Supporting Information

Insight into the loading properties of Na⁺ green functionalized clinoptilolite as potential carrier for 5-Fluorouracil drug; release kinetics and cytotoxicity

Mohamed Adel Sayed^{1, 2}, Hayam M. El-Zeiny^{1,2}, Jong Seong Khim³, Jamaan S. Ajarem⁴, Ahmed A. Allam⁵, Mostafa R. Abukhadra^{1, 6}*,

¹Materials Technologies and their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University, Beni suef City, Egypt.
²Department of Chemistry, Faculty of Science, Beni-Suef University, 62514 Beni-Suef City, Egypt.
³School of Earth & Environmental Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
⁴Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia.
⁵Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt

⁶Geology Department, Faculty of Science, Beni-Suef University, Egypt

Corresponding author Email*: Abukhadra89@Scinec.bsu.edu.eg

Content

1.	The representative equations of the studied kinetic and isotherm models in their linear and nonlin	near
	forms	S2

Table S1. The representative equations of the studied kinetic and isotherm models in their linear and nonlinear forms

Kinetic models				
Model	Linear equation	Parameters		
Pseudo-first-order	$q_t = q_e \left(1 - e^{-k_1 \cdot t} \right)$	q_t (mg $g^{\text{-}1})$ is the $$ adsorbed ions at time (t), and K_1 is the rate constant of the first-order adsorption (min $^{\text{-}1})$		
Pseudo-second-order	$\mathbf{q}_t = \frac{q_e^2 k_2 t}{1 + q_e k_2 t}$	qe is the quantity of adsorbed ions after equilibration (mg g $^{\text{-}1}$), and K_2 is the model rate constant (g mg $^{\text{-}1}$ min $^{\text{-}1}$).		
Isotherm models				
Model	Equation	Parameters		
Langmuir	$q_e = \frac{q_{max} bC_e}{(1 + bC_e)}$	$C_{\rm e}$ is the rest ions concentrations (mg L ⁻¹), $q_{\rm max}$ is the theoritical maximum adsorption capacity (mg g ⁻¹), and b is the Langmuir constant (L mg ⁻¹)		
Freundlich	$q_e = K_f C_e^{1/n}$	$\mbox{\ensuremath{\mbox{K}_{\mbox{\tiny F}}}}$ is the constant of Freundlich model related to the adsorption capacity and n is the constant of Freundlich model related to the adsorption intensities		
Dubinin–Radushkevich	$q_e = q_m e^{-\beta arepsilon^2}$	β (mol 2 KJ- $^2)$ is the D-R constant, ϵ (KJ 2 mol $^2)$ is the polanyil potential, and q_m is the adsorption capacity		