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S1 Proof of Lemma 3 in the Main Text

Proof of Lemma 3. Recall the probability measure

µ := f(y)dy

on [0, 1] with density f(·) with respect to the Lebesgue measure dy, and the sequence of probability measures

µn := f̄n(y)dy

with piece-wise constant densities

f̄n(y) :=

n∑
i=0

(∫ 1

0

bni (z)f(z)dz
)

(n+ 1)1[ i−0.5
n , i+0.5

n )(y)

with y ∈ [0, 1], where

bni (z) =

(
n

i

)
zi(1− z)n−i

are the Bernstein polynomials. To show weak convergence of µn to µ, consider a bounded, Lipschitz contin-
uous function g : [0, 1]→ R, that is, there exists a K > 0 such that∣∣g(x)− g(y)

∣∣ ≤ K|x− y|
holds for all x, y ∈ [0, 1]. Moreover, let gmax ≥ |g(·)| be a bound on the function. Then, we have to show
that ∫ 1

0

gµn →
∫ 1

0

gµ

for all such g(·). To this end, note that ∫ 1

0

gµ =

∫ 1

0

g(y)f(y)dy
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holds. Furthermore, for the approximating sequence µn, we have∫ 1

0

gµn =

∫ 1

0

g(y)f̄n(y)dy

=

n∑
i=0

(∫ 1

0

bni (z)f(z)dz
)

(n+ 1)

∫ 1

0

1[i− 1
2n ,i+

1
2n )(y)g(y)dy

≤
n∑
i=0

(∫ 1

0

bni (z)f(z)dz
)

(n+ 1)

(∫ i
n

i− 1
2n

(
g
( i
n

)
+K

( i
n
− y
))
dy +

∫ i+ 1
2n

i
n

[
g
( i
n

)
+K

(
y − i

n

)]
dy

)

=

n∑
i=0

(∫ 1

0

bni (z)f(z)dz
)

2(n+ 1)

∫ 1
2n

0

(
g
( i
n

)
+Ky

)
dy

=

n∑
i=0

(∫ 1

0

bni (z)f(z)dz
)n+ 1

n

(
g
( i
n

)
+K

1

4n2

)
=

n∑
i=0

(∫ 1

0

bni (z)f(z)dz
)
g
( i
n

)n+ 1

n
+K

n+ 1

4n2
,

where the inequality follows from the Lipschitz continuity of g(·) and setting x = i
n , and the last equality

holds, because
n∑
i=0

(∫ 1

0

bni (z)f(z)dz
)

= 1.

We can proceed along the same lines to obtain a lower bound which ultimately yields∫ 1

0

gµn =
n+ 1

n

n∑
i=0

(∫ 1

0

bni (z)f(z)dz
)
g
( i
n

)
+O

(
n−1

)
=
n+ 1

n

∫ 1

0

n∑
i=0

bni (z)g
( i
n

)
f(z)dz +O

(
n−1

) (S1.1)

The Weierstrass approximation theorem (e.g. Klenke, 2008, Ex. 5.15) applied to the Bernstein polynomials
bni (z) can be used to show that

n∑
i=0

bni (z)g
( i
n

)
→ g(z)

uniformly on [0, 1] as n→∞. Furthermore, this expression can be bounded by

n∑
i=0

bni (z)g
( i
n

)
≤ gmax

n∑
i=0

bni (z) = gmax

for all x, and thus ∫ 1

0

gµn →
∫ 1

0

g(y)f(y)dy (S1.2)

follows from the dominated convergence theorem (Klenke, 2008, Cor. 6.26) applied to the integral on the
right hand side of equation (S1.1). Convergence of the integrals in (S1.2) for all bounded Lipschitz continuous
functions g(·) is equivalent to the weak convergence of µn to µ due to the Portemanteau theorem (Klenke,
2008, Thm. 13.16).
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S2 Implementation

Our method relies on numerically solving the ODE (7) in the main text. This is ultimate accomplished using
a modified Runge-Kutta-Fehlberg 4(5) method. The two main numerical challenges faced were to quickly
and accurately estimate moments of order n+ 1 and n+ 2 from those of order n, and then ensuring that the
numerical solution to equation (7) in the main text remains stable while using the approximation. In this
section we will detail how the method is numerically implemented.

S2.1 ODE Solver Implementation

We solve the ODE numerically using a modified Runge-Kutta-Fehlberg 4(5) method (e.g. Kincaid et al.,
2009, Ch. 8.3). Since the state-space is a simplex, the implementation needs to take these constraints into
account. In particular, at each step, all negative values are set to zero and values greater than one are set
to one. Then, the state-vector is renormalized so that all the components sum to one.

S2.2 Parimonious Moments

We now introduce a definition which is useful for the implementation of the ODE. First, consider the following
identity:

Mn = C(n)

∫
∆K

yndp(y) = C(n)

∫
∆K

yn

(
K∑
i=1

yi

)
dp(y) = C(n)

∫
∆K

(
K∑
i=1

yn+ei

)
dp(y)

= C(n)

∫
∆K

(
K∑
i=1

yn+ei

)
dp(y) =

K∑
i=1

C(n)

C(n + ei)
Mn+ei .

(S2.1)

This shows that every moments of order n can be explicity computed as a linear combination of moments of
order n + 1. One can apply this identity multiple time to represent Mn in terms of Mn+m for any m > 0.
If the two vectors Mn and Mn+m satisfy these identities for all components of Mn we say that they are
“parsimonious”. Furthermore, one can use equation (S2.1) to define a sparse matrix Dn+m,n which maps
Mn+m to Mn.

S2.3 Evaluation of Derivative

The time-derivative of the state variable Mn+1(t) is composed of four components (genetic drift, mutation,
recombination, selection). For convenience, we split recombination and selection into in (positive term) and
out (negative term). Each of the six terms can then be computed by multiplying the moment vector with a
sparse matrix:

1. Net flux due to genetic drift.

2. Net flux due to mutation.

3. Flux in due to selection.

4. Flux out due to recombination.

5. Flux out due to selection.

6. Flux in due to recombination.

Terms 1-4 can be expressed as linear combinations of the order n moments while 5 and 6 need moments of
order n+1 (or n+2 in the case of general diploid selection) and rely on the moment approximation. However,
we noticed that in most practical scenarios the ODE is more accurate and stable when using the moments of
order n which are parsimonious with those moments of order n+ 1. When evaluating the derivative, we thus
employ the vector of moments which are parsimonious with the estimated Mn+1 rather than the original
Mn for 3 and 4. Furthermore since Dn+1,n is sparse this can be implemented efficiently.
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S2.4 Initial Distribution

In this section we outline how the initial moments for the ODEs are computed. We consider two types of ini-
tial conditions. In the first, the population starts from a fixed haplotypes frequency x = [xAB , xAb, xaB , xab].
This case is straightforward as the moments can easily be obtained using a multinomial distribution. In the
second case, we assume that the neutral locus B is initialized from a given distribution. The beneficial allele
at locus A is then introduced at a given frequency on this background. In the main text we consider both
stationary and non-stationary distributions for the neutral locus.

S2.4.1 Given Distribution at Neutral locus

Suppose we model the case in which a selected allele is introduced at frequency xA at time 0 while the
neutral site is has a distribution with density pB . A natural way to implement this seems to just initialize
the Wright-Fisher diffusion with the probability measure δxA

× pB . However, this measure is not correct,
especially if one is interested in modeling the impact of selection on nearby neutral sites. The problem is that
it is modeling a situation in which the new allele A can land on both the B and b background simultaneously.
To see this note that if we were to take δxA

× pB(x)dx with xA = 1/2N (corresponding to a single selected
allele) and computed the sampling probabilities for a sample of size 2, the probability of sampling one AB
haplotype and one Ab haplotype would be non-zero. Instead the initial distribution should be

I(1− xAB ≥ xB ≥ xAB)(xBδ(xA,0)(xAB , xAb) + (1− xB)δ(0,xA)(xAB , xAb))× pB(xB)dxB

+ I(1− xA < xB)δ(xA,0)(xAB , xAb)× pB(xB)dxB

+ I(xB < xA)δ(0,xA)(xAB , xAb)× pB(xB)dxB ,

(S2.2)

where I(·) is the indicator function that is 1 if the condition is true, and zero otherwise. Under this joint
distribution, the marginal distribution of alleles at the neutral locus follows a distribution with density
pB . Furthermore, the distribution of the frequency of the allele A is a point mass at frequency xA. This
reflects that if one were to randomly introduce a mutation A, it has probability x of landing on the same
chromosome as a B and 1 − x of arising on the b background. The indicator functions reflect the fact
that the frequencies of B and b cannot be smaller than the frequencies of AB and Ab, respectively. In
particular, the first line represents the case in which the frequency of B and b is above that of A and thus
both AB and Ab are possible. The second (resp. third) line correspond to the case in which b (resp. B)
is too small for Ab (resp. Ab) to exist. Note that this measure is discontinuous as xB increases across the
threshold xA. This is due to the fact that the marginal distribution pB(xB) is assuming a population of
infinite size, whereas introducing an allele in a finite number of individuals is assuming a finite population.
Indeed the probability measure (S2.2) is an approximation of both, however it approximates the scenario
sufficiently well for small xA. Given a moment configuration, the moment can be computed by integrating
the appropriate multinomial probability-mass-function against the measure (S2.2). This can be split of up
into three integrals which correspond to the cases x < xA, xa ≤ x ≤ 1− xA, and x < 1− xA, respectively:

Mn(t) =

(
n

nAB , nAb, naB , bab

)[∫ xA

0

0nAB (xA)
nAb xnaB (1− x− xA)

nab pB(x)dx

+

∫ 1−xA

xA

(
(xA)

nAB 0nAb (x− xA)
naB (1− x)nabx

+ 0nAB (xA)
nAb xnaB (1− x− xA)

nab (1− x)

)
pB(x)dx

+

∫ 1

1−xA

(xA)
nAB 0nAb (x− xA)

naB (1− x)nabpB(x)dx

]
.

(S2.3)

Now, we consider the case of the stationary (Beta) distribution under recurrent mutation, the stationary
distribution under the non-recurrent mutation model, and a set of moment taken from a non-stationary
distribution separately:
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S2.4.2 Stationary Beta Distribution

We first consider the case of the neutral allele starting from the stationary distribution of the Wright-Fisher
diffusion with recurrent mutation. Namely, suppose pB is the density of a Beta(β1, β2) distribution where β1

and β2 are the population scaled mutation rates at locus B. Considering the last integral in equation (S2.3)
and assuming nAb = 0∫ 1

1−xA

(xA)
nAB (x− xA)

naB (1− x)nabpB(x)dx

=

∫ 1

1−xA

(xA)
nAB (x− xA)

naB (1− x)nab
xβ1−1(1− x)β2−1

B(β1, β2)
dx

=

∫ 1

1−xA

(xA)
nAB

naB∑
i=0

[(
naB
i

)
(−xA)

naB−i x
β1+i−1(1− x)β2+nab−1

B(β1, β2)

]
dx

=

naB∑
i=0

(
naB
i

)
(−xA)

naB−i
(xA)

nAB
B(β1 + i, β2 + nab)−B(1− xA;β1 + i, β2 + nab)

B(β1, β2)

(S2.4)

where B(·, ·) and B(·; ·, ·) are the Beta function and incomplete Beta function, respectively. By a similar
argument the first term equals,∫ xA

0

(xA)
nAb xnaB (1− x− xA)

nab (1− x)pB(x)dx

=

nab∑
i=0

(
nab
i

)
(−xA)

nab−i (xA)
nAb

B(xA;β1 + naB , β2 + i)

B(β1, β2)

(S2.5)

for nAB = 0. Finally the middle term equals:∫ 1−xA

xA

[
(xA)

nAB 0nAb (x− xA)
naB (1− x)nabx+ 0nab (xA)

nAb xnaB (1− x− xA)
nab

]
pB(x)dx

= 0nAb

naB∑
i=1

(
naB
i

)
(−xA)

naB−i
(xA)

nAB
B(1− xA;β1 + i+ 1, β2 + nab)−B(xA;β1 + i+ 1, β2 + nab)

B(β1, β2)

+ 0nAB

nab∑
i=1

(
nab
i

)
(−xA)

nab−i (xA)
nAb

B(1− xA;β1 + naB , β2 + i+ 1)−B(xA;β1 + naB , β2 + i+ 1)

B(β1, β2)
.

(S2.6)

S2.4.3 Non-recurrent Mutation

In the case where the neutral locus is initialized using the stationary measure of the non-recurrent mutation
model, we use pB(x) = θ

x , where θ is the population-scaled mutation rate. Note that this is not a probability
measure since it does not integrate to 1, but we can substitute it into equation (S2.3) regardless. We obtain
the same expressions in equations (S2.4), (S2.5), and (S2.6), with β1 = 0 and β2 = 1. Note that with this
choice for β1 and β2, the Beta function and the incomplete Beta function in equation (S2.4) are not well
defined separately, but the integral that they represent when combined does exist (similar for equation (S2.6)
if naB = 0). Furthermore, note that the incomplete Beta function in equation (S2.5) does not exist if naB = 0.
This is in line with the use of the non-recurrent mutation model in the literature. Since we designate b to
be the ancestral allele at the neutral locus, a configuration with naB = 0 corresponds to a configurations
with all alleles at the neutral locus being ancestral. In the non-recurrent mutation model there is an infinite
supply of ancestral allele, and thus the expected number of such configurations is infinite. To arrive at a
proper probability distribution over all two-locus haplotype configurations, we employ the following strategy.
We first compute the likelihoods for all configurations with naB > 0, and define m as 1 minus the sum of
all these likelihoods. We than distribute the mass m among the remaining configurations with na = 0 (and
nAB = 0) proportional to the probability of sampling nAb alleles of type A given xA.
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S2.4.4 Non-Stationary Distribution

In the case when pB(x) is a non-stationary distribution, for example considering a beneficial mutation which
is introduced at time η3 in Figure 2 in the main text, directly computing pB(x) is in general impractical.
However, to approximate pB(x) we assume that pB(x) follows a Beta(β1, β2) distribution and estimate β1

and β2 using the method of moments. Namely, we consider the moments of orders n = 1 and n = 2 for
pB(x) and select β1 and β2 such that a Beta(β1, β2) distribution has the same moments. This is then used
to derive the initial moments using the method outlined in Section S2.4.2. We find that this approximation
works well in practice.

S2.4.5 Two-Locus Stationary Distribution

In addition to modeling the setting in which a selected allele arises on a background which is at station-
arity, one may be interested in modeling a situation in which an existing neutral allele gains a selective
advantage/disadvantage and selection starts from standing variation. In such a setting, the ODEs need to
be initialized from the two-locus stationary distribution. To do this, one can take a similar approach as in
LDpop (Kamm et al., 2016). Namely, one can formulate a two-locus Moran model which accounts for genetic
drift, mutation, and recombination and compute its transition matrix. This transition matrix can then be
used to compute the stationary distribution of the moments by either solving the appropriate set of linear
equations or via power iteration, which can be more efficient for sparse matrices. For an exact result, one
would use the augmented Moran model of Kamm et al. (2016) which includes partially specified haplotypes,
while for larger sample sizes (n ≥ 20) the normal two-locus Moran model of Ethier and Kurtz (1993) serves
as a good approximation.

S3 Additional Simulation Results

In this section we display some additional results for some parameter configurations not shown in the main
text.

S3.1 Fixed Initial Frequencies

S3.1.1 Additional Parameter Combinations

In Figure S1, we present the expected frequency of haplotype AB with the same parameters as Figure 5 in
the main text but ρ = 0.0004. We can see that since the two loci are tightly linked the trajectories closely
resemble expected trajectory of the A allele in Figure 4 in the main text.

S3.1.2 Comparing to Expected Trajectories under Exact Wright-Fisher Diffusion

To further validate the output from the numerical solutions to the ODEs, we compared them to the expected
allele frequency trajectories of the one-locus Wright-Fisher diffusion, computed with high accuracy. We
obtained these trajectories using an implementation of the spectral method developed by Steinrücken et al.
(2014). This method can be used to compute the expected trajectories in the one-locus case with high
accuracy for constant population size history. This can be achieved by computing the likelihood of a temporal
sample of size one, with one copy of the derived allele, since this corresponds to the binomial integral that also
yields the expected allele frequency. In Figure S2, we compare the expected allele frequencies of a selected
allele calculated from the moment ODE, simulations using SimuPOP, and the exact Wright-Fisher diffusion
for a population of size 10,000 over 6,000 generations across three different selection parameters, with initial
frequency 0.05. This figure aligns with the first 6,000 generation of the demography shown in Figure 2 and
used in Figure 4 in the main text. The solutions from the moment ODE and the Wright-Fisher diffusion
show a high level of agreement. This indicates that, in the respective parameter range, the discrepancies
between the moment ODE and SimuPOP are only due to noise from random sampling and the fact that
the Wright-Fisher diffusion is only an approximation of the finite Wright-Fisher model. Since the ODEs
are derived based on the diffusion, they can only be as good an approximation as the diffusion is. These
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Figure S1: Expected frequency of the AB haplotype, but for strong linkage (ρ = 0.0004). Again, blue,
red, and green correspond to the dynamics starting 10,000 generations, 4,000 generations (beginning of
the bottleneck), and 1,000 generations before present (beginning of exponential growth), respectively. The
dotted and solid lines correspond to the simulation average and ODE solution, respectively, with the shaded
region indicating the 95% confidence interval.
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(c) Selection coefficient σ = 100.

Figure S2: Expected allele frequencies selected allele calculated from numerical solutions to the moment
ODE (blue dashed line), simulations using SimPOP (red solid line), and exact Wright-Fisher diffusion (green
dash-doted line) for a population of size 10,000 over 6,000 generations for three different selection parameters.
Shaded areas indicate 95% confidence.

conclusions are also supported by the results presented in Figure S3, which displays the expected trajectories
of the selected allele derived from the moment ODE, SimuPOP, and the exact Wright-Fisher diffusion, but
for a population of size 2,000 over 3,000 generations, aligning with the first 3,000 generations of the red
trajectories in Figure 4 in the main text.

S3.2 Neutral Locus at Stationarity

In this section we present analogous results to those displayed in Results – Initializing at Stationarity
in the main text, with the selected allele A is initialized at frequency 0.03 and 0.01 instead of 0.05. Figures
S4 and S5 display the heterozygosity over time (analogous to Figure 8 in the main text) with A initialized
from 0.03 and 0.05, respectively. Similarly, Figures S6 and S7 display D2 over time (analogous to Figure 9
in the main text) where A is initialized at frequency 0.01 and 0.03, respectively.

S3.3 Site-Frequency-Spectrum in a Genomic Window

Here we present additional figures to supplement the discussion in Results – Impact of Selection on
Local Site-Frequency-Spectrum in the main text. Figure S8 shows the folded SFSs in the scenarios
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Figure S3: Expected allele frequencies selected allele calculated from numerical solutions to the moment
ODE (blue dashed line), simulations using SimPOP (red solid line), and exact Wright-Fisher diffusion (green
dash-doted line) for a population of size 2,000 over 3,000 generations for three different selection parameters.
Shaded areas indicate 95% confidence.

exhibited in Figure 10 in the main text, computed using the recurrent mutation model. Each entry of the
SFS is given by

Snk (t) :=
∑
i∈E
iB=k

Mi(t) +
∑
i∈E
ib=k

Mi(t).

S4 Approximating Moments for Large Difference of Orders

We applied the regular logit-linear moment approximation to estimate moments where the difference in order
is large, for example, to approximate moments of order 101 from order 31. We observed a loss in accuracy,
since too much probability mass is shifted away from the boundaries of the simplex, that is, configurations
where at least one of the possible haplotypes is not present in the sample. To remedy these inaccuracies,
we have developed a prototype approximation method for higher-order moments. In this approach, we first
use the regular logit-linear for the interior and the boundaries separately, where the different boundaries
are classified by the number of haplotypic classes are unobserved in the respective sample configuration.
Note that the interior is the “boundary” where all haplotypic classes are observed. We then combine these
separate approximations into one approximation for the entire vector of moments as follows. Starting from
the interior and adding different boundaries successively adds additional entries into the vector on each
level. The probability mass for these new entries is always taken out of the boundary on the next level.
Proceeding iteratively, we arrive at the final vector with entries for all configurations. This procedure does
shift probability mass from the boundaries into the interior, but less than the regular logit-linear would have,
thus resulting in a better approximation. In Figure S9 we present the results of applying this technique to
approximate SFSs for a sample of size 101, computed from a moment vector of order 31, and assess the
accuracy by comparing to simulations using SLiM, see Results – Impact of Selection on Local Site-
Frequency-Spectrum in the main text for a full description. We omit the case σ = 100, because we
did observe that the new approximation became numerically unstable for large σ, which we will address in
future work. The SFS obtained from the numerical solution of the ODE combined with the new moment
approximation (dotted lines) are generally in good agreement with the simulated SFS (solid lines).
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Figure S5: Expected heterozygosity across a 100 kbp region with different selection coefficients and starting
times. The beneficial allele is introduced at frequency xA = 0.01. The dotted and solid lines represent the
simulation and ODE results, respectively, with the shaded region representing a 95% confidence interval.
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Figure S6: D2 across a 100 kbp region with different selection coefficients and starting times. The beneficial
allele is introduced at frequency xA = 0.03. The dotted and solid lines represent the simulation and ODE
results, respectively, with the shaded region representing a 95% confidence interval.
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Figure S7: D2 across a 100 kbp region with different selection coefficients and starting times. The beneficial
allele is introduced at frequency xA = 0.01. The dotted and solid lines represent the simulation and ODE
results, respectively, with the shaded region representing a 95% confidence interval.
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Figure S8: Local folded site-frequency-spectra for windows of size 100 kbp, 500 kbp, and 1 Mbp, for selection
coefficients σ = 1, 50, and 100. Computed using the recurrent mutation model. The demographic history is
given in Figure 2 in the main text and the beneficial allele is introduced 10,000 generations before present (η1).
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Figure S9: Local site-frequency-spectra for windows of size 100 kbp, 500 kbp, and 1 Mbp, for sample size
51, and for selection coefficients σ = 1 and 50. The demographic history is given in Figure 2 in the main
text and the beneficial allele is introduced 10,000 generations before present (η1). Note that for the third
columns the y-axis limits have changed.
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