3 (0.1)	0 (0)	0.57
IABP use	128 (4.3)	20 (1.8)	<0.001
Past history and comorbidities			
Prior PCI, no. (%)	288 (9.6)	139 (12.1)	0.02
Prior first-generation DES, no. (%)	44 (1.5)	31 (2.7)	0.01
Prior CABG, no. (%)	18 (0.6)	9 (0.8)	0.52
Prior myocardial infarction, no. (%)	174 (5.8)	70 (6.1)	0.74
Prior stroke, no. (%)	136 (4.6)	57 (5.0)	0.57
Prior bleeding events, no. (%)	22 (0.7)	10 (0.9)	0.66
Heart failure, no. (%)	246 (8.2)	62 (5.4)	0.001
Atrial fibrillation, no. (%)	40 (1.3)	11 (1.0)	0.31
Anemia, no. (%) ³⁾	165 (5.5)	82 (7.1)	0.053
Thrombocytopenia, no. (%) ⁴⁾	11 (0.4)	10 (0.9)	0.053
Chronic obstructive pulmonary	63 (2.1)	24 (2.1)	0.97
disease, no. (%)			
Cirrhosis, no. (%)	6 (0.2)	4 (0.4)	0.48
Cancer, no. (%)	198 (6.6)	74 (6.5)	0.83
Active cancer, no. (%)	32 (1.1)	11 (1.0)	0.75
Peripheral artery disease, no. (%)	47 (1.6)	35 (3.1)	0.004
Moderate chronic kidney disease, no.	914 (30.6)	313 (27.3)	0.04
(%) ⁵⁾			
Severe chronic kidney disease, no. (%)	105 (3.5)	33 (2.9)	0.30

 $\ensuremath{\mathbb{C}}$ 2021 American Medical Association. All rights reserved.

5)			
eGFR <30 mL/min/1.73m ² not on	69 (2.3)	20 (1.7)	0.25
dialysis, no. (%) ⁵⁾			
Dialysis, no. (%)	36 (1.2)	13 (1.1)	0.85
Hypertension, no. (%)	2008 (67.2)	802 (69.9)	0.10
Hyperlipidemia, no. (%)	2001 (67.0)	763 (66.5)	0.76
Diabetes, no. (%)	871 (29.2)	358 (31.2)	0.20
Diabetes with insulin, no. (%)	85 (2.8)	40 (3.5)	0.29
Smoker, no. (%)	1953 (65.4)	745 (64.9)	0.78
Current Smoker, no. (%)	1053 (35.2)	367 (32.0)	0.046
Left ventricular ejection fraction, % $^{6)}$	56.4±10.9	57.8±9.7	<0.001
<40%, no. (%) ⁶⁾	133 (4.8)	38 (3.6)	0.09
Mitral regurgitation grade 3/4, no. (%)	40 (1.3)	23 (2.0)	0.13
Risk scores			
PARIS Thrombotic Risk Score	3 (2-4)	3 (2-4)	0.56
High >=5	453 (15.2)	232 (20.2)	
Intermediate 3-4	1589 (53.2)	538 (46.9)	<0.001
Low 0-2	946 (31.7)	378 (32.9)	
PARIS Bleeding Risk Score	5 (3-7)	5 (3-7)	0.09
High >=8	553 (18.5)	194 (16.9)	
Intermediate 4-7	1542 (51.6)	596 (51.9)	0.43
Low 0-3	893 (29.9)	358 (31.2)	
CREDO-Kyoto Thrombotic Risk Score	1 (0-1)	1 (0-1)	0.19
High >=4	124 (4.2)	47 (4.1)	
Intermediate 2-3	499 (16.7)	195 (17.0)	0.97
Low 0-1	2365 (79.2)	906 (78.9)	
CREDO-Kyoto Bleeding Risk Score	0 (0-0)	0 (0-0)	0.48
High >=3	98 (3.3)	34 (3.0)	
Intermediate 1-2	582 (19.5)	218 (19.0)	0.80
Low 0	2308 (77.2)	896 (78.1)	
Procedural characteristics			
Emergent procedure, no. (%)	2652 (88.8)	720 (62.7)	<0.001
Radial approach, no. (%)	2736 (91.6)	959 (83.5)	<0.001
Brachial approach, no. (%)	70 (2.3)	36 (3.1)	0.16

Femoral approach, no. (%)	293 (9.8)	201 (17.5)	<0.001
Only radial approach, no. (%)	2627 (87.9)	914 (79.6)	<0.001
Invasive fractional flow reserve, no.	93 (3.1)	44 (3.8)	0.25
(%)			
Staged procedure, no. (%) 7)	447 (15.0)	150 (13.1)	0.12
Number of procedures	1.16±0.41	1.14±0.38	0.10
Number of target lesions 7)	1.27±0.59	1.27±0.61	0.80
Target lesion location			
Left main coronary artery, no. (%)	92 (3.1)	18 (1.6)	0.004
Left anterior descending coronary	1796 (60.1)	701 (61.1)	0.57
artery, no. (%)			
Left circumflex coronary artery, no.	584 (19.5)	241 (21.0)	0.30
(%)			
Right coronary artery, no. (%)	1092 (36.6)	394 (34.3)	0.18
Bypassed graft, no. (%)	2 (0.1)	1 (0.1)	1.00
Chronic total occlusion, no. (%)	100 (3.4)	28 (2.4)	0.12
Bifurcation lesions, no. (%)	811 (27.1)	290 (25.3)	0.22
Final 2 stents implantation, no. (%)	17 (0.6)	8 (0.7)	0.64
Target of 2 vessels or more, no. (%)	550 (18.4)	184 (16.0)	0.07
Target of 3 vessels or more, no. (%)	101 (3.4)	32 (2.8)	0.33
Use of IVUS or OCT, no. (%)	2916 (97.6)	1107 (96.4)	0.046
IVUS, no. (%)	2592 (86.8)	996 (86.8)	0.99
OCT, no. (%)	446 (14.9)	143 (12.5)	0.04
Number of implanted stents	1.41±0.78	1.39±0.77	0.57
Minimal stent diameter, mm	3.02±0.52	3.01±0.49	0.78
<3.0 mm, no. (%)	1173 (39.3)	426 (37.1)	0.20
Total stent length, mm	35.1±23.7	32.9±21.0	0.004
>=28mm, no. (%)	1651 (55.3)	587 (51.1)	0.02
Medication at discharge			
Aspirin, no. (%)	2984 (99.9)	1147 (99.9)	1.00
200mg/day, no. (%)	2 (0.1)	0 (0)	
100mg/day, no. (%)	2936 (98.4)	1134 (98.9)	0.50
81mg/day, no. (%)	46 (1.5)	13 (1.1)	
P2Y ₁₂ receptor blockers, no. (%)	2985 (99.9)	1146 (99.8)	0.56

Ticlopidine, no. (%)	0 (0)	0 (0)	-
Clopidogrel, no. (%)	1578 (52.8)	592 (51.6)	0.47
75mg/day, no. (%)	1578 (100)	592 (100)	
Prasugrel, no. (%)	1408 (47.1)	554 (48.3)	0.51
3.75mg/day, no. (%)	1386 (98.4)	545 (98.4)	0.92
2.5mg/day, no. (%)	22 (1.6)	9 (1.6)	
Ticagrelor, no. (%)	0 (0)	0 (0)	-
Anticoagulation, no. (%) ⁸⁾	16 (0.5)	7 (0.6)	0.78
Novel oral anticoagulants, no. (%)	9 (0.3)	4 (0.4)	0.76
Warfarin, no. (%)	7 (0.2)	3 (0.3)	1.00
Beta-blockers, no. (%)	1802 (60.3)	634 (55.2)	0.003
Angiotensin converting enzyme	1594 (53.4)	558 (48.6)	0.006
inhibitors, no. (%)			
Angiotensin-2 receptor blockers, no.	706 (23.6)	282 (24.6)	0.53
(%)			
Calcium channel blockers, no. (%)	575 (19.2)	327 (28.5)	<0.001
Nitrates, no. (%)	104 (3.5)	94 (8.2)	<0.001
Statin, no. (%)	2921 (97.8)	1068 (93.0)	<0.001
High-intensity statin, no. (%) 9)	1321 (44.2)	86 (7.5)	<0.001
Proton pump inhibitors, no. (%)	2790 (93.4)	1018 (88.7)	<0.001

1 Categorical variables were presented as number and percentage. Continuous variables are presented as mean ± SD or

2 median with interquartile range.

3 1) Some patients had two or more location of myocardial infarction.

4 2) The culprit vessels are missing in 16 patients enrolled in STOPDAPT-2.

5 3) Anemia was defined as hemoglobin <11 g/dl. Hemoglobin values were missing in 3 patients, who were included in the

6 no anemia group.

7 4) Thrombocytopenia was defined as platelet counts <100 109 /L. Platelet counts were missing in 12 patients, who were

8 included in the no thrombocytopenia group.

9 5) Moderate chronic kidney disease is defined as estimated glomerular filtration rate <60 and >=30 ml/min/1.73m². Severe

10 chronic kidney disease is defined as estimated glomerular filtration rate <30 ml/min/1.73m² or maintenance dialysis

- 11 therapy. Preprocedural creatinine values were missing in 11 patients. One of these patients on dialysis was included in
- 12 severe chronic kidney disease, while the remaining 10 patients were regarded as having neither moderate nor severe

13 chronic kidney disease.

14 6) Left ventricular ejection fraction was missing in 312 patients, who were excluded for the calculation of left ventricular

1 ejection fraction <40%.

- 2 7) Lesions treated at the staged procedure(s) preceding the index PCI procedure were included as the target lesions.
- 3 Clinical diagnosis and baseline characteristics were defined based on the findings at the time of first PCI for the index

4 ACS event.

- 5 8) Concomitant oral anticoagulant use was one of the exclusion criteria, but some patients started anticoagulation after
- 6 enrollment (e.g. new onset of atrial fibrillation or venous thrombosis).
- 7 9) High-intensity statin therapy was defined by the maximum approved dose of strong statin in Japan (e.g., rosuvastatin
- 8 10mg, atorvastatin 20mg, or pitavastatin 4mg).
- 9 CABG coronary artery bypass grafting, CK creatine kinase, CKMB creatine kinase-MB, CPAOA cardiopulmonary arrest on
- 10 arrival, CREDO-Kyoto The Coronary Revascularization Demonstrating Outcome Study in Kyoto, DAPT dual antiplatelet
- 11 therapy, DES drug eluting stents, ECMO extracorporeal membrane oxygenation, eGFR estimated glomerular filtration rate,
- 12 IVUS intravascular ultrasound, IABP intra-aortic balloon pumping, OCT optical coherence tomography, PARIS Patterns of
- 13 Non-Adherence to Anti-Platelet Regimen in Stented Patients, PCI percutaneous coronary intervention, STEMI ST segment
- 14 elevation myocardial infarction, and ULN upper limit of normal.

15

16

1 eTable 4. Per-protocol and as-treated population according to the mode of

2 antithrombotic therapy at 60-day

	1-2 month	12 months	
	DAPT	DAPT	
	N=2058	N=2078	
1. Follow-up at 60-day	2046 (99.4)	2064 (99.3)	
2. Aspirin on treatment at 60-day	98 (4.8)	2046 (99.1)	
3. Aspirin off treatment at 60-day	1948 (95.2)	18 (0.9)	
4. P2Y ₁₂ inhibitors on treatment at 60-day	2029 (99.2)	2048 (99.2)	
5. Clopidogrel on treatment at 60-day	1992 (98.2)	1953 (95.4)	
6. no OAC at 60-day	2018 (98.6)	2038 (98.7)	
7. No other exclusion criteria (prior	2048 (99.5)	2064 (99.3)	
BVS/Hemorrhagic stroke/Other APT)			
Per protocol population			
3, 5, 6, and 7 (1-2 month DAPT)	1898 (92.2)	0 (0)	
2, 5, 6, and 7 (12 months DAPT)	0 (0)	1908 (91.8)	
As-treated population			subtotal
1, 3, 5, and 6 (Clopidogrel monotherapy)	1908 (92.7)	7 (0.3)	1915 (49.2)
1, 2, 5, and 6 (DAPT with Aspirin +	58 (2.8)	1921 (92.4)	1979 (50.8)
Clopidogrel)			

3

DAPT denotes dual antiplatelet therapy, OAC oral anticoagulation, BVS bioresorbable vascular scaffold, and APT antiplatelet

4 therapy.

	1	eTable 5. Details of cases with definite or probable ste	nt thrombosis ¹
--	---	--	----------------------------

Assigned	Days	ARC	Medication at	Study	Age, gender	Index presentation, other risk factors
group	after	definition	the event			
	index	of stent				
	PCI	thrombosis				
1-2 month	4	Definite	DAPT: aspirin	STOPDAPT-2 ACS	60 yr Male	STEMI, Peak CK/CKMB 9705/923(ng/ml), Current smoker, OAC, EF 30%, PARIS-
DAPT			+prasugrel			ARC-HBR
1-2 month	6	Probable	DAPT: aspirin	STOPDAPT-2	70 yr Male	UA, Braunwald III
DAPT			+prasugrel			HTN, Current smoker
						PARIS-T/B 2/7, CREDO-Kyoto T/B 0/0
1-2 month	30	Definite	DAPT: aspirin	STOPDAPT-2 ACS	47 yr Male	NSTEMI, Peak CK/CKMB 933/101, Prior PCI, Dialysis, HTN, HL, Diabetes, Curren
DAPT			+clopidogrel			PARIS-T/B; 8/9, CREDO-Kyoto-T/B; 3/2
						ARC-HBR

 $\ensuremath{\textcircled{}^{\odot}}$ 2021 American Medical Association. All rights reserved.

1-2 month	40	Definite	Clopidogrel	STOPDAPT-2 ACS	68 yr Female	STEMI, Peak CK/CKMB 2271/323,
DAPT			monotherapy.			PARIS-T/B; 2/7, CREDO-Kyoto-T/B; 2/0,
			Day 8 since			ARC-HBR
			discontinuation			
			of aspirin			
1-2 month	51	Definite	Clopidogrel	STOPDAPT-2	64 yr Male	STEMI, Peak CK/CKMB 3055/259
DAPT			monotherapy.			HL, Current Smoker
			Day 22 since			PARIS-T/B; 3/4, CREDO-Kyoto-T/B: 0/0
			discontinuation			
			of aspirin			
1-2 month	56	Definite	Clopidogrel	STOPDAPT-2 ACS	76 yr Male	STEMI, Peak CK/CKMB 940/103, HTN, HL, Diabetes,
DAPT			monotherapy.			PARIS-T/B; 5/7, CREDO-Kyoto-T/B; 3/0
			Day 17 since			ARC-HBR
			discontinuation			
			of aspirin			

1-2 month	105	Definite	Clopidogrel	STOPDAPT-2 ACS	64 yr Male	NSTEMI, Peak CK/CKMB 2055/182, HTN, HL, Dialysis, PARIS-T/B; 4/9, CREDO-
DAPT			monotherapy.			ARC-HBR
			Day 78 since			
			discontinuation			
			of aspirin			
1-2 month	112	Definite	Clopidogrel	STOPDAPT-2	51 yr Female	UA, Braunwald II
DAPT			monotherapy.			HTN, HL, past smoker,
			Day 76 since			Prior PCI (-5y): G1-DES implanted in LCx
			discontinuation			PARIS-T/B; 4/1, CREDO-Kyoto-T/B; 1/0
			of aspirin			
1-2 month	352	Definite	Clopidogrel	STOPDAPT-2 ACS	70 yr Male	UA, Braunwald III
DAPT			monotherapy.			HL, Diabetes,
			Day 312 since			PARIS-T/B; 2/5, CREDO-Kyoto-T/B; 1/0
			discontinuation			
			of aspirin			
1-2 month	359	Definite	No APT	STOPDAPT-2 ACS	40 yr Male	STEMI, Peak CK/CKMB 5658/452(ng/ml), Current smoker, PARIS-T/B; 3/4, CRED
DAPT			Day 23 since			ARC-HBR
			discontinuation			
			of clopidogrel			
			by			
			self-judgement,			
			and Day 310			
			•	•		

 $\ensuremath{\textcircled{}}$ © 2021 American Medical Association. All rights reserved.

			since scheduled discontinuation of aspirin			
12	3	Definite	DAPT: aspirin	STOPDAPT-2 ACS	84 yr Male	UA, Braunwald III, Diabetes, current smoker, PARIS-T/B; 5/10, CREDO-Kyoto-T/B;
months			+clopidogrel			Complex PCI, ARC-HBR
DAPT						
12	148	Definite	DAPT: aspirin	STOPDAPT-2	69 yr Male	UA, Braunwald I
months			+clopidogrel			HTN, HL, Diabetes,
DAPT						Prior PCI (-5 months); LAD G2-DES implanted (different site from the index PCI).
						PARIS-T/B: 4/4, CREDO-Kyoto-T/B: 1/0

 $\ensuremath{\textcircled{}}$ 0 2021 American Medical Association. All rights reserved.

12	160	Definite	DAPT: aspirin	STOPDAPT-2 ACS	73 yr Female	UA, Braunwald I, Prior CABG, PCI, Dialysis, HTN, HL, Diabetes, PARIS-T/B; 8/5, C
months			+clopidogrel			ARC-HBR
DAPT						
12	362	Definite	No APT by	STOPDAPT-2 ACS	75 yr Male	STEMI, Peak CK/CKMB 302/39, PARIS-T/B; 2/5, CREDO-Kyoto-T/B; 1/0
months			self-judgement.			
DAPT			Day 7 from			
			discontinuation			
			of both aspirin			
			and clopidogrel			
		1				

1 1) The cases are sorted by the days after index PCI.

2 PARIS-T/B, and CREDO-Kyoto T/B indicate PARIS thrombotic/bleeding risk score and CREDO-Kyoto thrombotic/bleeding risk scores. APT denotes antiplatelet therapy, ARC academic research

3 consortium, CK creatine kinase, CKD chronic kidney disease, CKMB creatine kinase-MB, CoCr-EES, cobalt-chromium everolimus-eluting stents, DAPT dual antiplatelet therapy, DCB drug coated

4 balloon, DES drug-eluting stents, DM diabetes mellitus, EF ejection fraction, G1 first generation, G2 second generation, HBR high bleeding risk, HTN hypertension, HL hyperlipidemia, ISR in-stent

5 restenosis, IVUS intravascular ultrasound, KBT kissing balloon technique, LAD left anterior ascending coronary artery, LCx left circumflex coronary artery, NSTEMI non-ST -segment elevation

6 myocardial infarction, OCT optical coherence tomography, PCI percutaneous coronary intervention, POBA plain old balloon angioplasty, RCA right coronary artery, SCD sudden cardiac death, SES

7 sirolimus-eluting stents, STEMI ST-segment elevation myocardial infarction, and UA unstable angina.

1 eFigures

2 eFigure 1. The rate of persistent DAPT discontinuation rate

1-2 month DAPT	0	30	60	120	180	240	300	335	395
N of patients with DAPT discontinuation		140	1972	2010	2019	2023	2025	2025	2028
N of patients with DAPT	2058	1986	86	42	33	29	27	27	17
Cumulative incidence (%)		6.8	96.1	97.9	98.4	98.6	98.7	98.7	98.8
12 months DAPT	0	30	60	120	180	240	300	335	395
N of patients with DAPT discontinuation		8	32	58	84	115	151	181	1567
N of patients with DAPT	2078	2070	2033	2004	1974	1941	1903	1879	299
Cumulative incidence (%)		0.4	1.6	2.8	4.1	5.6	7.3	8.8	82.0

3 4

5 Within the first month after the index PCI, patients in both groups were to receive DAPT with aspirin (doses determined by 6 sites) and a P2Y12 inhibitor (clopidogrel 75 mg/day or prasugrel 3.75mg/day at the discretion of the attending physicians). At 7 1 month (30 to 59 days) after the index PCI, patients in the 1-month DAPT group were to stop aspirin and to receive 8 clopidogrel monotherapy, while patients in the 12-month DAPT group were to receive DAPT with aspirin and clopidogrel up 9 to 12 months. In patients who had received prasugrel, it was switched to clopidogrel at 1 month in both groups. In the 10 12-month DAPT group, clopidogrel was to be discontinued at 12-month with the allowance period between 335- and 394-day 11 after index PCI. We collected data for discontinuation, change, or restart of antithrombotic therapy including anticoagulation 12 on daily basis. Persistent DAPT discontinuation was defined as stopping of either aspirin or P2Y₁₂ inhibitor by the study 13 protocol or stopping >60 days for any reasons.

1 eFigure 2. Per-protocol analysis for the primary endpoint

1-2 month DAPT	0	30	60	120	180	240	300	365
Number of patients with event		4	9	13	22	30	38	48
Number of patients at risk	1898	1894	1888	1884	1872	1859	1848	1495
Cumulative incidence (%)		0.21	0.47	0.69	1.16	1.58	2.01	2.55
12 months DAPT	0	30	60	120	180	240	300	365
Number of patients with event		5	6	9	19	30	38	45
Number of patients at risk	1908	1903	1902	1897	1886	1873	1864	1465
Cumulative incidence (%)		0.26	0.31	0.47	1.00	1.57	1.99	2.37

2 3

4 Time-to-event curves were presented for the primary endpoint in the per-protocol population. This analysis included the

5 patients in the 1-month DAPT group receiving clopidogrel monotherapy without aspirin, and the patients in the 12-month

6 DAPT group receiving both aspirin and clopidogrel at 60 days after index PCI. Patients with oral anticoagulants use, use of

7 other antiplatelet therapy, history of hemorrhagic stroke, and history of implantation of bioabsorbable vascular scaffolds were

8 excluded according to the protocol defined exclusion criteria.

9 DAPT denotes dual antiplatelet therapy and PCI percutaneous coronary intervention.

10

1 eFigure 3. As-treated analysis for the primary endpoint

2

Clopidogrel monotherapy	0	30	60	120	180	240	300	365
Number of patients with event		4	9	14	25	33	42	52
Number of patients at risk	1915	1911	1905	1900	1886	1873	1862	1506
Cumulative incidence (%)		0.21	0.47	0.73	1.31	1.73	2.20	2.74
Aspirin plus clopidogrel	0	30	60	120	180	240	300	365
Number of patients with event		7	10	13	24	36	44	52
Number of patients at risk	1979	1973	1969	1964	1952	1938	1929	1521
Cumulative incidence (%)		0.35	0.51	0.66	1.21	1.82	2.23	2.64

3

4 Time-to-event curves were presented for the primary endpoint in the as-treated population. In this analysis, regardless of the

5 randomly assigned groups, 1) the patients receiving clopidogrel monotherapy without oral anticoagulants at 60-day were set

6 as clopidogrel monotherapy group, and 2) the patients receiving both aspirin and clopidogrel without anticoagulants at

7 60-day were set as aspirin plus clopidogrel group. We did not consider other exclusion criteria (history of hemorrhagic stroke,

8 oral anticoagulants use, use of other antiplatelet therapy, history of implantation of bioabsorbable vascular scaffolds).

9 PCI denotes percutaneous coronary intervention.

1 eFigure 4. Worst-case scenario for the primary endpoint

2

1-2 month DAPT	0	30	60	120	180	240	300	365
Number of patients with event		12	30	35	46	57	65	79
Number of patients at risk	2058	2047	2028	2021	2007	1993	1982	1606
Cumulative incidence (%)		0.58	1.46	1.70	2.24	2.77	3.16	3.87
12 months DAPT	0	30	60	120	180	240	300	365
Number of patients with event		7	11	15	26	39	49	58
Number of patients at risk	2078	2070	2055	2048	2036	2021	2010	1581
Cumulative incidence (%)		0.34	0.53	0.72	1.26	1.89	2.37	2.83

3 4

5 Time-to-event curves were presented for the primary endpoint in a sensitivity analysis assuming that patients lost to

6 follow-up in the experimental arm had the primary endpoint event, while those in the control arm did not have the event.

7 DAPT denotes dual antiplatelet therapy, PCI percutaneous coronary intervention.

1 eFigure 5. Landmark analysis at 30 days

2 (a) Primary endpoint

1-2 month DAPT	0	30	60	120	180	240	300	365
Number of patients with event		11	10	15	26	35	43	55
Number of patients at risk	2058	2047	2028	2021	2007	1993	1982	1606
Cumulative incidence (%)		0.53	0.49	0.74	1.28	1.72	2.11	2.73
12 months DAPT	0	30	60	120	180	240	300	365
Number of patients with event		7	4	8	19	32	42	51
Number of patients at risk	2078	2070	2055	2048	2036	2021	2010	1581
Cumulative incidence (0/)		0.24	0.10	0.20	0.02	1 5 6	2.04	2 50

3

4 (b) Major secondary cardiovascular endpoint

(c) Major secondary bleeding endpoint

2 3

1

4 Time-to-event curves were presented for the primary and major secondary endpoints in a landmark analysis at 30 days. See

5 text and eAppendix 3 for the definition of each endpoint.

6 DAPT denotes dual antiplatelet therapy, PCI percutaneous coronary intervention.

7

1 eFigure 6. Landmark analysis at 60 days

2 (a) Primary endpoint

					-			
1-2 month DAPT	0	30	60	120	180	240	300	365
Number of patients with event		11	20	5	16	25	33	45
Number of patients at risk	2058	2047	2028	2021	2007	1993	1982	1606
Cumulative incidence (%)		0.53	0.97	0.25	0.79	1.24	1.63	2.25
12 months DAPT	0	30	60	120	180	240	300	365
Number of patients with event		7	11	4	15	28	38	47
Number of patients at risk	2078	2070	2055	2048	2036	2021	2010	1581
Cumulative incidence (%)		0.34	0.53	0.19	0.73	1.37	1.85	2.31

3

4 (b) Major secondary cardiovascular endpoint

(c) Major secondary bleeding endpoint

2 3

1

4 Time-to-event curves were presented for the primary and major secondary endpoints in a landmark analysis at 60 days. See

5 text and eAppendix 3 for the definition of each endpoint.

6 DAPT denotes dual antiplatelet therapy, PCI percutaneous coronary intervention.

1 eFigure 7. Landmark analysis at the day of drug modification

2 (a) Primary endpoint

0.63

1.16

1.63

2.00

2.17

0.11 0.16

3

4 (b) Major secondary cardiovascular endpoint

Cumulative incidence (%)

(c) Major secondary bleeding endpoint

3

2

1

4 Time-to-event curves were presented for the primary and major secondary endpoints in a post-hoc landmark analysis at the

5 day of drug modification on the scheduled 1-month visit. In this analysis, the patients were excluded who did not change

6 their antiplatelet therapy on the day of 1-month visit in the 1-month DAPT arm or who did not visit at 1 month. In patients who

7 did not change their antiplatelet therapy at 1-month visit, the day of 1-month visit was regarded as the day of drug

8 modification. See text and eAppendix 3 for the definition of each endpoint.

9 DAPT denotes dual antiplatelet therapy, PCI percutaneous coronary intervention.

- 1 eFigure 8. Time-to-event curves for the primary and major secondary
- 2 cardiovascular and bleeding endpoints in the 1-2 month DAPT group
- 3 stratified by the median value of DAPT duration

4 (a) Primary endpoint

5

6 (b) Major secondary cardiovascular endpoint

(c) Major secondary bleeding endpoint

2

1

3

4 Time-to-event curves for (a) the primary endpoint, (b) major secondary cardiovascular endpoint, and (c) major secondary

5 bleeding endpoint in the 1-2 month DAPT group stratified by the median value of the DAPT duration (39 days). See text and

6 eAppendix 3 for the definition of each endpoint.

7 DAPT denotes dual antiplatelet therapy and PCI percutaneous coronary intervention.

eFigure 9. Subgroup Analyses for the Relative Effect of 1-2 Month DAPT on

2 the Primary and Major Secondary Endpoints

3 (a) Primary endpoint

	No./Tota	l (%)								
	1-2 month DAPT (N=2058)		12 monti (N=2078)	ns DAPT			HR (95%CI)	P Value	P Value for Interaction	
Age	.					1				
>=75 years	27/585	(4.69%)	26/598	(4.41%)	_	- 	1.07 (0.62-1.83)	.82	75	
<75 years	38/1473	(2.61%)	32/1480	(2.20%)			1.20 (0.75-1.92)	.45	./5	
Sex										
Women	14/427	(3.29%)	11/429	(2.60%)	_		1.29 (0.58-2.83)	.53		
Men	51/1631	(3.17%)	47/1649	(2.89%)			1.10 (0.74-1.64)	.63	./3	
Diagnosis										
STEMI	36/1179	(3.10%)	30/1145	(2.66%)	-	_ 	1.17 (0.72-1.90)	.52		
NSTEMI	13/399	(3.27%)	12/427	(2.89%)			1.16 (0.53-2.53)	.72	.97	
UA	16/480	(3.38%)	16/506	(3.18%)		_	1.06 (0.53-2.11)	.87		
Diabetes	,	()		(,		Г				
Yes	25/608	(4.16%)	26/621	(4.24%)	_	_ _	0.98 (0.56-1.69)	.93		
No	40/1450	(2.80%)	32/1457	(2.23%)		⊥ ∎	1.27 (0.80-2.02)	.32	.48	
Severe CKD	,	()	,	()		-				
Yes	9/68	(13.60%)	9/70	(12.86%)		_	1.08 (0.43-2.73)	.86		
No	56/1990	(2.85%)	49/2008	(2.48%)			1 16 (0 79-1 70)	46	.89	
Total stent length >=28 mm	1	(210070)	15,2000	(2.1070)		-	1110 (0175 1170)			
Yes	39/1111	(3.56%)	31/1127	(2.79%)		_ 	1.28 (0.80-2.05)	.31	45	
No	26/947	(2.77%)	27/951	(2.89%)	_	.	0.97 (0.57-1.67)	.92	.45	
Target of 2 vessels or more										
Yes	14/344	(4.11%)	19/390	(4.96%)		∎┼──	0.83 (0.42-1.66)	.60		
No	51/1714	(3.02%)	39/1688	(2.34%)		-+ 	1.30 (0.85-1.97)	.22	.28	
PARIS thrombotic risk score	e									
High	22/347	(6.45%)	22/338	(6.58%)	_	.	0.98 (0.54-1.76)	.94		
Intermediate	28/1076	(2.64%)	24/1051	(2.31%)	-		1.14 (0.66-1.97)	.63	.79	
Low	15/635	(2.39%)	12/689	(1.81%)	_		1.36 (0.64-2.91)	.43		
PARIS bleeding risk score										
High	26/380	(6.98%)	27/367	(7.41%)		.	0.93 (0.54-1.60)	.80		
Intermediate	31/1071	(2.93%)	15/1067	(1.45%)		_	- 2.08 (1.12-3.86)	.02	.03	
Low	8/607	(1.33%)	16/644	(2.53%)		<u> </u>	0.53 (0.22-1.23)	.14		
CREDO-Kyoto thrombotic r	isk score									
High	10/78	(13.19%)	8/93	(8.84%)	_		- 1.53 (0.61-3.90)	.36		
Intermediate	17/355	(4.87%)	21/339	(6.22%)			0.77 (0.41-1.46)	.42	.32	
Low	38/1625	(2.37%)	29/1646	(1.80%)			1.33 (0.82-2.16)	.24		
CREDO-Kyoto bleeding risk	score									
High	9/71	(12.93%)	5/61	(8.33%)		╶┼╴┲───	<u> </u>	.42		
Intermediate	16/402	(4.03%)	19/398	(4.84%)		.	0.83 (0.43-1.62)	.59	.54	
Low	40/1585	(2.56%)	34/1619	(2.14%)			1.21 (0.76-1.91)	.42		
Overall	65/2058	(3.20%)	58/2078	(2.83%)		_ =	1.14 (0.80-1.62)	.48		
				0 1 25	0.25 0.5	1 2				
				0.125	0.25 0.5	1 <u>2</u>	4 ×			
				1-2 month	DAPIDette	er 12 mont	hs DAPT better			

4

(b) Major secondary cardiovascular endpoint

	No./Total	l (%)							
	1-2 mont (N=2058)	1-2 month DAPT (N=2058)		ns DAPT	s DAPT		HR (95%CI)	P Value	P Value for Interaction
Age						1			
>=75 years	22/585	(3.84%)	18/598	(3.07%)	_	┼┳──	1.26 (0.67-2.35)	.47	
<75 years	34/1473	(2.34%)	20/1480	(1.38%)			1.72 (0.99-2.99)	.055	.46
Sex									
Women	10/427	(2.35%)	6/429	(1.42%)			1.69 (0.61-4.64)	.31	
Men	46/1631	(2.87%)	32/1649	(1.98%)			1.46 (0.93-2.30)	.10	.81
Diagnosis		. ,		. ,			· · · ·		
STEMI	33/1179	(2.84%)	18/1145	(1.61%)			1.80 (1.01-3.19)	.046	
NSTEMI	11/399	(2.77%)	8/427	(1.95%)			1.48 (0.59-3.67)	.40	.57
UA	12/480	(2.54%)	12/506	(2.39%)			1.06 (0.47-2.35)	.89	
Diabetes	,	(2.2	,	()		Γ	,		
Yes	23/608	(3.83%)	19/621	(3.10%)	_		1,23 (0,67-2,27)	.50	
No	33/1450	(2.31%)	19/1457	(1.34%)			1.76 (1.003-3.10)	.049	.40
Severe CKD	,	(=:==:;;)	,	(200 000)		-			
Yes	6/68	(9.05%)	7/70	(10.00%)			0.91 (0.31-2.72)	87	
No	50/1990	(2.55%)	31/2008	(1 58%)]∎	1 64 (1 05-2 56)	03	.33
Total stent length >=28	mm	(2.0070)	51,2000	(1.0070)		-	1.0 1 (1.00 2.00)		
Yes	32/1111	(2.93%)	22/1127	(1.98%)			1.48 (0.86-2.55)	.16	
No	24/947	(2.56%)	16/951	(1.72%)	-		1.52 (0.81-2.87)	.19	.95
Target of 2 vessels or me	ore	(=,		()		-			
Yes	11/344	(3.23%)	13/390	(3.41%)			0.96 (0.43-2.14)	.91	
No	45/1714	(2.67%)	25/1688	(1.51%)		⊺∎	1.79 (1.10-2.92)	.02	.19
PARIS thrombotic risk so	core	(,	,	(,					
High	20/347	(5.87%)	16/338	(4.79%)		∔∎──	1.23 (0.64-2.38)	.53	
Intermediate	23/1076	(2.17%)	15/1051	(1.44%)	-		1.51 (0.79-2.89)	.22	.69
Low	13/635	(2.07%)	7/689	(1.08%)	-		· 2.02 (0.81-5.07)	.13	
PARIS bleeding risk scor	e	(,		()					
High	23/380	(6.19%)	17/367	(4.66%)	_	⊢∎ —	1.32 (0.71-2.48)	.38	
Intermediate	25/1071	(2.37%)	10/1067	(0.97%)		_	- 2.52 (1.21-5.24)	.01	.13
Low	8/607	(1.33%)	11/644	(1.74%)			0.77 (0.31-1.91)	.57	
CREDO-Kyoto thrombot	ic risk score	. ,		. ,			· · · ·		
High	7/78	(9.24%)	7/93	(7.73%)			1.21 (0.42-3.44)	.72	
Intermediate	16/355	(4.59%)	13/339	(3.85%)			1.18 (0.57-2.46)	.65	.57
Low	33/1625	(2.06%)	18/1646	(1.13%)		_	1.87 (1.05-3.32)	.03	
CREDO-Kyoto bleeding	risk score								
High	6/71	(8.66%)	4/61	(6.67%)			1.29 (0.36-4.58)	.69	
Intermediate	15/402	(3.78%)	13/398	(3.31%)			1.15 (0.55-2.41)	.71	.68
Low	35/1585	(2.24%)	21/1619	(1.33%)			1.71 (0.998-2.95)	.051	
Overall	56/2058	(2.76%)	38/2078	(1.86%)			1.50 (0.99-2.26)	.054	
				0.125 1-2 month	0.25 0.5	1 2 4	 → DAPT better		

2

1

(c) Major secondary bleeding endpoint

	No./Tota	l (%)						
	1-2 mont (N=2058	1-2 month DAPT (N=2058)		ns DAPT		HR (95%CI)	P Value	P Value for Interaction
Age	•				1			
>=75 years	6/585	(1.03%)	10/598	(1.69%)		0.61 (0.22-1.69)	.34	47
<75 years	5/1473	(0.34%)	14/1480	(0.95%)	_	0.36 (0.13-0.99)	.049	.47
Sex					_			
Women	5/427	(1.18%)	5/429	(1.17%)		1.00 (0.29-3.47)	.995	45
Men	6/1631	(0.37%)	19/1649	(1.16%)	_	0.32 (0.13-0.80)	.01	.15
Diagnosis								
STEMI	5/1179	(0.43%)	12/1145	(1.06%)		0.41 (0.14-1.15)	.09	
NSTEMI	2/399	(0.50%)	4/427	(0.94%)		0.53 (0.10-2.89)	.46	.94
UA	4/480	(0.84%)	8/505	(1.59%)		- 0.53 (0.16-1.75)	.30	
Diabetes								
Yes	2/608	(0.33%)	10/621	(1.64%)	#	0.20 (0.04-0.92)	.04	10
No	9/1450	(0.62%)	14/1457	(0.97%)		0.65 (0.28-1.50)	.31	.19
Severe CKD					_			
Yes	3/68	(4.55%)	2/70	(2.99%)		<i>— //</i> 1.58 (0.26-9.43)	.62	45
No	8/1990	(0.40%)	22/2008	(1.11%)	_	0.37 (0.16-0.82)	.01	.15
Total stent length >=28 m	ım				_			
Yes	7/1111	(0.63%)	11/1127	(0.99%)		0.64 (0.25-1.66)	.36	22
No	4/947	(0.42%)	13/951	(1.38%)	_	0.31 (0.10-0.95)	.04	.33
Target of 2 vessels or mo	re			. ,				
Yes	3/344	(0.88%)	8/390	(2.08%)		0.42 (0.11-1.59)	.20	
No	8/1714	(0.47%)	16/1688	(0.96%)	_	0.49 (0.21-1.15)	.10	.84
PARIS thrombotic risk sco	ore							
High	2/347	(0.58%)	8/338	(2.42%)	#	0.24 (0.05-1.13)	.07	
Intermediate	7/1076	(0.65%)	11/1051	(1.06%)	_	0.62 (0.24-1.60)	.32	.59
Low	2/635	(0.32%)	5/689	(0.73%)		- 0.43 (0.08-2.24)	.32	
PARIS bleeding risk score	•							
High	4/380	(1.06%)	13/367	(3.62%)	B	0.29 (0.10-0.90)	.03	
Intermediate	7/1071	(0.66%)	6/1067	(0.57%)		1.17 (0.39-3.47)	.78	.22
Low	0/607	(0.00%)	5/644	(0.78%)		-	-	
CREDO-Kyoto thrombotic	risk score							
High	3/78	(3.95%)	1/93	(1.16%)		———— 3.52 (0.37-33.85)	.28	
Intermediate	2/355	(0.57%)	10/339	(2.98%)	#	0.19 (0.04-0.87)	.03	.11
Low	6/1625	(0.37%)	13/1646	(0.80%)	_	0.47 (0.18-1.23)	.12	
CREDO-Kyoto bleeding ri	sk score							
High	3/71	(4.29%)	1/61	(1.69%)		2.60 (0.27-24.95)	.41	
Intermediate	2/402	(0.50%)	7/398	(1.79%)	#	0.28 (0.06-1.35)	.11	.25
Low	6/1585	(0.38%)	16/1619	(1.00%)		0.38 (0.15-0.98)	.04	
Overall	11/2058	(0.54%)	24/2078	(1.17%)		0.46 (0.23-0.94)	.03	
				0.	625 0.25 0.5 1	2 4 8		
				1-2 m	nth DAPT better 12 n	nonths DAPT better		

2

1

3 The subgroup analyses on (A) primary endpoint, (B) major secondary cardiovascular endpoint, and (C) major bleeding

4 endpoint. Numbers indicate number of patients with event/number of patients at risk.

5 Severe CKD was defined as pre-procedural eGFR <30 mL/min/1.73m2 or on maintenance dialysis.

6 DAPT denotes dual antiplatelet therapy, HR hazard ratio, CI confidence interval, ACS acute coronary syndrome, STEMI

7 ST-segment elevation myocardial infarction, NSTEMI non-ST-segment elevation myocardial infarction, UA unstable angina,

8 CKD chronic kidney disease, PARIS Patterns of Non-Adherence to Anti-Platelet Regimen in Stented Patients, CREDO-Kyoto

9 Coronary REvascularization Demonstrating Outcome study in Kyoto, and eGFR estimated glomerular filtration rate.

- eFigure 10. Time-to-event curves for the primary and major secondary 1
- 2 cardiovascular and bleeding endpoints stratified by the study (patients in

STOPDAPT-2 and STOPDAPT-2 ACS) 3

4 (a) Primary endpoint

1-2 month DAPT	U	30	60	120	180	240	300	365	1-2 month DAPT	0	30	60	120	180	240	300	365
l with event		3	5	6	9	12	14	16	N with event		8	15	19	27	33	39	49
at risk	565	561	551	550	547	541	538	439	N at risk	1493	1486	1477	1471	1460	1452	1444	1167
idence (%)		0.53	0.89	1.07	1.61	2.15	2.51	2.88	Incidence (%)		0.54	1.00	1.27	1.81	2.21	2.62	3.32
2 months DAPT	0	30	60	120	180	240	300	365	12 months DAPT	0	30	60	120	180	240	300	365
with event		2	4	5	10	16	21	23	N with event		5	7	10	16	23	28	35
at risk	583	580	571	570	564	558	551	447	N at risk	1495	1490	1484	1478	1472	1463	1459	1134
cidence (%)		0.34	0.69	0.87	1.74	2.78	3.65	4.02	Incidence (%)		0.33	0.47	0.67	1.07	1.54	1.88	2.37

5 6

7 (b) Major secondary cardiovascular endpoint

1-2 month DAPT	0	30	60	120	180	240	300	365	1-2 month DAPT	0	30	60	120	180	240	300	365
N with event		3	5	6	7	10	12	14	N with event		6	12	16	21	26	32	42
N at risk	565	561	551	550	549	543	540	441	N at risk	1493	1488	1480	1474	1466	1459	1451	1173
Incidence (%)		0.53	0.89	1.07	1.25	1.79	2.15	2.52	Incidence (%)		0.40	0.80	1.07	1.41	1.74	2.15	2.85
12 months DAPT	0	30	60	120	180	240	300	365	12 months DAPT	0	30	60	120	180	240	300	365
N with event		2	3	3	6	9	15	17	N with event		2	4	6	10	13	15	21
N at risk	583	580	572	572	568	565	557	452	N at risk	1495	1493	1487	1482	1478	1473	1471	1145
Incidence (%)		0.34	0.52	0.52	1.04	1.56	2.61	2.98	Incidence (%)		0.13	0.27	0.40	0.67	0.87	1.01	1.43

8

1

2 (c) Major secondary bleeding endpoint

³

5 Time-to-event curves for (a) the primary endpoint, (b) major secondary cardiovascular endpoint, and (c) major secondary

6 bleeding endpoint compared between the 1-2 month and 12 months DAPT groups stratified by the study (ACS patients

7 enrolled in STOPDAPT-2 and STOPDAPT-2 ACS). See text and eAppendix 3 for the definition of each endpoint.

8 DAPT denotes dual antiplatelet therapy, PCI percutaneous coronary intervention, STOPDAPT-2 ShorT and OPtimal duration

9 of Dual AntiPlatelet Therapy after everolimus-eluting cobalt-chromium stent-2.

10

⁴