
MONI: A Pangenomics Index for Finding MEMs

Supplementary Material

Massimiliano Rossi1, Marco Oliva1, Ben Langmead2, Travis Gagie3?, and
Christina Boucher1?

1 Department of Computer and Information Science and Engineering,
University of Florida, Gainesville, FL,

rossi.m@ufl.edu, marco.oliva@ufl.edu, christinaboucher@ufl.edu,

2 Department of Computer Science,
Johns Hopkins University, Baltimore, MD,

langmea@cs.jhu.edu,

3 Faculty of Computer Science,
Dalhousie University, Halifax, Canada

travis.gagie@dal.ca,

1 Computation of the BWT given the prefix-free parsing

We provide the pseudocode for the construction algorithm of Kuhnle et al. (2020) which
is shown in Algorithm 1. We first provide some additional notation. Given the prefix-free
parsing P of S with dictionary D, we let S be the set of the distinct proper phrase suffixes
of S of length at least w. Given a proper phrase suffix α ∈ S, we denote by Lα, the set
of characters that precede all occurrences of α in S. We let Iα be the set of positions of
the phrases whose suffix is α in the BWTP , and let αFirst and αLast the first and the last
position in Iα. In addition, we denote the number of occurrences of α in BWTP as occs(α),
i.e. occs(α) = |Iα|. Lastly, given a proper phrase suffix α and an index i ∈ Iα, we denote
by αi.` = α.` the length |α| of α and by αi.bwt as the character preceding α in the phrase.
We refer to the character preceding all occurrences of α as αi.bwt when |Lα| = 1.

Algorithm 1 Building RL BWT
1: procedure Build RL BWT(P,D)
2: i← 0
3: for all α ∈ S do
4: if |Lα| = 1 then
5: i←Update RL BWT(i, α.bwt, occs(α))
6: else
7: for all k ∈ Iα do
8: i←Update RL BWT(i, αk.bwt, 1)

9: return RL BWT[1..r]

10: procedure Update RL BWT(i, a, `)
11: if a 6= RL BWT[i].head then
12: i← i+ 1
13: RL BWT[i].head← a
14: RL BWT[i].`← 0

15: RL BWT[i].`← RL BWT[i].`+ `
16: return i

? Both authors should be considered senior authors of the project.



2 Computation of the BWT and the thresholds given the
prefix-free parsing

In this section we provide the pseudocode for the construction algorithm of Kuhnle et al.
(2020) modified to compute in addition the threshold values. The pseudocode is shown in
Algorithm 2.

Algorithm 2 Building RL BWT and Thresholds

1: procedure Build Thresholds(P,D)
2: i← 0, j ← 1, β ← ε
3: for all α ∈ S do
4: val← lcp(α, β)
5: Update LCP(val, j)
6: if |Lα| = 1 then
7: i←Update RL BWT(i, α.bwt, occs(α))
8: Update LCP(val, j)
9: j ← j + occs(α)

10: else
11: prev ← −1
12: for all k ∈ Iα do
13: if prev ≥ 0 then
14: val←Min SLCP(prev, k)
15: val← val + α.`− w
16: Update LCP(val, j)
17: i←Update RL BWT(i, αk.bwt, 1)
18: Update LCP(val, j)
19: j ← j + 1
20: prev ← k

21: β ← α

22: return RL BWT[1..r],THR[1..r]

23: procedure Update LCP(val, pos)
24: if val < LCP.val then
25: LCP.val← val
26: LCP.pos← pos

27: procedure Update RL BWT(i, c, `)
28: if c 6= RL BWT[i].head then
29: Update Thresholds(i, c)
30: i← i+ 1
31: RL BWT[i].head← c
32: RL BWT[i].`← 0
33: LCP←Init LCP
34: RL BWT[i].`← RL BWT[i].`+ `
35: return i

36: procedure Min SLCP(a, b)
37: if b > a then
38: Swap(a, b)

39: return min{SLCP[i] | a < i ≤ b}

40: procedure Update Thresholds(i, c)
41: for all a ∈ Σ \ {RL BWT[i].head} do
42: if LCP.val < M[a].val then
43: M[a].val← LCP.val
44: M[a].pos← LCP.pos

45: if c is the first c in RL BWT then
46: THR[i].val← 0
47: THR[i].pos← 0
48: else
49: THR[i].val← M[c].val
50: THR[i].pos← M[c].pos

51: M[c]←Init M



Bibliography

Alan Kuhnle, Taher Mun, Christina Boucher, Travis Gagie, Ben Langmead, and Giovanni
Manzini. Efficient construction of a complete index for pan-genomics read alignment.
Journal of Computational Biology, 27(4):500–513, 2020.


