Supporting Information

Interaction of A₃ Adenosine Receptor Ligands with the Human Multidrug Transporter ABCG2

Biebele Abel,^{1#} Megumi Murakami,^{1#} Dilip K. Tosh,^{2#} Jinha Yu,² Sabrina Lusvarghi,¹ Ryan G. Campbell,² Zhan-Guo Gao,² Kenneth A. Jacobson,² Suresh V. Ambudkar¹

¹Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute (BA, MM, SL, SVA) and

²Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases (DKT, JY, RGC, ZGG, KAJ), National Institutes of Health, Bethesda, MD 20892, USA

[#]These authors contributed equally

Contents	Pages Pages
Tables S1 – S4. Receptor affinity of nucleosides and nucleobases	S2 – S13
Off-target screening by PDSP	S13
References for Tables S1 – S4	S14
Scheme S1. Synthesis of 7-deazaadenines	S15
Chemical synthesis	S15 – S22
Figure S1. Effects of 16 (A), 31 (B), and 4 (C) on ABCG2 ATPase activity	S23
NMR and HPLC results for representative newly prepared compounds	S24 – S41

TABLE S1

A₃AR, KOR (κ -opioid) and translocator protein (TSPO) affinity of N^6 and C2-phenylethynyl modifications of (N)-methanocarba 2-arylethynyl-purine derivatives (5'-amides and 5'-alcohols).^a References are listed on p. S14.

5 - 11, 13 - 15

16 – 21

22, 23

12

No.	R ¹ or R ³	R ²	(K _i , nM),	(K _i , nM),		
			h, unless noted			
			A₃AR	KOR	Compound	Reference
				(TSPO)	In reference	
6-Benzylamino and 6-Alkyl derivatives				derivatives		
5		J ^{SS} F	3.49 (h),	>10,000	31	1
MRS			3.08 (m)	(340)		
5698	Č.	F				
6	н	جر F	124 (h)	ND	20	4
MRS 7202		F				

7 MRS 7196	CH₃	F	98.5 (h)	ND	16	4
8 MRS 5655	HN CI	2 ²	1.34 (h), 1.23 (m)	>10,000 (2650±210)	27	1
9 MRS 5678	HN CI	F	2.16 (h), 2.38 (m)	>10,000 (2530)	28	1
10 MRS 5697	HN CI	CI	1.92 (h), 2.64 (m)	>10,000 (344)	29	1
11 MRS 7328	HN N3	F	2.60±0.83	ND	7	7
12 MRS 7779	HN N ₃	F	129	ND	-	New here
		6-Phenylcy	clopropylamino	derivatives		•
13 MRS 5627	HN F	A A A A A A A A A A A A A A A A A A A	20.2	ND	15	2
14 MRS 7030	HN ^{VV} F	A A A A A A A A A A A A A A A A A A A	16.9	ND	16	2
15 MRS 7034	HN F	r r r r r r r r r r r r r r r r r r r	4.55	ND	17	2

•

Triazole-extended 6-Benzylamino derivatives							
16 ^b MRS 7769	s ² F	F F	45.7	>10,000 (3450±800)	-	New here	
17 MRS 7323	,s ²⁵ F F	F	5.23±0.45	ND	8	7	
18 ^b MRS 7767	P F	F	16.8	>10,000 (3450±800)	-	New here	
19 ^b MRS 7768	S ² F	F	23.5	>10,000 (2220±200)	-	New here	
20 ^b MRS 7778	S ² F F	F F	126	>10,000 (1560±320)	-	New here	
21 ^b MRS 7770	CF3	F	106	>10,000 (>10,000)	-	New here	
22 MRS 7780	s st F	F	596	ND	-	New here	
23 MRS 7781	^{2⁵} − F F	F F	1100	ND	-	New here	

^a The binding affinity for human (h) or mouse (m) A_3AR (expressed in CHO cells) as a K_i values using agonist [¹²⁵I] N^6 -(4-amino-3-iodobenzyl)adenosine-5'-N-methyluronamide. A percent refers to inhibition of binding at 10 μ M. See reference provided for more detail. ND, not determined.

^b The binding affinity (μ M) at s₂ receptor: **16**, 6.1; **18**, 4.3; **19**, 4.4; **20**, 4.1; **21**, >10. The binding affinity (μ M) at b₃ receptor: **18**, 3.9.

TABLE S2

A₃AR, KOR (κ -opioid) and translocator protein (TSPO) affinity of N^6 , C2 and riboside modifications of adenosine derivatives (both (N)-methanocarba and ribose-containing).^a References are listed on p. S14.

24 – 27

28 – 34

No.	R ¹	R ⁴ [R ⁵]	(K _i , nM),			
			h, unless noted			
			A₃AR	KOR	Compound	Reference
				(TSPO)	in reference	
		(N)-Me	thanocarba der	ivatives		
24	н	H ₃ C ^{-NH} - 0 ~~~~	60 (h),	>10,000	21	4
MRS7			396 (m)	(>10,000)		
220		I I ОН ОН				
25	NHCH ₃	H ₃ C ^{-NH} 0 ~~~	0.70 (h) <i>,</i>	>10,000	4	8
MRS			36 (m)	(>10,000)		
5980		I I он он				
26	NH(CH ₂) ₂ CH ₃	H ₃ C ^{NH} ^O ^{ww}	1.1 (h),	>10,000	12	8
MRS			6.8 (m)	(1310)		
7154		I I ОН ОН				
27	NHCH ₃	H ₃ C ⁻⁰ - m	5.38 (h),	3130	21	8
MRS			>10,000 (m)	(>10,000)		
7292		I I ОН ОН				
28	HN CI	H ₃ C ^{-NH} 0 ~~~	1.06	ND	7	3
MRS						
7117		ОН ОН				

		$\begin{bmatrix} c^{c_1} & & & F \\ c^{c_1} & & & & F \\ & & & & & & \\ & & & & & & \\ & & & &$				
29 MRS 7131	HN CI	H ₃ C ^{NH} OH OH [N ₃]	1.08	ND	33	3
30 MRS 5755	HN CI	OH OH	100	>10,000 (1750)	11	11
			Ribose derivative	25		
31 IB- MECA	HN I		1.8 (h), 0.087 (m)	>10,000 (>10,000)	IB-MECA	9
		о́н о́н [H]				
4 CI-IB- MECA	HN		1.4 (h), 0.18 (m)	>10,000 (>10,000)	CI-IB-MECA	9
32 MRS 7294	NHCH₃		1.55 (h) <i>,</i> 1170 (m)	>10,000 (>10,000)	6	8

33	NH(CH ₂) ₂ CH ₃	H N O	6.25 (h) <i>,</i>	>10,000	7	8
MRS 7295		ОНОН	597 (m)	(>10,000)		
		S CI				
34	NHCH ₃		11.5 (h) <i>,</i>	>10,000	20	8
MRS			34 (m)	(>10,000)		
7296		ОН ОН				
		[s ci				

^a The binding affinity for human (h) or mouse (m) A_3AR (expressed in CHO cells) as a K_i values using agonist $[^{125}I]N^6$ -(4-amino-3-iodobenzyl)adenosine-5'-N-methyluronamide. See reference provided for more detail. ND, not determined.

TABLE S3

A₃AR, KOR (κ -opioid) and translocator protein (TSPO) affinity of N^6 and C2 modifications of adenine and 7-deazaadenine derivatives. R⁴ is either H or CH₃. References are listed on p. S14.

38, 39

No.	R ¹	R ²	(K _i , nM, or % inhibition at 10 μ M),			
			h, unless noted			
			A₃AR	KOR	Compound	Reference
				(TSPO)	in reference	
			$R^4 = H$	<u> </u>	<u> </u>	<u> </u>
35		_s d ^s F	120	>10,000	14	6
MRS				(>10,000)		
5923		I				
36		S S	128	>10,000	23	6
MRS		, CI		(>10,000)		
7327						
37a		ere S	13 (h),	>10,000	24	6
MRS		CI	>10,000 (m)	(>10,000)		
7350						
37b	OH	s ^s s	20%	ND	25	6
MRS	H OH	CI				
7610						
37c	e OH	RAS S	6820	ND	26	6
MRS	N OCH3					
7608						

38 ^b MRS 7883	P ^{2⁵} NHOCH ₃ OCH ₃ OH	1	826±51	9% (27%)	-	New here
39 ^b	OCH3	and the second s	260±9	4080	-	New here
MRS	Provide the second seco	S CI		(960)		
7884						
			$R^4 = CH_3$			
40		s S	116 (h),	>10,000	27	6
MRS			>10,000 (m)	(>10,000)		
7320						

^a The binding affinity for human (h) or mouse (m) A_3AR (expressed in CHO cells) as a K_i values using agonist [¹²⁵I] N^6 -(4-amino-3-iodobenzyl)adenosine-5'-N-methyluronamide. A percent refers to inhibition of binding at 10 μ M. See reference provided for more detail. ND, not determined.

 $^{\text{b}}$ The binding affinity (µM) at s_2 receptor: **38**, 4.0; **39**, 2.7.

TABLE S4

A₃AR affinity of N^6 and C2 modifications of (N)-methanocarba 5'-ester derivatives. R² is 2-chloro-thien-5-yl, unless noted. X, Y, Z = N, unless noted.^a References are listed on p. S14.

52 - 64

No.	R ¹	R ⁶	(K _i , nM, or % inhibition at 10 μ M),		Source	
		(and other)	h, unless noted	h, unless noted		
				1		1
			A₃AR	KOR	Compound	Reference
				(TSPO)	in reference	
		X	, Y, Z as indicate	ed		
41	NHCH ₃	CH ₂ CH ₃	14.5 (h) <i>,</i>	396	24	5
MRS			>10,000 (m)	(1290)		
1232						
42	NHCH ₃	CH ₂ CH ₃	29.4 (h) <i>,</i>	806	26	5
MRS		(X = CH)	828 (m)	(3810)		
/332						
43	NHCH ₃	CH ₂ CH ₃	47.3 (h),	>10,000	27	5
MRS		(Y = CH)	>10,000 (m)	(3390)		
7315						
44	NHCH₃	CH ₂ CH ₃	448 (h) <i>,</i>	42	28	5
MRS 7299		(Z = CH)	>10,000 (m)	(869)		

	R ⁶ as indicated, X, Y, Z = N							
45	NHCH ₃	(CH ₂) ₂ CH ₃	5.78 (h),	437	30	5		
MRS 7251			2810 (m)	(1060)				
46 MRS 7252	NHCH ₃	CH(CH₃)₂	42.9 (h), >10,000 (m)	>10,000 (>10,000)	31	5		
47 MRS 7304	NHCH₃	(CH ₂) ₃ CH ₃	17.5 (h), ~10,000 (m)	1210 (>10,000)	32	5		
48 MRS 7305	NHCH₃	(CH ₂) ₂ - CH(CH ₃) ₂	24.4 (h), >10,000 (m)	1090 (>10,000)	33	5		
49 MRS 7316	NHCH₃	(CH ₂) ₂ -c-Hex	334 (h), >10,000 (m)	>10,000 (>10,000)	34	5		
50 MRS 7317	NHCH₃	CH₂Ph	7.81 (h), 891 (m)	629 (4050)	35	5		
51 MRS 7318	NHCH ₃	(CH ₂) ₂ Ph	114 (h), >10,000 (m)	3670 (>10,000)	36	5		
52 MRS 7319	NHCH ₃	(CH₂)₃Ph	132 (h), >10,000 (m)	8920 (1090)	37	5		
		R ⁶ =	= CH ₂ CH ₃ , X, Y, Z	' = N				
53 MRS 7333	NHCH₃	$R^5 =$	10.4 (h), 625 (m)	2650±880 (>10,000)	23	8		

54	OCH3	R ⁵ =	32.8 (h)	23%	29	10
MRS	ны он	S CI	104 (m)	(1880)		
7636						
55	ОН	R ⁵ =	37.4	32%	28	10
MRS	HN OCH3	S CI		(890)		
7626						
		R	⁶ = CH ₂ CH ₃ , Z = (СН		
56	NHCH ₃	R ⁵ = I	390	104	39	5
MRS				(>10,000)		
7331						
57	NHCH ₃	R ⁵ =	344 (h) <i>,</i>	91.5	40	5
MRS			>10,000 (m)	(>10,000)		
7335						
58	\land	R ⁵ =	228 (h) <i>,</i>	852	41	5
MRS	HN		>10,000 (m)	(>10,000)		
7347	I					
59	HN	R ⁵ =	791 (h),	1400	42	5
MRS			>10,000 (m)	(4470)		
7348						
60	HN	R ⁵ =	483 (h),	207	43	5
MRS			~10,000 (m)	(480)		
7343	Ť					
61 ^b	HN	R ⁵ =	4330	146	-	New here
MRS				(3000)		
7820						
62 ^b	HN	R ⁵ =	3760	167	-	New here
MRS		S CI		(345)		
7819						

63 ^b	н	R ⁵ =	2300	764	-	New here
MRS 7801	CCH3			(1610)		
64 ^b	ны	R ⁵ =	1620	341	-	New here
MRS 7800	CCH3	S CI		(1270)		

^a The binding affinity for human (h) or mouse (m) A_3AR (expressed in CHO cells) as a K_i values using agonist [¹²⁵I] N^6 -(4-amino-3-iodobenzyl)adenosine-5'-N-methyluronamide. See reference provided for more detail.

^b The binding affinity (μ M) at s₂ receptor: **61**, 0.87; **62**, 0.92; **63**, 2.8; **64**, 1.1. The binding affinity (μ M) at d opioid receptor: **61**, 0.52; **62**, 0.63; **64**, 3.9; m opioid receptor: **61**, 0.93; **62**, 0.78; **63**, 1.9; **64**, 1.95; GABA_A receptor: **62**, 4.1; DAT, 4.3; b₃ receptor **61**, 5.7.

Off-target binding activity determined by the Psychoactive Drug Screening Program (PDSP) at the University of North Carolina. We thank Dr. Bryan L. Roth (Univ. North Carolina at Chapel Hill) and National Institute of Mental Health's Psychoactive Drug Screening Program (Contract # HHSN-271-2008-00025-C) for screening data. Initially, the compounds are tested at 10 μ M in a primary screen at 45 different receptors, transporters and channels. If the percent of binding inhibition exceeds 50% at any of the targets listed below, a secondary screen of that compound is performed with a full concentration-response curve (concentrations of 0.1 nM to 10 μ M, in increments of half-integral log values).

Unless noted in the text, no significant interactions (<50% inhibition at 10 μ M) for any of the nucleosides were found at the following sites (human unless noted): 5HT_{1A} (serotonin), 5HT_{1B}, 5HT_{1D}, 5HT_{1E}, 5HT_{2A}, 5HT_{2B}, 5HT_{2C}, 5HT₃, 5HT_{5A}, 5HT₆, 5HT₇, α_{1A} (adrenergic), α_{1B} , α_{1D} , α_{2A} , α_{2B} , α_{2C} , β_1 , β_2 , β_3 , BZP (benzodiazepine) rat brain site, D₁ (dopamine), D₂, D₃, D₄, D₅, delta opioid receptor (DOR), kappa opioid receptor (KOR), GABA_A, H₁ (histamine), H₂, H₃, H₄, M₁ (muscarinic acetylcholine), M₂, M₃, M₄, M₅, mu opioid receptor (MOR), σ_1 , σ_2 (sigma), DAT (dopamine transporter), NET (norepinephrine transporter), SERT (serotonin transporter), TSPO (translocator protein).

Reference: Besnard, J.; Ruda, G. F.; Setola, V.; Abecassis, K.; Rodriguiz, R. M.; Huang, X. P.; Norval, S.; Sassano, M. F.; Shin, A. I.; Webster, L. A.; Simeons, F. R.; Stojanovski, L.; Prat, A.; Seidah, N. G.; Constam, D. B.; Bickerton, G. R.; Read, K. D.; Wetsel, W. C.; Gilbert, I. H.; Roth, B. L.; Hopkins, A. L. Automated design of ligands to polypharmacological profiles. *Nature* **2012**, *492*, 215–220.

Procedures: https://pdsp.unc.edu/pdspweb/content/UNC-CH%20Protocol%20Book.pdf

References

1. Tosh, D.K., Deflorian, F., Phan, K., Gao, Z.G., Wan, T.C., Gizewski, E., Auchampach, J.A., Jacobson, K.A. Structure-guided design of A₃ adenosine receptor-selective nucleosides: Combination of 2-arylethynyl and bicyclo[3.1.0]hexane substitutions. J. Med. Chem., 2012, 55:4847-4860.

2. Tosh, D.K., Paoletta, S., Chen, Z., Moss, S. M., Gao, Z.G., Salvemini, D., Jacobson, K.A. Extended N^6 Substitution of rigid C2-arylethynyl nucleosides for exploring the role of extracellular loops in ligand recognition at the A₃ adenosine receptor. Bioorg. Med. Chem. Lett., 2014, 24:3302-3306.

3. Tosh, D.K., Paoletta, S., Chen, Z., Crane, S., Lloyd, J., Gao, Z.G., Gizewski, E.T., Auchampach, J.A., Salvemini, D., Jacobson, K.A. Structure-based design, synthesis by click chemistry and in vivo activity of highly selective A₃ adenosine receptor agonists. Med. Chem. Commun., 2015, 6:555-563.

4. Tosh, D.K., Ciancetta, A., Warnick, E., O'Connor, R., Chen, Z., Gizewski, E., Crane, S., Gao, Z.G., Auchampach, J.A., Salvemini, D., Jacobson, K.A. Purine (N)-methanocarba nucleoside derivatives lacking an exocyclic amine as selective A₃ adenosine receptor agonists. J. Med. Chem., 2016, 59:3249-3263.

5. Tosh, D.K., Ciancetta, A., Mannes, P., Warnick, E., Janowsky, A., Eshleman, A.J., Gizewski, E., Brust, T.F., Bohn, L.M., Auchampach, J.A., Gao, Z.G., Jacobson, K.A. Repurposing of a nucleoside scaffold from adenosine receptor agonists to opioid receptor antagonists. ACS Omega, 2018, 3:12658-12678.

6. Yu, J., Mannes, P., Jung, Y.H., Ciancetta, A., Bitant, A., Lieberman, D.I., Khaznadar, S., Auchampach, J.A., Gao, Z.G., Jacobson, K.A. Structure activity relationship of 2-arylalkynyl-adenine derivatives as human A₃ adenosine receptor antagonists. Med. Chem. Commun., 2018, 9:1920–1932.

7. Abel, B., Tosh, D.K., Durell, S. R., Murakami, M., Vaheldi, S., Jacobson, K.A., Ambudkar, S.V. Evidence for the interaction of A₃ adenosine receptor agonists at the drug-binding site(s) of human P-glycoprotein (ABCB1). Mol. Pharmacol., 2019, 96:180–192.

8. Tosh, D.K., Salmaso, V., Rao, H., Campbell, R., Bitant, A., Gao, Z.G., Auchampach, J.A., Jacobson, K.A. Direct comparison of (N)-methanocarba and ribose-containing 2-arylalkynyladenosine derivatives as A₃ receptor agonists. ACS Med. Chem. Lett., 2020, 11:1935–1941.

9. Carlin, J.L., Jain, S., Gizewski, E., Wan, T.C., Tosh, D.K., Xiao, C., Auchampach, J.A., Jacobson, K.A., Gavrilova, O., Reitman, M.L. Hypothermia in mouse is caused by adenosine A₁ and A₃ receptor agonists and AMP via three distinct mechanisms. Neuropharmacology, 2017, 114:101-113.

10. Tosh, D.K., Salmaso, V., Campbell, R.G., Rao, H., Bitant, A., Pottie, E., Stove, C.P., Liu, N., Gavrilova, O., Gao; Z.G., Aucampach, J.A., Jacobson, K.A. A₃ adenosine receptor agonists containing dopamine moieties for enhanced interspecies affinity. 2021, Eur. J. Med. Chem., in press.

11. Tosh, D.K., Paoletta, S., Phan, K., Gao, Z.G., Jacobson, K.A. Truncated nucleosides as A₃ adenosine receptor ligands: Combined 2-arylethynyl and bicyclohexane substitutions. ACS Med. Chem. Lett., 2012, 3:596-601.

Chemical synthesis

Scheme S1. Synthesis of 7-deaza-adenine (7*H*-pyrrolo[2,3-*d*]pyrimidin-4-amine) derivatives. Reagents and conditions: (i) 3-OH-4-OMe-Ph(CH₂)₂NH₂, DIPEA, 2-propanol, 70 ^OC, 68%; (ii) 5-Cl-thienyl, PdCl₂(Ph₃)₂, Cul, Et₃N, DMF, rt, 76%.

Materials and instrumentation

All reagents and solvents were purchased from Sigma-Aldrich (St. Louis, MO, USA). ¹H NMR spectra were obtained with a Bruker 400 spectrometer using CDCl₃, CD₃OD and DMSO as solvents. Chemical shifts are expressed in δ values (ppm) with tetramethylsilane (δ 0.00) for CDCl₃ and water (δ 3.30) for CD₃OD. NMR spectra were collected with a Bruker AV spectrometer equipped with a z-gradient [¹H, ¹³C, ¹⁵N]-cryoprobe. TLC analysis was carried out on glass sheets precoated with silica gel F254 (0.2 mm) from Aldrich. The purity of final nucleoside derivatives was checked using a Hewlett-Packard 1100 HPLC equipped with a Zorbax SB-Aq 5 µm analytical column (50 × 4.6 mm; Agilent Technologies Inc., Palo Alto, CA, USA). Mobile phase: linear gradient solvent system, 5 mM TBAP (tetrabutylammoniumdihydrogenphosphate):CH₃CN from 80:20 to 0:100 in 13 min; the flow rate was 0.5 mL/min. Peaks were detected by UV absorption with a diode array detector at 230, 254, and 280 nm. All derivatives tested for biological activity showed >95% purity by HPLC analysis (detection at 254 nm). Low-resolution mass spectrometry was performed with a JEOL SX102 spectrometer with 6-kV Xe atoms following desorption from a glycerol matrix or on an Agilent LC/MS 1100 MSD, with a Waters (Milford, MA, USA) Atlantis C18 column. High resolution mass spectroscopic (HRMS) measurements were performed on a proteomics optimized Q-TOF-2 (Micromass-Waters) using external calibration with polyalanine, unless noted. Observed mass accuracies are those expected based on known performance of the instrument as well as trends in masses of standard compounds observed at intervals during the series of measurements. Reported masses are observed masses uncorrected for this timedependent drift in mass accuracy. All of the monosubsituted alkyne intermediates were purchased from Sigma-Aldrich (St. Louis, MO), Small Molecules, Inc. (Hoboken, NJ, USA), Anichem (North Brunswick, NJ, USA), PharmaBlock, Inc. (Sunnyvale, CA, USA), Frontier Scientific (Logan, UT, USA) and Tractus (Perrineville, NJ, USA).

(1R,2R,3S,4R,5S)-4-(6-((3-Azidobenzyl)amino)-2-((3,4-difluorophenyl)ethynyl)-9H-purin-9-yl)-1-(hydroxymethyl)bicyclo[3.1.0]hexane-2,3-diol (12)

A solution of compound **69** (27 mg, 0.04 mmol) in methanol (2.0 mL) and 10% trifluoroacetic acid (2.0 mL) was heated at 70 °C for 1.5 h. Solvent was evaporated under vacuum and the residue was purified on flash silica gel column chromatography (CH₂Cl₂:MeOH = 15:1) to give the compound **12** (22 mg, 89%) as colorless syrup. ¹H NMR (CD₃OD, 400 MHz) 8.52 (s, 1H), 7.58-7.53 (m, 1H), 7.47-7.44 (m, 1H), 7.36-7.29 (m, 2H), 7.23-7.21 (m, 1H), 7.15 (s, 1H), 6.96-6.94 (m, 1H), 4.87 (br s, 2H), 4.84-4.79 (m, 1H), 4.32 (d, *J* = 11.6 Hz, 1H), 3.91 (d, *J* = 6.4 Hz, 1H), 1.68-1.65 (m, 1H), 1.56 (t, *J* = 4.8 Hz, 1H), 0.78-0.75 (m, 1H). HRMS calculated for $C_{27}H_{23}N_8O_3F_2$ (M + H)⁺: 545.1861; found 545.1865.

(1S,2R,3S,4R,5S)-4-(2-((3,4-Difluorophenyl)ethynyl)-6-((3-(4-(4-fluorophenyl)-1H-1,2,3-triazol-1-yl)benzyl)amino)-9H-purin-9-yl)-2,3-dihydroxy-N-methylbicyclo[3.1.0]hexane-1carboxamide (16)

p-Fluoro-phenyl acetylene (5 mg, 0.014 mmol) was added to a solution of compound **65** (16 mg, 0.028 mmol) in a mixture of ^tBuOH (0.7 mL) and water (0.7 mL). Subsequently freshly prepared 1M sodium ascorbate solution (28 μ L, 0.028 mmol) followed by 7.5% solution of copper sulphate (47 μ L, 0.014 mmol) was added into the reaction mixture and the mixture stirred at room temperature overnight. Solvent was evaporated and the residue was purified on flash silica gel column chromatography (CH₂Cl₂:MeOH = 20:1) to give the compound **16** (17.5 mg, 90%) as an colorless syrup. ¹H NMR (CD₃OD, 400 MHz) 8.80 (s, 1H), 8.12 (s, 1H), 8.03 (s, 1H), 7.87-7.84 (m, 2H), 7.78-7.73 (m, 2H), 7.55-7.53 (m, 2H), 7.51-7.46 (m, 1H), 7.40-7.37 (m, 1H), 7.31-7.17 (m, 1H), 7.15-7.13 (m, 2H), 5.04 (d, *J* = 6.4 Hz, 1H), 4.96 (br s, 2H), 4.02 (d, *J* = 6.4 Hz, 1H), 2.84 (d, *J* = 4.4 Hz, 3H), 2.12-2.09 (m, 1H), 1.87 (t, *J* = 5.2 Hz, 1H), 1.40-1.37 (m, 1H). HRMS calculated for C₃₆H₂₉N₉O₃F₃ (M + H)⁺: 692.2345; found 692.2355.

(1S,2R,3S,4R,5S)-4-(6-((3-(4-(3,5-Difluorophenyl)-1H-1,2,3-triazol-1-yl)benzyl)amino)-2-((3,4-difluorophenyl)ethynyl)-9H-purin-9-yl)-2,3-dihydroxy-N-methylbicyclo[3.1.0]hexane-1-carboxamide (18)

Compound **18** (88%) was prepared from compound **65** following the same method as for compound **16**. ¹H NMR (CD₃OD, 400 MHz) 8.91 (s, 1H), 8.12 (s, 1H), 8.02 (s, 1H), 7.76-7.73 (m, 1H), 7.55-7.50 (m, 2H), 7.49-7.44 (m, 3H), 7.43-7.36 (m, 1H), 7.30-7.23 (m, 1H), 6.94-6.90 (m, 1H), 5.03 (d, J = 6.4 Hz, 1H), 4.96 (br s, 2H), 4.85 (s, 1H), 4.01 (d, J = 6.4 Hz, 1H), 2.83 (s, 3H), 2.12-2.09 (m, 1H), 1.87 (t, J = 4.8 Hz, 1H), 1.40-1.37 (m, 1H). HRMS calculated for C₃₆H₂₈N₉O₃F₄ (M + H)⁺: 710.2251; found 710.2258.

(1S,2R,3S,4R,5S)-4-(6-((3-(4-(2,4-Difluorophenyl)-1H-1,2,3-triazol-1-yl)benzyl)amino)-2-((3,4-difluorophenyl)ethynyl)-9H-purin-9-yl)-2,3-dihydroxy-N-methylbicyclo[3.1.0]hexane-1-carboxamide (19)

Compound **19** (89%) was prepared from compound **65** following the same method as for compound **16**. ¹H NMR (CD₃OD, 400 MHz) 8.68 (d, J = 3.2 Hz, 1H), 8.18-8.11 (m, 2H), 8.04 (s, 1H), 7.78-7.75 (m, 1H), 7.54-7.46 (m, 3H), 7.40-7.37 (m, 1H), 7.31-7.24 (m, 1H), 7.11-7.03 (m, 2H), 5.04 (d, J = 6.4 Hz, 1H), 4.94 (br s, 2H), 4.85 (s, 1H), 2.83 (s, 3H), 2.12-2.09 (m, 1H), 1.87 (t, J = 4.8 Hz, 1H), 1.40-1.36 (m, 1H). HRMS calculated for C₃₆H₂₈N₉O₃F₄ (M + H) ⁺: 710.2251; found 710.2252.

(1S,2R,3S,4R,5S)-4-(2-((3,4-Difluorophenyl)ethynyl)-6-((3-(4-(3,4,5-trifluorophenyl)-1H-1,2,3-triazol-1-yl)benzyl)amino)-9H-purin-9-yl)-2,3-dihydroxy-N-methylbicyclo[3.1.0]hexane-1-carboxamide (20)

Compound **20** (90%) was prepared from compound **65** following the same method as for compound **16**. ¹H NMR (CD₃OD, 400 MHz) 8.86 (s, 1H), 8.12 (s, 1H), 7.99 (s, 1H), 7.75-7.71 (m, 1H), 7.59-7.50 (m, 4H), 7.48-7.43 (m, 1H), 7.33-7.30 (m, 1H), 7.28-7.24 (m, 1H), 5.02 (d, J = 6.4 Hz, 1H), 4.94 (br s, 2H), 4.84 (s, 1H), 4.00 (d, J = 6.4 Hz, 1H), 2.83 (s, 3H), 2.11-2.08 (m, 1H), 1.87 (t, J = 4.8 Hz, 1H), 1.40-1.36 (m, 1H). HRMS calculated for C₃₆H₂₇N₉O₃F₅ (M + H) ⁺: 728.2157; found 728.2150.

(1S,2R,3S,4R,5S)-4-(2-((3,4-Difluorophenyl)ethynyl)-6-((3-(4-(4-(trifluoromethyl)phenyl)-1H-1,2,3-triazol-1-yl)benzyl)amino)-9H-purin-9-yl)-2,3-dihydroxy-N-methylbicyclo[3.1.0]hexane-1-carboxamide (21)

Compound **21** (87%) was prepared from compound **65** following the same method as for compound **16**. ¹H NMR (CD₃OD, 400 MHz) 8.96 (s, 1H), 8.16 (s, 1H), 8.12-7.99 (m, 3H), 7.78-7.73 (m, 1H), 7.71-7.69 (m, 2H), 7.55-7.54 (m, 2H), 7.50-7.45 (m, 1H), 7.37 (br s, 1H), 7.29-7.23 (m, 1H), 5.03 (d, J = 6.4 Hz, 1H), 4.96 (br s, 2H), 4.85 (s, 1H), 4.01 (d, J = 6.4 Hz, 1H), 2.83 (s, 3H), 2.11-2.08 (m, 1H), 1.87 (d, J = 4.8 Hz, 1H), 1.39-1.36 (m, 1H). HRMS calculated for C₃₇H₂₉N₉O₃F₅ (M + H)⁺: 742.2314; found 742.2305.

(1R,2R,3S,4R,5S)-4-(2-((3,4-difluorophenyl)ethynyl)-6-((3-(4-(4-fluorophenyl)-1H-1,2,3-triazol-1-yl)benzyl)amino)-9H-purin-9-yl)-1-(hydroxymethyl)bicyclo[3.1.0]hexane-2,3-diol (22)

Compound **22** (88%) was prepared from compound **65** following the same method as for compound **12**. ¹H NMR (CD₃OD, 400 MHz) 8.82 (s, 1H), 8.54 (s, 1H), 8.04 (s, 1H), 7.88-7.85 (m, 2H), 7.79-7.76 (m, 1H), 7.56-7.47 (m, 3H), 7.41-7.38 (m, 1H), 7.30-7.24 (m, 1H), 7.15 (t, J = 8.8 Hz, 2H), 4.97 (br s, 2H), 4.86 (s, 1H), 4.80 (d, J = 6.4 Hz, 1H), 4.31 (d, J = 7.6 Hz, 1H), 3.89 (d, J = 7.6 Hz, 1H), 1.67-1.64 (m, 1H), 1.56 (t, J = 4.4 Hz, 1H), 0.78-0.75 (m, 1H). HRMS calculated for C₃₅H₂₈N₈O₃F₃ (M + H)⁺: 665.2236; found 665.2235.

(1R,2R,3S,4R,5S)-4-(6-((3-(4-(3,4-Difluorophenyl)-1H-1,2,3-triazol-1-yl)benzyl)amino)-2-((3,4-difluorophenyl)ethynyl)-9H-purin-9-yl)-1-(hydroxymethyl)bicyclo[3.1.0]hexane-2,3-diol (23)

Compound **23** (87%) was prepared from compound **65** following the same method as for compound **12**. ¹H NMR (CD₃OD, 400 MHz) 8.86 (s, 1H), 8.54 (s, 1H), 8.03 (s, 1H), 7.78-7.72 (m, 2H), 7.67-7.64 (m, 1H), 7.56-7.54 (m, 2H), 7.52-7.47 (m, 1H), 7.41-7.38 (m, 1H), 7.35-7.24 (m, 2H), 4.97 (br s, 2H), 4.85 (s, 1H), 4.79 (d, J = 6.8 Hz, 1H), 4.31 (d, J = 11.6 Hz, 1H), 3.89 (d, J = 6.4 Hz, 1H), 1.67-1.64 (m, 1H), 1.56 (d, J = 4.4 Hz, 1H), 0.78-0.75 (m, 1H). HRMS calculated for C₃₅H₂₇N₈O₃F₄ (M + H) ⁺: 683.2142; found 683.2138.

4-(2-((2-Iodo-7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino)ethyl)-2-methoxyphenol (38)

4-Hydroxy-3-methoxy-phenylethyl amine (172.2 mg, 0.1.61 mmol) and DIPEA (0.35 mL, 3.2 mmol) was added to a solution of compound **77** (90 mg, 0.32 mmol) in 2-propanol (2.0 mL) and heated at 70 °C for 3 h. Solvent was evaporated and the residue was purified on flash silica gel column chromatography (hexane: ethyl acetate = 2:1) to give the compound **38** (89 mg, 68%) as a colorless syrup. ¹H NMR (CD₃OD, 400 MHz) 6.93 (d, *J* = 3.6 Hz, 1H), 6.83 (s, 1H), 6.73-6.68 (m, 2H), 6.46 (d, *J* = 3.2 Hz, 1H), 3.81 (s, 3H), 3.70 (t *J* = 7.6 Hz, 2H), 2.87 (t, *J* = 7.6 Hz, 2H). HRMS calculated for C₁₅H₁₆N₄O₂I (M + H)⁺: 411.0318; found 411.0323.

4-(2-((2-((5-Chlorothiophen-2-yl)ethynyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino)ethyl)-2methoxyphenol (39)

PdCl₂(PPh₃)₂ (8.5 mg, 0.017 mmol), 2-chloro-5-ethynylthiophene (52 mg, 0.26 mmol), CuI (1mg, 0.006 mmol) and triethylamine (80 μ L, 0.60 mmol) were added to a solution of compound **38** (25 mg, 0.08 mmol) in anhydrous DMF (1.0 mL) and the mixture stirred at room temperature overnight. Solvent was evaporated under vacuum and the residue was purified on flash silica gel column chromatography (hexane:ethyl acetate = 1:2) to give the alkyne derivative **39** (28 mg, 76%) as a syrup. ¹H NMR (CD₃OD, 400 MHz) 7.29 (d, *J* = 4.0 Hz, 1H), 7.14 (d, *J* = 3.2 Hz, 1H), 7.00 (d, *J* = 4.0 Hz, 1H), 6.85 (s, 1H), 6.74-6.69 (m, 2H), 6.56 (d, *J* = 3.2 Hz, 1H), 3.79-3.76 (m, 5H), 2.91 (t, *J* = 7.2 Hz, 2H). HRMS calculated for C₂₁H₁₈N₄O₂SCI (M + H)⁺: 623.1731; found 623.1736.

Ethyl (1S,2R,3S,4R,5S)-2,3-dihydroxy-4-(2-(phenylethynyl)-4-((3-phenylpropyl)amino)-7H-pyrrolo[2,3-d]pyrimidin-7-yl)bicyclo[3.1.0]hexane-1-carboxylate (61)

A solution of compound **73** (22 mg, 0.03 mmol) in methanol (2.0 mL) and 10% trifluoroacetic acid (2.0 mL) was heated at 70 °C for 2 h. Solvent was evaporated under vacuum and the residue was purified on flash silica gel column chromatography (CH₂Cl₂:MeOH = 25:1) to give the compound **61** (18 mg, 90%) as colorless syrup. ¹H NMR (CD₃OD, 400 MHz) 7.70-7.68 (m, 2H), 7.49-7.46 (m, 3H), 7.28-7.23 (m, 4H), 7.16-7.14 (m, 2H), 6.70 (d, *J* = 2.4 Hz, 1H), 5.16 (d, *J* = 6.4 Hz, 1H), 5.04 (s, 1H), 4.28-4.20 (m, 2H), 3.98 (d, *J* = 6.8 Hz, 1H), 3.64 (t, *J* = 7.2 Hz, 2H), 2.78 (t, *J* = 7.6 Hz, 2H), 2.12-2.02 (m, 3H), 1.95 (t, *J* = 5.2 Hz, 1H), 1.67-1.63 (m, 1H), 1.28 (t, *J* = 7.2 Hz, 3H). HRMS calculated for $C_{32}H_{33}N_4O_4$ (M + H)⁺: 537.2502; found 537.2496.

Ethyl (1S,2R,3S,4R,5S)-4-(2-((5-chlorothiophen-2-yl)ethynyl)-4-((3-phenylpropyl)amino)-7Hpyrrolo[2,3-d]pyrimidin-7-yl)-2,3-dihydroxybicyclo[3.1.0]hexane-1-carboxylate (62)

Compound **62** (91%) was prepared from compound **74** following the same method as for compound **61**. ¹H NMR (CD₃OD, 400 MHz) 7.25 (d, J = 4.0 Hz, 1H), 7.18-7.14 (m, 5H), 7.04-7.02 (m, 2H), 6.65 (d, J = 3.2 Hz, 1H), 5.12 (d, J = 6.8 Hz, 1H), 5.02 (s, 1H), 4.31-4.21 (m, 2H), 3.92 (d, J = 6.4 Hz, 1H), 3.60 (t, J = 7.2 Hz, 2H), 2.75 (t, J = 7.6 Hz, 2H), 2.11-2.06 (m, 1H), 2.00 (t, J = 7.6 Hz, 2H), 1.97 (t, J = 4.8 Hz, 1H), 1.66-1.62 (m, 1H), 1.30 (t, J = 7.2 Hz, 3H). HRMS calculated for C₃₀H₃₀N₄O₄SCl (M + H)⁺: 577.1676; found 577.1683.

Ethyl (1S,2R,3S,4R,5S)-2,3-dihydroxy-4-(4-((3-(3-hydroxy-4-methoxyphenyl)propyl)amino) -2-(phenylethynyl)-7H-pyrrolo[2,3-d]pyrimidin-7-yl)bicyclo[3.1.0]hexane-1-carboxylate (63)

Compound **63** (88%) was prepared from compound **74** following the same method as for compound **61**. ¹H NMR (CD₃OD, 400 MHz) 7.68-7.66 (m, 2H), 7.44-7.43 (m, 3H), 7.01 (d, J = 3.6 Hz, 1H), 6.82 (d, J = 8.0 Hz, 1H), 6.70-6.67 (m, 2H), 6.63 (d, J = 3.6 Hz, 1H), 5.12 (d, J = 6.4 Hz, 1H), 5.05 (s, 1H), 4.29-4.21 (m, 2H), 3.92 (d, J = 6.4 Hz, 1H), 3.80 (s, 3H), 3.61 (d, J = 7.2 Hz, 2H), 2.64 (t, J = 7.6 Hz, 2H), 2.11-2.08 (m, 1H), 2.02-1.94 (m, 3H), 1.66-1.63 (m, 1H), 1.30 (t, J = 7.2 Hz, 3H). HRMS calculated for C₃₃H₃₅N₄O₆ (M + H) ⁺: 583.2557; found 583.2567.

Ethyl (1S,2R,3S,4R,5S)-4-(2-((5-chlorothiophen-2-yl)ethynyl)-4-((3-(3-hydroxy-4-methoxyphenyl)propyl)amino)-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-2,3-dihydroxybicyclo[3.1.0]hexane-1-carboxylate (64)

Compound **64** (89%) was prepared from compound **74** following the same method as for compound **61**. ¹H NMR (CD₃OD, 400 MHz) 7.31 (d, J = 4.0 Hz, 1H), 7.2 (d, J = 4.0 Hz, 2H), 6.80 (d, J = 8.0 Hz, 1H), 6.70-6.66 (m, 2H), 6.62 (d, J = 3.2 Hz, 1H), 5.12 (d, J = 6.4 Hz, 1H), 5.02 (s, 1H), 4.31-4.21 (m, 2H), 3.91 (d, J = 6.4 Hz, 1H), 3.81 (s, 3H), 3.57 (t, J = 7.2 Hz, 2H), 2.63 (t, J = 7.6 Hz, 2H), 2.10-2.07 (m, 1H), 1.98-1.95 (m, 3H), 1.65-1.62 (m, 1H), 1.30 (t, J = 7.2 Hz, 3H). HRMS calculated for C₃₁H₃₂N₄O₆SCl (M + H)⁺: 623.1731; found 623.1736.

N-(3-Azidobenzyl)-9-((3aR,3bR,4aS,5R,5aS)-3b-(((tert-butyldiphenylsilyl)oxy)methyl)-2,2dimethylhexahydrocyclopropa[3,4]cyclopenta[1,2-d][1,3]dioxol-5-yl)-2-iodo-9H-purin-6amine (67)

3-Azido-benzylamine (440 mg, 5.70 mmol) and DIPEA (2.5 mL, 14.2 mmol) was added to a solution of compound **66** (1 g, 0.08 mmol) in 2-propanol (12 mL) and the mixture stirred at room temperature overnight. Solvent was evaporated and the residue was purified on flash silica gel column chromatography (hexane: ethyl acetate = 1:1) to give the compound **67** (1.02 mg, 87%) as a colorless foamy solid. ¹H NMR (CD₃OD, 400 MHz) 8.13 (s, 1H), 7.63-7.59 (m, 4H), 7.40-7.22 (m, 8H), 7.18 (s, 1H), 6.98 (d, *J* = 7.6 Hz, 1H), 5.28 (d, *J* = 6.8 Hz, 1H), 4.72-4.70 (m, 3H), 4.21 (d, *J* = 10.4 Hz, 1H), 3.91 (d, *J* = 10.4 Hz, 1H), 1.52-1.49 (m, 4H), 1.30 (t, *J* = 6.4 Hz, 1H), 1.25 (s, 3H), 1.05 (s, 9H), 1.02-0.99 (m, 1H). HRMS calculated for C₃₈H₄₂N₈O₃ISi (M + H) ⁺: 813.2194; found 813.2206.

((3aR,3bR,4aS,5R,5aS)-5-(6-((3-azidobenzyl)amino)-2-iodo-9H-purin-9-yl)-2,2dimethyltetrahydrocyclopropa[3,4]cyclopenta[1,2-d][1,3]dioxol-3b(3aH)-yl)methanol (68)

TBAF (1.84 mL, 1M solution in THF) was added to a solution of compound **67** (1 gm, 1.23 mmol) in anhydrous THF (8 mL) and the mixture stirred for 1 h at room temperature. Solvent was evaporated and the residue was purified on flash silica gel column chromatography (hexane:ethyl acetate = 1:2) to give the alcohol derivative **68** (0.643 mg, 91%) as a syrup. ¹H NMR (CD₃OD, 400 MHz) 8.13 (s, 1H), 7.35 (t, *J* = 8.0 Hz, 1H), 7.22 (d, *J* = 7.6 Hz, 1H), 7.14 (s, 1H), 6.97-6.95 (m, 1H), 5.35 (d, *J* = 7.2 Hz, 1H), 4.93 (s, 1H), 4.71 (m, 3H), 3.94 (d, *J* = 11.6 Hz, 1H), 3.76 (d, *J* = 11.6 Hz, 1H), 1.65-1.62 (m, 1H), 1.52 (s, 3H), 1.26 (s, 3H), 1.12 (t, *J* = 5.2 Hz, 1H), 0.99-0.96 (m, 1H). HRMS calculated for $C_{22}H_{24}N_8O_3I$ (M + H)⁺: 575.1016; found 575.1019.

((3aR,3bR,4aS,5R,5aS)-5-(6-((3-Azidobenzyl)amino)-2-((3,4-difluorophenyl)ethynyl)-9H-purin-9-yl)-2,2-dimethyltetrahydrocyclopropa[3,4]cyclopenta[1,2-d][1,3]dioxol-3b(3aH)yl)methanol (69)

PdCl₂(PPh₃)₂ (12.4 mg, 0.017 mmol), 3,4-difluoro-phenylethynyl (32 μ L, 0.26 mmol) and triethylamine (120 μ L, 0.88 mmol) were added to a solution of compound **68** (51 mg, 0.08 mmol) in anhydrous DMF (1.2 mL) and the mixture stirred at room temperature overnight. Solvent was evaporated under vacuum and the residue was purified on flash silica gel column chromatography (hexane:ethyl acetate = 1:2) to give the alkyne derivative **69** (35 mg, 68%) as a brown syrup. ¹H NMR (CD₃OD, 400 MHz) 8.30 (s, 1H), 7.64-7.59 (m, 1H), 7.53-7.49 (m, 1H), 7.37-7.33 (m, 2H), 7.24-7.16 (m, 2H), 6.98 (m, 1H), 5.46 (d, *J* = 7.2 Hz, 1H), 5.02 (s, 1H), 4.84 (br s, 2H), 4.71 (d, *J* = 7.2 Hz, 1H), 4.09 (d, *J* = 7.6 Hz, 1H), 3.56 (d, *J* = 7.6 Hz, 1H), 1.78-1.75 (m, 1H), 1.53 (s, 3H), 1.26 (s, 3H), 1.17 (t, *J* = 5.2 Hz, 1H), 1.00-0.97 (m, 1H). HRMS calculated for C₃₀H₂₇N₈O₃F₂ (M + H)⁺: 585.2174; found 585.2170.

Ethyl (3aR,3bS,4aS,5R,5aS)-5-(2-iodo-4-((3-phenylpropyl)amino)-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-2,2-dimethyltetrahydrocyclopropa[3,4]cyclopenta[1,2-d][1,3]dioxole-3b(3aH)carboxylate (71)

3-phenyl-propyl amine (0.16 mL, 1.12 mmol) and DIPEA (0.4 mL, 2.24 mmol) was added to a solution of compound **70** (113 mg, 0.22 mmol) in 2-propanol (1.5 mL) and heated 70 °C under microwave condition for 1.5 h. Solvent was evaporated and the residue was purified on flash silica gel column chromatography (hexane: ethyl acetate = 1:1) to give the compound **71** (97 mg, 72%) as a colorless syrup. ¹H NMR (CD₃OD, 400 MHz) 7.28-7.13 (m, 5H), 6.89 (d, *J* = 3.6 Hz, 1H), 6.50 (d, *J* = 2.8 Hz, 1H), 5.80 (d, *J* = 7.2 Hz, 1H), 4.86 (s, 1H), 4.74 (d, *J* = 6.8 Hz, 1H), 4.30-4.22 (m, 2H), 3.52 (t, *J* = 6.8 Hz, 2H), 2.70 (t, *J* = 6.4 Hz, 2H), 2.18-2.15 (m, 1H), 2.02-1.93 (m, 2H), 1.63-1.60 (m, 1H), 1.52-1.47 (m, 4H), 1.32 (t, *J* = 7.2 Hz, 3H), 1.27 (s, 3H). HRMS calculated for $C_{27}H_{32}N_4O_4I$ (M + H)⁺: 603.1468; found 603.1458.

Ethyl (3aR,3bS,4aS,5R,5aS)-5-(4-((3-(3-hydroxy-4-methoxyphenyl)propyl)amino)-2-iodo-7Hpyrrolo[2,3-d]pyrimidin-7-yl)-2,2-dimethyltetrahydrocyclopropa[3,4]cyclopenta[1,2d][1,3]dioxole-3b(3aH)-carboxylate (72)

Compound **72** (69%) was prepared from compound **65** following the same method as for compound **70**. ¹H NMR (CD₃OD, 400 MHz) 6.88 (d, J = 3.6 Hz, 1H), 6.82-6.80 (m, 2H), 6.68-6.64 (m, 2H), 5.80 (d, J = 7.2 Hz, 1H), 4.86 (s, 1H), 4.74 (d, J = 7.2 Hz, 1H), 4.29-4.22 (m, 2H), 3.81 (s. 3H), 3.49 (t, J = 7.2 Hz, 2H), 2.58 (t, J = 7.2 Hz, 2H), 2.18-2.15 (m, 1H), 1.63-1.59 (m, 1H), 1.51-1.47 (m, 4H), 1.32 (t, J = 7.2 Hz, 3H), 1.26 (s, 3H). HRMS calculated for C₂₈H₃₄N₄O₄I (M + H)⁺: 649.1523; found 649.1513.

Ethyl (3aR,3bS,4aS,5R,5aS)-2,2-dimethyl-5-(2-(phenylethynyl)-4-((3-phenylpropyl)amino)-7Hpyrrolo[2,3-d]pyrimidin-7-yl)tetrahydrocyclopropa[3,4]cyclopenta[1,2-d][1,3]dioxole-3b(3aH)-carboxylate (73)

PdCl₂(PPh₃)₂ (10.5 mg, 0.014 mmol), CuI (1.4 mg, 0.007 mmol), phenylethynyl (0.05 mL, 0.44 mmol) and triethylamine (0.1 mL, 0.63 mmol) were added to a solution of compound **71** (45 mg, 0.074 mmol) in anhydrous DMF (1.2 mL) and the mixture stirred at room temperature overnight. Solvent was evaporated under vacuum and the residue was purified on flash silica gel column chromatography (hexane:ethyl acetate = 1:2) to give the phenyl alkyne derivative **73** (30 mg, 72%) as a colorless syrup. ¹H NMR (CD₃OD, 400 MHz) 7.72-7.70 (m, 2H), 7.44-7.43 (m, 3H), 7.23-7.24 (m, 4H), 7.17-7.13 (m, 1H), 7.07 (d, *J* = 3.6 Hz, 1H), 6.63 (d, *J* = 3.2 Hz, 1H), 5.85 (d, *J* = 7.2 Hz, 1H), 5.07 (s, 1H), 4.73 (d, *J* = 6.8 Hz, 1H), 4.26-4.12 (m, 1H), 3.61 (t, *J* = 7.2 Hz, 2H), 2.75 (t, *J* = 7.6 Hz, 2H), 2.25-2.21 (m, 1H), 2.05-1.98 (m, 2H), 1.76-1.67 (m, 1H), 1.57-1.53 (m, 4H), 1.23 (s, 3H), 1.21 (t, *J* = 7.2 Hz, 3H). HRMS calculated for C₃₅H₃₇N₄O₄ (M + H)⁺: 577.2815; found 577.2805.

Ethyl (3aR,3bS,4aS,5R,5aS)-5-(2-((5-chlorothiophen-2-yl)ethynyl)-4-((3-phenylpropyl) amino)-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-2,2-dimethyltetrahydrocyclopropa[3,4] cyclopenta[1,2d][1,3]dioxole-3b(3aH)-carboxylate ((74)

Compound **74** (69%) was prepared from compound **71** following the same method as for compound **73**. ¹H NMR (CD₃OD, 400 MHz) 7.35 (d, J = 4.4 Hz, 1H), 7.26-7.24 (m, 4H), 7.16-7.13 (m, 1H), 7.08 (d, J = 3.6 Hz, 1H), 7.01 (d, J = 4.4 Hz, 1H), 6.62 (d, J = 3.2 Hz, 1H), 5.83 (d, J = 6.8 Hz, 1H), 5.04 (s, 1H), 4.72 (d, J = 7.2 Hz, 1H), 4.25-4.15 (m, 2H), 3.59 (d, J = 7.2 Hz, 2H), 2.74 (t, J = 7.2 Hz, 2H), 2.24-2.21 (m, 1H), 2.04-1.97 (m, 2H), 1.71-1.67 (m, 1H), 1.56-1.53 (m, 4H), 1.29 (s, 3H), 1.24 (t, J = 7.2 Hz, 3H). HRMS calculated for C₃₃H₃₄N₄O₄SCl (M + H) ⁺: 617.1989; found 617.1986.

Ethyl (3aR,3bS,4aS,5R,5aS)-5-(4-((3-(3-hydroxy-4-methoxyphenyl)propyl)amino)-2-(phenylethynyl)-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-2,2-dimethyltetrahydrocyclopropa [3,4]cyclopenta[1,2-d][1,3]dioxole-3b(3aH)-carboxylate (75)

Compound **75** (67%) was prepared from compound **72** following the same method as for compound **73**. ¹H NMR (CD₃OD, 400 MHz) 7.72-7.70 (m, 2H), 7.44-7.42 (m, 2H), 7.07 (d, J = 3.6 Hz, 1H), 6.81 (d, J = 8.0 Hz, 1H), 6.70-6.66 (m, 2H), 6.62 (d, J = 3.2 Hz, 1H), 5.84 (d, J = 6.8 Hz, 1H),

5.07 (s, 1H), 4.73 (d, J = 6.8 Hz, 1H), 4.23-4.08 (m, 2H), 3.80 (s, 3H), 3.58 (t, J = 7.2 Hz, 2H), 2.63 (t, J = 7.6 Hz, 2H), 2.25-2.21 (m, 1H), 2.00-1.93 (m, 2H), 1.70-1.67 (m, 1H), 1.57-1.53 (m, 4H), 1.28 (s, 3H), 1.21 (t, J = 7.2 Hz, 3H). HRMS calculated for C₃₆H₃₉N₄O₆ (M + H)⁺: 623.2870; found 623.2875.

Ethyl (3aR,3bS,4aS,5R,5aS)-5-(2-((5-chlorothiophen-2-yl)ethynyl)-4-((3-(3-hydroxy-4-methoxyphenyl)propyl)amino)-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-2,2-dimethyltetrahydro cyclopropa[3,4]cyclopenta[1,2-d][1,3]dioxole-3b(3aH)-carboxylate (76)

Compound **76** (68%) was prepared from compound **72** following the same method as for compound **73**. ¹H NMR (CD₃OD, 400 MHz) 7.35-7.27 (m, 2H), 7.08 (d, J = 4.0 Hz, 1H), 6.83 (d, J = 4.0 Hz, 1H), 6.70-6.66 (m, 2H), 5.83 (d, J = 7.2 Hz, 1H), 4.98 (s, 1H), 4.73 (d, J = 6.8 Hz, 1H), 4.24-4.17 (m, 2H), 3.81 (s, 3H), 3.69 (t, J = 6.0 Hz, 2H), 2.61 (t, J = 7.6 Hz, 2H), 2.28-2.22 (m, 1H), 1.96 (t, J = 7.6 H z, 2H), 1.73-1.67 (m, 1H), 1.53 (s, 3H), 1.30-1.25 (m, 4H). HRMS calculated for C₃₄H₃₆N₄O₆SCl (M + H)⁺: 663.2044; found 663.2035.

Figure S1. The modulation of A_3 adenosine ligands on the ABCG2 ATPase activity. The curves of the representative ligands, compounds **16** (A), **31** (B), and **4** (C), are shown. Each experiment was performed at least three times in duplicate.

NMR and HPLC results for representative newly prepared compounds

Single Mass Analysis Tolerance = 5.0 mDa / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 100 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass) Elements Used: C: 0-100 H: 0-250 N: 8-8 O: 0-60 F: 2-2 DKT-23OCT19-21-18 277 (4.702) AM2 (Ar,25000.0,0.00,0.00); ABS TOF MS ES+

¹⁰⁰ 31533	535.5 536.2 534.0 536.0	537.5538 538.0	539.2	540.4	542.8 544 0 544.0	545.2 9 546	0 548	49.2549.5	551.5552.5	2.50e+ 554.2555.2 556.4 557.2 554.0 556.0	006 m/z
Minimum: Maximum:		5.0	5.0	$^{-1.5}_{100.0}$							
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula			
545.1865	545.1861	0.4	0.7	19.5	402.9	n/a	n/a	C27 H23 N8	8 O3 F2		

Compound 12

Page 1

Single Mass Analysis Tolerance = 10.0 mDa / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 144 formula(e) evaluated with 4 results within limits (up to 50 closest results for each mass) Elements Used: C: 0-100 H: 0-250 N: 9-9 O: 0-60 F: 4-4 DKT-115EP19-21-12 106 (1.844) AM2 (Ar,25000.0,0.00,0.00); ABS TOF MS ES+

1003 600 0 /	00.0 001.0 000.0			710.2			-						10000
8 1 ,009.8.0	0.0 695.0	702.	5 <u>706.8</u> 705.0	710.0	715.0	721.5.722.5	723.5 73 725.0 7	0.2 732.2 730.0 73	736.5	737.5	743.8	748.2752.7.75	3.8 77 m/z
Minimum: Maximum:		10.0	5.0	-1.5 100.0									
Mass	Calc. Mass	πDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula					
710.2252	710.2251 710.2216 710.2310 710.2157	0.1 3.6 -5.8 9.5	0.1 5.1 -8.2 13.4	25.5 3.5 16.5 12.5	350.8 361.8 357.6 361.6	0.001 10.973 6.715 10.770	99.87 0.00 0.12 0.00	C36 H28 C18 H36 C29 H32 C25 H32	N9 0 N9 0 N9 0 N9 0	3 F4 16 F4 8 F4 11 F4			

Page 1

5.420-005

S31

Single Mass Analysis Tolerance = 5.0 mDa / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 145 formula(e) evaluated with 2 results within limits (up to 50 closest results for each mass) Elements Used: C: 0-100 H: 0-250 N: 9-9 O: 0-60 F: 5-5 DKT-13SEP19-21-14 108 (1.810) AM2 (Ar,25000.0,0.00,0.00); ABS TOF MS ES+

¹ %1 <u>722.5</u>	723.5 725.8	728.6 730.2 730.0	732.5_7	33.2 736 735.0	1.5 737.5 74 74	10.7 10.7 10.7 10.0	743.2 744.2	748.2 749.2 750.3 753.5 754.7 757.8758.2 750.0 755.0	7.71e+005 759.2 760.0 m/z
Minimum: Maximum:		5.0	5.0	-1.5 100.0					
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula	
742.2305	742.2314 742.2278	-0.9	-1.2	25.5 3.5	357.1 359.9	0.062	94.01 5.99	C37 H29 N9 O3 F5 C19 H37 N9 O16 F5	

Single Mass Analysis Tolerance = 5.0 mDa / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 56 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass) Elements Used: C: 0-100 H: 0-250 N: 4-4 O: 0-60 32S: 1-1 35CI: 1-1 DKT-07JUL20-22-16 219 (3.721) AM2 (Ar;25000.0,0.00,0.00); ABS TOF MS ES+

100-		400.0		425	1							8.54e+005
418.0	419.3 420.7	422.2 42	2.7	424.0	426.1	427.1 428	1 429.1	430.1 430.9	432.3	433.0	434.2434.9	436.3436.6 m/z
Minimum: Maximum:		5.0	5.0	-1.5 100.0	420.0	420.0	,	400.0	432.0		434.0	436.0
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula				
425.0844	425.0839	0.5	1.2	14.5	493.2	n/a	n/a	C21 H18	N4 02	325 35	501	

Page 1

Single Mass Analysis Tolerance = 8.0 mDa / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 126 formula(e) evaluated with 2 results within limits (up to 50 closest results for each mass) Elements Used: C: 0-100 H: 0-250 N: 4-4 O: 0-60 DKT-16JAN20-21-61 144 (2:453) AM2 (Ar;25000.0,0.00); ABS; Cm (144:145) TOF MS ES+

¹⁰² 31, 524	<u>.3 526.3 528.</u> 525.0 527.5	5 530.3 530.0	532.3 532.5	534.3 53 535.0	537.2	538.3 539.3 540.0	542.0,54	2.5 546.3	547.9.548.3 547.5	549.5	552.3552.7	4.89e+005 554.5 7 m/z 555.0
Minimum: Maximum:		8.0	5.0	-1.5 100.0								
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula				
537.2496	537.2502 537.2561	-0.6	-1.1 -12.1	18.5 9.5	381.4 379.6	1.979 0.149	13.82 86.18	C32 H33 N C25 H37 N	4 04			

Compound 61

Single Mass Analysis Tolerance = 5.0 mDa / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 135 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass) Elements Used: C: 0-100 H: 0-250 N: 4-4 O: 0-60 32S: 1-1 35CI: 1-1

DKT-06JAN20-21-53 26 (0.457) AM2 (Ar,25000.0,0.00,0.00); ABS TOF MS ES+

1083 618.7.61	8.8 619.3 619.0 620	620.4 62 0 63	0.9621.4 6	21.9 622.4	623.2 623.0	23.4 624.2 624.0	625.2	625.7626.2	626.6 627	2 628.2 628.4	7.79e+004 6628.8
Minimum: Maximum:		5.0	5.0	-1.5 100.0				620.0	der to	628.0	629.0
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula			
623.1736	623.1731	0.5	0.8	17.5	348.2	n/a	n/a	C31 H32 N	06 325	3501	

Page 1