Delay Discounting in Suicidal Behavior: Myopic Preference or Inconsistent Valuation?

Supplemental Information

- Table S1. Sample 1 Sensitivity Analyses: Age, race, education, income, sex
- Table S2. Sample 2 Sensitivity Analyses: Age, race, education, income, sex
- Table S3. Sample 3 Sensitivity Analyses: Age, race, education, income, sex
- Table S4. Sample 1 Sensitivity Analyses: Global Cognitive Functioning
- Table S5. Sample 2 Sensitivity Analyses: Global Cognitive Functioning
- Table S6. Sample 3 Sensitivity Analyses: Global Cognitive Functioning
- Table S7. Sample 1. Excluding five participants for whom possible brain injury from suicide attempts could not be ruled out
- Table S8. Sample 1. Controlling for comorbid substance use and anxiety
- Table S9. Sample 2. Controlling for comorbid substance use and anxiety
- Table S10. Sample 3. Controlling for comorbid substance use and anxiety
- Table S11. Sample 1. Excluding non-monotonic responders and those who chose only immediate or only delayed rewards on the MCQ
- Table S12. Sample 2. Excluding responders who chose only immediate or only delayed rewards on the MCQ
- Table S13. Sample 3. Excluding responders who chose only immediate or only delayed rewards on the MCQ
- Table S14. Sample 1. Effects of suicide attempt planning on value sensitivity
- Table S15. Sample 2. Effects of suicide attempt planning on value sensitivity
- Table S16. Sample 3. Effects of suicide attempt planning on value sensitivity
- Table S17. Subject-level log-transformed discount rates and consistencies
- Figure S1. Sample 1. Task behavior
- Figure S2. Sample 2. Task behavior
- Figure S3. Sample 3. Task behavior

Table S1. Sample 1 Sensitivity Analyses: Age, race, education, income, sex

Parameter	Median	89% CI	pd	\approx 2-sided
				p
β HL SA+MDD	2.150***	[1.674, 2.690]	1.000	0
β Controls (vs. HL SA+MDD)	1.933***	[1.322, 2.497]	1.000	0
β MDD (vs. HL SA+MDD)	2.239***	[1.666, 2.791]	1.000	0
β SI+MDD (vs. HL SA+MDD)	1.055***	[0.627, 1.480]	1.000	0
β LL SA+MDD (vs. HL SA+MDD)	1.197***	[0.718, 1.728]	1.000	0
β Age	-0.488***	[-0.661, -0.307]	1.000	0
β Race	0.796**	[0.360, 1.218]	0.998	0.004
β Education	0.083	[-0.089, 0.266]	0.777	0.446
β Income	0.354**	[0.171, 0.543]	0.999	0.002
β Sex	0.229	[-0.087, 0.581]	0.867	0.266
$k^{subject}$ Controls	0.123	[-0.159, 0.385]	0.765	0.47
k ^{subject} MDD	0.375*	[0.140, 0.619]	0.993	0.014
k ^{subject} SI+MDD	0.157	[-0.152, 0.445]	0.799	0.402
k ^{subject} LL SA+MDD	0.279	[-0.059, 0.603]	0.908	0.184

Table S2. Sample 2 Sensitivity Analyses: Age, race, education, income, sex

Parameter	Median	89% CI	pd	pprox 2-
				sided
				p
β HL SA+MDD	3.619***	[2.579, 4.698]	1.000	0
β Controls (vs. HL SA+MDD)	2.161***	[1.187, 3.147]	1.000	0
β MDD (vs. HL SA+MDD)	3.095***	[2.133, 4.132]	1.000	0
β LL SA+MDD (vs. HL SA+MDD)	0.883	[0.008, 1.782]	0.945	0.11
β Age	-0.950***	[-1.321, -0.587]	1.000	0
β Race	0.059	[-0.877, 0.923]	0.541	0.918
β Education	-0.309	[-0.641, 0.028]	0.930	0.14
β Income	0.111	[-0.282, 0.500]	0.670	0.66
β Sex	-0.129	[-0.791, 0.526]	0.625	0.75
<i>k</i> ^{subject} Controls	0.084	[-0.178, 0.361]	0.693	0.614
k ^{subject} MDD	0.274	[0.055, 0.489]	0.975	0.05
k ^{subject} LL SA+MDD	-0.039	[-0.376, 0.311]	0.573	0.854

Table S3. Sample 3 Sensitivity Analyses: Age, race, education, income, sex

Parameter	Median	89% CI	pd	≈ 2-
				sided
				p
β HL SA+MDD	3.789***	[3.116, 4.491]	1.000	0
β Controls (vs. HL SA+MDD)	0.967*	[0.293, 1.580]	0.993	0.014
β MDD (vs. HL SA+MDD)	1.162**	[0.532, 1.787]	0.999	0.002
β LL SA+MDD (vs. HL SA+MDD)	1.703***	[0.948, 2.477]	1.000	0
β Age	0.294*	[0.072, 0.540]	0.982	0.036
β Race	0.304	[-0.158, 0.791]	0.851	0.298
β Education	0.545***	[0.289, 0.799]	1.000	0
β Income	0.124	[-0.117, 0.350]	0.795	0.41
β Sex	0.151	[-0.332, 0.596]	0.705	0.59
β Site Code	-0.656	[-1.223, -0.131]	0.973	0.054
k ^{subject} Controls	-0.095	[-0.389, 0.191]	0.707	0.586
k ^{subject} MDD	-0.139	[-0.413, 0.140]	0.794	0.412
k ^{subject} LL SA+MDD	0.017	[-0.245, 0.286]	0.545	0.91

Table S4. Sample 1 Sensitivity Analyses: Global Cognitive Functioning

Parameter	Median	89% CI	pd	≈ 2-
				sided
				p
β HL SA+MDD	2.876***	[2.658, 3.103]	1.000	0
β Controls (vs. HL SA+MDD)	1.599***	[1.188, 2.010]	1.000	0
β MDD (vs. HL SA+MDD)	1.613***	[1.197, 2.063]	1.000	0
β SI+MDD (vs. HL SA+MDD)	1.169***	[0.813, 1.514]	1.000	0
β LL SA+MDD (vs. HL SA+MDD)	1.380***	[0.966, 1.804]	1.000	0
β MMSE Score	0.610***	[0.499, 0.714]	1.000	0
k ^{subject} Controls	0.10	[-0.171, 0.208]	0.530	0.94
$k^{subject}$ MDD	0.204	[0.022, 0.410]	0.951	0.098
k ^{subject} SI+MDD	0.186	[-0.022, 0.390]	0.929	0.142
k ^{subject} LL SA+MDD	0.333**	[0.131, 0.538]	0.996	0.008

Table S5. Sample 2 Sensitivity Analyses: Global Cognitive Functioning

Parameter	Median	89% CI	pd	≈ 2-
				sided
				p
β HL SA+MDD	4.195***	[3.573, 4.757]	1.000	0
β Controls (vs. HL SA+MDD)	0.626	[-0.182, 1.383]	0.901	0.198
β MDD (vs. HL SA+MDD)	2.396***	[1.401, 3.323]	1.000	0
β LL SA+MDD (vs. HL SA+MDD)	1.181*	[0.380, 2.011]	0.989	0.022
β MMSE Score	0.852***	[0.615, 1.077]	1.000	0
k ^{subject} Controls	-0.183	[-0.468, 0.113]	0.845	0.31
k ^{subject} MDD	0.231	[0.007, 0.434]	0.955	0.09
$k^{subject}$ LL SA+MDD	0.074	[-0.213, 0.367]	0.664	0.672

Table S6. Sample 3 Sensitivity Analyses: Global Cognitive Functioning

Parameter	Median	89% CI	pd	≈ 2-
				sided
				p
β HL SA+MDD	3.859***	[3.282, 4.459]	1.000	0
β Controls (vs. HL SA+MDD)	1.297**	[0.710, 1.926]	0.999	0.002
β MDD (vs. HL SA+MDD)	1.467***	[0.842, 2.051]	1.000	0
β LL SA+MDD (vs. HL SA+MDD)	1.572***	[0.880, 2.284]	1.000	0
β MMSE Score	0.227	[0.021, 0.428]	0.956	0.088
β Site Code	-0.825**	[-1.312, -0.361]	0.998	0.004
k ^{subject} Controls	-0.122	[-0.388, 0.138]	0.770	0.46
$k^{subject}$ MDD	-0.138	[-0.374, 0.123]	0.816	0.368
$k^{subject}$ LL SA+MDD	0.009	[-0.255, 0.281]	0.522	0.956

Table S7. Sample 1. Excluding five participants for whom possible brain injury from suicide attempts could not be ruled out

Parameter	Median	89% CI	pd	\approx 2-sided <i>p</i>
β HL SA+MDD	2.562***	[2.342, 2.757]	1	0
β Controls (vs. HL SA+MDD)	1.940***	[1.502, 2.340]	1	0
β MDD (vs. HL SA+MDD)	2.006***	[1.606, 2.428]	1	0
βSI+MDD (vs. HL SA+MDD)	1.365***	[1.014, 1.723]	1	0
β LL SA+MDD (vs. HL SA+MDD)	1.247***	[0.853, 1.644]	1	0
<i>k</i> ^{subject} Controls	0.063	[-0.122, 0.269]	0.700	0.6
$k^{subject}$ MDD	0.243	[0.035, 0.430]	0.972	0.056
k ^{subject} SI+MDD	0.221	[0.007, 0.437]	0.948	0.104
k ^{subject} LL SA+MDD	0.373*	[0.121, 0.593]	0.993	0.014

Table S8. Sample 1. Controlling for comorbid substance use and anxiety

Parameter	Median	89% CI	pd	pprox 2-
				sided
				p
β HL SA+MDD	3.520***	[3.130, 3.922]	1.000	0
β MDD (vs. HL SA+MDD)	1.837***	[1.403, 2.229]	1.000	0
β SI+MDD (vs. HL SA+MDD)	1.261***	[0.887, 1.603]	1.000	0
β LL SA+MDD (vs. HL SA+MDD)	1.280***	[0.895, 1.704]	1.000	0
β Anxiety Disorder (Lifetime)	-1.369***	[-1.749, -0.979]	1.000	0
β Substance Use (Lifetime)	0.411*	[0.138, 0.712]	0.989	0.022
k ^{subject} MDD	0.142	[-0.022, 0.305]	0.914	0.172
k ^{subject} SI+MDD	0.106	[-0.069, 0.277]	0.833	0.334
k ^{subject} LL SA+MDD	0.234	[0.035, 0.427]	0.970	0.06

Table S9. Sample 2. Controlling for comorbid substance use and anxiety

Parameter	Median	89% CI	pd	\approx 2-sided
				p
βHL SA+MDD	4.294***	[3.375, 5.148]	1.000	0
β MDD (vs. HL SA+MDD)	2.116***	[1.032, 3.100]	1.000	0
β LL SA+MDD (vs. HL SA+MDD)	0.104	[-0.828, 1.054]	0.572	0.856
β Anxiety Disorder (Lifetime)	1.230*	[0.440, 2.006]	0.994	0.012
β Substance Use (Lifetime)	-1.060*	[-1.824, -0.279]	0.986	0.028
k ^{subject} MDD	0.215	[-0.001, 0.457]	0.930	0.14
$k^{subject}$ LL SA+MDD	-0.018	[-0.387, 0.350]	0.532	0.936

Table S10. Sample 3. Controlling for comorbid substance use and anxiety

Parameter	Median	89% CI	pd	\approx 2-sided <i>p</i>
β HL SA+MDD	4.598***	[3.619, 5.585]	1.000	0
β MDD (vs. HL SA+MDD)	1.377***	[0.762, 2.015]	1.000	0
β LL SA+MDD (vs. HL SA+MDD)	1.477***	[0.732, 2.194]	1.000	0
β Anxiety Disorder (Lifetime)	-1.304*	[-2.161, -0.477]	0.995	0.01
β Substance Use (Lifetime)	1.216**	[0.462, 1.969]	0.997	0.006
β Site Code	-0.504	[-1.130, 0.077]	0.912	0.176
k ^{subject} MDD	-0.168	[-0.441, 0.076]	0.862	0.276
k ^{subject} LL SA+MDD	-0.030	[-0.279, 0.256]	0.574	0.852

 $Table \ S11. \ Sample \ 1. \ Excluding \ non-monotonic \ responders \ and \ those \ who \ chose \ only \ immediate \ or \ only \ delayed \ rewards \ on \ the \ MCQ$

Parameter	Median	89% CI	pd	≈ 2-sided p
β HL SA+MDD	3.605***	[3.323, 3.907]	1.000	0
β Controls (vs. HL SA+MDD)	1.065***	[0.586, 1.529]	1.000	0
β MDD (vs. HL SA+MDD)	0.681*	[0.238, 1.105]	0.993	0.014
β SI+MDD (vs. HL SA+MDD)	0.796**	[0.390, 1.266]	0.999	0.002
β LL SA+MDD (vs. HL SA+MDD)	0.195	[-0.228, 0.660]	0.762	0.476
k ^{subject} Controls	-0.069	[-0.222, 0.080]	0.764	0.472
k ^{subject} MDD	-0.006	[-0.175, 0.147]	0.524	0.952
k ^{subject} SI+MDD	0.045	[-0.103, 0.208]	0.684	0.632
k ^{subject} LL SA+MDD	0.066	[-0.128, 0.257]	0.707	0.586

Table S12. Sample 2. Excluding responders who chose only immediate or only delayed rewards on the MCQ

Parameter	Median	89% CI	pd	\approx 2-sided <i>p</i>
βHL SA+MDD	3.823***	[3.272, 4.394]	1.000	0
β Controls (vs. HL SA+MDD)	1.432**	[0.678, 2.226]	0.997	0.006
β MDD (vs. HL SA+MDD)	2.411***	[1.513, 3.324]	1.000	0
β LL SA+MDD (vs. HL SA+MDD)	0.459	[-0.350, 1.197]	0.823	0.354
k ^{subject} Controls	0.058	[-0.154, 0.261]	0.666	0.668
k ^{subject} MDD	0.212	[0.035, 0.391]	0.964	0.072
k ^{subject} LL SA+MDD	0.097	[-0.187, 0.358]	0.711	0.578

Table S13. Sample 3. Excluding responders who chose only immediate or only delayed rewards on the MCQ.

Parameter	Median	89% CI	pd	\approx 2-sided
				p
β HL SA+MDD	3.723***	[3.117, 4.302]	1.000	0
β Controls (vs. HL SA+MDD)	1.210**	[0.589, 1.783]	0.999	0.002
β MDD (vs. HL SA+MDD)	1.582***	[0.943, 2.180]	1.000	0
β LL SA+MDD (vs. HL SA+MDD)	1.561***	[0.870, 2.293]	1.000	0
β Site Code	-0.714*	[-1.172, -0.247]	0.993	0.014
<i>k</i> ^{subject} Controls	-0.179	[-0.391, 0.062]	0.891	0.218
$k^{subject}$ MDD	-0.101	[-0.320, 0.103]	0.777	0.446
$k^{subject}$ LL SA+MDD	-0.018	[-0.242, 0.213]	0.549	0.902

Table S14. Sample 1. Effects of suicide attempt planning on value sensitivity

Parameter	Median	89% CI	pd	\approx 2-sided <i>p</i>
kitem kindifference	3.048***	[2.842, 3.243]	1	0
Attempt Planning	0.674**	[0.292, 1.065]	.997	0.006
$k_{indifference}^{item} * Attempt Planning$	-0.327**	[-0.515, -0.134]	.998	0.004

Parameter	Median	89% CI	pd	≈ 2-sided p
kitem kindifference	3.167***	[2.958, 3.380]	1	0
Attempt Planning	0.456	[0.057, 0.864]	.963	0.074
Highest Lethality	0.672*	[0.257, 1.107]	.994	0.012
$k_{indifference}^{item}*Attempt\ Planning$	-0.156	[-0.340, 0.033]	.914	0.172
$k_{indifference}^{item}*Highest Lethality$	-0.628***	[-0.821, -0.434]	1	0

Note: *p < .05; **p < 0.01; ***p < 0.001 (two-sided p-value of respectively .05, .01 and .001 corresponds approximately to a pd of 97.5%, 99.5% and 99.95%). Dependent variable: Choice (now versus later).

Table S15. Sample 2. Effects of suicide attempt planning on value sensitivity

Parameter	Median	89% CI	pd	\approx 2-sided <i>p</i>
kitem kindifference	4.007***	[3.596, 4.439]	1	0
Attempt Planning	-0.405	[-0.994, 0.171]	0.869	0.262
$k_{indifference}^{item}*Attempt$ Planning	-0.005	[-0.370, 0.364]	0.508	0.984

Note: *p<.05; **p<0.01; ***p<0.001 (two-sided p-value of respectively .05, .01 and .001 corresponds approximately to a pd of 97.5%, 99.5% and 99.95%). Dependent variable: Choice (now versus later).

Table S16. Sample 3. Effects of suicide attempt planning on value sensitivity

Parameter	Median	89% CI	pd	\approx 2-sided <i>p</i>
kitem kindifference	5.338***	[4.481, 6.222]	1	0
Attempt Planning	0.067	[-0.635, 0.772]	0.559	0.882
Site Code	0.101	[-0.622, 0.765]	0.590	0.82
$k_{indifference}^{item} * Attempt Planning$	-0.361	[-0.690, -0.041]	0.957	0.086
$k_{indifference}^{item} * Site Code$	-0.532*	[-0.876, -0.188]	0.993	0.014

Note: *p<0.01; ***p<0.001 (two-sided p-value of respectively .05, .01 and .001 corresponds approximately to a pd of 97.5%, 99.5% and 99.95%). Dependent variable: Choice (now versus later).

Table S17. Subject-level log-transformed discount rates and consistencies

	Sample 1				
	Controls (n=66)	MDD (<i>n</i> =66)	MDD+SI (<i>n</i> =76)	MDD+LL SA (<i>n</i> =55)	MDD+HL SA (<i>n</i> =61)
Discount rates (M, SD)	-5.42 (1.62)	-4.97 (1.42)	-4.97 (1.84)	-4.68 (1.75)	-5.00 (1.94)
Consistencies (M, SD)	.96 (.04)*	.95 (.04)*	.95 (.06)	.95 (.05)	.92 (.09)*
			Sample 2		
	Controls (n=39)	MDD (n=38)	MDD+LL SA (<i>n</i> =24)	MDD+HL SA (<i>n</i> =17)	
Discount rates (M, SD)	-5.40 (1.57)	-4.67 (1.19)	-4.75 (1.44)	-4.70 (1.32)	
Consistencies (M, SD)	.95 (.04)*	.98 (.02)*	.95 (.04)*	.94 (.06)*	
	Sample 3				
	Controls (n=59)	MDD (<i>n</i> =57)	MDD+LL SA (<i>n</i> =42)	MDD+HL SA (<i>n</i> =22)	
Discount rates (M, SD)	-5.25 (1.54)	-5.39 (1.80)	-4.91 (1.60)	-4.33 (2.00)	
Consistencies (M, SD)	.96 (.04)	.96 (.04)	.95 (.03)	.95 (.06)	

Note. Consistencies indicate the proportion of participants' choices that are consistent with the hyperbolic discount rate. p<0.05 level.

Note. Hyperbolic value difference is on the abscissa and predicted delayed choice probability is on the ordinate.

Figure S2. Sample 2. Task behavior

Note. Hyperbolic value difference is on the abscissa and predicted delayed choice probability is on the ordinate.

Note. Hyperbolic value difference is on the abscissa and predicted delayed choice probability is on the ordinate.