Supplementary information

Identification and structure of an extracellular contractile injection system from the marine bacterium *Algoriphagus machipongonensis*

In the format provided by the authors and unedited

Supplementary Figure 1. Representative densities of reconstructed EM maps

a: Stick and density mesh diagrams showing the representative density maps of different structural components in the extended AlgoCIS particles. The color code for different proteins matches Fig. 1d, while the density meshes are colored grey.

b: Stick and density mesh diagrams showing the representative density maps of putative sheath protein (Alg2) in the contracted sheath. The color code for Alg2 matches Fig. 1d, while the density meshes are colored grey.

Supplementary Figure 2. Workflow for the cryoEM structural determinations of the contracted AlgoCIS baseplate

a: Flowchart for cryoEM reconstruction of the contracted AlgoCIS baseplate. See METHODS and Supplementary Table 3 for details.

b: Gold standard FSC curves of the contracted AlgoCIS baseplate reconstructions, including the overall structure (blue) and the focused baseplate structure (orange).

c: Local resolution maps of the overall structure of the contracted AlgoCIS baseplate.

d: 2D classification analyses showing the empty lumen of the expelled inner tube in the contracted AlgoCIS.

Supplementary Figure 3. CryoEM structures of the contracted AlgoCIS sheath fragment

a: Top view (left) and side view (right) of ribbon diagrams showing the contracted sheath fragment containing three sheath layers (L_n , L_{n+1} and L_{n+2}). The protein layers are represented in different colors. The direction of one helical strand (H1) is highlighted by a line.

b: Structural superpositions of sheath subunits in the extended (green) and contracted (purple) states showing that the displacements of N- and C-termini of Alg2 mediate a rigid body rotation of the subunit.

	Accession number	Protein length	Number of copies	Description	Homolog in AFP	Homolog in PVC	Homolog in T4
Alg16A	A3HTC4	197	6	Cap terminator	Afp16	Pvc16	gp15
Alg16B	A3HTC3	284	6	Adaptor between cap terminator and sheath-tube module	-	-	-
Alg2	A3HTC2	692	138	sheath protein	Afp2/3/4	Pvc2/3/4	gp18
Alg1	A3HTC1	142	132	inner tube protein	Afp1	Pvc1	gp19
Alg5	A3HTC0	147	6	tube initiator	Afp5	Pvc5	gp54
Alg6	A3HTB9	52	3	plugged protein at the proximal end of the inner tube lumen	Afp6	Pvc6	-
Alg7	A3HTB8	228	6	tube initiator, LysM-	Afp7	Pvc7	gp48/gp53
Alg8	A3HTB7	581	3	Baseplate, VgrG-like	Afp8	Pvc8	gp5/gp27
Alg10	A3HTB6	96	1	Baseplate, PAAR-	Afp10	Pvc10	gp5.4
Alg9	A3HTB5	137	6	Baseplate, wedge	Afp9	Pvc9	gp25
Alg11	A3HTB4	1050	6	Baseplate, wedge	Afp11	Pvc11	gp6
Alg12	A3HTB3	933	6	Baseplate, wedge	Afp12	Pvc12	gp6/gp7
Alg19	A3HTB2	1443	unknown	Ig-like fold protein,	-	-	-
Alg14	A3HTB1	537	-	potential tan fiber potential tape	Afp14	Pvc14	gp29
ALPR1_12 695 (Cgo1)	A3HTB0	498	unknown	DUF4157 containing protein (cargo	-	-	-
ALPR1_12 690 (Cgo2)	АЗНТА9	1228	unknown	protein) DUF4157 containing protein (cargo	-	-	-
ALPR1_12	A3HTA8	289	-	tetratricopeptide	-	-	-
Alg15	A3HTA7	435	-	AAA superfamily ATPase	Afp15	Pvc15	-

Supplementary Table 1. AlgoCIS gene cluster

Agl16A Alg16B Alg2 Alg1	Purified extended AlgoCIS sample 10 19 33 13	Purified contracted AlgoCIS sample 8 11 38 38	Sample from WT culture supernatant 13 26 4	Sample from null mutant culture 8 14 25 2	Sample from AlgoCIS ⁻ culture - - - 3	AlgoCIS Cgo1/Cgo2 24 36 141 17		- AlgoCIS - Cgo1- - 21 54 2
Alg1 Alg5	6 13	12	4 '	- 2		ı ı	- 17	- 17 2
Alg6	2	·	·			·		-
Alg7	16	13	9	. J		·	- 12	- 12 5
Alg10	- 17	· +	- 12	· 5			- · ·	
Agl9	6	2	4	З		1	- 9	- 9 4
Alg11	37	32	24	30			- 115	- 115 42
Alg12	40	37	30	34			- 117	- 117 21
Agl19	69	59	58	61		·	- 85	- 85 95
Alg14	ı	·	ı	ı		ı		
ALPR1_126 95 (Cgo1)	11	ı	S	10		·	-	- 4
ALPR1_126 90 (Cgo2)	28	4	15	15		·	- S	- 5 57
ALPR1_126 85	ı	·	ı			·		
Alg15				,				

Supplementary Table 2. Mass spectrum analysis of different purified samples of AlgoCIS wild-type and the corresponding mutants.

	Cap	Baseplate_C6 (overall)	Baseplate_C6 (focused refined)	baseplate_C3	Extended sheath-tube module	Contracted sheath shell	Baseplate in contracted AlgoCIS
Data collection and processing Magnification				81,000			
Voltage (kV)				300			
Electron			60	e ⁻ /dose weighting	(K3 camera)		
exposure (e/A) Defocus range (μm)				1.0-3.0			
Pixel size (Å/pixel)				1.1			2.2 (binning=2)
Symmetry imposed	C6	C6	C6	C3	C6 + helical (twist = 20.54°, rise = 40.80 Å)	C6 + helical (twist = 32.20°, rise =	C6
Initial particles	128473	128473	128473	128473	856113	18.04 Å) 157909	21922
Final particles	65059	82969	30211	82969	225305	92922	3793
(No.) Map resolution	2.5	2.7	2.9	2.8	2.4	2.5	4.8 (overall) 8.9
FSC threshold	0.143	0.143	0.143	0.143	0.143	0.143	(baseplate) 0.143
Refinement							
Map sharpening B factor (Å ²)	-40	-52	-33	-56	-60	-64	15 (overall) -22
Model					(three layers)	(three layers)	(baseplate)
composition Non-hydrogen	67800	135	5188	149562	92718	91008	-
atoms Protein	8508	17	155	19014	11736	11808	-
residues Chains	30	4	12	48	36	18	-
R.M.S deviations							
Bond length	0.015	0.0	014	0.015	0.015	0.005	-
(A) Bond angles (°) Validation	1.549	1.:	514	1.582	1.674	0.875	-
MolProbity	1.21	1.	23	1.31	1.20	1.02	-
score Clashscore	4.30	3.	55	4.57	4.17	1.82	-
Poor rotamer	0.00	0.	00	0.00	0.00	0.00	-
(%) Ramachandran							
Favored (%)	98.03	97	.58	97.62	98.61	97.61	-
Allowed (%)	1.97	2.	42	2.38	1.39	2.39	-
Outlier (%)	0.00	0.	00	0.00	0.00	0.00	-
Masked CC	0.85	0.80	0.82	0.78	0.81	0.86	-

Supplementary Table 3. Cryo-EM data statistical analysis

AAlo16B	AAlg16B dA	5'-
Lingitz		GTTAAAAAGGATCGATCCTCTAGATGCATTCGTACAAAGCAAAAG-
		3'
	$\Delta Alg16B_dB$	5'-GTTGCCATAGTAAAAAAGGTAAATTATAGCGTTTCGTAGT-3'
	$\Delta Alg16B_dC$	5'-ACTACGAAACGCTATAATTTACCTTTTTTACTATGGCAAC-3'
	∆Alg16B_dD	5'-CGTGAATTCAAAGGGAGAGCTCAGGAAGCAATGGCTGAATTG-3'
	Alg16B_SeqF	5'-GGGAAGAGGTCACGATGAAA-3'
	Alg16B_SeqR	5'-ATCGAGCAACGATGAAATCC-3'
ΔAlg2	∆Alg2_dA	5'-GTTAAAAAGGATCGATCCTCTAGATGGGGGGACTTTAGGAGGAAG-
		3'
	∆Alg2_dB	5'-GTCTAGGTCAAGCTGCTTTAAGTAAAAAAGGTTTAAATGA-3'
	$\Delta Alg2_dC$	5'-TCATTTAAACCTTTTTACTTAAAGCAGCTTGACCTAGAC-3'
	$\Delta Alg2_dD$	5'-CGTGAATTCAAAGGGAGAGCTCACACATTGAGCAACGAGCTG-3'
	Alg2_SeqF	5'-AGGTGGTGTATTGGGGATCA-3'
	Alg2_SeqR	5'-TTCCCGGCATTTTTATTTG-3'
Δ Alg6	∆Alg6_dA	5'-GTTAAAAAGGATCGATCCTCTAGATTGGAGGTCTGCTGCTTTT-3'
	∆Alg6_dB	5'-CCAGTTTACCTTCACTCATGACCAGACAATCGTTTTGAAATAG-3'
	$\Delta Alg6_dC$	5'-CTATTTCAAAACGATTGTCTGGTCATGAGTGAAGGTAAACTGG-3'
	∆Alg6_dD	5'-CGTGAATTCAAAGGGAGAGCTCTCGTGACTCCACGATTAGGA-3'
	Alg6_SeqF	5'-TTTGCAGAGGAGGAGAAAA-3'
	Alg6_SeqR	5'-GTCGTTGCCATGGCTCTAAT-3'
pCHIP3	pCHIP3_SeqF	5'-TTCTGTTGCATGGGCATAAA-3'
backbone	1	
	pCHIP3_SeqR	5'-CCAACCCATCCATATGCTTC-3'
	1	
	pCHIP3_SeqR	5'-CGTGAATTCAAAGGGAGAGC-3'
	2	
AlgoCIS ⁻	BamHI_Algo_	5'-ATATATGGATCCTTTCTTTCATGCATAGG-3'
	CIS_F	
	Algo_CIS_F	5'-ICATITAAACCITITITACITAAAGCAGCITGACCIA-3'
	Algo_CIS_R	5'-TAGGTCAAGCTGCTTTAAGTAAAAAAGGTTTAAATGA-3'
	Pstl_Algo_Cl S R	5'-ATATATCIGCAGICGTATIGAACIAGITCA-3'
Null	BamHI Algo	5'-ATATATGGATCCTGCTTCGATCTGCGCTTC-3'
mutant	null_F	
	PstI_Algo_nul	5'-ATATATCTGCAGCTCAAAAAAGCAGAAGCTCAG-3'
	_1_Ř	

Supplementary Table 4. List of primers to generat	e different bacterial mutants